2020 | On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary | Claudio Dappiaggi, Nicolò Drago, Rubens LonghiZeitschrift: Ann. Henri PoincaréSeiten: 2367–2409Band: 21Link zur Publikation , Link zum Preprint
On Maxwell's Equations on Globally Hyperbolic Spacetimes with Timelike Boundary
Autoren: Claudio Dappiaggi, Nicolò Drago, Rubens Longhi (2020)
We study Maxwell's equation as a theory for smooth k-forms on globally hyperbolic spacetimes with timelike boundary as defined by Aké, Flores and Sanchez. In particular we start by investigating on these backgrounds the D'Alembert - de Rham wave operator □k and we highlight the boundary conditions which yield a Green's formula for □k. Subsequently, we characterize the space of solutions of the associated initial and boundary value problem under the assumption that advanced and retarded Green operators do exist. This hypothesis is proven to be verified by a large class of boundary conditions using the method of boundary triples and under the additional assumption that the underlying spacetime is ultrastatic. Subsequently we focus on the Maxwell operator. First we construct the boundary conditions which entail a Green's formula for such operator and then we highlight two distinguished cases, dubbed δd-tangential and δd-normal boundary conditions. Associated to these we introduce two different notions of gauge equivalence and we prove that in both cases, every equivalence class admits a representative abiding to the Lorentz gauge. We use this property and the analysis of the operator □k to construct and to classify the space of gauge equivalence classes of solutions of the Maxwell's equations with the prescribed boundary conditions. As a last step and in the spirit of future applications in the framework of algebraic quantum field theory, we construct the associated unital ∗-algebras of observables proving in particular that, as in the case of the Maxwell operator on globally hyperbolic spacetimes with empty boundary, they possess a non-trivial center.