Vorlesung "Elementargeometrie"

Verantwortliche(r): Horst Wendland

Die Vorlesung behandelt Begriffe und Konzepte der euklidischen, sphärischen und hyperbolischen Geometrie. In diesen drei klassischen metrischen Geometrien werden u.a. die Sätze der Trigonometrie und Aussagen über die jeweiligen Isometriegruppen bereitgestellt. Im Abschnitt über euklidische Geometrie werden abschließend die Kurven zweiter Ordnung behandelt. In der sphärischen Geometrie werden Anwendungen in der Kartographie und der Geometrie der Polytope aufgezeigt, und die hyperbolische Geometrie endet mit einem Abschnitt über verschiedene Modelle der hyperbolischen Ebene.

Wann / Wo:
V: Mi und Do jeweils             12:15 - 13:45      1.08.0.59

Übungsgruppen:
Mo 12:15 - 13:45             1.19.1.19
Di 08:15 - 09:45               1.09.2.06

Übungsbetrieb:
Moodle-Link

Semester (empfohlen):
6., (möglich ab 2.)

Modulnummer(n):
221, A220, B220, C220, AM-D220

Erforderliche/empfohlene Vorkenntnisse:
Lineare Algebra und Analytische Geometrie (LAAG) bzw. Elemente der LAAG

Literatur:
1. Bär, C.: Elementargeometrie, Skript(U Potsdam), 2008
2. Benz, W.: Ebene Geometrie, Spektrum AV, 1997
3. Koecher, M.: Ebene Geometrie, 3. Aufl., Springer, 2007