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General model: Langevin model consisting of a trio of stochastic processes
(Xt ,Ut ,Kt ; t ≥ 0) satisfying the dynamic:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

b(s,Xs ,Us) ds + Lt + Kt ,

where
◦ (Lt ; t ≥ 0) is a Rd -valued di�usion process;

◦ (X0,U0) ∼ µ0, µ0 a probability measure on D×Rd for D a given open subset of Rd ;

◦ b : [0,∞)× Rd × Rd → Rd is a drift component modeling some external or internal
forces;

◦ (Kt ; t ∈ [0,T ]) is a con�nement process which force Xt to stay in D at all time
t ∈ [0,T ], and which models the possible physical interactions between Xt and the
(solid) frontier ∂D.

General problems: Modeling of physical boundary conditions; Wellposedness of the
SDE system in the case of smooth or more singular drift component; Numerical
approximation.
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A particular case arising in �uid dynamics: Lagrangian Stochastic Dynamics with
specular boundary condition:

Xt = X0 +

∫ t

0

Us ds, Xt is in D,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + σWt + Kt ,

Kt = −2
∑

0<s≤t

(Us− · nD(Xs)) nD(Xs)11{Xs∈∂D},

where σ > 0,

• D is a given open subset of Rd ;

• nD is the unit outward normal vector related to ∂D;

• (Wt ; t ≥ 0) is a standard Rd -Brownian motion;

• (X0,U0) ∼ µ0 where µ0 is a given probability measure on D × Rd .

Related problems: Existence and uniqueness (in a weak/strong sense) of
(Xt ,Ut ,Kt ; 0 ≤ t ≤ T ); regularization technique; density estimate. ...).
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• Introduction: Modeling of boundary conditions in Langevin dynamics: Modeling of
boundary conditions with the kinetic theory of gas; Link with trace problems in kinetic
PDEs; Comparison with the Skorokhod problem; Lagrangian modeling of turbulent
�ows.

• Wellposedness results for one-dimensional (D = (0,∞)) and multidimensional
con�nement domains (D open compact subset of Rd with smooth boundary): Bossy
and J. 2011; Bossy and J. 2015;

• Current works on numerical approximation schemes in one dimension (Bossy, J. and
Maftei 2017; J. and Likhoedenko 2019, in progress) and other perspectives.
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Boundary condition for Langevin dynamics

Generic Langevin dynamic:
Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

b(s,Xs ,Us) ds + σWt .

(X0,U0) ∼ µ0(dx , du) = ρ0(x , u) dx du.

Related Fokker-Planck equation: Denoting (whenever it exists) by
(ρ(t); 0 ≤ t ≤ T ) the probability density function of (L(Xt ,Ut); 0 ≤ t ≤ T ), ρ
satis�es, in the sense of distributions, the following kinetic Fokker-Planck equation:∂tρ+ u · ∇xρ+∇u · (bρ)−

σ2

2
4uρ = 0 on (0,∞)× Rd × Rd ,

ρ(t = 0, x , u) = ρ0(x , u) onRd × Rd .

Introduction of boundary conditions: Restrict the dynamics to a subset D of Rd and
add an appropriate boundary condition to describe the interaction between Xt and the
"wall" located at ∂D.
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Maxwell boundary condition (e.g. Cercignani, Reinhard and Pulvirenti 1994): Let
nD(x) be the unit outward normal vector of D for x ∈ ∂D and de�ne

Σ+ =
{

(x , u) ∈ ∂D × Rd | (u · nD(x)) > 0
}

("outgoing" particle state space),

Σ− =
{

(x , u) ∈ ∂D × Rd | (u · nD(x)) < 0
}

("emerging" particle state space),

Σ+
T = (0,T )× Σ+, Σ−T = (0,T )× Σ−.

For γ(ρ) be the "trace" of ρ along the frontier (0,∞)× ∂D × Rd , then

γ+(ρ) := γ(ρ)
∣∣
Σ+
T
describes the distributions of the particle exiting ∂D,

γ−(ρ) := γ(ρ)
∣∣
Σ−
T
describes the distributions of the particle re-entering in ∂D.

The interaction between particle the particle and the wall ∂D consists in setting a
transition rule between γ+(ρ) and γ−(ρ) with the generic form:

γ−(ρ)(t, x , u) =
(
R ∗ γ+(ρ)

)
(t, x , u), x ∈ ∂D, (u · nD(x)) > 0, t ∈ [0,T ],

for R some scattering kernel preserving sign and total mass.

J.-F. Jabir Langevin dynamics with boundary conditions.



Boundary conditions for Langevin dynamics
Wellposedness result for Lagrangian dynamics

Perspectives and current works

Examples of boundary conditions:
• complete re�ection:

γ−(ρ)(t, x , u) = γ+(ρ)(t, x ,−u), (t, x , u) ∈ Σ−T .

