When trying to extend the Hodge theory for elliptic complexes on compact closed manifolds to the case of compact manifolds with boundary one is led to a boundary value problem for the Laplacian of the complex which is usually referred to as Neumann problem. We study the Neumann problem for a larger class of sequences of differential operators on a compact manifold with boundary. These are sequences of small curvature, i.e., bearing the property that the composition of any two neighbouring operators has order less than two.