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Let {S(n)} be a simple random walk, i.e.

S(n) =

n∑
i=1

ξi,

where {ξi} are independent ±1 with probability 1
2
.

Extend S(n) for all t by linearity:

S(t) = S(n) + (t− n)(S(n+ 1)− S(n)), t ∈ [n, n+ 1].
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Problem

Consider a random walk {S̃(n)}, which behaves as {S(n)} everywhere except
0. In 0 it stops for some random amount of time and then continues its way as
{S(n)}.

Figure: S̃(n)
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Two random walks together.
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Problem

The Donsker Theorem

In C([0, T ])
S(nt)√

n

w→W (t), n→∞. (1)

Our goal is to analyse the behaviour of a limiting random process for:

X̃n(t) =
S̃(nt)√

n
.
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Let times of lagging in zero be a sequence of i.i.d.r.v. {ηn}∞n=1 and

α(t) = t+

τ0(nt)∑
i=1

ηi, t ≥ 0, (2)

where τ0(t) = #{k : S(k) = 0, 0 < k ≤ t}, i.e. number of returns to zero
before the time t.

Consider

α−1(t) = inf{x : α(x) ≥ t}, t ≥ 0.
(3)

Lemma

S̃(t) = S(α−1(t)) (4)
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Lagging with �nite expectation

Theorem 1.

Let ηi ≥ 0 be i.i.d.r.v. with Eηi <∞, i ≥ 1. Then the sequence

X̃n(t) =
S̃(nt)√
n
, n ≥ 1 converges weakly in C([0, T ]) to a Wiener's process

W (t):

X̃n(t)
w→W (t), n→∞. (5)

Let

hn(t) =
α−1(nt)

n
,

then

X̃n(t) =
S̃(nt)√

n
=
S(α−1(nt))√

n
=
S(nα

−1(nt))
n

)
√
n

= Xn(hn(t)). (6)
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Main steps of the proof

Recall that

hn(t) =
α−1(nt)

n
,

α(nt)

n
= t+

1

n

τ0(nt)∑
i=1

ηi, X̃n(t) = Xn(hn(t)).

We will proceed by the following steps:

1 We will show that

∀T > 0 hn(t)
[0,T ]

⇒ t, n→∞, a.s.

by means of showing:

1
α(n)
n
→ 1, n→∞, a.s.

2 ∀T > 0
α(nt)
n

[0,T ]

⇒ t, n→∞, a.s.
2 Use Skorohod's representation theorem for the pair (Xn, hn) to obtain a.s.

convergence of copies, that are subjected to the same distributions:

Xn(t) ⇒
n→∞

W (t) a.s., hn(t) ⇒
n→∞

t a.s..

3 Derive the claim on the new probability space and thus on the original one.
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Example

Consider the Markov chain Sp(n) which if it is in state 0 has probability p of
leaving zero during the current step. That is

Sp(n) =



{
Spn−1

+1,w. pr. 0.5

−1,w. pr. 0.5
if Spn−1 6= 0{

+1,w. pr. 0.5

−1,w. pr. 0.5
w. pr. p if Sp(n− 1) = 0,

0, w. pr. 1− p if Sp(n− 1) = 0,

(7)

Sp(n) is equivalent to S̃(n) with ηi geometrically distributed with parameter p.
So in C([0, T ])

Sp(nt)√
n

w→W (t), n→∞.
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Lagging depending on n

Let Sp(n) be a Markov chain on Z with

p0,0 = 1− p, p0,±1 =
p

2
,

∀i 6= 0 pi,i±1 =
1

2
.

And let p = pn = ρ
nγ

. Consider

Xpn
n (t) =

Spn(nt)√
n

.

Theorem 2

In C([0, T ]):

if γ < 0.5, then Xpn
n (t)

w−→
n→∞

W (t),

if γ > 0.5, then Xpn
n (t)

w−→
n→∞

0,

if γ = 0.5, then Xpn
n (t)

w−→
n→∞

Wsticky(t).

As we have seen in example, Spn(n)
d
= S̃(n) with η

(n)
i ∼ Geom(pn). So we will

prove the theorem for such S̃(n).
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Now α(t) = αn(t) depends on n. Still we write

Xpn
n (t) = Xn(hn(t)), hn(t) =

α−1
n (nt)

n
(8)

and

αn(nt)

n
= t+

1

n

τ0(nt)∑
i=1

η
(n)
i = t+

nγ√
n

1√
n

τ0(nt)∑
i=1

η
(n)
i

nγ
. (9)

Theorem

Let W (t) � be a Brownian motion in R and L0
W (t) � be its local time at 0, i.e

L0
W (t) = lim

ε→0

1

2ε

∫ t

0

1|W (s)|≤εds.

Then in C([0, T ]):(τ0(nt)√
n

,
S(nt)√

n

)
w→ (L0

W (t), W (t)), n→∞.
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Main steps of the proof

We will proceed by the following steps:

1 Use Skorohod's representation theorem to the pair (τ0(t), S(t)).

2 On a new probability space prove convergence of

∀T > 0 sup
t∈[0,T ]

∣∣∣ 1√
n

√
nL0

W (t)∑
i=1

η
(n)
i

nγ
− L0

W (t)

ρ

∣∣∣ P→ 0, n→∞, (10)

1

1
√
n

√
nt∑

i=1

η
(n)
i

nγ
P→
t

ρ
, n→∞.

2

∀T > 0 sup
t∈[0,T ]

∣∣∣ 1
√
n

√
nt∑

i=1

η
(n)
i

nγ
−
t

ρ

∣∣∣ P→ 0, n→∞,
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in case of γ < 0.5

Recall that

X̃n(t) = Xn(hn(t)),
αn(nt)

n
= t+

nγ√
n

1√
n

τ0(nt)∑
i=1

η
(n)
i

nγ
.

1 For γ < 0.5:

αn(nt)

n

w→
n→∞

t. (11)

2 Invoke Skorohod's theorem once again for the triplet of random elements

(τ0(t), S(t), αn(t)).

3 Appeal to the proof of theorem 1.

Xpn
n (t)

w−→
n→∞

W (t).
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in case of γ > 0.5

Recall that

X̃n(t) = Xn(hn(t)),
αn(nt)

n
= t+

nγ√
n

1√
n

τ0(nt)∑
i=1

η
(n)
i

nγ
.

1 For γ > 0.5:

for every δ > 0 on [δ, T ]
αn(nt)

n

w→
n→∞

∞. (12)

2 Invoke Skorohod's theorem once again for the triplet of random elements

(τ0(t), S(t), αn(t)).

3 Show that
hn(t) ⇒ 0,

4 Hence the claim on the new probability space.

5 Hence on the original one.

Xpn
n (t)

w−→
n→∞

0.
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in case of γ = 0.5

Recall that

αn(nt)

n
= t+

nγ√
n

1√
n

τ0(nt)∑
i=1

η
(n)
i

nγ
.

1 For γ = 0.5:

α(nt)

n

w→
n→∞

t+ L0
W (t)/ρ. (13)

2 As α(nt)
n

is strictly monotonous, its generalized inverse is continious.

3 Hence

α−1(nx)

n
= Inv

[α(nt)
n

]
(x)

w→ Inv[t+ L0
W (t)/ρ](x). (14)

4 Set
Wsticky(x) =W (Inv[t+ L0

W (t)/ρ](x))
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Thank you for your attention!
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