• specular boundary condition (elastic wall):

γ−(ρ)(t, x , u) = γ+(ρ)(t, x , u − 2(u · nD(x))nD(x)), (t, x , u) ∈ Σ−T ;

• absorbing (inelastic wall):

γ−(ρ)(t, x , u) = 0, (t, x , u) ∈ Σ−T ;

• di�usive (particle surface in thermodynamical equilibrium at temperature Θ):

γ−(ρ)(t, x , u) = MΘ(u)

∫
v·nD(x)>0

γ+(ρ)(t, x , v) dv , (t, x , u) ∈ Σ−T ,

where MΘ is a Maxwellian distribution of the form:

MΘ(u) =
1

(2π)
d−1
2 Θ

d+1
2

e−
|u|2
2Θ , u · nD(x) < 0;

• Mixed Re�ective-Di�usive boundary condition; ...

J.-F. Jabir Langevin dynamics with boundary conditions.
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The trace problem (⇔ give a meaning to γ±(ρ)):

◦ Classical case: If x 7→ ρ(t, x , u) is continuous on D then

γ±(ρ)(t, x , u) = ρ(t, x , u), (t, x , u) ∈ Σ±T .

◦ Sobolev case: If D is smooth and if x 7→ ρ(t, x , u) ∈ H1(D) then there exists a
"trace" function γ(ρ) characterized by the following Green formula: For all
Ψ : Rd → Rd in C∞c ([0,T ]×D × Rd )∫

(0,T )×D×Rd
Ψ · ∇xρ+

∫
(0,T )×D×Rd

(∇x ·Ψ) ρ

=

∫
(0,T )×D×Rd

(Ψ · nD) γ(ρ)dtdσD(x)du,

for σD the surface measure of ∂D. The di�culty in the case of a Lanvegin process is
that the di�usion is degenerated in the x-directions and regularity condition are not so
trivial to obtain.
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Trace problem for kinetic Fokker-Planck equation: Degond and Mas-Gallic 1987,
Carrillo 1998, Mischler 2010, Nier 2015.

Proposition (Carrillo 1998)

If ρ and ∇uρ are in L2((0,T )×D × Rd ) and if

∂tρ+ u · ∇xρ ∈
(
L2((0,T )×D;H1(Rd ))

)′
,

then there exits γ+(ρ) ∈ L2(Σ+
T ) and γ−(ρ) ∈ L2(Σ−T ) for

L2(Σ±T ) =

{
f : Σ±T → R |

∫
Σ±
T

|(u · nD(x))||f (t, x , u)|2dtdσD(x)du <∞
}

satisfying the Green formula: ∀ψ ∈ C∞c ((0,T )×D × Rd ),∫
(0,T )×D×Rd

ψ (∂tρ+ u · ∇xρ) +

∫
(0,T )×D×Rd

(∂tψ + u · ∇xψ) ρ

=

∫
(0,T )×D×Rd

(u · nD)ψγ(ρ)dtdσD(x)du.

Adding the initial conditions (ρ(t = 0, x , u) = ρ0) and a Maxwell boundary condition
along Σ−T , the above provides a weak formulation of a kinetic Fokker-Planck equation
endowing a boundary condition.
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Lemma (Weak formulation of the trace problem)

If ρ is a weak solution in L2((0,T )×D;H1(Rd )) ∩ C([0,T ]; L2(D × Rd )) to

∂tρ+ u · ∇xρ+∇u · (ρb)−
σ2

2
4uρ = 0,

then there exists γ+(ρ) ∈ L2(Σ+
T ) and γ−(ρ) ∈ L2(Σ−T ) such that

∀ψ ∈ C∞c ([0,T ]×D × Rd ),∫
(0,T )×D×Rd

ρ

(
∂tψ + u · ∇xψ + b · ∇uψ +

σ2

2
4uψ

)
=

∫
D×Rd

ρ(t, x , u)ψ(t, x , u) dx du −
∫
D×Rd

ρ(0, x , u)ψ(0, x , u) dx du

+

∫
Σ+
T

(u · nD)ψ(t, x , u)γ+(ρ)(t, x , u)dtdσD(x)du

+

∫
Σ−
T

(u · nD)ψ(t, x , u)γ−(ρ)(t, x , u)dtdσD(x)du.
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Probabilistic interpretation of Maxwell boundary condition:
Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

b(s,Xs ,Us) ds + σWt + Kt ,

where (Kt ; t ∈ [0,T ]) is a càdlàg process such that

◦ (Kt ; t ∈ [0,T ]) ensures that Xt stays in D at all time t ∈ [0,T ],

◦ is zero whenever {t ∈ [0,T ] |Xt /∈ ∂D},

◦ and model the interactions between X and ∂D in the sense that for t such that
Xt ∈ ∂D and Xt′ ∈ D for t − ε ≤ t′ < t,

Ut+ = Ut− + ∆Ut = Ut− + Kt ,

Ut− ↔ velocity of exiting particles,

Ut+ ↔ velocity of emerging particle.
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The case of the specular boundary condition:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Wt +

∫ t

0

b(s,Xs ,Us) ds + Kt ,

Kt = −2
∑

0<s≤t

(Us− · nD(Xs)) nD(Xs)11{Xs∈∂D}.

