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The artist, like the God of creation, remains within
or behind or beyond or above his handiwork, invisi-
ble, refined out of existence, indifferent, paring his
fingernails.

– James Joyce, A Portrait of the Artist as a
Young Man
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Introduction

The purpose of this work is to study the Vicsek model for self-driven particles, in particular
its time-continuous version, and provide a mean-field result for the dynamics.

We start by introducing the original discrete-time version, as proposed by T. Vicsek et al.
in [16]. It is an example of what are known as individual-based models (or IBMs), in the sense
that it simulates the movements of a population by considering the discrete individual
organisms it is comprised of. Each individual has certain attributes and behaviours (e.g.
spatial location, behavioural traits), that may vary among the population, as well as change
through time.
The main difference between IBMs and traditional differential equation population mod-
els is that these are so-called bottom-up models, in which behaviours emerge from the
interactions among autonomous individuals.

We consider N particles inside a square of side L, with periodic boundary conditions. The
idea of this model is the following: at time t = 0 the particles are positioned randomly,
with same speed but random orientation. At each time step a given particle assumes the
average direction of the particles in its neighbourhood, with some random noise added.
This model has a number of possible applications in the field of biological systems involving
clustering and migration. In fact, many individuals have the tendency of moving as other
subjects in their neighbourhood, without the need for a leader. This is certainly the case
for schools of fish, herds of mammals or flocks of migrating birds, but also for colonies of
bacteria.

The dynamics of the i-th particle is then given by the following discrete-time stochastic
system

xi(t + ∆t) = xi(t) + vi(t)∆t,
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where vi(t + ∆t) has constant absolute value v and direction given by the angle

θ(t + ∆t) = 〈θ(t)〉r + ∆θ,

with 〈θ(t)〉r = arctan
〈sin θ〉r

〈cos θ〉r
being the average direction of the neighbouring particles,

within a circle of radius r, and ∆θ the random noise, uniformly distributed on the interval[
− η

2 , η
2

]
. We have three parameters: the noise η, the density ρ := N/L2 and the distance

v a particle makes between two time-steps.

Figure 1.1: Simulation of
300 individuals after 200 time
steps of the Vicsek model,
with parameters L = 25,
noise η = 0.1. In red the inter-
action circle (of radius r = 1)
of one individual. The black
arrow denotes the average di-
rection.

As we can see in the above figure, the particles tend to form groups moving coherently
in random directions. After some time, for large densities and little noise, the motion
becomes ordered; in this case – where 〈·〉r is the arithmetic average taken over all particles
within a circle of radius r – if there were no noise, the collective final direction would
coincide with the initial mean direction.

This work is structured as follows: in the second chapter, using as main reference [2], by
Bolley et al., we introduce the time-continuous version of the discrete Vicsek model. We
define the empirical distribution

f N(x, v, t) :=
1
N

N

∑
j=1

δ
(X j

t ,V
j
t )
(x, v),

where Xi
t and Vi

t represent the position and speed of the i-th particle at time t; we will
show that, as N → ∞, its limit is a probability density function f which satisfies a PDE of
the form

∂t f + v · ∇x f +∇v ·
(
(I − v ⊗ v) J̄ f f

)
= d∆v f . (1.1)
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In fact, the main result of the second chapter is the following propagation of chaos result: the
existence and uniqueness of N independent processes (X̄i

t, V̄i
t ), i = 1, . . . , N, whose law is

given by (1.1), such that, for all T > 0, there exists a constant C > 0 such that

E
[
|Xi

t − X̄i
t|2 + |Vi

t − V̄i
t |2
]
6

C
N

,

for all 0 6 t 6 T, N > 1, 1 6 i 6 N.

In the third chapter, inspired by [5], of Degond, Frouvelle and Liu, we use a hydrodynamic
scaling to study the large scale behaviour of the model. In particular, we are going to
perform the change of variable x̂ = εx and t̂ = εt. This allows us to study the rescaled
function f ε(x̂, ω, t̂) = f (x, ω, t) and the PDE it satisfies:

ε(∂t f ε + ω · ∇x f ε) = Q( f ε) + O(ε2), (1.2)

where Q( f ) is a collision operator. As ε → 0, since Q is the only term of order 0 in ε,
particular interest lies in the equilibria of this equation, i.e. the functions which belong to
the null-space of Q. We find a phase transition: the form of the equilibria, as well as the
rate of convergence to them, depends on whether the local density ρε =

∫
S

f ε dω is above
or below the threshold value n. In particular, if ρε 6 n, then the only equilibria are the
isotropic ones f = ρ > 0; if ρε > n, then we also have equilibria of the form f = ρMκΩ,
where MκΩ is the Von-Mises-Fischer distribution.
In the first case, the isotropic equilibria are stable; in the second one, the isotropic equilibria
become unstable and there is exponentially fast convergence to the anisotropic ones.

In fact, the fourth chapter consists of the proof of the main result of the previous chapter,
which provides the rates of convergence to equilibrium of the solution to (1.2). Again,
these rates will depend on whether the local density ρ =

∫
S

f dω is greater or smaller than
the dimension n.
The proof will use various notions on Sobolev spaces, which we are going to recall, like
the Poincaré inequality on the sphere and the Sobolev embedding theorem.

Finally, in the fifth chapter, using techniques found in [4] and [9], we will present a
generalization of the classic Vicsek model, with two population interacting, with different
diffusion coefficients.
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Mean-field limit

We now proceed to study the continuous-time model, where the dynamics is not limited
to a square, but happens in the infinite space Rn.
First we are going to provide the stochastic differential system that describes the dynamics.
Following the contributions by F. Bolley et al. in [2], we consider N interacting particles
in Rn, described by their positions and orientation vectors. The equation for the space
variable will be the usual xt = vtdt, while the SDE for the velocity will include the stochastic
integral term; in particular, we will use the operator I− v ⊗ v for the projection orthogonal
to v.
Next, we will give various results for the mean-field limit of the model; in particular,
existence and uniqueness for the solution of the mean-field system. A number of very
helpful tools for this section come from [15].

2.1 Introduction of the model

Let {(Xi, Vi)}i=1,...,n denote the position and orientation vectors of N interacting particles
in Rn.

The mean momentum Ji of the neighbourhood of the i-th particle is defined by setting

Ji =
1
N

N

∑
j=1

K
(
|X j − Xi|

)
V j.

The function K is called an interaction kernel, which we suppose to be isotropic, i.e. depend-
ing only on the distance |X j − Xi| between particle i and its neighbours.

We assume that the processes satisfy the following system of coupled Stratonovich
stochastic differential equations (the projection operator P(v) := I − v ⊗ v constrains the
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norm of the velocity to be constantly equal to 1):{
dXi

t = Vi
t dt,

dVi
t =

√
2d(I − Vi

t ⊗ Vi
t ) ◦ dBi

t + (I − Vi
t ⊗ Vi

t )Ji
tdt.

(2.1)

Let Sn−1 be the sphere of dimension n− 1 in Rn. We suppose that the initial data (Xi
0, Vi

0) ∈
Rn × Sn−1, 1 6 i 6 N, are independent and identically distributed random processes.
Moreover, (Bi

t)t>0 are N independent n-dimensional Brownian motions.1

First, we write the previous SDE system as the equivalent Itô-type system. From the
Itô-Stratonovich calculus found in [13], we have the following

Proposition 2.1. If (Xt)t>0 is an Rn-valued random process, and (Bt)t>0 is a p-dimensional
Brownian motion, the Stratonovich SDE

dXt = b(t, Xt)dt + σ(t, Xt) ◦ dBt,

is equivalent to the Itô SDE

dXt = b̃(t, Xt)dt + σ(t, Xt)dBt,

where the drift term b̃(t, Xt) is given, component-wise, by

b̃i(t, Xt) = bi(t, Xt) +
1
2

p

∑
j=1

n

∑
k=1

∂σij
∂xk

σkj, 1 6 i 6 n.

Applying this formula to our problem, we have that (2.1) can be written as{
dXi

t = Vi
t dt

dVi
t =

√
2d(I − Vi

t ⊗ Vi
t )dBi

t + (I − Vi
t ⊗ Vi

t )Ji
tdt − (n − 1)Vi

t dt.
(2.2)

This system will be the main object of our study.

The mean-field limit. As we have said before, the main purpose of this chapter is to show
that, as N → ∞, the N R2n-valued interacting processes (Xi

t, Vi
t )t>0, solutions of (2.2),

behave like the solutions (X̄i
t, V̄i

t )t>0 of the following non-linear2 SDE system
dX̄i

t = V̄i
t dt

dV̄i
t =

√
2d(I − V̄i

t ⊗ V̄i
t )dBi

t + (I − V̄i
t ⊗ V̄i

t ) J̄ ft(X̄i
t)dt − (n − 1)V̄i

t dt

(X̄i
0, V̄i

0) = (Xi
0, Vi

0), ft = Law(X̄i
t, V̄i

t ),

(2.3)

where J̄ f (x) :=
∫

Rn×S
K(|x − y|) f (y, ω)ω dydω, for all x ∈ Rn.

1From now on we will simply write S for the sphere in Rn.
2The non-linearity is due to the fact that we require ft to be the law of the 2n-dimensional process.
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We recall that a mean-field equation is a model that describes the evolution of a typical
particle, subject to the collective interaction created by a large number of other individuals.
The state of the typical particle is given by its phase space density; the force field exerted by
the other particles is approximated by the average with respect to the phase space density
of the force field exerted on that particle from each point in the phase space.

We wish to derive a mean-field limit for (2.2) as the number of particles N tends to infinity.
In order to do so, we define the empirical distribution f N(x, v, t) := 1

N ∑N
j=1 δ

(X j
t ,V

j
t )
(x, v).

→ When there is no noise (i.e. d = 0) it can be easily shown that f N is a weak solution
for the following partial differential equation

∂t f N + v · ∇x f N +∇v · ((I − v ⊗ v) J̄ f N f N) = 0.

→ When noise is present (i.e. d 6= 0) the empirical distribution f N tends to a probability
density function f satisfying

∂t f + v · ∇x f +∇v ·
(
(I − v ⊗ v) J̄ f f

)
= d∆v f . (2.4)

Without loss of generality, we can suppose that the intensity parameter d and the
total weight K0 :=

∫
Rn K(x)dx are both equal to 1.3

In the following section we show in detail this result, under the assumption that the
kernel K is Lipschitz and bounded.

2.2 First results

Theorem 2.2. Let f0 be a probability measure on Rn × S with finite second moment in
x ∈ Rn and let (Xi

0, Vi
0) for 1 6 i 6 N be N independent random variables with law f0.

Let also K be a Lipschitz and bounded map on Rn. Then

i. There exists a pathwise unique global solution to the SDE system (2.2), with initial
data (Xi

0, Vi
0) for i = 1, . . . , N.

ii. There exists a pathwise unique global solution to the nonlinear SDE system (2.3),
with initial data (Xi

0, Vi
0) for i = 1, . . . , N.

iii. There exists a unique global weak solution to the nonlinear PDE (2.4), with initial
datum f0. Moreover, it is the law of the solution to (2.3).

3It is enough to consider the rescaled functions f̃ (x, v, t) = f ( x
d , v, t

d ) and K̃(x) = 1
K0dn K( x

d ) and notice
that, if we suppose that K is integrable and that K0 is positive, f̃ satisfies (2.4) with d = 1 and K replaced by K̃
Moreover,

∫
Rn K̃(x)dx = 1.
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Proof. We start by setting σ1(v) ≡ P(v) := I − v⊗v
|v|2 , σ2(v) := v

|v|2 , for all v such that
|v| > 1/2, and σ3(v) = v if |v| 6 2.

i. Consider the SDE system{
dXi

t = Vi
t dt

dVi
t =

√
2σ1(Vi

t )dBi
t + σ1(Vi

t )Ji
tdt − (n − 1)σ2(Vi

t )dt,
(2.5)

with initial data (Xi
0, Vi

0) ∈ Rn × S. We notice that the coefficients of this system are
locally Lipschitz.

Firstly, we show that |Vi
t | is constantly equal to 1. As long as |Vi

t | > 1
2 , we have (using

the fact that Vi · P(Vi)y = 0 for all y ∈ Rn)

d|Vi|2 = 2VidVi
t +

1
2

∂2|Vi|2
∂(Vi)2 d〈Vi〉 =

= 2
√

2Vi · P(Vi)dBi + 2Vi Jidt − 2(n − 1)
Vi · Vi

|Vi|2 dt + 2d〈Vi〉 =

= −2(n − 1)dt + 2d〈Vi〉 =

= −2(n − 1)dt + 2
n

∑
k,l=1

∂kl d

〈
Bi

k −
n

∑
p=1

Vi
kVi

p

|Vi |2 Bi
p, Bi

l −
n

∑
q=1

Vi
l Vi

q

|Vi |2 Bi
q

〉
=

= −2(n − 1)dt + 2
n

∑
k=1

d〈Bi
k, Bi

k〉 − 2
n

∑
k=1

d

〈
n

∑
p=1

Vi
kVi

p

|Vi |2 Bi
p, Bi

k

〉
+

− 2
n

∑
k=1

d〈Bi
k,

n

∑
q=1

Vi
kVi

q

|Vi |2 Bi
q〉+ 2

n

∑
k=1

d

〈
n

∑
p=1

Vi
kVi

p

|Vi |2 Bi
p,

n

∑
q=1

Vi
kVi

q

|Vi |2 Bi
q

〉
=

= −2(n − 1)dt + 2
n

∑
k=1

(
1 − 2

(
Vi

k
)2

|Vi |2 +
n

∑
p=1

(
Vi

k
)2
(

Vi
p

)2

|Vi |2

)
dt =

= −2(n − 1)dt + (2n − 4 + 2)dt = 0.

This means that |Vi
t | = 1 up to explosion time and, since dXi

t = Vi
t dt, the explosion

time is infinite. We then have global existence and pathwise uniqueness for (2.5).
Since the solution to this system has velocity of norm 1, we also get global existence
for (2.2). Thanks to the same reasoning, pathwise uniqueness holds as well.

ii. Consider the following SDE system
dX̄i

t = V̄i
t dt

dV̄i
t =

√
2(I − V̄i

t ⊗ V̄i
t )dBi

t − (I + V̄i
t ⊗ V̄i

t ) J̄ ft(X̄i
t)dt − (n − 1)V̄i

t dt

(X̄i
0, V̄i

0) = (Xi
0, Vi

0), ft = Law(X̄i
t, V̄i

t ).
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If we redefine
J̄ f (x) :=

∫
R2n

K(|x − y|) f (y, ω)σ3(ω)dydω, (2.6)

and if f0 is a distribution on Rn × S with finite second moment in x ∈ Rn, the
nonlinear system

dX̄i
t = V̄i

t dt

dV̄i
t =

√
2σ1(V̄i

t )dBi
t + σ1(V̄i

t ) J̄ ft(X̄i
t)dt − (n − 1)σ2(V̄i

t )dt

(X̄i
0, V̄i

0) = (Xi
0, Vi

0), ft = Law(X̄i
t, V̄i

t ),

(2.7)

has bounded and Lipschitz coefficients on R2n. We wish to prove that the system
admits a pathwise unique strong solution.

