We present an introduction to boundary value problems for Dirac-type operators on complete Riemannian manifolds with compact boundary. We introduce a very general class of boundary conditions which contains local elliptic boundary conditions in the sense of Lopatinskij and Shapiro as well as the Atiyah-Patodi-Singer boundary conditions. We discuss boundary regularity of solutions and also spectral and index theory. The emphasis is on providing the reader with a working knowledge.