In this case, whenever Xt ∈ ∂D,

Ut+ = Ut− − 2 (Ut− · nD(Xt)) nD(Xt).

Related problems: Show the existence of the sequence of random times:

τn = inf {T ≤ t > τn−1 |Xt ∈ ∂D} , n ∈ N− {0}, τ0 = 0,

and show that there is no clustering (i.e. no sticky) e�ects at ∂D in order to ensure
that

Kt = −2
∑
n∈N

(
U
τ−n
· nD(Xτn )

)
nD(Xτn )11{τn≤t}.

is globally well de�ned.
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Link with the trace problem

Let (Xt ,Ut ; t ∈ [0,T ]) be a Langevin dynamic endowing the specular boundary
condition. Then, ∀ψ ∈ C∞c ([0,T ]×D × Rd ),

E [ψ(t,Xt ,Ut)]− E [ψ(0,X0,U0)] =

∫ t

0

E [∂sψ(s,Xs ,Us)] ds

+

∫ t

0

E
[(

Us · ∇xψ(s,Xs ,Us) + b(s,Xs ,Us) · ∇uψ(s,Xs ,Us) +
1σ2

2
4uψ(s,Xs ,Us)

)]
ds

+ E

∑
n∈N

(
ψ(τn,Xτn ,Uτn )− ψ(τn,Xτn ,Uτ−n

)
)
11{τn≤t}

 .
Comparing this expression with the (kinetic) Green formula, we observe that∫

Σ±
T

(u · nD(x))γ±(ρ)ψdt dσD(x)du = ±E

∑
n∈N

ψ(τn,Xτn ,Uτ±n
)11{τn≤t}


Link between the existence of trace function and the con�nement process: The
trace γ±(ρ) (whenever it exists) corresponds to the density function of∑

n∈N
P ◦
(
τn,Xτn ,Uτ±n

)−1
with respect to the measure |(u · nD(x))|dtdσD(x)du.
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Comparison with classical re�ected di�usion processes

Skorokhod problem: (σ = 1, b ≡ 0) Given (Wt ; t ≥ 0), Z0 ∈ D, �nd a pair of
continuous stochastic processes (Zt , Lt ; t ≥ 0) such that

Zt = Z0 + Wt + Lt , Zt ∈ D, ∀t ≥ 0,

and (Lt ; t ≥ 0) has bounded variations satisfying

|L|t =

∫ t

0

ll {Zs=0}d |L|s , Lt = −
∫ t

0

nD(Zs)d |L|s

Wellposedness results: Tanaka 1979; Lions and Sznitman 1984; Saisho 1987.
Explicit solution for D = (0,∞): Given (Bt ; t ≥ 0) a standard Brownian motion,

Lt = min
0≤s≤t

{min(X0 + Bs , 0)} = − max
0≤s≤t

{max(−(X0 + Bs), 0)}, t ≥ 0,

Zt = X0 + Bt − Lt , t ≥ 0.

J.-F. Jabir Langevin dynamics with boundary conditions.
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The one dimensional case: (b = 0)
Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Wt − 2
∑

0<s≤t

Us−11{Xs=0},

We will denote by (X x0,u0
t ,Ux0,u0

t ; t ∈ [0,T ]) the �ow of solutions related to
µ0(dx , du) = δ{x0,u0}(dx , du).
Preliminary results: Consider the (free) Langevin model:Y x0,u0

t = x0 +

∫ t

0

V x0,u0
s ds,

V x0,u0
t = u0 + Bt ,

where (Bt ; t ≥ 0) is classical Brownian motion. Then

Proposition (McKean 1963)

Assume that (x0, u0) 6= (0, 0) then P-a.s., the path t 7→ (Y x0,u0
t ,V x0,u0

t ) never cross
(0, 0).

Additionnaly, Lachal (1997) gives an explicit expression of the joint law of
(θx0,u0n ,V x0,u0

θn
) for all n, for

θx0,u0n+1
= inf

{
t > θx0,u0n |Y x0,u0

t = 0
}
.

J.-F. Jabir Langevin dynamics with boundary conditions.
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Explicit weak solution for the Langevin system Assuming that

supp(µ0) ⊂ (0,∞)× R,

the process
Xt = |Yt |, Ut = sign(Y )t+Vt ,

(sign(Y )t+ ; t ∈ [0,T ]), the càdlàg modi�cation of sign(Yt),

is a Langevin dynamic in [0,∞)× R with specular boundary condition. The dynamic
is unique in the pathwise sense, and (Xt ,Ut ; t ∈ [0,T ]) is a Markov process with
semi-group (St ; t ∈ [0,T ]) given by

St(ψ)(x , u) = E
[
ψ(X x,u

t ,Ux,u
t )

]
=

∫
(0,∞)×R

(Γ(t; x , u; y , v) + Γ(t;−x ,−u; y , v))ψ(y , v)dydv ,

where Γ is the density transition of (Y x,u
t ,V x,u

t ):

Γ(t; x , u; y , v)

=

(√
3

πt2

)
exp

{
−6|x − y − tv |2

t3
+

6 (x − y − tv) · (u − v)

t2
−

2|u − v |2

t

}
.