We consider the processes Yi
t = (Xi

t, Vi
t ) and Ȳi

t = (X̄i
t, V̄i

t ), respectively solutions of

dYi
t =

1
N

N

∑
j=1

b(Yi
t , Y j

t )dt + σ(Yi
t )dBi

t, (2.8)

dȲi
t =

∫
y∈R2n

b(Ȳi
t , y) ft(dy) dt + σ(Ȳi

t )dBi
t, (2.9)

where b(·, ·) and σ(·) are Lipschitz functions, defined as

b(Yi
t , y) =

(
Vi

t , σ1(V̄i
t )K(|Xi

t − x|)v − (n − 1)σ2(Vi
t )
)

for Yi
t = (Xi

t, Vi
t ),

σ(Yi
t ) =

(
0,
√

2σ1(V̄i
t )
)

and y = (x, v).

We introduce the Wasserstein metric on the set
{

p ∈ P(Rn) :
∫

Rn |x|p(dx) < +∞
}

of
probability measures admitting finite mean value, defined by

dist(p1, p2) := inf
{∫

|x − y|p(dx, dy) : p has marginals p1 and p2

}
. (2.10)

We now omit the apex i, and use a Picard iteration: let Y(0)
t = Ȳ0, and define

Y(k+1)
t =

∫ t

0

∫
y∈R2n

b(Y(k)
s , y) f (k)s (dy)ds +

∫ t

0
σ(Y(k)

s )dBs,

where f (k)s is the law of Y(k)
s . We wish to estimate

E(k)
T := E

[
sup

t∈[0,T]
|Y(k+1)

t − Y(k)
t |
]

. (2.11)
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Notice that, from the Lipschitzianity of b(·, ·), we have∣∣∣∣∫ b(x1, y)p1(dy)−
∫

b(x2, y)p2(dy)
∣∣∣∣ 6 L

(
|x1 − x2|+

∫
|y1 − y2|p(dy1, dy2)

)
,

where p is any probability measure with marginals p1 and p2. In particular, the above
inequality holds for the infimum among such measures. From this we get

sup
t∈[0,T]

∣∣∣∣∫ t

0

∫
R2n

b(Y(k)
s , y) f (k)s (dy)ds −

∫
R2n

b(Y(k−1)
s , y) f (k−1)

s (dy)ds
∣∣∣∣ 6

6 L
∫ T

0

(
|Y(k)

s − Y(k−1)
s |+ dist

(
f (k)s , f (k−1)

s
))

ds 6

6 L
∫ T

0

(
|Y(k)

s − Y(k−1)
s |+ E

[
|Y(k)

s − Y(k−1)
s |

])
ds.

Taking the average yields

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0

∫
R2n

b(Y(k)
s , y) fs(dy)ds −

∫
R2n

b(Y(k−1)
s , y) fs(dy)ds

∣∣∣∣
]
6

6 2L
∫ T

0

∫
R2n

E
[
|Y(k)

t − Y(k−1)
t |

]
6 2LTE(k−1)

T .

(2.12)

We recall the Burkholder-Davis-Gundy inequality: for any 1 6 p < +∞, there exist
positive constants cp, Cp such that, for all local martingales X, with X0 = 0 and
stopping times τ, the following inequalities hold

cpE
[
[X]

p/2
τ

]
6 E [(X∗

τ)
p] 6 CpE

[
[X]

p/2
τ

]
.

Furthermore, for continuous local martingales, this statement holds for all p ∈
(0,+∞).

By using it on the diffusion term, we get

E

[
sup

t∈[0,T]

∣∣∣∣∫ t

0

(
σ(Y(k)

s )− σ(Y(k−1)
s )

)
dBs

∣∣∣∣
]
6

6 CE

[(∫ T

0

∣∣∣σ(Y(k)
s )− σ(Y(k−1)

s )
∣∣∣2 ds

)1/2
]
6

6 LCE

[(∫ T

0

∣∣∣Y(k)
s − Y(k−1)

s

∣∣∣2 ds
)1/2

]
6

6 LC
√

TE

[
sup

t∈[0,T]

∣∣∣Y(k)
s − Y(k−1)

s

∣∣∣] .
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Summing up the contributions of the drift and diffusion terms, we have that there
exists a constant C > 0 such that

E(k)
T 6 C(T +

√
T)E(k−1)

T . (2.13)

By induction on k, E

[
sup

t∈[0,T]
|Y(k)

t |
]

< +∞. So, if we denote by M the space of

progressively measurable, cadlag, Rn-valued processes such that

‖Y‖M := E

[
sup

t∈[0,T]
|Yt|
]
< +∞,

we have shown that ∑k>0‖Y(k)‖M < +∞, for a sufficiently small T > 0.

But under this norm,M is not a complete space (because the sup-norm is not complete
in the space of cadlag functions), so this condition is not enough to guarantee existence
of a solution. We complete it by replacing the distance in sup-norm in the definition
of E(k)

T with the Skorohod distance4

dS(x, y) = inf
λ∈Λ

{
sup

t
|λ(t)− t| ∨ sup

t

∣∣x(t)− y
(
λ(t)

)∣∣} ,

where Λ denotes the class of strictly increasing, continuous mappings of [0, 1] onto
itself:

DS(X, Y) := E
[
dS(X, Y)

]
.

Since dS is dominated by the distance in sup-norm,
(
Y(k))

k>0 is a Cauchy sequence
also under the metric DS; we call Y∞ its limit in M. It is easy to show that Y∞ solves
(2.7), so we have existence of the solution for small T. Since the condition on T
does not involve the initial condition, the argument can be iterated on adjacent time
intervals, obtaining a solution on any time interval.

We are left with proving uniqueness. Let Φ be the map which associates to a proba-
bility density function f the law of the solution of

Yt =
∫ t

0

∫
y∈R2n

b(Ys, y) fs(dy)ds +
∫ t

0
σ(Ys)dBs. (2.14)

We notice that, if (Yt)t>0 is a solution of (2.7), then its law is a fixed point of Φ.
Conversely, if f is such a fixed point, then (2.14) defines a solution of (2.7) up to time
T. So it is enough to show that, at least for a small enough T, Φ is a contraction.

4See [1] for a proof of completeness under this metric.
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Let f 1 and f 2 be two probability density functions, and Y1, Y2 the two corresponding
processes. Using Gronwall’s Lemma, we have

dist
(
Φ( f 1

t ), Φ( f 2
t )
)
6 E

[
|Y1

t − Y2
t |
]
6 E

[
sup

t∈[0,T]
|Y1

t − Y2
t |
]
6

6 L
∫ T

0
E
[
|Y1

s − Y2
s |+ dist( f 1

s , f 2
s )
]

ds 6 K(T)
∫ T

0
dist( f 1

s , f 2
s )ds.

This concludes the proof of existence and uniqueness of the solution of (2.7). Finally,
as long as |V̄i

t | > 1
2 , we can prove that |V̄i

t | = 1 for all t > 0. In particular, the obtained
solution is a global solution for (2.3). Pathwise uniqueness follows as before.

iii. Let f0 be a distribution on Rn × S with finite second moment in x ∈ Rn; (X̄0, V̄0)
with law f0; and (X̄t, V̄t)t>0 the solution to (2.3) with initial datum (X̄0, V̄0). Then its
law ft, as a measure on R2n, satisfies

d
dt

∫
R2n

φ d ft =
∫

R2n

(
v · ∇xφ + Hessvφ : (I − v ⊗ v)+

−∇vφ · (I − v ⊗ v)( J̄ ft)− (n − 1)v · ∇vφ
)
d ft.

(2.15)

In fact, let φ ∈ C∞(R2n), and consider

φ(X̄i
t, V̄i

t ) = φ(X̄0, V̄0) +
∫ t

0

∂
∂s φ ds +

∫ t

0
v · ∇xφ ds+

+
∫ t

0

((
σ1(Vi

s )( J̄ ft)− (n − 1)σ2(Vi
s )
)
· ∇vφ

)
dBs+

+ 1
2

∫ t

0
Hessvφ : (I − v ⊗ v)ds,

where J̄ ft is redefined as in (2.6).

Deriving the above expression with respect to t and integrating on R2n w.r.t. the
measure ft, we get precisely (2.15). We recall that |V̄t| = 1 a.s., so ft is concentrated
on Rn × S; with this in mind, we define the restriction Ft of ft on Rn × S, by∫

Rn×S
Φ dFt =

∫
R2n

φ d ft,

for all continuous maps Φ on Rn × S, where φ is any continuous and bounded map
on R2n equal to Φ on Rn × S.

Let Φ and φ be C∞
C on their respective domains, such that φ(x, v) = Φ(x, v

|v| ), for all
1
2 6 |v| 6 2. We have that v · ∇vφ = 0 for all (x, v) in the support of ft (because φ is
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0-homogeneous in v for 1
2 6 v 6 2), and

d
dt

∫
Rn×S

Φ d ft =
d
dt

∫
R2n

φ d ft =
∫

R2n

(
v · ∇xφ −∇vφ · (I − v ⊗ v)( J̄ ft)+

+ ∆vφ
)
d ft.

Since Φ and φ have the same x-dependence, we have that v · ∇xΦ ≡ v · ∇xφ on
Rn × S. Moreover, for (x, ω) ∈ Rn × S, ∇ωΦ = ∇vφ and ∆ωΦ = ∆vφ. Finally,

d
dt

∫
Rn×S

Φ d ft =
∫

Rn×S

(
ω · ∇xφ −∇ωφ · (I − ω ⊗ ω)( J̄ ft) + ∆vφ

)
d ft, (2.16)

which ensures that Ft is a weak solution of (2.4).

We now prove uniqueness. Let f 1, f 2 be two solutions of (2.4) with same initial
datum f0; for each time t, we view them as measures on Rn which are concentrated
on Rn × S.

Let (X̄1
t , V̄1

t ) and (X̄2
t , V̄2

t ) be the solutions of (2.3), with common initial datum
(X̄0, V̄0) of law f0, and with drift given by J̄ f 1

t
and J̄ f 2

t
respectively. Then their respec-

tive laws g1
t and g2

t , as measures on R2n are solutions of the following

∂tgi
t + v · ∇xgi

t =
n

∑
k,l=1

∂2

∂vk∂vl

(
(σ1σT

1 )k,l gi
t
)
+∇v ·

(
gi

t
(
σ1( J̄ f i

t
) + (n − 1)σ2

))
.

But also f i
t (i = 1, 2) solve this PDE on R2n with bounded and regular coefficients.

Since this is a linear parabolic PDE, uniqueness holds. We then have that f i
t = gi

t (i =
1, 2), and that (X̄i

t, V̄i
t )t>0 are solutions to the nonlinear SDE (2.7), for which we have

already proved uniqueness. We can conclude that f 1
t = g1

t = g2
t = f 2

t .

Under the same assumptions as the above Theorem we can almost immediately prove the
following mean-field result:

Theorem 2.3. For all T > 0, there exists a constant C > 0 such that:

E
[
|Xi

t − X̄i
t|2 + |Vi

t − V̄i
t |2
]
6

C
N

, (2.17)

for all 0 6 t 6 T, N > 1, 1 6 i 6 N.

Proof. Consider the R2n-valued processes Yi
t := (Xi

t, Vi
t ) and Ȳi

t := (X̄i
t, V̄i

t ). We also define
two Lipschitz and bounded functions b(·, ·) and σ(·) that represent the drift and diffusion
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coefficients for the new processes. More precisely, for yi = (xi, vi), yj = (xj, vj) ∈ Rn × S,
we have

b(yi, yj) =
(
vi, (I − vi ⊗ vi)K(xj − xi)vj − (n − 1)vi

)
,

σ(yi) =
(

0,
√

2(I − vi ⊗ vi)
)

.

We compute

Yi
t − Ȳi

t =
∫ t

0

1
N

N

∑
j=1

[(
b(Yi

s , Y j
s)−

∫
R2n

b(Ȳi
s , y) fs(dy)

)]
ds +

∫ t

0

(
σ(Yi

s)− σ(Ȳi
s)
)
dBi

s =

=
∫ t

0

1
N

N

∑
j=1

[(
b(Yi

s , Y j
s)− b(Ȳi

s , Y j
s)
)
+
(
b(Ȳi

s , Y j
s)− b(Ȳi

s , Ȳ j
s)
)
+

+
(
b(Ȳi

s , Ȳ j
s)−

∫
R2n

b(Ȳi
s , y) fs(dy)

)]
ds +

∫ t

0

(
σ(Yi

s)− σ(Ȳi
s)
)
dBi

s.

Our aim is to provide an estimate for the second moment; we consider the process

|Yi
t − Ȳi

t |∗2 = sup
u6t

|Yi
u − Ȳi

u|2,

and apply the Burkholder-Davis-Gundy inequality on the stochastic integral term. We
use the fact that the expected valued of the stochastic integral of an M2 process is equal to
zero:

E
[
|Yi

t − Ȳi
t |∗2
]
6

6 E

[∣∣∣∣ ∫ t

0

1
N

N

∑
j=1

[(
b(Yi

s , Y j
s)− b(Ȳi

s , Y j
s)
)
+
(
b(Ȳi

s , Y j
s)− b(Ȳi

s , Ȳ j
s)
)
+

+
(
b(Ȳi

s , Ȳ j
s)−

∫
R2n

b(Ȳi
s , y) fs(dy)

)]
ds
∣∣∣∣∗2
]
+ E

[ ∣∣∣∣∫ t

0

(
σ(Yi

s)− σ(Ȳi
s)
)
dBi

s

∣∣∣∣∗2
]
6

6 L ·
∫ t

0
E
[
|Yi

s − Ȳi
s |∗2
]
+ E

[
1
N

N

∑
j=1

|Y j
s − Ȳ j

s |∗2
]
+ E

[∣∣ 1
N

N

∑
j=1

bs(Ȳi
s , Ȳ j

s)
∣∣2],

where bs(y, y′) := b(y, y′)−
∫

b(y, z) fs(dz). Summing over i we find

N

∑
i=1

E
[
|Yi − Ȳi|∗2

t

]
6 L′

∫ t

0

N

∑
i=1

(
E
[
|Yi − Ȳi|∗2

s

]
+

N

∑
i=1

E

[∣∣∣ 1
N

N

∑
j=1

bs(Ȳi
s , Ȳ j

s)
∣∣∣2])ds.

Applying Gronwall’s Inequality with u(t) := ∑N
i=1 E

[
|Yi − Ȳi|∗2

t
]
, we get

N

∑
i=1

E
[
|Yi − Ȳi|∗2

t

]
6 L(t)

∫ t

0

N

∑
i=1

E

[∣∣∣ 1
N

N

∑
j=1

bs(Ȳi
s , Ȳ j

s)
∣∣∣2]ds.
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We have

E

[∣∣∣ 1
N

N

∑
j=1

bs(Ȳi
s , Ȳ j

s)
∣∣∣2] = 1

N2 E

[ N

∑
j,k=1

bs(Ȳi
s , Ȳ j

s)bs(Ȳi
s , Ȳk

s )

]
6

C
N

,

where we have used E
[
bs(Ȳi

s , Ȳ j
s)bs(Ȳi

s , Ȳk
s )
]
= 0 for j 6= k, since bs(·, ·) is centred with

respect to the second variable. The claim follows.



