On the heterogeneous diffusion process

llya Pavlyukevich Georgiy Shevchenko
Institute for Mathematics Department of Mathematics
Friedrich Schiller Taras Shevchenko
University Jena National University of Kiev

’5:’-‘. ON¢ = ORIA®
\_.\ \1'._( IN¢ j k’_ ET E’:-‘-("_R 1} r_ill. "

P Ay
O $
{,5? > %‘fab
APACA WY

Singular diffusions: analytic and stochastic approaches
01-03 April 2019, Potsdam University



HETEROGENEOUS DIFFUSION

This talk is based on the preprint

llya Pavilyukevich and Georgily Shevchenko
A Stratonovich SDE with irregular coefficients: Girsanov’s example revisited

http://arxiv.org/abs/1812.05324
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2. Heterogeneous diffusion process

Space dependent diffusivity:
diffusion in heterogeneous systems,
e.g. Richardson diffusion in turbu-

New ]ournal of Ph sics lence, transport in heterogeneous

porous media, cytoplasmic diffusion
in bacterial and eukaryotic cells...

Anomalous diffusion and ergodicity breaking in
heterogeneous diffusion processes
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~v = 1: diffusion
v > 1: superdiffusion
v < 1: subdiffusion
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3. Heterogeneous diffusion process

In the 1t0 interpretation: Girsanov (1960) — non-uniqueness for «a € (0, %), also
non-Markovian solutions. Zvonkin (1974) — for o > 1/2 there is a unique
strong solution, If Xy =0, X; = 0.

However: Cherstvy, Chechkin and Metzler considered the Stratonovich SDE:

t
Xt = X() + f ‘X3|& o dBS
0

The Stratonovich integral is defined as a limit
t 1
L X% 0 dBy = Tim 32 (10,17 + X0, |*) By, — B
k
! 1
_ f X, |* B, + [IX]°, B,
0

The definition of the integral contains the quadratic covariation process:

[1X1%, Bl = tim 3 (X, [ = [X0,|) (Bug,, = Buy)
k
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4. Solution away from the origin

Assume Xy # 0. Thenforany a > 0 fort < 7, A £, £ — explosion time,
T, = inf{t = 0: | X;| ¢ (a,0)} the diffusion X solves

t t t
X; = Xo+ J | X,|*odBs = Xo + f | X,|*dB, + %f | X, [** sign X, ds
0 0 0

X can be found explicitly: denote (x)P = |z|P sign z

dX
ﬁ:OdB, X0>O,
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5. Solution away from the origin
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6. Solution by regularization: o € (0, 1)

Consider smooth approximations o.(x) of |z|* such that o.(z) > 0 and
approximations

t

! 1t
X; = Xo+ J 0-(X5)odBs = Xg + J o.(X:)dB;s + §f (X)L (X5)ds,
0 0 0
dX =odB
o(X¢)
fa X)) = J
( ) 0 U€<y)

Ito’s formula:  f.(X[) = f.(Xo) + By,

X7 = [ (Be + f(X0))
Xf_)Xt:f_1<Bt+f(X0))7 e — 0.
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7. Solution by regularization: the “benchmark solution”
Recall notation: (x)? = |z|Psignx

fe(x) = f(z) = (:U)l_a = |:U\1_O‘ sign x
L Y a) = (1—a)x)Ta

X; — X? = F(B;) = ((1 —Q)B; + (Xo)l_a) =
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8. Another example

The limting process X/*° = f~1(B,) = F4 p(By) equals to zero on random

time intervals when B; € |-
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9. Ito’s formula and existence of || X |*, B]
We can prove that

1
X0 = F(B) = (1- a)By + (Xo) )T or X{F = Fa p(B,)

is a solution with the help of the generalized It6 formula:

Follmer—Protter—Shiryaev 1995: if I is absolutely continuous with locally
square integrable derivative F’ then [F'(B), B] exists and

t

F(B;) = F(0) + f F'(B,)dB, + %[F’(B), B,

In our case,

1

F(B) = (1 - a)B + (Xo)' ™)™,
F'(B) = (1 - a)B + (Xo)' ¢|Fa ! = |[F(B)|*

—1)>—1 o a>-1
1 — «

Many solutions: the equation is underdetermined = Impose more conditions!
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10. Solutions spending zero time in zero

Let X be a (weak or strong) solution of

t
X; = J X' *odBs, (Xo=0 for brevity)
0

t
JH(XSZO)dSZO a.s., t=0.
0

The first guess: show that
Law(|X|) = Law (\(1 — a)B\ﬁ)

or in other words 1

1 — «
I.e. describe the law of the absolute value of X, and hence obtain weak
solutions.

Law( \Xyl—a) — Law(|B|)

10
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11. Reflected Brownian Motion

How to characterize the Reflected Brownian Motion?
Varadhan (lecture notes):

The RBM is the unique process P, on the canonical probability space with the
following properties:

1. Px(ZO Z.Cl?) =1
2. It behaves locally like Brownian motion on (0, o), i.e. for any bounded

smooth function f: [0,00) — R that is a constant (w.l.o.g. f = 0) in some
neighbourhood of 0 the process

120~ @) =5 | £Z)ds

IS a martingale,
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12. L |X|'"*isRMB, «c(-1,1)
—
Denote Z, = | X,|'~*, Z spends zero time in zero.