J.-F. Jabir Langevin dynamics with boundary conditions.
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Skorokhod problem as a Smoluchowski-Kramers limit of Langevin dynamic:
Spiliopoulos 2007: Given 0 < T < 0 a �nite time horizon, b : R→ R bounded with
bounded derivative, D = Rd−1 × (0,∞), X0 ∈ D, U0 ∈ Rd , consider the Langevin
dynamic: 

Xµt = X0 +

∫ t

0

Uµs ds,

µUµt = µU0 +

∫ t

0

(b(Xµs )− Uµs ) ds + Wt + Kµt ,

Kµt = −2
∑

0<s≤t

(Uµ
s−
· nD(Xµs ))nD(Xµs ) ll {Xµs ∈∂D}.

As µ→ 0+, (Xµt ; t ≥ 0) converges in probability, uniformly on [0,T ] to
(Zt ; 0 ≤ t ≤ T ) satisfying

Zt = X0 +

∫ t

0

b(Zs) ds + Wt + Lt , 0 ≤ t ≤ T ,

(Lt ; t ≥ 0) has bounded variations satisfying

|L|t =

∫ t

0

ll {Zs=0}d |L|s , Lt = −
∫ t

0

nD(Zs)d |L|s .

J.-F. Jabir Langevin dynamics with boundary conditions.
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Other wellposedness results for Langevin dynamics with boundary conditions

Specular boundary condition with deterministic forcing: Paoli and Schatzman
1993: Given 0 < T < 0 a �nite time horizon, D a closed convex subset of Rd with
non-empty interior and a C2-boundary, δD the convex indicator function of D:

δD(x) =

{
0 if x ∈ D,

+∞ otherwise,

nD the unit exterior normal vector, and f : [0,T ]× Rd × Rd → Rd , a continuous
function uniformly Lipschitz function in two last variables, there exists a Lipschitz
continuous function q : [0,T ]→ Rd whose Sobolev derivative q̇ has bounded
variation, and is solution to the multivalued ODE:

− q̈(t) + f (t, q(t), q̇(t)) dt ∈ ∂δD(q(t)), a.e. 0 ≤ t ≤ T ,

q̇(t+) = −q̇N(t−) + q̇T (t−), q̇N(t−) = (q̇(t−) · nD(q(t−)))nD(q(t−)),

q(0) = q0 ∈ D, q̈(0) = q̈0 ll {q̈N0 =0} + (−q̈N0 + q̈T0 ) ll {q̈N0 6=0},

Element of proof: Solution obtained as a cluster point (when λ→ 0+) of the
penalized system:− q̈λ(t) + f (t, qλ(t), q̇λ(t)) dt =

Proj(qλ(t))− qλ(t)

λ
, for all 0 ≤ t ≤ T ,

qλ(0) = q0 ∈ D, q̈λ(0) = q̈0 ll {q̈N0 =0} + (−q̈N0 + q̈T0 ) ll {q̈N0 6=0}.

Additional bibliography: Schatzman 1978, 1998; Ballard 2000.
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Other wellposedness results for Langevin dynamics with boundary conditions

• In the case where the Langevin dynamic is driven by a Poisson point process and
general di�usive-re�ective boundary condition are modeled: Costantini 1991,
Costantini and Kurtz 2006.
• Bertoin 2007, 2008: Case of an absorbing wall: existence and uniqueness of a
Markov process solution to

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Bt −
∑

0<s≤t

Us−11{Xs=0},

for (Bt ; t ≥ 0) a R-Brownian motion.
• Jacob 2012, 2013: Case of a partially absorbing wall:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Bt − (1 + c)
∑

0<s≤t

Us−11{Xs=0}, 0 ≤ c ≤ 1.

Two critical levels:
− Non-sticky case: If c ≥ exp(−π/

√
3) then limn τn =∞ a.s.;

− Sticky case: If c < exp(−π/
√
3) then limn τn <∞ a.s. (⇔ the process (Xt ,Ut)

has to be resurrected after each time it hits (0, 0)).

J.-F. Jabir Langevin dynamics with boundary conditions.
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Other wellposedness results for Langevin dynamics with boundary conditions

◦ J. and Profeta 2019: Case of a Langevin dynamic driven by a stable Levy process
with re�ective-di�usive boundary condition:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Lt +
∑
n≥1

(
(1− βn)(θnMn − U

τ−n
)− βn(1 + c)U

τ−n

)
ll {τn≤t},

τn = inf{t > τn−1; Xt = 0}, τ0 = 0,

where 0 ≤ c ≤ 1, 0 ≤ θ ≤ 1,

◦ (Lt ; t ≥ 0) is a (strictly) α-stable Lévy process (i.e. cLc−αt
D
= Lt), with scaling

parameter α ∈ (0, 2] and positivity parameter

ρ = P(L1 ≥ 0) =
1

2
+

1

πα
arctan(β tan(πα/2)) (⇔ (|Lt |; t ≥ 0) is not a subordinator),

◦ the sequences (βn, n ≥ 1) and (Mn, n ≥ 1) are independent random variables, with
�nite moment of order α, also independent from (X0,U0) and (Lt , t ≥ 0), such that

- the random variables {βn, n ≥ 1} are i.i.d. Bernoulli r.v.'s with parameter
p := P(β1 = 1),

- the random variables {Mn, n ≥ 1} are i.i.d., non-negative and such that
P(M1 = 0) = 0.