22 CHAPTER 2. MEAN-FIELD LIMIT



3

Macroscopic limit

The objective of this chapter is to study the large-scale behaviour of the system. In order
to do so, we will perform what is known as hydrodynamic scaling on the space and time
variables.
Most of the results of this chapter are given under the hypothesis of space-homogeneity of
the model. In other words, we will often assume that the probability density function f is
just a function of time t and velocity ω, and does not depend on the space variable x. In
the homogeneous case, all results are proven rigorously.
We will then perform a couple of ansatz, that will allow us to assume the behaviour of the
model in the general non-homogeneous case. The aim of this second part of the chapter is
not to provide detailed proofs of all results, but instead to give a reasonable and logical
explanation as to why we work in this way.

3.1 Hydrodynamic scaling

We perform the hydrodynamic scaling by introducing a small parameter ε > 0 and implement
the change of variables x̂ = εx, t̂ = εt; we define f ε(x̂, ω, t̂) := f (x, ω, t) and Kε(x̂) :=
K(x)

εn . As a result of this scaling, by studying the formal limit as ε → 0, we are observing
the system for large times and distances.
From the results of the previous chapter we have that f ε satisfies the following partial
differential equation

ε
(
∂t f ε + ω · ∇x f ε

)
= −∇ω ·

(
(I − ω ⊗ ω) J̄ f ε f ε

)
+ ∆ω f ε, (3.1)

where J̄ε
f (x, t) =

∫
S
(Kε ∗ f )(x, ω, t)ω dω.
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Lemma 3.1. If we suppose that f ε does not present any pathological behaviour as ε → 0,
we get the following expansion:

J̄ε
f ε(x, t) = J f ε(x, t) + O(ε2),

where J f (x, t) :=
∫

S
f (x, ω, t)ω dω is the local flux.

Proof. We have

J̄ε
f ε(x, t) =

∫
Rn×S

Kε(|x − y|) f ε(y, ω, t)ω dy dω =

=
∫

Rn×S
Kε(|x − y|)

(
f ε(x, ω, t) + εζ · ∇x f ε(x, ω, t) + O(ε2)

)
ω dζ dω =

=
∫

Rn×S
K(|ζ|)

(
f ε(x, ω, t) + εζ · ∇x f ε(x, ω, t) + O(ε2)

)
ω dζ dω =

= J f ε(x, t) + O(ε2),

where we have performed the change of variable y = x + εζ, and expanded f to the first
order in ε.

Remark. The remainder is of order ε2 because the kernel is isotropic; with an anisotropic
kernel (e.g. one favouring the forward direction) the remainder would be of order ε. This
causes a substantial change in the dynamics.

Definition 3.2. We define the collision operator

Q( f ) := −∇ω ·
(
(I − ω ⊗ ω)J f f

)
+ ∆ω f .

Notice that local conservation of mass holds:
∫

S
Q( f )dw = 0.

Ignoring the O(ε2) term, we can use this operator to rewrite (3.1) as

ε(∂t f ε + ω · ∇x f ε) = Q( f ε). (3.2)

We wish to study the limit of this partial differential equation as ε → 0, so particular interest
lies on the equilibria for the collision operator, i.e. the functions f such that Q( f ) = 0.
Remark. We notice that the operator Q acts only on the direction variable ω, and leaves the
other variables x and t as parameters. It is therefore legitimate to study the properties of
Q as an operator acting on functions of ω only.

3.2 Study of equilibria

In this section we see how the dynamics of our model, in particular the form of the
equilibria, changes according to whether the density is larger or smaller than a given
threshold value.
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Definition 3.3. We introduce the following notions, which we will need later on:

1. The local density of a function h : S → [0, 1] is given by

ρh :=
∫

S
h(ω)dω.

2. Let Ω ∈ S and κ > 0. The Von-Mises-Fischer distribution with concentration parameter
κ and orientation Ω is the probability density on the sphere defined by

MκΩ(ω) :=
eκω·Ω∫

S
eκw·Ωdw

, ω ∈ S.

If we denote by 〈·〉MκΩ the average over this probability measure, for functions γ
depending only on ω · Ω =: cos θ, their average does not depend on Ω and will be
denoted, using spherical coordinates, by

〈γ(ω · Ω)〉MκΩ ≡ 〈γ(cos θ)〉Mκ :=

∫ π
0 γ(cos θ)eκ cos θ sinn−2 θdθ∫ π

0 eκ cos θ sinn−2 θdθ
.

3. The flux of the Von-Mises-Fischer distribution is defined as the function

JMκΩ = 〈ω〉MκΩ .

Decomposing ω = ω‖Ω + ω⊥Ω⊥, where ω‖ and ω⊥ are its components parallel and
orthogonal to Ω, respectively, we find that

JMκΩ = 〈ω〉MκΩ = 〈ω‖〉MκΩ Ω + 〈ω⊥〉MκΩ Ω⊥ = 〈cos θ〉MκΩ =: c(κ)Ω.

Notice that when c(κ) = 0 (that is, when κ = 0), MκΩ is the uniform distribution;
when c(κ) → 1, then we have MκΩ(ω) → δΩ(ω).

Remark. Notice that, since MκΩ depends on κ and Ω only through their product, we can
consider MJ for any J ∈ Rn. Furthermore, Jh =

∫
S

h(ω)ω dω does not depend on ω, so
there exist some κ > 0 and Ω ∈ Rn such that κΩ = Jh.

From ∇ω(MJ) = (I − ω ⊗ ω)JMJ , we get∫
S

Q(h)
g

MJh

dω = −
∫

S
∇ω

( h
MJh

)
· ∇ω

( g
MJh

)
MJh dω ⇒

⇒
∫

S
Q(h)

h
MJh

dω = −
∫

S

∣∣∣∇ω

( h
MJh

)∣∣∣2MJh dω 6 0.

From the above computations we have that, if h is an equilibrium for Q, then h
MJh

= ρ does
not depend on ω. In order words, if h is an equilibrium, then it is of the form ρMκΩ, for
ρ > 0, κ > 0, Ω ∈ S.
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By definition, JMκΩ = 〈ω〉MκΩ = c(κ)Ω, which implies that

κΩ = Jh =
∫

S
ρMκΩ(ω)ω dω = ρJMκΩ = ρc(κ)Ω.

From this we find the following compatibility condition for κ:

ρc(κ) = κ. (3.3)

Proposition 3.4 (Compatibility condition).

1. If ρ 6 n, then κ = 0 is the unique solution of (3.3). The only equilibria are the
isotropic ones, h = ρ for an arbitrary ρ > 0.

2. If ρ > n, then (3.3) has 2 roots: κ = 0 and κ(ρ) > 0. The set of equilibria for κ = 0 is
h = ρ > n; the ones associated to κ(ρ) consist of the Von-Mises-Fischer distributions
ρMκ(ρ)Ω, for ρ > n and Ω ∈ S arbitrary, and it forms a manifold of dimension n.

Proof. Let us denote σ̃(κ) = c(κ)
κ . Thanks to the results in Appendix B, we have that

σ̃
κ→0−−→ 1

n . Moreover, since c(κ) 6 1, the function σ̃ tends to 0 as κ → +∞. It is then enough
to prove that σ̃ is decreasing: we would then have a 1-1 correspondence from R∗

+ to (0, 1
n ),

and the compatibility condition for κ > 0 means exactly to solve σ = σ̃(κ).

We wish to compute σ̃′(κ) = 1
κ

(
c′(κ)− c(κ)

κ

)
. We find that

dc
dκ

=
d

dκ

∫ π
0 cos θeκ cos θ sinn−2 θdθ∫ π

0 eκ cos θ sinn−2 θdθ
=

=

∫ π
0 cos2 θeκ cos θ sinn−2 θdθ∫ π

0 eκ cos θ sinn−2 θdθ
−
(∫ π

0 cos θeκ cos θ sinn−2 θdθ∫ π
0 eκ cos θ sinn−2 θdθ

)2

=

= 1 −
∫ π

0 sin2 θeκ cos θ sinn−2 θdθ∫ π
0 eκ cos θ sinn−2 θdθ

− c2 = 1 − (n − 1)
c
κ
− c2,

(3.4)

so σ̃′(κ) = 1−nσ̃(κ)−c(κ)2

κ . Thanks to the following Lemma, this expression is negative for
κ > 0, and this ends the proof.

Lemma 3.5. For any κ > 0, we have that β := c2(κ) + nσ̃(κ)− 1 > 0.

Proof. Define [γ(cos θ)]κ =
∫ π

0 γ(cos θ)eκ cos θ sinn−2 θdθ. By definition,

β =
κ[cos θ]2κ + n[cos θ]κ[1]κ − κ[1]2κ

κ[1]2κ
,
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so it is enough to prove that the numerator is positive. We expand it in κ. Denoting by
ap = 1

(2p)!

∫ π
0 cos2p θ sinn−2 θdθ > 0, we get

[1]κ =
+∞

∑
p=0

apκ2p, [cos θ]κ =
+∞

∑
p=0

(2p + 2)ap+1κ2p+1. (3.5)

Using the integration by parts formula on ap+1, we have

ap+1 =
2p + 1
n − 1

( ap

(2p + 1)(2p + 2)
− ap+1

)
, (3.6)

from which we find the following induction relation:

(2p + 2)ap+1 =
ap

2p + n
. (3.7)

We then have, for κ > 0,

βκ[1]2κ =
+∞

∑
k=0

κ2k+1

(
∑

p+q=k−1
(2p + 2)ap+1(2q + 2)aq+1 + ∑

p+q=k
n(2p + 2)ap+1aq − apaq

)
=

=
+∞

∑
k=0

κ2k+1

(
∑

p+q=k,p>1
2pap

1
2q+n aq + ∑

p+q=k
( n

2p+n − 1)apaq

)
=

=
+∞

∑
k=0

κ2k+1

(
∑

p+q=k
2p
(

1
2q+n − 1

2p+n

))
=

=
+∞

∑
k=0

κ2k+1

(
∑

p+q=k

(
p
(

1
2q+n − 1

2p+n

)
+ q
(

1
2p+n − 1

2q+n

))
apaq

)
=

=
+∞

∑
k=0

κ2k+1

(
∑

p+q=k

2(p−q)2

(2p+n)(2q+n) apaq

)
> 0, if κ > 0.

3.3 Rates of convergence

Assume spatial homogeneity of the system1.
In an effort to simplify notation, we write ρε for ρ f ε . We consider the velocity probability
density function gε := f ε

ρε and, using ∇x f ε = 0, we rewrite (3.2) as

ε∂t(ρ
εgε) = −(ρε)2∇ω ·

(
(I − ω ⊗ ω)Jgε gε

)
+ ρε∆ωgε = Q(ρεgε).

1We will later suppose that in the space-inhomogeneous case analogous results hold.
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Since
∫

S
Q( f )dω = 0, by integrating the expression above with respect to ω, we find that

∂tρ
ε = 0.

We can then cancel out ρε to get the following partial differential equation for gε:

ε∂t(gε) = −ρε∇ω ·
(
(I − ω ⊗ ω)Jgε gε

)
+ ∆ωgε. (3.8)

We are interested in studying the convergence to equilibrium of the solutions to this
equation. Before doing so, we recall some general notions on convergence in a Banach
space.

Definition 3.6. Let X be a Banach space with norm ‖·‖ and let f : R+ → X be a given
function. We say that f converges exponentially fast to a function f∞ with global rate r if there
exists a constant C = C(‖ f0‖), such that ‖ f (t)− f∞‖ 6 Ce−rt for all t > 0.
We say that the convergence is of asymptotic rate r if the above holds for a constant C =
depending on f0 and not only on ‖ f0‖.
We say that the convergence is of asymptotic algebraic rate α if there exists a constant C = C( f0)
such that ‖ f (t)− f∞‖6 C/tα.

We have the following Theorem, which we prove in Chapter 4:

Theorem 3.7. First part. Suppose g0 is a probability measure, belonging to Hs(S). Then
there exists a unique weak solution g to (3.8), with initial condition g(0) = g0. Furthermore,
this solution is a classical one, is positive for all time t > 0, and belongs to C∞((0,+∞)× S

)
.

Second part. The long time behaviour of the solution g depends on the value of Jg0 , in fact:

1. If Jg0 = 0 then (3.8) reduces to the heat equation on the sphere, and g converges
exponentially fast to the uniform distribution, with global rate r = 2n

ε , in any Hp

form.

2. If Jg0 6= 0 then we have 3 possibilities:

(a) ρε < n: g converges exponentially fast to the uniform distribution, with global
rate

r(ρε) = (n−1)(n−ρε)
nε , (3.9)

in any Hp norm.
(b) ρε > n: there exists Ω ∈ S such that g converges exponentially fast to Mκ(ρε)Ω,

with asymptotic rate

r(ρε) =
ρεc
(
κ(ρε)

)2
+ n − ρε

ε
Λκ(ρε) > 0, 2

in any Hp norm. Moreover, for ρε → n,

r(ρε) ∼ 2
ε (n − 1)(ρε/n − 1). (3.10)

2Λκ is the best constant for the Poincaré Inequality 〈|∇g|2〉MκΩ > Λκ〈(g − 〈g〉MκΩ )
2〉MκΩ .
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(c) ρε = n: g converges to the uniform distribution in any Hp norm, with algebraic
asymptotic rate 1/2.

Remark. We have found a phase transition bifurcation. In Chapter 4 we are going to see
that the uniform distribution is stable if ρε 6 n, and unstable if ρε > n. In the latter case,
the Von-Mises-Fisher distribution is also an equilibrium, and it is stable.
Remark. If lim

ε→0
r(ρε) = +∞, then f ε converges rapidly to a given equilibrium. From the

expressions of the convergence rates in (3.9) and (3.10) we can reasonably conjecture that,
away from a region |ρε − n| ∈ O(ε), this convergence is exponentially fast.

3.4 Ordered and disordered regions

We now return to the space-inhomogeneous setting; in this main section we wish to study
the macroscopic behaviour of the model. Again, note that the results of this section are
not as rigorously proven as above: that would go beyond the scope of this work.
We begin by observing that the following mass conservation equation holds:

∂tρ
ε +∇x · J f ε = 0. (3.11)

We then define two different regions of the space, a disordered and an ordered one, which
we will study separately.

Rd =
{
(x, t) ∈ Rn × R+ : n − ρε(x, t) � ε as ε ↓ 0

}
;

Ro =
{
(x, t) ∈ Rn × R+ : ρε(x, t)− n � ε as ε ↓ 0

}
.

Inspired by the results for the space-homogeneous case, we perform the following ansatz:
we assume that

lim
ε→0

f ε(x, ω, t) = ρ(x, t), for all (x, t) ∈ Rd;

lim
ε→0

f ε(x, ω, t) = ρ(x, t)Mκ(ρ)Ω(x,t), for all (x, t) ∈ Ro,

where the convergence is as smooth as needed. In particular, we have that

ρ(x, t) := ρlim
ε→0

f ε(x, t) = lim
ε→0

ρε(x, t).

