In Kaluza-Klein theory one usually computes the scalar curvature of the principal bundle manifold using the Levi-Civita connection. Here we consider a natural family of invariant connections on a soldered principal bundle which is then parallelizable and hence spinable. This 3-parameter family includes the Levi-Civita connection and the flat connection. By varying the connection instead of merely scaling the metric on the fibers, there is greater independence among the coupling constants in the scalar curvature. In particular, a large cosmological constant can be avoided in spite of tiny fibers.