Main di�culty: No explicit expression for the distribution of {τn, n ≥ 1}.
J.-F. Jabir Langevin dynamics with boundary conditions.
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Langevin models driven by stable Lévy process and di�usive-re�ective boundary conditions.

Wall e�ect: For all n,

Uτn = 4Uτn + U
τ−n

=

{
− cU

τ−n
ifβn = 1, (Velocity damping),

θnMn ifβn = 0, (Wall heating e�ect).

• The case p = 1 (i.e. βn = 1) is the situation where the wall is partially absorbing
(similar to Jacob 2012, 2013, where a critical occurs at c = exp{−π/

√
3}). The case

p = 0 (i.e. βn = 0) is the (totally) di�usive situation issued the particular case of
Maxwell boundary conditions: case of Maxwell boundary conditions. Particular case:
θ = 1 and (Mn, n ≥ 1) is distributed according to a Maxwellian distribution of the
form:

v

Θ
exp

{
−
|v |2

2Θ

}
ll {v≥0}, with Θ > 0.

• The term θn enables to balance the e�ects of the re�ective and di�usive boundary
conditions, softening (when θ < 1) or increasing (θ > 1) the heat transfer from the
wall to the particle. In particular θn allows to exhibit di�erent asymptotic regimes for
the sequence (τn, n ≥ 1).

J.-F. Jabir Langevin dynamics with boundary conditions.
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Theorem

Assume that X0 = 0 and U0 > 0 with Uα
0
integrable. Set τ∞ = limn τn Then we have

the following situations:
• If p = 1, then τ∞ <∞ P− a.s. if and only if c < ccrit = exp (−π cot (πγ)). In
particular, for 0 < λ < 1,

E[τλ∞] < +∞ ⇐⇒
{
c < ccrit and cαλE

[
|`1|αλ

]
< 1
}
.

• If p = 0, then τ∞ <∞ P− a.s. if and only if θ < 1. In particular, for 0 < λ < 1,

E[τλ∞] < +∞ ⇐⇒
{
θ < 1 and λ <

1− ρ
1 + αρ

}
• If 0 < p < 1, then τ∞ <∞ P− a.s. if and only if θ < 1. In particular, for
0 < λ < 1,

E[τλ∞] < +∞ ⇐⇒
{
θ < 1 and cαλE

[
|`1|αλ

]
p < 1

}
.

Other results:
• Estimate on the rate of divergence limn τn =∞;
• Related trace problem for θ = 1; ...

J.-F. Jabir Langevin dynamics with boundary conditions.



Boundary conditions for Langevin dynamics
Wellposedness result for Lagrangian dynamics

Perspectives and current works

A particular application of Langevin dynamic in turbulent �uid �ow.

Lagrangian stochastic model for the simulation of turbulent �ows: Introduced in
the eighties, this class of stochastic process aim to provide a stochastic model
describing the evolution of a generic �uid particle issued from a turbulent �ow (see
e.g. Minier and Peirano 2001, Pope 2003).
Generic model:

dXt =Ut dt, particle position,

dUt =B(t,Xt ,E[Ut |Xt ]) dt + σ(t,Xt ,E[Ut |Xt ],E[Ut ⊗ Ut |Xt ]) dWt , particle velocity,

for (Wt) a standard Rd� Brownian motions. The coe�cient B et σ are linked with a
turbulence model.
Link with the macroscopic quantities: For ρ(t, x , u) the density function of (Xt ,Ut),

ρ(t, x) :=

∫
Rd
ρ(t, x , u) du ↔ %(t, x), mass density,

E[U i
t | Xt = x]↔ 〈U(i)〉(t, x),

and, more generally,

E [g(Ut) | Xt = x] =

∫
Rd g(u)ρ(t, x , u) du∫

Rd ρ(t, x , u) du
↔ 〈g(U)〉(t, x).
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General applications: Simulation of isotropic turbulent �ows (Pope 2001),
turbulent-reactive �ows (Minier�Peirano 2001); Filtering of meteorological datas
(Baehr 2008); ...

Boundary constraints: Wall bounded �ows (Dreeben and Pope 1997); Stochastic
methods for downscaling in Computational Fluid Dynamics (Bernardin et al. 2010,
Bossy et al. 2016, INRIA TOSCA Team, ADEME and LMD 2004�2011, INRIA
TOSCA Team and INRIA Chile 2012�2015); ...

Generic boundary condition: For D the �uid domain with smooth boundary ∂D, the
boundary conditions for Lagrangian systems are of the type: Given a �eld V ,

〈U〉(t, x) = V (t, x) on (0,T )× ∂D.