3.4.1 The disordered region

In this region we have ρ 6 n which, thanks to Proposition 3.4, means that J f ε → Jh = 0, so
that the mass conservation equation (3.11) reduces to ∂tρ = 0.
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Theorem 3.8. For ε → 0, the formal first order approximation to the solution of the rescaled
mean-field system (3.2) in the disordered region Rd is given by

f ε(x, ω, t) = ρε(x, t)− ε
nω · ∇xρε(x, t)

(n − 1)
(
n − ρε(x, t)

) ,

where the density ρε satisfies the following diffusion equation:

∂tρ
ε =

ε

n − 1

(
∇x ·

∇xρε

n − ρε

)
.

Proof. We assume that f ε is of the form ρε(x, t) + ε f ε
1 (x, ω, t), with

∫
S

f ε
1 dω = 0. We then

have

J f ε =
∫

S
f ε(x, ω, t)ωdω =

∫
S

ρε(x, ω, t)ωdω + ε
∫

S
f ε
1 (x, ω, t)ωdω = εJ f ε

1
.

We can then rewrite ε(∂t f ε + ω · ∇x f ε) = Q( f ε) as

∂tρ
ε + ω · ∇xρε + ε∂t f ε

1 + εω · ∇x f ε
1 =

= −∇ω ·
(
(I − ω ⊗ ω)J f ε

1
ρε
)
+ ∆ω f ε

1 − ε∇ω ·
(
(I − ω ⊗ ω)J f ε

1
f ε
1
)
.

Using the mass conservation equation 3.11, we find

∂tρ
ε + ε∇x · J f ε

1
= 0, (3.12)

which gives ∂tρ
ε ∈ O(ε). We notice that, for a constant vector A ∈ Rn,

∇ω ·
(
(I − ω ⊗ ω)A

)
= −(n − 1)A · ω.

We can rewrite (3.12) as ∆ω f ε
1 =

(
∇xρε − (n − 1)ρε J f ε

1

)
· ω + O(ε), which can be solved

by noticing that its right hand size is of the form A · ω, of zero mean. In fact, by using the
fact that ∇ω · (A · ω) = −(n − 1)A · ω, we have

f ε
1 = − 1

n−1

(
∇xρε − (n − 1)ρε J f ε

1

)
· ω + O(ε).

Now, since
∫

S
ω ⊗ ωdω = 1

n I, we get

J f ε
1
= − 1

n(n−1)

(
∇xρε − (n − 1)ρε J f ε

1

)
· ω + O(ε),

which implies that
J f ε

1
= − 1

(n−1)(n−ρε)

(
∇xρε + O(ε)

)
.

Inserting this into (3.12), ends the proof, since f ε
1 = − nω · ∇xρε(x, t)

(n − 1)
(
n − ρε(x, t)

) .
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3.4.2 The ordered region

Theorem 3.9. For ε → 0, the formal limit of the solution f ε(x, ω, t) of the rescaled mean-
field system (3.2) in the ordered region Ro is given by

h(x, ω, t) = ρ(x, t)Mκ(ρ(x,t))Ω(x,t)(ω),

where κ = κ(ρ) is the unique positive solution to the compatibility condition (3.3). More-
over, the local density ρ = ρh > n and the mean orientation Ω ∈ S satisfy the following
first order PDE system{

∂tρ +∇x · (ρcΩ) = 0

ρ
(
∂tΩ + c̃(Ω · ∇x)Ω

)
+ λ(I − Ω ⊗ Ω)∇xρ = 0,

(3.13)

for an appropriate coefficient c̃
(
κ(ρ)

)
and a parameter λ(ρ).

Remark. The result on the formal limit for f ε follows directly from our previous assumptions
on the behaviour in the ordered region. The evolution equation for ρ is also easy to show,
since it follows form the fact that J f = ρcΩ, by taking the limit of Equation 3.11 as ε → 0.

We then only have to find the evolution equation for Ω(x, t). The key argument is the
determination of the generalized collisional invariants.

Definition 3.10. A collisional invariant is a function ψ such that∫
S

Q( f )ψdω = 0 ∀ f = f (ω).

A generalized collisional invariant (GCI) associated to κ ∈ R and Ω ∈ S is a function ψ such
that ∫

S
LκΩ( f )ψdω = 0, ∀ f s.t. (I − Ω ⊗ Ω)J f = 0,

where

LκΩ( f ) := ∆ω f − κ∇ω ·
(
(I − ω ⊗ ω)Ω f

)
= ∇ω ·

[
MκΩ∇ω

( f
MκΩ

)]
.

Let CκΩ be the set of all such GCIs.

Remark. If ψ is a GCI associated to κ and Ω, then
∫

S
Q( f )ψdω = 0, ∀ f : J f = κΩ.

Proposition 3.11. The set CκΩ of CSI’s associated to κ ∈ R and Ω ∈ S is a vector space of
dimension n.
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Proof. We define the space

V =
{

g | (n − 2) sin
n
2 −2 θ g ∈ L2(0, π), (sin θ)

n
2 −1g ∈ H1

0(0, π)
}

,

and denote by gκ the unique solution in V of the elliptic problem L̃∗
κ g(θ) = sin θ, where

L̃∗
κ g(θ) := − sin

n
2 −2 θ e−κ cos θ d

dθ

(
sinn−2 θ eκ cos θ dg

dθ (θ)
)
+ n−2

sin2 θ
g(θ).

Defining `κ by setting gκ(θ) = `κ(cos θ) sin θ, we get

CκΩ = {C + `κ(ω · Ω)A · ω | C ∈ R, A ∈ Rn, A · Ω = 0} .

Since the vector A has n − 1 independent components, CκΩ is a vector space of dimension
n.

With this result, along with the definition of `κ, we can provide the proof of the final part
of Theorem 3.9.

Proof of Theorem 3.9. Let J f ε = κεΩε. For any vector A ∈ Rn, with A · Ωε = 0, we then
have ∫

S
Q( f ε)`κε(ω · Ωε)A · ω dω = 0.

This means that the vector Xε := 1
ε

∫
S
(Q( f ε)`κε(ω · Ωε)ω dω is parallel to Ωε, which is to

say that (I − Ωε ⊗ Ωε)Xε = 0. From this we find

Xε =
∫

S
(∂t f ε + ω · ∇x f ε)`κε(ω · Ωε)ω dω.

By taking the limit for ε → 0 we get (I − Ω ⊗ Ω)X = 0, where

X =
∫

S

(
∂t(ρMκΩ) + ω · ∇x(ρMκΩ)

)
`κ(ω · Ω)ω dω.

Thanks to Lemma 3.12, we have that the equation (I − Ω ⊗ Ω)X = 0 is equivalent to
ρ
(
∂tΩ + c̃(Ω · ∇x)Ω

)
+ λ(I − Ω ⊗ Ω)∇xρ = 0, where the coefficients c̃ and λ are given

by

c̃ = 〈cos θ〉Mκ :=

∫ π
0 cos θ`κ(cos θ)eκ cos θ sinn θ dθ∫ π

0 `κ(cos θ)eκ cos θ sinn θ dθ
,

λ = 1
κ +

ρ
κ

dκ
dρ (c̃ − c).

Differentiating the compatibility condition ρc(κ) = κ with respect to κ, we get

c dρ
dκ + ρ dc

dκ = 1.
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Recalling (Equation 3.4) that dc
dκ = 1 − (n − 1) c

κ − c2, we have

c
dρ

dκ
=

κ

ρ

dρ

dκ
= 1 − ρ

dc
dκ

= 1 − ρ(1 − (n − 1)
c
κ
− c2) = n − ρ + κc,

which we can use to rewrite λ as

λ =
1
κ
+

ρ

κ

dκ

dρ
(c̃ − c) =

n − ρ + κc̃
κ(n − ρ + κc)

.

This concludes the proof.

Lemma 3.12. For X =
∫

S

(
∂t(ρMκΩ) + ω · ∇x(ρMκΩ)

)
`κ(ω · Ω)ω dω, the expression

(I − Ω ⊗ Ω)X = 0

is equivalent to
ρ
(
∂tΩ + c̃(Ω · ∇x)Ω

)
+ λ(I − Ω ⊗ Ω)∇xρ = 0,

where the coefficients c̃ and λ are as above.

Proof. See Appendix A.

Hyperbolicity of the hydrodynamic model in the ordered region. We now wish to show
that the hydrodynamic model{

∂tρ +∇x · (ρcΩ) = 0

ρ
(
∂tΩ + c̃(Ω · ∇x)Ω

)
+ λ(I − Ω ⊗ Ω)∇xρ = 0,

(3.13)

is not hyperbolic in the ordered region. Before doing so, we briefly recall the definition of
hyperbolicity for a first order system.

Definition 3.13. Consider the first order system

∂tU +
n

∑
i=1

Ai(U)∂xi U = 0,

where x ∈ Rn, t > 0, U = (U1, . . . , Um) and
(

Ai(U)
)

i=1,...,n are m × m-dimensional
matrices.

1. The system is hyperbolic in a neighbourhood of U0 ∈ Rm if and only if the matrix

A(ξ) :=
n

∑
i=1

Ai(U0)ξi

is diagonalizable with real eigenvalues for all ξ ∈ S.
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2. The system is hyperbolic if and only if it is hyperbolic for any state U0 in the domain
of definition of the matrices Ai(U).

Theorem 3.14. Under the previous assumptions we have that System (3.13) is hyperbolic
if and only if λ > 0.

Proof. We consider a system satisfying (3.13), but that evolves only along one space direc-
tion, say ez ∈ S. We write Ω = cos θez + sin θw, where w ∈ Sn−2. Under these assumptions,
the hydrodynamic model is equivalent to the following system

∂tρ + ∂z
(
ρc(ρ) cos θ

)
= 0

ρ
(
∂t(cos θ) + c̃(ρ) cos θ∂z(cos θ)

)
+ λ sin2 θ∂zρ = 0

∂tw + c̃(ρ) cos θ∂zw = 0, with |w| = 1 and ez · w = 0,

(3.14)

which we can also write as the following first order quasilinear system of PDEs ∂tρ
∂t cos θ

∂tw

+ A(ρ, cos θ, w)

 ∂zρ
∂z cos θ

∂zw

 = 0.

By definition, we have that (3.13) is hyperbolic if and only if (3.14) is hyperbolic for all
ez ∈ S. We show that (3.14) is hyperbolic if and only if λ > 0 or| tan θ| < tan θc

|c̃ − c
n−ρ+κc |

2
√
−λc

, if λ < 0,

θ 6= 0 and c̃ 6= c
n−ρ+κc , if λ = 0.

(3.15)

∗ If λ < 0, asking the eigenvalues of A to be real and distinct is equivalent to (3.15). In
this case A is diagonalizable.

∗ If λ = 0, we have that A is diagonalizable if and only if c̃(ρ) and c
n−ρ+κc are different.

∗ If λ > 0, then (3.14) is hyperbolic for all ez ∈ S, which means that (3.13) is as well.

We now assume that (3.13) is hyperbolic at some point (ρ, Ω) for λ 6 0. Since n > 2, we
can find ez ∈ S such that ez · Ω = 0. But then we would have cos θ = 0, a contradiction
with the hyperbolicity of (3.14).

Proposition 3.15. We have the following expansions:

1. For ρ → n,
λ = −1

4
√

n+2
1√

ρ−n + O(1).

2. For ρ → ∞,
λ = − n+1

6 + O(ρ−3).
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Proof. Follows from the results in Appendix B.

Thanks to this result, we can see that, at least for ρ → n and ρ → ∞, we have λ < 0.
Moreover, through numerical computations (see figure below and Appendix C), we know
that λ < 0 also for n = 2, 3, 4.
It is therefore reasonable to assume that λ < 0 in our model, which implies that system
(3.13) is not hyperbolic in the ordered region.

Figure 3.1: Coefficient
λ for dimensions n =
2, 3, 4, as a function of
the density ρ.
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4

The convergence theorem

The aim of this chapter is to prove the main result on the rate of convergence of Chapter 3:1

Theorem 4.1. First part. Suppose f0 is a probability measure, belonging to Hs(S). Then
there exists a unique weak solution f to

ε∂t( f ) = −ρ∇ω ·
(
(I − ω ⊗ ω)J f f

)
+ ∆ω f , (4.1)

with initial condition f (0) = f0. Furthermore, this solution is a classical one, is positive
for all time t > 0, and belongs to C∞((0,+∞)× S

)
.

Second part. The long time behaviour of the solution f depends on the value of J f0 , in fact:

1. If J f0 = 0 then (4.1) reduces to the heat equation on the sphere, and f converges
exponentially fast to the uniform distribution, with global rate r = 2n

ε , in any Hs

norm.

2. If J f0 6= 0 then we have 3 possibilities:

(a) Subcritical case (ρ < n): f converges exponentially fast to the uniform distribu-
tion, with global rate

r(ρ) = (n−1)(n−ρ)
nε , (4.2)

in any Hp norm.
(b) Supercritical case (ρ > n): there exists Ω ∈ S such that f converges exponentially

fast to Mκ(ρ)Ω, with asymptotic rate

r(ρ) =
ρc(κ(ρ))2 + n − ρ

ε
Λκ(ρ) > 0, 2

1In an effort to simplify notations, in this chapter we will stop writing the superscript ε; we will denote by
f the velocity probability distribution, i.e. what was denoted in the previous chapters by f /ρ.

2Λκ is the best constant for the Poincaré Inequality 〈|∇ f |2〉MκΩ > Λκ〈( f − 〈 f 〉MκΩ )
2〉MκΩ .
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In any Hp norm. More precisely, for all r < r∞, there exists t0 > 0 such that, for
all t > 0,

‖ f (t)− MκΩ‖ 6 Ce−rt.

Moreover, when ρ is close to n,

r(ρ) ∼ 2
ε (n − 1)(ρ/n − 1). (4.3)

(c) Critical case (ρ = n): f converges to the uniform distribution in any Hp norm,
with algebraic asymptotic rate 1/2.

Work plan: We will first provide the notions that are needed in order to allow for an easier
study of (4.1). In particular, we are going to see that equilibria can be characterized as the
minimizers for a function F which we call free energy, as well as those solutions for which
there is no dissipation D.
One of the main results is the LaSalle invariance principle, which defines the set of equilibria
of (4.1) as E∞ := { f ∈ C∞(S) : D( f ) = 0 and F ( f ) = F∞}.

After this, we are going to study separately the three cases (subcritical, supercritical and
critical) which we have previously defined.
We will see that in the first case, that is for ρ < n, there is global decay to the uniform
distribution.
In the second case, we will use the LaSalle invariance principle – as well as Sobolev em-
beddings and the Poincaré inequality – to define the set of equilibria and determine the
asymptotic rate of convergence.
Finally, for the critical case, we will use similar arguments to estimate the algebraic asymp-
totic rate of convergence to the uniform distribution.

