We give a new and very short proof of a theorem of Greiner asserting that a positive and contractive c_0-semigroup on an L^p-space is strongly convergent in case that it has a strictly positive fixed point and contains an integral operator. Our proof is a streamlined version of a much more general approach to the asymptotic theory of positive semigroups developed recently by the authors. Under the assumptions of Greiner's theorem, this approach becomes particularly elegant and simple. We also give an outlook on several generalisations of this result.