Prototypical case: We aim to construct D × Rd�valued lagrangian system
(Xt ,Ut)0≤t≤T satisfying the mean no-permeability condition

(NP) (〈U〉(t, x) · nD(x)) = 0, on (0,T )× ∂D.
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Reformulation

Assuming that the lagrangian distribution ρ(t, x , u) admits a trace γ(ρ)(t, x , u) along
the frontier ΣT = (0,T )× ∂D × Rd ,

(NP) ⇔
∫

(u · nD(x)) γ(ρ)(t, x , u) du∫
γ(ρ)(t, x , u) du

= 0, for (t, x) ∈ (0,T )× ∂D,

Su�cient conditions for (NP): For (t, x) ∈ (0,T )× ∂D,

(i)

∫
Rd
|(u · nD(x))|γ(ρ)(t, x , u) du < +∞,

(ii)

∫
Rd
γ(ρ)(t, x , u) du > 0,

(iii) γ(ρ)(t, x , u) = γ(ρ)(t, x , u − 2(u · nD(x))nD(x)),
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Coming back to the initial model

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + σWt +

∫ t

0

E[b(Us) |Xs ] ds + Kt ,

Kt = −2
∑

0<s≤t

(Us− · nD(Xs)) nD(Xs)11{Xs∈∂D},

our aim in Bossy and J. 2011, 2015, was to show that

◦ there exists a unique weak solution (Xt ,Ut ; t ∈ [0,T ]) to the SDE,

◦ and show that this solution admits a trace function γ±(ρ) satisfying the specular
boundary condition

γ−(ρ)(t, x , u) = γ+(ρ)(t, x , u − 2(u · nD(x))nD(x)) surΣ−T ,

and the mean no-permeability condition:

(NP) ⇔
∫

(u · nD(x)) γ(ρ)(t, x , u) du∫
γ(ρ)(t, x , u) du

= 0, for (t, x) ∈ (0,T )× ∂D.
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The one dimensional case: (b 6= 0)

Proposition

Assuming supp(µ0) ⊂ (0,∞)×R, µ0(dx , du) = ρ0(x , u) dxdu and b : (0,∞)×R→ R
is Borel measurable and bounded. Then there exist a unique solution to

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E[b(Us) |Xs ] ds + Wt − 2
∑

0<s≤t

Us−11{Xs=0},

In addition, for all t, the distribution (Xt ,Ut) admits a density function ρ(t, x , u) such
for a.e. (t, u), x 7→ ρ(t, x , u) is continuous in [0,∞) and satis�es the one-dimensional
specular boundary condition:

ρ(t, 0, u) = ρ(t, 0,−u).
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Sketch of the proof:
◦ For the existence part: Introducing

X εt = X0 +

∫ t

0

Uεs ds,

Uεt = U0 +

∫ t

0

φε ∗ (bρε) (s,X εs )

φε ∗ (ρε) (s,X εs )
ds + Wt − 2

∑
0<s≤t

Us−11{Xs=0},

where ∗ denotes the convolution product, {φε; ε > 0} is a family of C∞c -molli�ers on
(0,∞)× R, we show that, as ε→ 0,

(X εt ,U
ε
t ; t ∈ [0,T ])

Law−→ (Xt ,Ut ; t ∈ [0,T ]),

and, for all t > 0,
ρε(t)→ ρ(t) in L1((0,∞)× R).

◦ For the uniqueness part: PDE analysis.
◦ For the trace problem and (NP): Continuity on (0,T )× [0,∞)× R and moment
estimate and positiveness estimate of ρ.
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The multi-dimensional case:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E [b(Us) |Xs ] ds + Wt + Kt ,

Kt = −2
∑

0≤s≤t

(Us− · nD(Xs)) nD(Xs) ll {Xs ∈ ∂D}, ∀t ∈ [0,T ],

where (Wt ; t ∈ [0,T ]) is a Rd -Brownian motion. Hereafter, we will assume that

(A1) supp(µ0) ⊂ D × Rd and µ0(dx , du) = ρ0(x , u)dxdu,

(A2) D is bounded and its boundary ∂D is a compact C3 submanifold of Rd .
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• For the existence and trace problem:
− Preliminary study of the case b = 0 and its semi-group (St ; t ∈ [0,T ]),
− For the general, preliminary well-posedness result for the related nonlinear
Fokker-Planck equation: For QT := (0,T )×D × Rd


∂tρ(t, x , u) + (u · ∇xρ(t, x , u)) +∇u · (ρB[·; ρ])−

σ2

2
4uρ(t, x , u) = 0 on QT ,

ρ(0, x , u) = ρ0(x , u) on D × Rd ,

γ−(ρ)(t, x , u) = γ+(ρ)(t, x , u − 2(u · nD(x))nD(x)) on Σ−T ,
(1)

where

B[x ;ψ] =



∫
Rd

b(v)ψ(t, x , v)dv∫
Rd
ψ(t, x , v)dv

whenever

∫
Rd
ψ(t, x , v)dv 6= 0,

0 otherwise.