4.1 Preliminary notions

Let Ḣs(S) be the subspace of mean zero functions of the Sobolev space Hs(S). This is a
Hilbert space, with inner product given by 〈`, k〉Ḣs = 〈(−∇)s`, k〉, where ∇ is the Laplace-
Beltrami operator on the sphere.
We also define the conformal Laplacian ∆̃n−1 on the sphere, as

∆̃n−1 =


∏

06j6n−3
2

(
− ∆ + j(n − j − 2)

)
if n is odd,

(
− ∆ + ( n

2 − 1)2) 1
2 ∏

06j6n
2 −2

(
− ∆ + j(n − j + 2)

)
if n is even.
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We have the following inequalities, which will be useful later on.

1
2

d
dt
‖g‖2

Ḣs +
1
ε
‖g‖2

Ḣs+1 6 C0|Jg|‖g‖2
Ḣs +

ρ
ε (n − 1)s|Jg|2 6

6 C0
(N+1)(N+n−1)‖g‖2

Ḣs+1 +
ρ
ε (n − 1)s|Jg|2 + C0‖ f N − 1‖2

Ḣs .
(4.4)

We also recall the following

Theorem 4.2 (Poincaré inequality). Let 1 6 p < +∞ and U a subset, bounded in at least
one direction, of a Banach space B. Then there exists a constant C > 0, depending only on
U and p, such that

‖u‖Lq(U ) 6 C‖∇u‖Lp(U ), ∀q ∈ [1, pn
n−p ],

for all u ∈ W1,p
0 (U ) = C∞

c (U )W1,p(U )
.

On the (n − 1)-dimensional sphere S, on which we consider the Laplace-Beltrami operator
∆, the Poincaré (Wirtinger) inequality for p = 2,

‖h‖2
2 6 C‖∇h‖2

2,

holds with optimal constant C = 1
n−1 .

4.1.1 Weak and classical solutions

First of all, we rescale time by setting τ = ρ
ε t, so that the following equation

ε∂t f = −ρ∇ω ·
(
(I − ω ⊗ ω)J f f

)
+ ∆ω f , (4.5)

can be rewritten, denoting σ = ρ−1, as

∂τ f = −∇ω ·
(
(I − ω ⊗ ω)J f f

)
+ σ∆ω f =: Q( f ). (4.6)

This equation is known as the Doi (or Doi-Onsager) equation, and was first introduced by
Doi in [6].
We define g by subtracting 1 to the (velocity) probability density function f , thus obtaining
a zero-mean function. With this new definition, if f is a weak solution of (4.6), i.e. for all
φ ∈ H−s+1(S), the following holds

〈∂τ f , φ〉 = −σ〈∇ω f ,∇ωφ〉+ 〈 f , J f · ∇ωφ〉, (4.7)

then g ∈ Ḣs−1(S) solves the following equation, for all φ ∈ Ḣ−s+1(S):

〈∂τg, φ〉 = −σ〈∇ωg,∇ωφ〉+ (n − 1)Jg · Jφ + 〈g, Jg · ∇ωφ〉. (4.8)

The existence of a solution to this problem is given by the following
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Theorem 4.3. Given an initial probability measure f0 ∈ Hs(S), there exists a unique weak
solution f of (4.6) such that f (0) = f0. This solution is global in time, is in C∞((0,+∞)×S

)
,

with f (t, ω) > 0 for all t > 0.
Moreover, for all m ∈ N, we have the following estimate, for all t > 0,

‖ f (t)‖2
Hs+m 6 C

(
1 + 1

tm

)
‖ f0‖2

Hs , (4.9)

for a constant C depending only on σ, m and s.

Proof. Step 1: existence. We want to show that, if ‖g0‖Ḣs 6 K, then there exists a weak solution
on [0, T], for some T > 0. Moreover, this solution is uniformly bounded in L2((0, T), Ḣs+1(S)

)
∩

H1((0, T), Ḣs−1(S)
)
.

Let PN be the finite dimensional vector space spanned by the first N non-constant eigen-
vectors of the Laplace-Beltrami operator. We have that PN ⊆ Ḣp(S) for all p, and it contains
all functions of the form ω 7→ V · ω.
Let gN ∈ C1(I, PN) be the unique solution to the following Cauchy problem{

d
dt gN = ΠN

(
σ∆ωgN + (n − 1)(1 + gN)ω · JgN − JgN · ∇ωgN)

gN(0) = ΠN(g0),

where ΠN is the orthogonal projection on PN , and I ⊆ R+ is the maximal interval of
existence. Equivalently, gN solves

d
dt
〈gN , φ〉 = −σ〈∇ωgN ,∇ωφ〉+ (n − 1)JgN · Jφ + 〈gN , JgN · ∇ωφ〉. (4.10)

We wish to show that the limit of gN as N → ∞ is the solution we are looking for.
Taking φ = (−∆)sgNΠN in the above equation, we get3

1
2

d
dt
‖gN‖2

Ḣs + σ‖gN‖2
Ḣs+1 6 C0|JgN |‖gN‖2

Ḣs + (n − 1)s|JgN |2 6

6 C1‖gN‖2
Ḣs

(
1 + C2‖gN‖Ḣs

)
.

(4.11)

Set T := C−1
1 log

(
1 + (1 + 2C2K)

)
. Solving the above inequality, we find that

‖gN‖Ḣs 6
‖ΠN(g0)‖Ḣs

e−C1t − C2‖ΠN(g0)‖Ḣs(1 − e−C1t)
,

for 0 6 t < C−1
1 log

(
1 + (C2‖ΠN(g0)‖Ḣs)−1). From this we get ‖gN(t)‖Ḣs 6 2‖g0‖Ḣs for

all t ∈ [0, T], so that (4.10) has a solution on [0, T] for any N ∈ N.
3If φ ∈ Ḣ−s+1 and g ∈ Ḣs, then

∣∣∫ g∇φ
∣∣ 6 C(s, n)‖g‖Ḣs‖φ‖Ḣ−s+1 .
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Suppose |JgN | 6 M0 on [0, T]. From (4.11) we get

1
2

d
dt
‖gN‖2

Ḣs + σ‖gN‖2
Ḣs+1 6 (1 + M0)C3‖g‖2

Ḣs ,

which leads to
‖gN‖Ḣs + σ

∫ T

0
‖gN‖2

Ḣs+1 6 ‖g0‖2
Ḣs e(1+M−0)C3T.

We can then control the derivative of g, since∫ T

0
‖∂tgN‖2

Ḣs−1 6 (C4 + M0)‖g0‖Ḣs e(1+M0)C3T.

Taking M2
1 = K2e(1+M0)C3T × max{σ−1; C4 + M0}, we get that gN is bounded by M1 in

L2((0, T), Ḣs+1(S)
)
∩ H1((0, T), Ḣs−1(S)

)
.

We now wish to provide estimates on the derivative of JgN . Taking φ = ω · V in (4.10), we
find ∣∣∣∣ d

dt
JgN

∣∣∣∣ = ∣∣∣∣n − 1
n

(1 − σn)JgN −
∫

S
(I − ω ⊗ ω)JgN gN dω

∣∣∣∣ 6
6 (C5 + M0C6)‖g0‖Ḣs e

1
2 (1+M0)C3T.

Since any component of (I−ω ⊗ω) is in Ḣ−s, we can control the term
∫

S
(I−ω ⊗ω)gN dω

by any Ḣs norm of gN , uniformly in N and in t.

We can now use weak compactness and the Ascoli-Arzela Theorem, to find an increasing
sequence Nk, a function g ∈ L2((0, T), Ḣs+1(S)

)
∩ H1((0, T), Ḣs−1(S)

)
, and a continuous

function J : [0, T] → Rn such that

∗ JgNk
k→∞−−→ J uniformly on [0, T];

∗ gNk
k→∞−−→ g weakly in L2((0, T), Ḣs+1(S)

)
and in H1((0, T), Ḣs−1(S)

)
.

Moreover, g is bounded by M1 in L2((0, T), Ḣs+1(S)
)
∩ H1((0, T), Ḣs−1(S)

)
. It is easy to

show that J = Jg.
For any M we have that

〈∂tg, φ〉 = −σ〈∇ωg,∇ωφ〉+ (n − 1)Jg · Jφ + 〈g, Jg · ∇ωφ〉,

for all φ ∈ PM, for a.e. t ∈ [0, T]. By density, we conclude that g is a weak solution to our
problem.
Let φ ∈ Ḣ−s+1(S). We have that

〈gN(t)− ΠN(g0), φ〉 =
∫ t

0
〈∂tgN , φ〉

is controlled by M − 1
√

t‖φ‖Ḣ−s+1 , uniformly in N. Passing to the limit we find that
g(t) t→0−−→ g0 in Ḣ−s+1(S). But g ∈ C

(
[0, T], Hs(S)

)
, so we conclude that g(0) = g0.
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Step 2: continuity with respect to initial conditions. Suppose g and g̃ are two solutions, with
‖g(0)‖Ḣs 6 K and ‖g̃(0)‖Ḣs 6 K. We show that there exists a constant M3 such that g − g̃ is
bounded in L2((0, T), Ḣs+1(S)

)
and H1((0, T), Ḣs−1(S)

)
by M3‖g(0)− g̃(0)‖Ḣs . From this

uniqueness follows.

As before, we have that

‖gN‖Ḣs 6
‖ΠN(g0)‖Ḣs

e−C1t − C2‖ΠN(g0)‖Ḣs(1 − e−C1t)
,

for 0 6 t 6 T := C−1
1 log

(
1 + (1 + 2C2K)

)
, and these solutions are uniformly bounded by

M1 in L2((0, T), Ḣs+1(S)
)

and H1((0, T), Ḣs−1(S)
)
.

Taking u := g − g̃, we get

〈∂tu, φ〉 = −σ〈∇ωu,∇ωφ〉+ (n − 1)Ju · Jφ + 〈u, Jg · ∇ωφ〉+ 〈g̃, Ju · ∇ωφ〉.

Taking φ = (−∆)su, we find that4

1
2

d
dt
‖u‖2

Ḣs + σ‖u‖2
Ḣs+1 6 (1 + M1)C3‖u‖2

Ḣs + C7‖u‖Ḣs‖g̃‖Ḣs+1‖(−∆)su‖Ḣ−s 6

6 M2(1 + ‖g̃‖Ḣs+1)‖u‖2
Ḣs .

Using Gronwall’s Lemma, we get

‖u‖2
Ḣs + σ

∫ T

0
‖u‖2

Ḣs+1 6 ‖u0‖2
Ḣs eM2

∫ T
0 (1+‖g̃‖Ḣs+1 ) 6 ‖uo‖2

Ḣs eM2(T+M2
1),

so u is bounded in L2((0, T), Ḣs+1(S)
)
∩ H1((0, T), Ḣs−1(S)

)
by M3‖u(0)‖Ḣs .

Step 3: positivity. Let g0 ∈ Ḣs(S), for an s sufficiently large so that the solution g is in C0.
Recalling that f = 1 + g, we have that, if f0 is non-negative, then f is positive for any positive
time.

From (4.8), we find that, as an element of L2((0, T), Ḣs−1(S)
)
, the function ∂t f is equal

almost everywhere to

∂t f = σ∆ω f −∇ω ·
(
(I − ω ⊗ ω)J f f

)
,

which is an element of C0([0, T]× S
)
. So, up to redefining f on a set of measure zero, we

have that f satisfies the PDE, and it is in C1([0, T], C(S)
)
∩ C0([0, T], C2(S)

)
.

By maximum principle arguments, we have that f > 0 on (0, T].

Step 4: global existence and uniqueness These are easily shown by constructing a solution on
a sequence of intervals.

4For g ∈ Ḣs+1,
∣∣∫

S
g∇(−∆)sg

∣∣ 6 C(s, n)‖g‖2
Ḣs
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Step 5: regularity and boundedness estimates. By reasoning over intervals, it is easy to show
that the solution f is positive for all t > 0, and belongs to C

(
[0,+∞), Hs(S

)
. Moreover, it is also

in Ck and, through Sobolev embeddings, it is in C∞((0,+∞)× S
)
. We want to show that

‖ f (t)‖2
Hs+m 6 C(σ, m, s)

(
1 + 1

tm ‖ f0‖2
Hs

)
, (4.12)

for all s ∈ R and m > 0.

Let f N be the orthogonal projection of f on PN , and define gN = f − f N . Noting that the
eigenvalues of −∆ are given by `(`+ n − 2) for ` ∈ N, we can use

1
2

d
dt
‖gN‖2

Ḣs + σ‖gN‖2
Ḣs+1 6 C0|JgN |‖gN‖2

Ḣs + (n − 1)s|JgN |2, (4.11)

together with the Poincaré inequality ‖gN‖2
Ḣs 6

1
(N+1)(N+n−1)‖gN‖2

Ḣs+1 , to find that

1
2

d
dt
‖g‖2

Ḣs + σ‖g‖2
Ḣs+1 6

C0
(N+1)(N+n−1) |Jg|‖g‖2

Ḣs + (n − 1)s|Jg|2 + C0‖ f N − 1‖2
Ḣs .

Moreover, since f is a probability measure,

‖ f N − 1‖2
Ḣs =

∫
S
(−∆)s f N f dω 6 ‖(−∆)s f N‖L∞ 6 KN‖ f N − 1‖Ḣs ,

which gives a uniform bound on f N . By taking N large enough, we get

1
2

d
dt
‖g‖2

Ḣs +
σ

2
‖g‖Ḣs+1 6 C8.

Multiplying by t the above expression at order s + 1 reads

1
2

d
dt

t‖g‖2
Ḣs+1 +

σ

2
t‖g‖Ḣs+2 6 C9t +

1
2
‖g‖2

Ḣs+1 .

Summing the two expressions, we get

1
2

d
dt
(
‖g‖2

Ḣs +
σ

2
t‖g‖Ḣs+1

)
+

σ

4
(
‖g‖2

Ḣs+1 +
σ

2
t‖g‖Ḣs+2

)
6 C8 + C9

σ

2
t.

Solving this inequality, we find

‖g‖2
Ḣs +

σ

2
t‖g‖2

Ḣs+1 6 ‖g0‖2
Ḣs e−(n−1) σ

4 t + C10(1 + t).

So, for ‖ f ‖2
Ḣs = 1 + ‖g‖2

Ḣs and m = 1, we get

‖ f ‖2
Ḣs+1 6 C

(
1 +

1
t

)
‖ f0‖2

Ḣs .

It is then easy to show that the claim follows.
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Stability of the constant state. As anticipated in Chapter 3, we now study the stability of
the uniform distribution. As before, g = f − 1 is a zero-mean function, and we consider
the linearized equations for g and Jg:{

∂tg = σ∇ωg + (n − 1)ω · Jg + O(g2),
d
dt Jg = (n − 1)

( 1
n − σ

)
Jg + O(g2).

Considering only the linear part of the system, we find that the equation for g reduces
to the heat equation with known source term of the form exp

(
t(n − 1)

( 1
n − σ

))
, so that,

around the uniform distribution, the linearized equation is stable if σ > 1
n , and unstable if

σ < 1
n .

