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The semilinear equation

Let d ∈ {1, 2, . . .}, 0 < α < 2,

ν(z) =
2αΓ((d + α)/2)

πd/2|Γ(−α/2)|
|z |−d−α , z ∈ Rd ,

ν(x , y) = ν(y − x),

and ν(x ,A) =
∫
A ν(x , y)dy . Define (the fractional Laplacian)

∆α/2u(x) = −(−∆)α/2u(x) = lim
ε→0+

∫
|x−y |>ε

(u(y)−u(x))ν(x , y)dy .

Let ∅ 6= D ⊂ Rd be open. We ponder the existence, representation
and uniqueness of solutions u : Rd 7→ R of the semilinear problem

−∆α/2u(x) = F (x , u(x)) on D,

with Dirichlet-type conditions for u on Dc = Rd \ D and at ∂D.
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Motivations

[Aba15] Large solutions for ∆α/2.

[BKK08] Representation of nonnegative α-harmonic functions.

[BH86] Complete maximum principle.

[BC17] Large solutions in Lipschitz domains. (?!)

[MV14] Classical semilinear problems.
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Geometry

In examples we consider, e.g., balls, half-spaces, cones, Lipschitz
sets, C 1,1 sets, or arbitrary open sets D. Let

Br (x) :=
{
y ∈ Rd : |x − y | < r

}
(ball),

δD(x) := dist(x,Dc) (distance).

Let ∂∗D be the set of limit points of D:

∂∗D = ∂D if D is bounded, or
∂∗D = ∂D ∪ {∞} if D is unbounded.

Let D∗ = D ∪ ∂∗D. Thus, D∗ = D or D∗ = D ∪ {∞}.
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The isotropic α-stable Lévy process

We have (the Lévy-Khintchine exponent)

|ξ|α =

∫
Rd

(1− cos(ξx))ν(x) dx , ξ ∈ Rd .

Let pt(x) = (2π)−d
∫
Rd exp(−iξx) exp(−t|ξ|α) dξ, t > 0, x ∈ Rd .

Let (Xt ,Px) be the standard rotation invariant α-stable Lévy
process in Rd with the characteristic function

Ex [exp(iξ(Xt − x))] = exp(−t|ξ|α), x , ξ ∈ Rd , t ≥ 0.

(Xt) is strong Markov w/trans. prob. Px(Xt ∈ A) =
∫

A−x
pt(y)dy ,

∆α/2 is the generator of (the semigroup of) the process.
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The α-harmonic functions

For open U ⊂ Rd , we define the first exit time of U:

τU = inf {t ≥ 0 : Xt ∈ Uc} .

Function h : Rd → R is called α-harmonic in D (h ∈ Hα(D)) if

h(x) = Exh(XτU ), x ∈ U ⊂⊂ D.

We call h regular α-harmonic in D (h ∈ Hαreg(D)) if

h(x) = Exh(XτD ), x ∈ D.

If h ∈ Hα(D) and h = 0 on Dc , then h is called singular
α-harmonic on D.
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Harmonic majorization

We say that u is harmonically majorized on D if there exists h ≥ 0
on Rd which is α-harmonic on D, and |u| ≤ h on Rd .

For functions ψ ≥ 0 and φ on D we write “φ = o(ψ) on D” if for
every ε > 0 there is compact F ⊂ D such that |φ| ≤ εψ on D \ F .

We say that u is harmonically small on D if there is h ≥ 0 on Rd

which is α-harmonic on D, |u| ≤ h on Rd , and u = o(h) on D.
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Weak fractional Laplacian

For u ∈ L1 := L1(Rd , (1 + |x |)−d−αdx), we define ([BB99])

〈∆̃α/2u, φ〉 = 〈u,∆α/2φ〉 =

∫
Rd

u(x)∆α/2φ(x) dx , φ ∈ C∞c (Rd).

If u ∈ Hα(D), then u ∈ L1, u ∈ C∞(D), ∆α/2u = 0 on D and
∆̃α/2u = 0 on D.
Conversely, if u ∈ L1 and ∆̃α/2u = 0 on D, then u ∈ Hα(D), after
a modification on a set of Lebesgue measure zero.