− Construction of a stochastic process whose marginal distributions are given by ρ.

• For the uniqueness problem: As in the one-dimensional case, uniqueness of a solution
will obtained by means of mild equations and regularity property of (St ; t ∈ [0,T ]).
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Case b = 0:

Lemma

Under (A1) and (A2), there exists a unique solution to
Yt = X0 +

∫ t

0

Vs ds,

Vt = U0 + Wt + Kt ,

Kt = −2
∑

0≤s≤t

(Vs− · nD(Ys)) nD(Ys) ll {Ys ∈ ∂D}, ∀t ∈ [0,T ].

In addition, (Yt ,Vt ; t ∈ [0,T ]) is a strong Markov process and the sequence
{τn; n ∈ N} grows to T .

Elements of proof: Using a a family of local charts {Ui , ψi}i=1,...,M for D and local
straightening of the form (ψi (Xt), (Ut · ∇x )ψi ; t ∈ [0,T ]), we are reduced to
one-dimensional con�ned Langevin model. Hence each excursions of the
(Xt ,Ut ; t ∈ [0,T ]) in Ui × Rd can be constructed by "hand".
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Related semi-group:

Lemma

For all ψ ∈ Cc (D × Rd ) non-negative,

St(ψ)(x , u) = E
[
ψ(Y x,u

t ,V x,u
t )

]
.

is a function in C([0,T ]; L2(D × Rd )) ∩ L2((0,T )×D;H1(Rd )) and satis�es, in the
sense of distribution, the pde

∂tSt(ψ)(x , u)− (u · ∇xSt(ψ)((t, x , u))−
1

2
4uSt(ψ)((t, x , u) = 0 on QT ,

St=0(ψ)(x , u) = ψ(x , u), on D × Rd ,

γ+(St(ψ))(x , u) = γ−(St(ψ))(x , u − 2(u · nD(x))nD(x)) on Σ+
T .

In this addition,

‖St(ψ)‖2
L2(D×Rd )

+ ‖∇uSt(ψ)‖2L2(Qt ) = ‖ψ‖2
L2(D×Rd )

.
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For the non-linear Fokker-Planck equation, in addition to (A1), (A2) we will assume
that
(A3) b : Rd → R is Borel-measurable and bounded with upper-bound ‖b‖L∞ ,
(A4) there exists P

0
,P0 : Rd → (0,∞) such that

P
0
(u) ≤ ρ0(x , u) ≤ P0(u), (x , u) ∈ D × Rd ,∫

Rd
ω(u)P0(u) du <∞, P

0
(u) > 0,

for ω(u) = (1 + |u|2)
α
2 , α > d + 2.

We further introduce the weighted space:

L2(ω;D × Rd ) =

{
f : D × R→R |

∫
D×Rd

ω(u)|f (t, x , u)|2 dxdu <∞
}

V (ω;QT ) =
{
f ∈ C([0,T ]; L2(ω;D × Rd )) |∫

QT

ω(u)
(
|f (t, x , u)|2 + |∇uf (t, x , u)|2

)
dtdxdu <∞

}
,

L2(ω; Σ±T ) =

{
f : Σ±T → R |

∫
Σ±
T

|(u · nD(x))||f (t, x , u)|2 dtdσD(x)du <∞
}
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Proposition

Assume that (A1), (A2), (A3) and (A4) hold true. Then there exists a unique weak
solution ρ ∈ V (ω;QT ) to (1):

∂tρ(t, x , u) + (u · ∇xρ(t, x , u)) +∇u · B[.; ρ]ρ−
1

2
4uρ(t, x , u) = 0 on QT ,

ρ(0, x , u) = ρ0(x , u) on D × Rd ,

γ−(ρ)(t, x , u) = γ+(ρ)(t, x , u − 2(u · nD(x))nD(x)) on Σ−T .

Moreover we have the following bounds:

P ≤ ρ ≤ P, on QT ,

P ≤ γ±(ρ) ≤ P, on Σ±T ,

for

P(t, u) = eat
(
Gt ∗ P

1
µ

0
(u)

)µ
, P(t, u) = eat

(
Gt ∗ P

1
µ

0
(u)

)µ
where Gt is the centered Gaussian density function with variance t, and where
µ, µ, a, a are constants depending only on d , T and ‖b‖L∞ .
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Coming back to the stochastic model:

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 +

∫ t

0

E[b(Us) |Xs ] ds + Wt + Kt ,

Kt =
∑

0<s≤t

2(Us− · nD(Xs))nD(Xs)11{Xs∈∂D}

◦ Existence result: Construction of a Langevin model (Xt ,Ut ; t ∈ [0,T ]) whose
density functions are given by the solution to (1).

◦ Uniqueness is ensured by the PDE and the fact that the uniqueness of the time
marginal distributions (L(Xt ,Ut); 0 ≤ t ≤ T ) ensures the uniqueness of the law of the
paths, (L((Xt ,Ut); 0 ≤ t ≤ T ).

