Stability for linearized gravity on the Kerr spacetime

Autoren: Lars Andersson, Thomas Bäckdahl, Pieter Blue, Siyuan Ma (2019)

In this paper we prove integrated energy and pointwise decay estimates for solutions of the vacuum linearized Einstein equation on the Kerr black hole exterior. The estimates are valid for the full, subextreme range of Kerr black holes, provided integrated energy estimates for the Teukolsky Master Equation holds. For slowly rotating Kerr backgrounds, such estimates are known to hold, due to the work of one of the authors arXiv:1708.07385. The results in this paper thus provide the first stability results for linearized gravity on the Kerr background, in the slowly rotating case, and reduce the linearized stability problem for the full subextreme range to proving integrated energy estimates for the Teukolsky equation. This constitutes an essential step towards a proof of the black hole stability conjecture, i.e. the statement that the Kerr family is dynamically stable, one of the central open problems in general relativity.
The proof relies on three key steps. First, there are energy decay estimates for the Teukolsky equation, proved by applying weighted multiplier estimates to a system of spin-weighted wave equations derived from the Teukolsky equation, and making use of the pigeonhole principle for the resulting hierarchy of weighted energy estimates. Second, working in the outgoing radiation gauge, the linearized Einstein equations are written as a system of transport equations, driven by one of the Teukolsky scalars. Third, expansions for the relevant curvature, connection, and metric components can be made near null infinity. An analysis of the dynamics on future null infinity, together with the Teukolsky Starobinsky Identity plays an important role in the argument.


zur Übersicht der Publikationen