Let f: [0,00) — |0,00) be a smooth bounded function that is constant in a
neighbourhood of zero. The function g(z) = f(=|z|*"*) = f(z) is also
smooth and is constant in a neighbourhood of zero, and

g@) = (@) g'@) = e - af @)

Applying the It6 formula (with a certain care!) yields

rt 1 t
120 = | P20 aXes g | (FEIXS = af (ZOIX ) d),

rt t
- | P B G | FZ) ) ) s
JO 0
o5 | (PR e )X X ds

- | rz)sien(x) B+ | iz ds
0 2 Jo
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13. Skew Brownian motion
Question: if |Z| = |W| what is Z?
Forexample: Z =W or Z = |W|or Z = —|W|.
Let Z be a time-homogeneous Markov process.
|Z| is areflected BM <« 7 is a skew BM

Markov process with the transition density

(y—a)? 0 (=] +ly)?
e 2t + SiIgny - € 2t

1
t,x,y) =
Pe( y) \ 27t \ 27t

Can be constructed by flipping of Brownian excursions with probabilities % T
and 122 |, for some 6 € [—1,1].

Or as a limit of symmetric random walks perturbed at zero:

1
P(Xpi1— Xo = £1|X, #0) = 2,
1+

2 ?

0 1—-106
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14. Weak solutions

Theorem. Let o € (—1,1), and let X be a weak solution such that X is a
strong Markov process spending zero time at 0. Then there is 6 € |1, 1], such
that

x 4 ((1 —a)B? + (Xo)la)ﬁ

for a #-skew Brownian motion BY.
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15. Skew Brownian motion as a solution to an SDE

Harrison and Shepp, 1981: SMB B?, § € [-1, 1] is the unique strong solution
of
B! = B; +0LY(BY),

LY(-) is the symmetric local time at zero.

The SBM is a homogeneous strong Markov process however it is not the
unique process whose absolute value is distributed like |WV/|.

Indeed consider variably skewed Brownian motion with a variable skewness
parameter : R — (—1, 1) as a solution to the SDE

BE = B, + O(L«(B®)), t3>0,

where O(z) = { 6(y)dy. This is a Markov process with 1B®| £ |B| (Barlow et
al., 2000) however if # is non-constant, B® is not homogeneous Markov.
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16. Strong solutions: the result

Theorem.

1. Letae (0,1)and 6 € [—1,1]. Then

1

X! = (1-a)Bf + (Xo)"*)™"

IS a strong solution which is a homogeneous strong Markov process spending
zero time at 0.

Moreover, X? is the unique strong solution which is a homogeneous strong
Markov process spending zero time at 0 and such that

140
P(Xf>O|Xo=O)=%, t> 0.

1
2. Let € (—1,0]. Then X = ((1 — ) B; + (X()**)=* is the unique strong
solution which is a homogeneous strong Markov process spending zero time
at 0.
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17. The main part of the proof

The crucial part of the proof is the existence of the quadratic variation
[|X°|~, B]. We show that

Theorem. Let f € L2 (R?* R) and let the §-skew Brownian motion B?,

0 € (—1,1), be the unique strong solution of BY = B, + 0LY(BY). Then the
quadratic variation

[f(B®,B),Bly = lim Y (f(B{,By) - f(B{_,.By, ) (B, — By )

n—0ao

exists as a limit in u.c.p.

Moreover, let {f.,.},~1 be a sequence of continuous functions such that for
each compact K < R?

n—0ao

im — 2 = 0.
1 g!fn(ar,y) f(z,y)|"dzdy =0

Then
u.c.p.

[fn(Bev B)aB]t - [f(Bev B)aB]t
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18. Time reversion, f € (—1,1)
We use the approach by Follmer, Protter and Shiryaev, 1995:

[F(B°,B), Bly= tim > (f(Bf, By) ~ f(BY, . B, )(By — By )
k=1

t1,€ D t <t

_ fo F(B%.B.)d'B, - f (B, B.)dB,

0

tp€Dp tp <t

n t
lim Z f(Btek_17Btk_1)<Btk — Btk—l) - f f(Bg7BS) dBS
k=1 0

tp€Dn tp<t

n t
im > F(B BBy~ By ) = | f(BLB)AE,
k=1 0
T —

— f(Bgags) st
T—t

where (BY B,) = (BY._,, Br_¢)

Thus: show that (B?, B;) is a semimartingale

18
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19. Time reversion:

Time reversal technique by Haussmann and Pardoux, 1985: Let X be a
Markovian diffusion in R¢

dX =b(X)dt + o(X)dW, te]0,1]
X(t) ~ p(t,x), density with good properties,

LF(z) = 509 @) o, + V(@) ferr ala) = o(@)o"(2)

Then X = (X1_¢)s0.1) is @ Markovian diffision with the generator

Luf (@) = 509 (0) fuue, + D) o,

av = a,ij, g = g¥
p(l o t,flf)