Thus, weakly α-harmonic and α-harmonic functions coincide a.e.
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Integral kernels

Let GD(x , y), x , y ∈ Rd , be the Green function. For instance if
α < d , then GRd (x , y) = c |y − x |α−d (the Riesz kernel). We have∫
GD(x , v)∆α/2ϕ(v)dv = −ϕ(x) if x ∈ Rd , ϕ ∈ C∞c (D). Also,∫

Rd

GD(x , y)f (y)dy = Ex

∫ τD

0
f (Xt)dt, x ∈ D, z ∈ Dc .

The Poisson kernel of D is given by Ikeda-Watanabe formula

PD(x , z) :=

∫
D
GD(x , y)ν(y , z)dy , x ∈ D, z ∈ Dc .

Let ωx
D(A) = Px(XτD ∈ A)–harmonic measure of D for ∆α/2.

If x ∈ D and dist(A,D) > 0, then ωx
D(A) =

∫
A PD(x , y)dy .

We have ωx
D(∂D) = 0 if, e.g., D is Lipschitz.
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Martin kernel

Fix (any) x0 ∈ D. We say that y ∈ Dc is accessible from D if

PD(x0, y) =

∫
Rd

GD(x0, z)ν(z , y)dz =∞ .

The point at infinity is called accessible from D if∫
Rd

GD(x0, z)dz =∞.

We define the Martin boundary as the set of accessible points:

∂MD = {y ∈ ∂∗D : y is accessible from D}.

We define the Martin kernel,

MD(x , y) = lim
D3z→y

GD(x , z)

GD(x0, z)
, x ∈ Rd , y ∈ ∂∗D.

The limit always exits. It is α-harmonic iff y ∈ ∂MD ([BKK08]).
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Green, Poisson and Martin integrals

We define

GD [f ](x) =

∫
D
GD(x , y)f (y)dy , x ∈ Rd ,

PD [λ](x) =

∫
Dc

PD(x , y)λ(dy) on D and PD [λ] = λ on Dc ,

MD [µ](x) =

∫
∂MD

MD(x , y)µ(dy), x ∈ Rd .

Theorem (Martin representation [BKK08])

Let h ≥ 0. Then h ∈ Hα(D) if and only if h = PD [λ] + MD [µ]
with nonnegative measures λ and µ.

Hint for the semilinear problem:
Consider u = GD [f ] + PD [λ] + MD [µ] = GD [f ] + h.
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The idea of the proof of the Martin representation

Let u ≥ 0 be singular α-harmonic on D. Let x ∈ Dn ↑ D be nice;

u(x) =

∫
D\Dn

PDn(x , y)u(y)dy

=

∫
Dn

GDn(x , v)

GDn(x0, v)

(
GDn(x0, v)

∫
D\Dn

ν(v , y)u(y)dy

)
dv .

:=

∫
Dn

MDn(x , v)µn(dv)dv .

Here µn(Rd) =
∫
D

GDn(x0, v)
∫

D\Dn

ν(v , y)u(y)dydv = u(x0) <∞.

The measures weakly converge on ∂∗D.

MDn(x , v) = GDn(x , v)/GDn(x0, v)→ MD(x , z) on ∂∗D by BHP.
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The boundary condition

For U ⊂⊂ D we define

ηU [u](A) =

∫
A
GU(x0, z)

∫
D\U

ν(z , y)u(y) dy dz , A ⊂ Rd .

We let
WD [u] = lim

U↑D
ηU [u].

If u has an α-harmonic majorant w , then

ηU [|u|] ≤ w(x0).

Moreover, harmonic smallness yields WD [u] = 0.

Lemma

WD [GD [f ] + PD [λ] + MD [µ] ] = µ.
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The boundary condition, II

Proof.

Assume that f ≥ 0 and take nice U ↑ D. For x ∈ D,∫
Rd

GU(x , z)

∫
D\U

ν(z , y)GD [f ](y) dydz

=

∫
D\U

PU(x , y)GD [f ](y) dy

= Ex [GD [f ](XτU )]

= Ex

[
EXτU

[ ∫ τD

0
f (Xt) dt

]]
= Ex

[ ∫ τD

τU

f (Xt) dt

]
≤ GD f (x).
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The boundary condition, III

Our semilinear problem is finally formulated as follows:
−∆̃α/2u(x) = F (x , u(x)) on D,

u = λ on Dc ,

WD [u] = µ on ∂D (on ∂MD).