4.1.2 Free energy and steady states

Thanks to Theorem 4.3, we know that any solution f of

∂τ f = −∇ω ·
(
(I − ω ⊗ ω)J f f

)
+ σ∆ω f =: Q( f ) (4.6)

is in C∞((0, ∞)×S
)

and is positive for any t > 0. This means that we can take the logarithm
of such a function, and rewrite (4.6) as

∂τ f = −∇ω ·
(
σ∇ω f −∇ω(ω · J f ) f

)
= ∇ω ·

(
f∇ω(σ log f − ω · J f )

)
.

For the same reasons, we can apply the integration by parts formula:∫
S

∂τ f
(
σ log f − ω · J f

)
dω = −

∫
S

f |∇ω

(
σ log f − ω · J f

)
|2dω.

Defining the free energy F ( f ) and the dissipation term D( f ) as

F ( f ) := σ
∫

S
f log f − 1

2 |J f |2, (4.13)

D( f ) :=
∫

S
f |∇ω

(
σ log f − ω · J f

)
J f |2, (4.14)

we find the following conservation relation:

d
dτ

F +D = 0. (4.15)

We now state and prove two results which will help us better understand the steady states
of the Doi equation 4.6. The first provides equivalent characterizations of the equilibria;
the second, known as the LaSalle invariance principle, tells us that the solution converges
to the set of such equilibria.
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Proposition 4.4 (Steady states). The steady states of (4.6), i.e. the time-independent solu-
tions, are the probability measures f on S which satisfy one of the following equivalent
conditions:

1. Equilibrium: f ∈ C2(S) and Q( f ) = 0;

2. No dissipation: f ∈ C1(S) and D( f ) = 0;

3. The probability density f ∈ C0(S) is positive and a critical point of F under the
mean 1 constraint;

4. There exists C ∈ R such that σ log f − J f · ω = C.

Proof. Firstly we show that if f is a steady state then 1-4 are all true; secondly we show
that, if any of 1-4 hold, f is a steady state.

First part: Let f be a steady state. We show that 1-4 hold.

By definition, f is a probability density function solving (4.6), which is independent of
time. This means that it is positive, C∞, and such that Q( f ) = 0, so 1 holds.

From the conservation relation (4.15), we have

D( f ) = − d
dτ

F ( f ) = 0,

since f does not depend on time, so 2 holds. To show that also 4 holds, notice that, from
the definition of D( f ), the previous equation reads as

∇ω(σ log f − ω · J f ) = 0,

so there exists a constant C ∈ R such that σ log f − ω · J f = C.

Finally, we show that 3 holds: taking h such that
∫

S
h = 0, we have that f + h is still a

probability density function, and

F ( f + h) = σ
∫

S
( f log f + h log f + h)dω − 1

2 |J f |2+

− J f ·
∫

S
ωh dω + O(‖h‖2

∞) =

= F ( f ) +
∫

S
h(σ log g − J f · ω)dω + O(‖h‖2

∞) =

= F ( f ) + O(‖h‖2
∞),

(4.16)

which shows that f is a critical point of F .
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Second part: We show that, if any of 1-4 holds, then f is a steady state.
Suppose that 1 holds: let f ∈ C2(S) such that Q( f ) = 0. Then f is obviously a steady state.
Suppose σ log f − J f · ω = C. Then f ∈ C2(S) and Q( f ) = 0, which means that if 4 holds,
then f is a steady state.
We now show that 2 and 3 can be reduced to this fourth condition.
Suppose that 3 holds: performing the computations in (4.16) for a positive function f ∈
C0(S) gives that, if f is a critical point of F , then

∫
S

h(σ log f − J f · ω)dω = 0 for any
zero-mean function h. This means that σ log f − J f · ω is constant.

Suppose that 2 holds: let f ∈ C1(S) such that D( f ) = 0. We have that, in a neighbourhood
of any point ω0 such that f (ω0) > 0, ∇ω(σ log f − J f · ω) is equal to zero.
We define the function φ(ω) = σ log f − J f ·ω, which is locally constant at any point where
it is finite. For any C ∈ R, φ−1({C}) is open in S. Let (wk)k be a sequence converging to
ω∞, such that φ(ωk) = C. We have

f (ωk) = e
1
σ (C+J f ·ωk) k→∞−−→ f (ω∞) = e

1
σ (C+J f ·ω∞).

So φ(ω∞) = C, which means that φ−1({C}) is closed. Moreover, since f is not identically
zero, there exists at least one C ∈ R such that φ−1({C}) 6= ∅. By connectedness of the
sphere, φ−1({C}) = S, or equivalently σ log f − J f · ω = C.

Remark. From point 4 we get that, if f is an equilibrium, then σ log f − J f · ω is constant,
and f = Ceσ−1 J f ·ω, from which we get that f is of the form

f = MκΩ, κΩ = σ−1 J f .

Moreover, since J f = c(κ)Ω, we get the compatibility condition

c(κ) = σκ. (4.17)

Remark. Compared to the previous chapter, we have used a different – but equivalent –
strategy to arrive to the form of the equilibria; in particular, we have used the notion of
free energy and dissipation. We have done so because these quantities are going to be of key
importance in the proof of convergence to the equilibria.

Proposition 4.5 (Compatibility condition).

1. If ρ 6 n, there is only one solution to (4.17): κ = 0. The only equilibrium is the
constant function f = 1.
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2. If ρ > n, then (4.17) has 2 roots: κ = 0 and κ(ρ) > 0. The only equilibria for κ = 0
is f = 1; the ones associated to κ(ρ) consist of the Von-Mises-Fischer distributions
Mκ(ρ)Ω, for an arbitrary Ω ∈ S, and they form a manifold of dimension n.

Proof. We provide a different proof from the one in Chapter 3, which does not require the
direct computation of the function β = c(κ) + nσ(κ)1. We compute the second derivative
of σ̃ = c(κ)

κ :

σ̃”(κ) = (n − 1)
β

κ2 − 2σ̃(σ̃ − β).

We then notice that:

∗ For κ > 0, if σ̃′ = − β
κ = 0, then σ̃” < 0.

∗ For κ = 0, we expand
σ̃(κ) = 1

n − 1
n2(n−2)κ2 + O(κ4).

We have that any critical point of σ̃ is a maximum. Therefore, since κ = 0 is a local
maximum, the function is decreasing.

Remark. We have provided a different proof because we will be interested in the behaviour
of the convergence rate as σ approaches 1

n (see Proposition 4.9). In fact, in this case we
have

σ − 1
n ∼ − 1

n2(n+2)κ2(σ),

and
c(κ(σ)) ∼ 1

n κ(σ) ∼
√
(n + 2)( 1

n − σ). (4.18)

Figure 4.1: Graph of
c(σ) for dimensions n =
2, 3, 4.
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Theorem 4.6 (LaSalle’s invariance principle). Let f0 be a probability measure on the sphere
S. We denote by F∞ the limit of F

(
f (τ)

)
as τ tends to +∞, where f is the solution of (4.6)

with initial condition f0. Then the set

E∞ := { f ∈ C∞(S) : D( f ) = 0 and F ( f ) = F∞}

is not empty. Furthermore, f (τ) converges in any Hs norm to this set of equilibria, in the
following sense:

lim
τ→∞

inf
g∈E∞

‖ f (τ)− g‖Hs = 0.

Proof. We notice that F ( f (τ)) is decreasing in time, and bounded from below by −1/2,
which means that F∞ is well defined.
Let (τn)n be an unbounded increasing sequence in R+, and suppose that f (τn) converges to
f∞ in Hs(S), for some s ∈ R. Using Theorem 4.3, we have that f (τn) is uniformly bounded
in Hs+2p(S), for any p. Moreover,

‖ f (τn)− f (τm)‖2
Hs+p 6 ‖ f (τn)− f (τm)‖Hs‖ f (τn)− f (τm)‖Hs+2p ,

so f (τn) converges in Hs+p(S), which implies that f∞ belongs to any Hs(S).

We wish to show that D( f∞) = 0. Supposing this is not the case,

D( f ) = σ2
∫

S

|∇ω f |2
f

dω + J f ·
∫

S
(I − ω ⊗ ω) f J f dω − 2σJ f ·

∫
S
∇ω f dω =

= σ2
∫

S

|∇ω f |2
f

dω +
(
1 − 2(n − 1)σ

)
|J f |2 −

∫
S
(ω · J f )

2 f dω.
(4.19)

We now take a big enough s, such that Hs(S) ⊆ L∞(S) ∩ H1(S). If f∞ > 0, then the
dissipation term, thought as a function

D : {` ∈ Hs(S) : ` > 0} → [0, ∞),

is continuous in f∞. In particular, since D( f∞) > 0, there exist δ, M > 0 such that, if
‖ f − f∞‖Hs 6 δ, then D( f ) > M.

We show the same result for f∞ > 0. We define the function

Dξ( f ) := σ2
∫

S

|∇n−1ω f |2
f + ξ

dω +
(
1 − 2(n − 1)σ

)
|J f |2 −

∫
S
(ω · J f )

2 f dω.

By monotone convergence, Dξ( f∞)
ξ→∞−−−→ D( f∞), so there exists ξ > 0 such that Dξ( f∞) >

0. By continuity of Dξ at f∞ then, there exist δ, M > 0 such that, if ‖ f − f∞‖Hs 6 δ, then
Dξ( f ) > M. Since D > Dξ , we conclude.
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We now use the fact that ∂t f is uniformly bounded in Hs: there exists τ̄ > 0 such that, if
|τ − τ′| 6 τ̄, then ‖ f (τ)− f (τ′)‖Hs 6 δ/2. By taking N sufficiently large, we can assume
that ‖ f (τn)− f (τ∞)‖Hs 6 δ/2 for all n > N. For such n we have D( f ) > M on [τn, τn + τ̄];
up to extracting, we can assume that τn+1 > τn + τ̄. For all p > 0 we get

F ( f (τN))−F ( f (τN+p)) =
∫ τN+p

τN

D( f ) > pτ̄M.

Since the left term is bounded by F ( f (τN))− F∞, taking p sufficiently large leads to a
contradiction.
We now suppose that, for a given s, the distance between f (τ) and E∞ does not tend to 0
as τ → ∞. More precisely, we suppose that there exist ξ > 0 and a sequence (τn)n such
that, for all g ∈ E∞,

‖ f (τn)− g‖Hs > ξ, ∀n > 0.

Since f (τn) is bounded in Hs+1(S), using a compact Sobolev embedding, we can assume
(up to extracting) that f (τn) converges to f∞ in Hs(S).
We recall that f∞ ∈ C∞(S) is such that D( f∞) = 0. Moreover, since F ( f ) is decreasing in
time, we have F ( f∞) = F∞. So f∞ belongs to E∞ and, by hypothesis, ‖ f (τn)− f∞‖Hs > ξ
for all n > 0, a contradiction.
We have that the distance between f (τ) and E∞ tends to 0, so this set is obviously not
empty.

Proposition 4.7 (Minimum of the free energy).

1. If ρ 6 n, the minimum of the free energy is 0, only reached by the uniform distribution.
Any solution converges to the uniform distribution in any Hs form.

2. If ρ > n, the minimum of the free energy is negative, only reached by any non-
isotropic equilibrium of the form Mκ(ρ)Ω.

Proof. By Theorem 4.6, we have that

inf
f∈C∞(S), f>0

F ( f ) = inf
f∈C∞(S), f>0,D( f )=0

F ( f ).

Since the set of equilibria is compact (consisting of single point or of one point and a
manifold homeomorphic to S), this infimum is a minimum.
If f0 is not an equilibrium, then D( f0) > 0, which means that F ( f (τ)) is decreasing in the
neighbourhood of τ = 0, since d

dτF +D = 0. So the minimum cannot be reached in f0.

1. If ρ 6 n, we conclude, since the only equilibrium is the constant function 1 and by
LaSalle’s principle we know that the solution is converging in any Hs form.
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2. If ρ > n, we have that
F (1 + ξω · Ω) ∼ 1

n

(
σ − 1

n

)
ξ2

for a fixed unit vector Ω ∈ S, so there exists f0 such that F ( f0) < 0. Then the uniform
distribution cannot be a global minimizer.
Since F (Mκ(ρ)Ω) is independent of Ω, we get that this value is the minimum and
Mκ(ρ)Ω is the only global minimizer.

4.1.3 A new entropy

We define two different norms:

1. The norm ‖·‖
H̃− n−1

2
by setting, for g ∈ Ḣ− n−1

2 (S)

‖g‖2
H̃− n−1

2
=
∫

S
g∆̃−1

n−1g;

This norm is equivalent to ‖·‖
Ḣ− n−1

2

2. The norm ‖·‖
H̃− n−3

2
by setting, for g ∈ Ḣ− n−3

2 (S),

‖g‖2
H̃− n−3

2
=
∫

S
∆g∆̃−1

n−1g.

This norm is equivalent to ‖·‖
Ḣ− n−3

2

By taking φ = ∇̃−1
n−1g in (4.8), we obtain the following conservation equation5:

1
2

d
dτ

‖g‖2
H̃− n−1

2
= −σ‖g‖2

H̃− n−3
2

+
1

(n − 2)!
|Jg|2, (4.20)

which we can rewrite as
d
dt
H( f ) + D̃( f ) = 0, (4.21)

where f is a probability density function, H( f ) = ‖ f − 1‖2
H̃− n−1

2
, and D̃( f ) = 2σ‖ f −

1‖2
H̃− n−3

2
− 2

(n−2)! |J f |2.

Remark. For σ > 1
n , we have D̃( f ) > 0, which means that the new entropy H( f ) is

decreasing in time.
5We use the fact that, if g ∈ Ḣ

n−3
2 , then

∫
S

g∇∆̃−1
n−1g = 0.
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4.2 The subcritical case

In this subsection we derive a convex entropy, which shows global decay to the uniform
distribution, in the subcritical case ρ < n.

By using the Poincaré inequality on (4.20), we find

1
2

d
dτ

‖g‖2
H̃− n−1

2
6 (n − 1)( 1

n − σ)‖g‖
H̃− n−1

2
, (4.22)

which means that, if ρ < n, there is an exponential decay of rate (n−1)(n−ρ)
nε , for the norm

‖·‖
H̃− n−1

2
:

‖g‖
H̃− n−1

2
6 ‖g0‖H̃− n−1

2
e
(n−1)(n−ρ)

nρ τ
= ‖g0‖H̃− n−1

2
e
(n−1)(n−ρ)

nε t.

We wish to find a similar result for ‖·‖Hs . If f0 ∈ Hs(S) with s > − n−1
2 , we can use

1
2

d
dt
‖g‖2

Ḣs +
1
ε
‖g‖2

Ḣs+1 6 C0|Jg|‖g‖2
Ḣs +

ρ
ε (n − 1)s|Jg|2 6

6 C0
(N+1)(N+n−1)‖g‖2

Ḣs+1 +
ρ
ε (n − 1)s|Jg|2 + C0‖ f N − 1‖2

Ḣs ,
(4.4)

the Poincaré inequality, and (since f is a probability measure)

(n − 1)s|Jg|2 + ‖ f N − 1‖2
Ḣs 6 KN‖ f N − 1‖2

H̃− n−1
2

6 KN‖g0‖2
H̃− n−1

2
e−2(n−1)

(
σ− 1

n

)
τ,

to get that, for any ξ < 1
n , there exists C = C(s) such that, if N is sufficiently large,

1
2

d
dτ

‖g‖2
Ḣs + (n − 1)

(
σ − ξ

)
‖g‖2

Ḣs 6 C‖g0‖2
H̃− n−1

2
e−2(n−1)

(
σ− 1

n

)
τ.