Hence, X has the same law as a solution of an SDE

b'(z) = —b"(x) +

dX = b(X)dt +a(X)dW, te|0,1)

19
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20. An SDE for (BY, B)

B — B ( ) %’ Yy < 0
0' e
B — B + 0L°(B?) dY? = o(Y?) dB Y1 w0

Theorem. Let for 6 € (—1,1)\{0}. Then (Y?, B;) = (Y1_¢, B1_;) is a weak

solution of
W=W+J

0
t

B, = Br + f v*(s,Y? B,)ds +W,, tel0,1),
0
W being a standard Brownian motion.

t t

vW(s,Y? B,)ds + J o(Y?)dw,
0

Here: b¥(s,y,b) and b¥(s,y, b) are rather complicated functions, known
explicitly.

20
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21. Strong solutions: Proof a € (0, 1)
For definiteness we set X, = 0.

1. Ford =0 (i.e. B = B) and a € (—1,1): apply the generalized It6 formula by
Follmer—Protter-Shiryaev.

2. Letf e (—1,1)\{0}.

Take a sequence {h,,} of C'-functions such that, 2, (0) = 0, h,(z) = |(1 — a)z|*
for |z| = 1 and sup,cfo 17 [An(z) — (1 — a)|z]|¥] — 0, Hp(z) = §o hn(y) dy € C2.

The conventional 1t6 formula for semimartingales

ha(BY)dB, + 6 [ ho(BY)dLu(B%) +2{ha(BY), Bl, + 2[hn(B%), LB,
7}, '3 2

v

=0 =0

H,(B) - |

Hence, as n — w0,

t

H(B) = [ BB, + 2, B, = [ |- Bl a.

0
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22. Strong solutions: Proof o = 0

Show that X? = BY is not a solution for 8 = 0.

t
f I(B? # 0)dB, = B, a.s.
0

Approximate h(x) = I(z # 0) by h,(x) = 1in L*(R). Then
0=[1,B] = [ha(B”), B] - [I(B” # 0), B]

and
t

t
1
J I(BY + 0) o dB, = f I(BY # 0)dB, + 5[]I(B‘) #0), B,
0 0

= B, # X! = B, + 0L%(BY).

22
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23. Special case: explicit solution for = +1
Theorem. For a € (0,1)

X! = ((1 — a)(B; — min B ))ﬁ

s<t

is a strong solution of dX; = | X;|!"* o dB;, X = 0.

Proof by substitution: consider a partition 0 =t <t; <--- <t, =1 and let
T =min{s >t 1: X =0} At k=1,...,n

Onte |ty_1,7x) We have m;_, = m; hence X is the unique solution on
|tk—1,Tk):

((1 —a)(Bi— By,_,) + X, (f) T

= (1= a)(Bi— By )+ (1 a)By,_, — (1 - oz>mtk_1)m - X

Denote I = {k: B has azeroin [t;_1,)}, thenfor 552 <y < 2

v
Z ‘th — XTk‘ < C(wafy) Z ‘tk - tk—lll_a — 11
kel kel

—-Hausdorff dim. of zeroes = 0
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On the relation between the Stratonovich and It6 equations |

t formally? t « t 2—1
thf | X 5| o dBy — Xt:J |X3\adBS—|—§J(XS) >+ ds.
0 0 0

Put X? into the It6 equation: for the existens of the 1t0 integral we need

t t
f\Xf\Zo‘dsiJ |WS\12—_aads<oo < a>-—1
0 0

and for the existence of the drift term we need (appy the Engelbert—Schmidt
zero-one law)

t t
J|X§]20‘_1dsgf \WS\%d3<oo < a>0
0 0

Hence XY is a solution of the 1té equation for § € [-1,1] and « € (0, 1).
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On the relation between the Stratonovich and I1t6 equations li

For a € (—1, 0], consider the drift term in the principal value sense:

t

t
v.p. f W)¥R ds = lim | (W) ¥ -1, > 2) ds.
0 € 0

The principal value definition is intrinsically based on the symmetry of the
Brownian motion and the asymmetry of the integrand and hence excludes the
cases 0 # 0. Necessary and sufficient conditions for the existence of
Brownian principal value integrals are given by Cherny, 2001.

t
v.p.f (W) Tods <o < a>-1
0
Hence for a € (—1,0], X" is the solution of the [t6 SDE

t t
X; = Xo+ f | X,|*dB, + % . v.p.f (X,)?* 1ds.
0 0
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26. Selection problem
Consider the perturbed equation: W be another indepenent BM,

t
X¢ = X, +J XE|* o dB; + W,
0

Start with a simpler problem: Wong—Zakai approximation of B. For each
n > 1, define

B = By +n(Bra — Br)(t — %), te[fER] k=0

sup }Bf — Bt| —0a.s., n—w
te[0,1]

Thanks to Zvonkin (1974) there is a unique strong solution to
t .
X/ = Xo + J | X B ds + eW,y
0

Then: with probability 1,

lim i sup [ X7 = XP| =0, XP = ((1—a)B,+ (X)) /07

n—oo €—0 tE[O, 1]

26