(1)

Here we assume: PD [|λ|](x) + MD [|µ|](x) <∞ for some (all)
x ∈ D; u is harmonically majorized; Fu(x) := F (x , u(x)) is locally
integrable on D; ∆̃α/2u and Fu(x)dx are equal as distributions on
D. Note: u is a measure on Dc .

We say that r : [0,∞)→ [0,∞) is sublinear increasing if it is
nondecreasing and limv→∞ r(v)/v = 0.
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Uniform integrability and Vitali’s theorem

Definition

q : D → [−∞,∞] is in the Kato class J α(D), if the functions
GD(x , y)|q(y)| are uniformly integrable with respect to dy on D.

q ∈ J α(D) if |D| <∞, lim
ε→0

sup
x∈Rd

∫
|x−y |<ε

|q(y)||y − x |α−ddy = 0.

Example

If D is a bounded open set with the outer cone property and
−∞ < β < α, then δD(x)−β ∈ J α(D).

Lemma

Let D be regular. Then q ∈ J α(D) if and only if GD |q| ∈ C0(D),
and in this case GDq ∈ C0(D).
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Existence

Denote h = PD [λ] + MD [µ] and H = PD [|λ|] + MD [|µ|].

Theorem (A)

Let D be regular. Let PD [|λ|] + MD [|µ|] <∞ on D. Let
F : D × R→ R and |F (x , t)| ≤ q(x)r(|t|) for all x ∈ D, t ∈ R,
where r : [0,∞)→ [0,∞) is nondecreasing. Let r be sublinear, or
m > 0 be small. If q, qr(2H) ∈ J α(D), then there is a solution u
harmonically majorized by H + const for

−∆̃α/2u(x) = mF (x , u(x)) on D,

u = λ on Dc ,

WD [u] = µ on ∂D.
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Theorem (B)

Under the assumptions of Theorem (A), suppose that u is a
solution to (1) harmonically majorized by H + const. Then after a
modification on a set of Lebesgue measure zero, u is continuous on
D and u = GD [Fu] + PD [λ] + MD [µ] on D.

Theorem (C)

In addition to the assumptions of Theorem (B) suppose that
v 7→ F (x , v) is nonincreasing for each x ∈ D. If the solution of (1)
is continuous on D, then it is unique.

Corollary

Let D be regular. Let 0 ≤ q ∈ J α(D) and |F (x , v)| ≤ q(x). If
PD [|λ|] + MD [|µ|] <∞ on D, then there is harmonically majorized
continuous solution to (1), unique if v 7→ F (x , v) is nonincreasing.
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Linear Dirichlet problem

The semilinear problem builds on the linear case, as in [MV14].

Lemma

Let f ∈ L1
loc(D). Suppose PD [|λ|] + MD [|µ|] <∞ on D. There is

at most one (unique a.e.) harmonically majorized solution u of
−∆̃α/2u = f on D,

u = λ on Dc ,

WD [u] = µ on ∂D.
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Proof of the existence (Theorem A)

Recall h = PD [λ] + MD [µ] and H = PD [|λ|] + MD [|µ|].
We define the operator T on C0(D):

Tv(x) = m

∫
D
GD(x , y)F (y , v(y) + h(y))dy , x ∈ Rd .

T satisfies the assumptions of the Schauder Fixed Point Theorem.
Thus there is v0 ∈ K such that Tv0 = v0. Then,

u := v0 + h = GD [mFu] + PD [λ] + MD [µ]

is a solution to (1) continuous on D. Indeed, by [BB00],

−∆̃α/2u := −∆̃α/2(v0 + h) = −∆̃α/2v0 = −∆̃α/2GD [mFu] = mFu.

�
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Proof of representation (Theorem B)

Let ũ = GD [Fu] + PD [λ] + MD [µ].
We have |Fu| ≤ cq + qr(2H) ∈ J α(D).
Hence ũ is continuous and harmonically majorized by H + const.
Uniqueness of the linear problem implies that u = ũ a.e. on Rd .