From this inequality we have

‖g‖2
Ḣs 6 ‖g0‖2

Ḣs e
−2(n−1)

(
σ−ξ
)

τ + C
(n−1)( 1

n−ξ)
‖g0‖H̃− n−1

2
e−2(n−1)

(
σ− 1

n

)
τ.

Taking ξ = 1
2n , since s > − n−1

2 , we finally get

‖g‖2
Ḣs 6 C1‖g0‖2

Ḣs e
−2(n−1)

(
σ− 1

n

)
τ = C1‖g0‖2

Ḣs e
−2

(n−1)(n−ρ)
nε t.

In conclusion, there exists a constant C = C(s) such that, if f0 ∈ Hs(S), we have

‖ f (t)− 1‖2
Hs 6 C‖ f0 − 1‖Hs e−

(n−1)(n−ρ)
nε t.
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4.3 The supercritical case

We now fix ρ > n and study the behaviour of solutions to

∂τ f = −∇ω ·
(
(I − ω ⊗ ω)J f f

)
+ σ∆ω f =: Q( f ) (4.6)

as t → ∞.
In this section we want to show exponential rate of convergence of the solution to the
set of equilibria, in any Hs norm. This is immediate if J f0 = 0: as we will see in the next
Proposition, there is convergence to the uniform distribution. It is more complicated when
J f0 6= 0: in this case, the equilibria are given by a Von-Mises-Fisher distribution; in order to
determine the rate of convergence, we will first show that there is exponential convergence
in L2 and then, by using interpolation, we will show convergence in any Hs norm.

From the LaSalle principle, we have the following 6

Proposition 4.8. The limit set of equilibria

E∞ = { f ∈ C∞(S) : D( f ) = 0 and F ( f ) = F∞}

depends only on whether J f0 is zero or not:

∗ If J f0 = 0, then E∞ is reduced to the uniform distribution; equation (4.6) becomes the
heat equation; there is exponential decay to the uniform distribution, with rate 2n/ε,
in any Hs(S).

∗ If J f0 6= 0, then J f (t) 6= 0 for all t > 0; the limit set E∞ = {MκΩ, Ω ∈ S} consists of all
the non-isotropic equilibria. Furthermore, for any s ∈ R, we have

lim
t→∞

‖ f (t)− MκΩ(t)‖Hs = 0,

where Ω(t) =
J f (t)
|J f (t)|

is the direction of J f (t).

Proof. We start by writing a differential equation for J f . In order to do so, we multiply (4.6)

6When there is no confusion, we write κ = κ(ρ) and c = c(ρ).
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by ω and integrate it on the (n − 1)-dimensional sphere S. We get

d
dτ

J f =
∫

S
ω∂t f dω =

= −
∫

S
ω∇ω ·

(
(I − ω ⊗ ω)J f f

)
dω + σ

∫
S

ω∆ω f dω =

= −J f

∫
S

ω∇ω · ((I − ω ⊗ ω) f ) dω − σ
∫

S
∇ωω · ∇ω f dω =

= −J f

∫
S

(
∇ω ·

(
(I − ω ⊗ ω)ω f

)
−
(
(I − ω ⊗ ω) f

))
dω+

− σ
∫

S
∇ω f dω =

= J f

∫
S
(I − ω ⊗ ω) f dω − σ(n − 1)

∫
S

ω f dω =

= −σ(n − 1)J f +
( ∫

S
(I − ω ⊗ ω) f dω

)
J f =

=
((

1 − (n − 1)σ
)
I −

∫
S

ω ⊗ ω f dω
)

J f ,

(4.23)

where we have used the divergence theorem (since the border of S is empty), along with
the fact that

∫
∇ω f = (n − 1)

∫
ω f .

We write the above expression as a first order linear ODE of the form d
dτ J f = M(τ)J f ; the

matrix M is a smooth function of time, so we have a global unique solution.

∗ If J f (τ0) = 0 for τ0 > 0, then we have J f (τ) = 0 for all τ > 0, and (4.6) reduces to the
heat equation. The distribution f has no component on the first eigenvalue of the
Laplace-Beltrami operator, and second eigenvalue equal to 2n, which means that we
have exponential decay with rate 2n/ρ in any Hs form, when time is parametrized
by τ. Recalling that τ = ρ

ε t, we find that the rate is given by 2n/ε.

∗ If J f (τ0) 6= 0, then J f (τ) 6= 0 for all τ > 0. From Proposition 4.7, we know that
in this case the limiting set can either be given by the uniform distribution, or by
{MκΩ : Ω ∈ S}.

In the first case, by LaSalle’s principle, f (τ) converges to the uniform distribution.
We then have that M(τ) =

(
1 − (n − 1)σ

)
I −

∫
S

ω ⊗ ω f (τ) dω converges to (n −
1)( 1

n − σ)I. Using (4.23), we find

d
dτ

|J f |2 = J f · M(τ)J f >
(
(n − 1)( 1

n − σ)− ξ
)
|J f |2, (4.24)

for τ sufficiently large. For a sufficiently small ξ, we get that |J f | tends to infinity, a
contradiction. So we have E∞ = {MκΩ : Ω ∈ S}.
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Suppose that ‖ f (τ)− MκΩ(τ)‖Hs does not tend to 0 as t → ∞; we can then take a
sequence τn → ∞ such that ‖ f (τn)− MκΩ(τn)‖Hs > ξ > 0. By LaSalle’s principle,
there exists Ωn ∈ S such that ‖ f (τn)− MκΩn‖Hs → 0.
Up to extracting, we can assume Ωn → Ω∞ ∈ S, so that f (τn) → MκΩ∞ in Hs(S). In
particular, J f (τn) converges to c(κ)Ω∞, and then Ω(τn) → Ω∞. Finally, we find that
MκΩ(τn) → MκΩ∞ , and ‖ f (τn)− MκΩ(τn)‖Hs → 0, a contradiction.

Now we focus on the case J f0 6= 0. We define Ω(τ) as in the previous Proposition; we wish
to expand the solution f around MκΩ(τ).
We first show convergence in L2(S) to a given equilibrium, with exponential rate, under
appropriate conditions on the initial data.

Proposition 4.9. Let Ω(t) be as in the previous Theorem. There exists an asymptotic
rate r∞(σ) > 0 such that, if ‖ f (τ)− MκΩ(τ)‖Hs is uniformly bounded on [τ0,+∞) by a
constant K, with s > 3(n−1)

2 , then ∀r < r∞(σ), there exist Ω∞ ∈ S and δ, C > 0, such that if
‖ f (τ0)− MκΩ(τ0)‖L2 6 δ, we have

‖ f (τ)− MκΩ∞‖L2 6 C‖ f (τ0)− MκΩ(τ0)‖L2 e−r(τ−τ0).

Moreover, as σ → 1
n , we have that r∞(σ) > 2(n − 1)( 1

n − σ) + O
(
( 1

n − σ)3/2
)
.

Proof. Let Ω = Ω(τ), and suppose τ > τ0; we write cos θ = ω · Ω. Recalling that β =
c2 + n/ρ − 1 > 0, we have the following identities (〈·〉MκΩ denotes the average over the
Von-Mises-Fisher distribution):

1. 〈ω〉MκΩ = 〈cos θ〉MκΩΩ = cΩ,

2. 〈cos2 θ〉MκΩ = 1 − (n − 1)σ,

3. 〈(cos θ − c)2〉MκΩ = 1 − (n − 1)σ − c2 = σ − β > 0.

If we write f = (1 + h)MκΩ, with 〈h〉MκΩ = 0, since Ω is the direction of J f = 〈(1 +
h)ω〉MκΩ, we get that 〈hω〉MκΩ = Ω〈h cos θ〉MκΩ.
We wish to expand the free energy and the dissipation in terms of h.
Since MκΩ is a minimum of F ( f ) (see Proposition 4.7), we know that the expansion
F
(
(1 + h)MκΩ

)
− F (MκΩ) does not contain any terms of order 0 and 1 in h. From the

definition of free energy (4.13), we get

F
(
(1 + h)MκΩ

)
−F (MκΩ) =

σ
2 〈h

2〉MκΩ − 1
2 |〈hω〉MκΩ|2 + O(‖h‖3

∞).

Using Sobolev embedding and interpolation, we have

‖ f − MκΩ‖∞ 6 C‖ f − MκΩ‖H
n−1

2
6 C‖ f − MκΩ‖

1− n−1
2s

L2 K
n−1
2s . (4.25)

Since
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1. 1 − n−1
2s > 2

3 ,

2. f − MκΩ = hMκΩ,

3. MκΩ is uniformly bounded both from below and above,

we have that ‖h‖2
L2 =

∫
S

h2MκΩdω 6 C
∫

S
h2M2

κΩdω = C〈h2〉MκΩ. Using this in (4.25), we
get that ‖h‖3

∞ ∈ o(〈h2〉MκΩ).
We then have

F ( f )−F (MκΩ) =
σ
2 〈h

2〉MκΩ − 1
2 〈h cos θ〉2

MκΩ + o(‖h2‖MκΩ). (4.26)

From the definition of the dissipation term (4.14), we get:

D( f ) =
∫

S
f |∇ω(σ log f − ω · J f )|2 dω =

=
∫

S
(1 + h)|∇ωσ log

(
(1 + h)MκΩ

)
− ω · 〈(1 + h)ω〉MκΩ|2MκΩ dω =

= 〈(1 + h)|∇ω

(
σ log

(
(1 + h)MκΩ

)
− ω · 〈(1 + h)ω〉MκΩ

)
|2〉MκΩ =

= 〈(1 + h)|∇ω

(
σ log(1 + h)

)
+ σκ∇ω cos θ+

−∇ω

(
〈h cos θ〉MκΩ cos θ

)
+∇ω

(
cos θ〈cos θ〉MκΩ

)
|2〉MκΩ =

= 〈(1 + h)|∇ω

(
σ log(1 + h)

)
+ 〈cos θ〉MκΩΩ+

−∇ω

(
〈h cos θ〉MκΩ cos θ

)
− 〈cos θ〉MκΩΩ|2〉MκΩ =

= 〈(1 + h)|∇ω

(
σ log(1 + h)− 〈h cos θ〉MκΩ cos θ

)
|2〉MκΩ =

= (1 − ‖h‖∞)〈|∇ω

(
σ log(1 + h)− 〈h cos θ〉MκΩ cos θ

)
|2〉MκΩ.

Using the Poincaré-Wirtinger inequality on the sphere, and the fact that MκΩ is positive
and bounded, for any function `, we find

〈|∇`|2〉MκΩ > min MκΩ

∫
S
|∇`|2 > min MκΩ(n − 1)

∫
S
(`−

∫
S
`)2 >

> min MκΩ
max MκΩ

(n − 1)〈(`−
∫

S
`)2〉MκΩ > e−2k(n − 1)〈(`−

∫
S
`)2〉MκΩ ,

which means that the optimal Poincaré constant is bounded from below by

Λk > (n − 1)e−2κ. (4.27)

Applying this estimate to the above expression for D( f ), we get

D( f ) > (1 − ‖h‖∞)Λκ〈
(
σ log(1 + h)− σ〈log(1 + h)〉MκΩ+

− 〈h cos θ〉MκΩ(cos θ − c)
)2〉MκΩ >

> (1 − ‖h‖∞)Λκ〈
(
σh − 〈h cos θ〉MκΩ(cos θ − c) + O(‖h‖2

∞)
)2〉MκΩ >

> (1 − ‖h‖∞)Λκ

(
σ2〈h2〉MκΩ −

(
β + σ

)
〈h cos θ〉2

MκΩ
+ O(‖h‖2

∞)
)
+ O(‖h‖3

∞).
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Using the same argument as we did in the case of F ( f ), we find

F ( f ) > Λκ

(
σ2〈h2〉MκΩ −

(
β + σ

)
〈h cos θ〉2

MκΩ
+ O(‖h‖2

∞)
)
+ o(〈h2〉MκΩ). (4.28)

We set α = 1
σ−β 〈h cos θ〉MκΩ (well defined since σ − β > 0), and write h = α(cos θ − c) + g,

for some function g. We notice that 〈g〉MκΩ = 〈gω〉MκΩ = 0.
We can then write 〈h2〉MκΩ = (σ − β)α2 + 〈g2〉MκΩ, and

F ( f )−F (MκΩ) =
1
2

(
β(σ − β)α2 + σ〈g2〉MκΩ

)
+ o(〈h2〉MκΩ), (4.29)

D( f ) > Λk
(

β2(σ − β)α2 + σ2〈g2〉MκΩ
)
+ o(〈h2〉MκΩ) >

> Λkβ
(

β(σ − β)α2 + σ〈g2〉MκΩ
)
+ o(〈h2〉MκΩ).

(4.30)

So, if 〈h2〉MκΩ is sufficiently small, we have

D( f ) > 2r
(
F ( f )−F (MκΩ)

)
,

for all r < Λκ β. So there exists δ0 > 0 such that, if ‖ f (t)− MκΩ(t)‖L2 6 δ0, then we have

d
dτ

(
(F ( f )−F (MκΩ)

)
= −D( f ) 6 2r

(
F ( f )−F (MκΩ)

)
.

For all T such that ‖ f (τ)− MκΩ(τ)‖L2 6 δ0 on [τ0, T], we have

F ( f (T))−F (MκΩ(T)) 6
(
F
(

f (τ0)
)
−F

(
MκΩ(τ0)

))
e−2r(T−τ0).

Moreover, since

‖ f (τ)− MκΩ‖L2 6 C
√
〈h2〉MκΩ 6 C0‖ f (τ0)− MκΩ(τ0)‖L2 e−r(τ−τ0), (4.31)

if τ0 is such that ‖ f (τ0)− MκΩ(τ0)‖L2 6 δ for a δ < δ0
C0

6 δ0, we have that (4.31) holds for
all τ > τ0.
In order to prove strong convergence to a given steady state, we need to prove that Ω(τ)
converges to an Ω∞ as τ → ∞. From

J f = 〈(1 + h)ω〉MκΩ = cΩ + 〈hω〉MκΩ =
(
c + α(σ − β)

)
Ω,

we get
d

dτ
J f =

(
c + α(σ − β)

) d
dτ

Ω(τ) + (σ − β)Ω
d

dτ
α(τ).