◦ The trace problem is already solved by the PDE approach and the Maxwellian
bounds

P ≤ γ±(ρ) ≤ P, on Σ±T ,

ensure that the no-permeability condition is satis�ed.
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Theorem (Main result)

Assume (A1), (A2), (A3) and (A4). Then there exists a unique solution to

Xt = X0 +

∫ t

0

Us ds,

Ut = U0 + Wt +

∫ t

0

B[Xs ; ρ(s)] ds + Kt ,

Kt = −2
∑

0<s≤t

(Us− · nD(Xs)) nD(Xs)11{Xs∈∂D}.

In addition, for all t, the law of (Xt ,Ut) admits a density function ρ(t), and related
trace functions which satis�es the specular boundary condition as well as the mean
no-permeability condition.
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Numerical approximation of one-dimensional Langevin dynamic with specular boundary condition.

Discrete time prediction-correction scheme: Bossy, J. and Maftei 2017, Maftei's
PhD thesis 2017: Given [0,T ) = ∪ni=0

[ti , ti+1), ti+1 − ti ={
Y ti+1 = X ti + (ti+1 − ti )Uti (Prediction),

X ti+1 = |Y ti+1 | (Correction),

Discrete time of collision to the wall in the time interval (ti , ti+1]:

θi =

ti −
X ti

Uti

if ti < ti −
X ti

Uti

≤ ti+1

ti otherwise.

Velocity update:

• If θi /∈ (ti , ti+1], no collision occurs and

Ut = Uti + b(X ti ,Uti )h + σ
(
Wti+1 −Wti

)
.

• If θi ∈ (ti , ti+1], a collision takes in the interval (ti , ti+1] and

Ut = Uti + b(X ti ,Uti )(θi − ti ) + σ
(
Wθi+1 −Wti

)
,

Uti+1 = −Uθi + b(X ti ,Uti )(ti+1 − θi ) + σ
(
Wti+1 −Wθi

)
.
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Numerical approximation of one-dimensional Langevin dynamic with specular boundary condition.

Current work: Numerical approximation of one-dimensional Langevin dynamic with
specular boundary condition.
Assumptions: (D = Rd−1 × (0,∞))
• The initial distribution µ0 of (X0,U0) admits a bounded density (w.r.t. Lebesgue
measure) function, has �nite second moments, its support is included in D × Rd , and
there exists ε0 > 0 such that

inf{x ∈ D : (x , u) ∈ supp(µ0) for all u ∈ Rd}
inf{u ∈ Rdu > 0 : (x , u) ∈ supp(µ0) for all x ∈ D, u(d)}

< −ε0.

• The drift function b : Rd × Rd → R is continuously di�erentiable, with bounded and
Lipschitz continuous derivatives.
• For all x ∈ ∂D, u 7→ b(d)(x , u) is an odd function with respect to the dth

component of u, u 7→ b′(x , u) = (b(1)(x , u),
. . . , b(d−1)(x , u)) are odd functions with

respect to the dth component of u.

Theorem (Weak error estimate)

Under the above assumptions, for all 0 < T <∞, F : Rd × Rd → R continuously
di�erentiable with compact support,∣∣∣E[F (XT ,UT )]− E[F (XT ,UT )]

∣∣∣ ≤ C

N
.
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Numerical approximation of one-dimensional Langevin dynamic with specular boundary condition.

• Alternative discrete time scheme: Penalization method (similar to Paoli and
Schatzman 1993):

Xλt = X0 +

∫ t

0

Uλs ds,

Uλt = U0 +

∫ t

0

b(s,Xλs ,U
λ
s ) ds + Wt −

∫ t

0

min(Xλs , 0)

λ
ds.

Discrete Time penalization approximation for re�ected di�usion: Slominski 2001,
2012.
Open problems: Weak/strong consistent of the approximation, with explicit rate of
convergence, and its related Euler-Maruyama scheme (work in progress with A.
Likhoedenko).
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Current works and perspectives

• Reducing the regularity property on the con�nement domain: The aim is here to
recover the general assumption of Tanaka 1979, Saisho 1987, ...
Application: Modeling of N hard-spheres Brownian motions (Saisho and Tanaka
1983). In the case where

D =
{

(x1, . . . , xN) ∈ Rm × · · · × Rm such that ∀ i , j , |xi − xj | > δ
}
,

the Skorokhod model describes a model of N hard-spheres Brownian motions.
Corresponding Langevin dynamic: Stochastic particle system with elastic collisions:

X i,N
t = X i

0 +

∫ t

0

U i,N
s ds,

U i,N
t = U i

0 +

∫ t

0

b(s,X i,N
s ,U i,N

s ) ds +

∫ t

0

σ(s,X i,N
s ,U i,N

s )dB i
s + K i,N

t

K i,N
t = −

N∑
j=1

∑
0<s≤t

ll {|X i,N
s −X

j,N
s |=δ}

(
(U i,N

s−
− U j,N

s−
) · ni,js

)
ni,js ,

ni,jt =
X i,N
t − X j,N

t

|X i,N
t − X j,N

t |
.
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Thank you for your attention.
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