�
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Proof of uniqueness (Theorem C)

Suppose that u1, u2 satisfy (1). By Theorem B and assumed
continuity, ui = GD [Fui ] + PD [λ] + MD [µ] on D for i = 1, 2.
Thus u1 − u2 = GD [Fu1 − Fu2 ].
Fix x ∈ D and assume that F (x , u1(x))− F (x , u2(x)) > 0.
By the monotonicity of F , u2(x) > u1(x).
Then GD [Fu1 − Fu2 ](x) = u1(x)− u2(x) < 0 for this x .
By the complete maximum principle [BH86],
u1 − u2 = GD [Fu1 − Fu2 ] ≤ 0 everywhere Rd .
By symmetry, u2 − u1 ≤ 0, too, and so u1 = u2. �
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Examples: the ball

Let D = Br =
{
x ∈ Rd : |x | < r

}
and x0 = 0. Here is the M.

Riesz’ formula for the Poisson kernel of Br :

PBr (x , y) = Cd ,α
(
r2 − |x |2

|y |2 − r2

)α/2

|x − y |−d , x ∈ Br , y ∈ Bc
r ,

with Cd ,α = Γ(d/2)π−1−d/2 sin(πα/2). The Green function is

GBr (x , y) = Bd ,α|x − y |α−d
∫ ω

0

sα/2

(s + 1)d/2

ds

s
, x , y ∈ Br ;

ω =
(r2 − |x |2)(r2 − |y |2)

|x − y |2
and Bd ,α = Γ(d/2)/(2απd/2[Γ(α/2)]2).
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Examples: the ball, II

Let r = 1 and B = B1. The Martin kernel of the ball B is

MB(x , y) =
(1− |x |2)α/2

|y − x |d
, x ∈ B, y ∈ ∂B,

and (1− |x |2)
α/2−1
+ = c

∫
∂B MB(x , y)σ(dy) is α-harmonic on B.

Lemma

Suppose that f ∈ L1
loc(B) and λ is a measure on Bc such that

PD [|λ|] <∞ on B. Up to a modification on a set of Lebesgue
measure zero there is at most one solution of{

−∆̃α/2u = f on B,

u = λ on Bc ,

harmonically small on B with respect to w(x) = (1− |x |2)α/2−1.
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Examples: the ball, III

The function h(x) := (1− |x |2)
α/2−1
+ = c

∫
∂B MB(x , y)σ(dy) is

(singular) α-harmonic on B. For (as large as possible) p > 0 and
(sufficiently small) m > 0 we look for solutions to

−∆̃α/2u(x) = m u(x)p on D,

u = 0 on Dc ,

WD [u] = cσ on ∂D.

In the setting of Theorem (A) we have H = h, q ≡ 1 and
r(t) = tp. Let 0 < p < 2α/(2− α). Since GBδ

−α
B ≤ const.,

hp ∈ J α(B). Indeed, (1−α/2)p < α. This allows for (superlinear)
p > 1 if α > 2/3. The critical exponent p∗ = 2α/(2− α) is
smaller (=worse) than in [Aba15], where p∗ = (1 + α/2)(1− α/2).
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Example: the half-space and other cones

Suppose that D =
{
x = (x1, x2, · · · , xd) ∈ Rd : xd > 0

}
=: H+.

The Poisson kernel for the half-space is

PH+(x , y) = cα,d
x
α/2
d

|yd |α/2
|x − y |−d , x ∈ H+, y ∈ int(Hc

+),

where cα,d = sin(πα/2)Γ(d/2)π−1−d/2. The Green function is

GH+(x , y) = Bd ,α|x − y |α−d
∫ 4xd yd
|x−y|2

0

tα/2

(t + 1)d/2

dt

t
.

The Martin kernel for y ∈ ∂H+ is

MH+(x , y) =
x
α/2
d

|x − y |d
(1 + |y |2)d/2, xd > 0,

and, for the point at infinity,

MH+(x ,∞) = x
α/2
d , xd > 0.
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Example: the half-space and other cones, II

Lemma

Suppose that f ∈ L1
loc(H+) and λ is a measure on Hc

+ such that
PD [|λ|] <∞ on H+. Up to a modification on a set of Lebesgue
measure zero there is at most one solution to the problem{

−∆̃α/2u = f on H+,

u = λ on Hc
+

harmonically small on H+ with respect to w(x) = x
α/2−1
d + x

α/2
d .

The Martin kernel with the pole at infinity for arbitrary open cones
is discussed in [BB04].
Further results of this type depend on detailed asymptotics of
Martin and Green kernels for specific domains.
Existing results on Lipschitz sets are not satisfactory.
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