We study a class of infinite-dimensional diffusions under Gibbsian interactions, in the context of marked point configurations: the starting points belong to ℝd, and the marks are the paths of Langevin diffusions. We use the entropy method to prove existence of an infinite-volume Gibbs point process and use cluster expansion tools to provide an explicit activity domain in which uniqueness holds.
Siehe auch die persönliche Webseite von
Frau Prof. Dr. Roelly, Prof. Dr. Zähle, Dr. Louis, Dr. Rafler, Prof. Dr. Högele