Putting this together with (4.23), we find

d
dτ

J f =
(
c + α(σ − β)

) d
dτ

Ω(τ) + (σ − β)Ω
d

dτ
α(τ) =

=
((

1 − (n − 1)σ
)
I −

∫
S

ω ⊗ ω f dω
)

J f .
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We now apply I − Ω ⊗ Ω to the members of (4.23). We get

(I − Ω ⊗ Ω)
d

dτ
J f = (I − Ω ⊗ Ω)

(
−
∫

S
ω ⊗ ω f dω

)
J f =

= −
(
c + α(σ − β)

)
(I − Ω ⊗ Ω)

(∫
S

ω2MκΩ dω +
∫

S
ω2hMκΩ dω

)
=

= −
(
c + α(σ − β)

)
(I − Ω ⊗ Ω) (〈cos θω〉MκΩ + 〈h cos θω〉MκΩ) .

We also have(
c + α(σ − β)

) d
dτ

Ω = −
(
c + α(σ − β)

)
(I − Ω ⊗ Ω)〈g cos θω〉MκΩ.

Since
(
c + α(σ − β)

)
is equal to the norm of J f , it is never zero, so we can simplify and get∣∣∣∣ d

dτ
Ω
∣∣∣∣ 6 C

√
〈g2〉MκΩ 6 C‖ f − MκΩ‖L2 6 C‖ f (τ0)− MκΩ(τ0)‖L2 e−r(τ−τ0),

for a constant C = C(r, s, σ, K). This shows that d
dτ Ω has exponential decay of rate r, in

particular there exists an Ω∞ ∈ S, such that Ω τ→∞−−−→ Ω∞.
Since Ω 7→ eκω·Ω is globally Lipschitz, with a constant which is independent of ω ∈ S, we
have that

‖MκΩ(τ) − MκΩ∞‖L2
6 C|Ω(τ)− Ω∞| 6

6
∫ +∞

τ

∣∣∣∣ d
dτ

Ω
∣∣∣∣ dt 6 C‖ f (τ0)− MκΩ(τ0)‖L2 e−r(τ−τ0).

This allows us to conclude:

‖ f − MκΩ∞‖L2 6 ‖ f − MκΩ(τ)‖L2 + ‖MκΩ(τ) − MκΩ∞‖L2
6

6 C‖ f (τ0)− MκΩ(τ0)‖L2 e−r(τ−τ0).

So we have that the Proposition holds true, with r∞(σ) = Λκ β > 0. Moreover, from (4.27),
we know that Λκ > (n − 1)e−2κ, and thanks to (4.18), we get that r∞(σ) > 2(n − 1)( 1

n −
σ) + O

(
( 1

n − σ)3/2
)
.

Remark. Since, by Proposition 4.8, f (t)− MκΩ(t) → 0 in any Hs, we have that there exists a
t0 > 0 which satisfies the hypotheses of the previous Proposition. Using interpolation, we
get

‖ f − MκΩ∞‖Hs 6 C‖ f − MκΩ∞‖
1− s

p

L2 ‖ f − MκΩ∞‖
s
p
Hp 6 C‖ f (τ0)− MκΩ(t0)‖

1− s
p

L2 e−r(1− s
p (τ−τ0)).

Finally, we have that for all r < r∞ and for all s, there exists some time τ0 and C > 0 such
that ‖ f − MκΩ∞‖Hs 6 Ce−rτ, for all τ > τ0. Since t = ε

ρ τ, this proves the claim of Theorem
4.1(ii).
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4.4 The critical case

We have seen that for any ρ ∈ (0,+∞)\{n} there is exponential convergence to some
equilibrium. However, if J f0 6= 0, the rate that we have found tends to 0 as ρ → n.
Therefore we expect there to be a different behaviour in the critical case.
In this section we want to estimate the rate of convergence to the uniform distribution
(which we know is an equilibrium) as time goes to infinity. In order to do so, we first
provide a result which estimates the L2 distance between the solution f and the uniform
distribution. We will then use an interpolation argument to show the algebraic asymptotic
rate of convergence in any Hs norm.

Proposition 4.10. Suppose that ‖ f (τ) − 1‖Hs is uniformly bounded on [τ0,+∞) by a
constant K, with s > 7(n−1)

2 . Then, for all C > 1, there exists δ = δ(ρ, s, K, C) > 0 such that
if ‖ f (t0)− 1‖L2 6 δ, we have

‖ f (τ)− 1‖L2 6
C√

1√
2(n+2)‖ f (τ0)−1‖L2

+ 2(n−1)
n(n+2) (τ − τ0)

,

for all τ > τ0.

Proof. Again, we work with τ > t0, write f = 1 + h, and suppose J f0 6= 0. From this we
get that J f (τ) is non-zero for all τ > 0, so we can define Ω(τ) :=

J f (τ)
|J f (τ)|

. We also denote by
〈·〉 the average on the sphere, and cos θ := ω · Ω.
We have 〈h〉 = 0, J f = 〈(1 + h)ω〉 = 〈hω〉, and 〈hω〉 = 〈h cos θ〉Ω, since Ω is the direction
of J f .

As we did in the supercritical case, we now perform an expansion of the free energy F
and of the dissipation D in terms of h. For σ = 1

n , we find

F (1 + h) = 1
n

∫
S
(1 + h) log(1 + h)dω − 1

2 〈h cos θ〉2 =

= 1
n

∫
S

(
h + h2

2 − h3

6 + h4

12

)
dω − 1

2 〈h cos θ〉2 + O(‖h‖5
∞) =

= 1
n

( 1
2 〈h

2〉 − 1
6 〈h

3〉+ 1
12 〈h

4〉
)
− 1

2 〈h cos θ〉2 + O(‖h‖5
∞).

We write α = n〈h cos θ〉, and define the function

g = h − α cos θ − 1
2 α2(cos2 θ − 1

n )−
1
6 α3(cos3 θ − 3

n+2 cos θ). (4.32)

We now perform some computations which we will need later on, when we will expand
F and D in terms of α.
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Recalling that (2p + 2)ap+1 =
ap

2p+n , where ap = 1
(2p)!

∫ π
0 cos2p θ sinn−2 θ dθ, we find that

〈cos4 θ〉 = 4! a2
a0

= 3
n(n+2) . Moreover, since 〈cos3 θ〉 = 〈cos θ〉 = 0, and 〈cos2 θ〉 = 1

n , we get

〈g〉 = 〈h〉 − α〈cos θ〉 − 1
2 α2(〈cos2 θ〉 − 1

n

)
− 1

6 α3(〈cos3 θ〉 − 3
n+2 〈cos θ〉

)
= 0,

〈g cos θ〉 = α
n − α

n − 1
6 α3( 3

n(n+2) −
3

n(n+2)

)
= 0.

The following expansions are needed in order to expand the free energy and the dissipation
term; they are obtained by taking the second (third, fourth) power of the expression for h
in (4.32) and then considering the mean on the sphere:

1
2 〈h

2〉 = 1
2 〈g2〉+ 1

2n α2 + n−1
4n2(n+2)α4 + 1

2 α2〈g cos2 θ〉+ O(α3‖g‖∞ + α5), (4.33)

− 1
6 〈h

3〉 = − n−1
2n2(n+2)α4 − 1

2 α2〈g cos2 θ〉+ O(‖g‖3
∞ + α‖g‖2

∞ + α2‖g‖∞ + α5),
1
12 〈h

4〉 = 1
4n(n+2)α4 + O(‖g‖4

∞ + α‖g‖3
∞ + α2‖g‖2

∞ + α3‖g‖∞ + α5).

Inserting these expansions in the above expression for F (1 + h), we get

F (1 + h) = 1
2n 〈g2〉+ 1

4n3(n+2)α4 + O(‖g‖3
∞ + α‖g‖2

∞ + α3‖g‖∞ + α5). (4.34)

Using the inequality apbq 6 sa
p
s + (1 − s)b

q
1−s for s ∈ (0, 1), with a = α and b = ‖g‖∞, we

find that

α‖g‖2
∞ 6 1

5 α5 + 4
5‖g‖2+ 1

2
∞ , α3‖g‖∞ 6 3

5 α5 + 2
5‖g‖2+ 1

2
∞ .

As we have done previously, by Sobolev embedding and interpolation, we find that

‖g‖∞ 6 C‖g‖1− n−1
2s

L2 ‖g‖
n−1
2s

Hs , (4.35)

where 1− n−1
2s > 6

7 . Since ‖h‖Hs is uniformly bounded by K), we get that ‖g‖Hs is bounded,
and ‖g‖2+ 1

2
∞ 6 C〈g2〉µ, for µ > 1

2 (2 + 1
2 )

6
7 > 1. We can now use the estimate on 〈h2〉 in

(4.33), to find that, for any ξ > 0, there exists δ > 0 such that, if ‖h‖L2 6 δ, then we have

(1 − ξ)
(
〈g2〉+ 1

n α2) 6 〈h2〉 6 (1 + ξ)
(
〈g2〉+ 1

n α2),
(1 − ξ)

( 1
2n 〈g2〉+ 1

4n3(n+2)α4) 6 F (1 + h) 6 1+ξ
4n3(n+2)

(
2n2(n + 2)〈g2〉+ α4). (4.36)

Combining the two inequalities, up to taking a smaller δ, we have7:

1−ξ
1+ξ 2nF (1 + h) 6 〈h2〉 6 1+ξ√

1−ξ
2
√

n(n + 2)F (1 + h). (4.37)

7We need δ � 1 such that

(1−ξ)α4

4n3(n+2) +
1−ξ)α2

n > 0, (1 + ξ)〈g2〉+ 1+ξ√
1−ξ

2
√

n(n + 2)F (1 + h)− 1−ξ
2n 〈g2〉 > 1+ξ√

1−ξ
2
√

n(n + 2)F (1 + h).
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We now wish to provide an estimate for the dissipation term. Using the Poincaré inequality,
we find

D( f ) = 〈(1 + h)
∣∣∇ω

( 1
n log(1 + h)− 〈(1 + h)ω〉 · ω

)∣∣2〉 =
= 〈(1 + h)

∣∣∇ω

( 1
n log(1 + h)− 〈h cos θ〉 cos θ

)∣∣2〉 >
> n

n−1

(
1 − ‖h‖∞

)
〈
(

log(1 + h)− 〈(1 + h)〉 − n〈h cos θ〉 cos θ
)2〉.

(4.38)

We also notice that

S(h) : = log(1 + h)− 〈(1 + h)〉 − n〈h cos θ〉 cos θ =

= h − 〈h〉 − α cos θ − 1
2

(
h2 − 〈h2〉

)
+ 1

3

(
h3 − 〈h3〉

)
+ O(‖h‖4

∞).

We compute the expansions

h − α cos θ = g + 1
2 α2(cos2 θ + 1

n ) +
1
6 α3(cos3 θ − 3

n+2 cos θ),

− 1
2

(
h2 − 〈h2〉

)
= − 1

2 (α
2 + α3 cos θ)

(
cos2 θ − 1

n

)
+ O(‖g‖2

∞ + α‖g‖
H

n−1
2

∞ + α4),
1
3

(
h3 − 〈h3〉

)
= 1

3 α3 cos3 θ + O(‖g‖3
∞ + α‖g‖2

∞ + α4),

and write

〈S2(h)〉 = 〈
(

g + 1
6 α3( 3

n − 3
n+2 cos θ)

)2〉+ O(‖g‖3
∞ + α‖g‖2

∞ + α4‖g‖∞ + α7) =

= 〈g2〉+ 1
n3(n+2)2 α6 + O(‖g‖3

∞ + α‖g‖2
∞ + α4‖g‖∞ + α7).

(4.39)

As before, we get

α‖g‖2
∞ 6 1

7 α7 + 6
7‖g‖2+ 1

3
∞ , α4‖g‖∞ 6 4

7 α7 + 3
7‖g‖2+ 1

3
∞ ,

and, using (4.35), we find that ‖g‖2+ 1
3

∞ 6 C〈g2〉µ, with µ > 1
2 (2 +

1
3 )

6
7 = 1. For ‖h‖L2 < δ,

up to taking a smaller δ, we have

D( f ) > (1 − ξ) n−1
n2

(
〈g2〉+ 1

n3(n+2)2 α6
)

.

For any C, C′ > 0, up to taking a smaller δ (we need α and g small), we have that C〈g2〉+
α6 >

(
C′〈g2〉+ α4) 3

2 , and

D( f ) > (1 − ξ) n−1
n5(n+2)2

(
2n2(n + 2)〈g2〉+ α4

) 3
2

.

If we combine this with (4.36) and (4.15), we get that for any 0 < ξ < 1, there exists δ0 > 0
such that, if ‖h‖L2 6 δ0, we have

d
dτ

F ( f ) = −D( f ) 6 − 8(n − 1)(1 − ξ)

(1 + ξ)3/2
√

n(n + 2)

(
F ( f )

)3/2,
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which we can solve to find

F
(

f (T)
)−1/2

> F
(

f (τ0)
)−1/2

+
4(n − 1)(1 − ξ)

(1 + ξ)3/2
√

n(n + 2)
(τ − τ0), (4.40)

for all T such that ‖h‖L2 6 δ0 on [τ0, T]. Using this in (4.37), we get

‖h‖−2
L2 >

√
1−ξ

(1+ξ)2
√

n(n+2)

(√
2n(1−ξ)

1+ξ ‖h(t0)‖−1
L2 + 4(n−1)(1−ξ)

(1+ξ)3/2
√

n(n+2)
(τ − τ0)

)
.

Writing C = (1+ξ)5/4

(1−ξ)3/4 , we find

‖h‖L2 6 C

(
1√

2(n + 2)‖h(t0)‖L2

+ 2(n−1)
n(n+2) (τ − τ0)

)−1/2

. (4.41)

If we now take δ < min{δ0, 1
C2
√

2(n+2)
δ0}, and ‖h(t0)‖L2 6 δ, we get that ‖h‖L2 6 δ on

[τ0, T], ∀ T > τ0. In fact, if this were not the case, the largest of such T would satisfy

δ0 = ‖h(τ)‖L2 6 C
(

1√
2(n+2)δ

)−1/2

6 δ0.

So the inequality (4.41) holds for all τ > τ0, which ends the proof.

Remark. Since f tends to the uniform distribution in any Hs(S), we get that for any r <
2(n−1)
n(n+2) , there exists τ0 > 0 such that

‖ f (τ)− 1‖L2 6
1√

r(τ − τ0)
, ∀ τ > τ0.

Moreover, since for any r < r̃ < 2(n−1)
n(n+2) and for τ large enough, 1√

r̃(τ−τ0)
6 1√

rτ
, we actually

have ‖ f (τ)− 1‖L2 6 1√
rτ

.
If we were to use interpolation to get an inequality in the Sobolev norms, as we have done
in the previous section, we would get something of the form

‖ f (τ)− 1‖Hs 6 Cητ−1/2+η ,

but we can do slightly better.
Using h = g + α cos θ + 1

2 α2(cos2 θ − 1
n ) +

1
6 α3(cos3 θ − 3

n+2 cos θ), we write

‖h‖Hs 6 ‖g‖Hs + |α|‖cos θ‖Hs + C2α2 + C3|α|3.
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We take τ0 > 0 satisfying the conditions of the previous Proposition, and such that ‖h‖L2 6
δ. Since g is uniformly bounded in any Hs(S), by interpolation we have ‖g‖Hs 6 Cη‖g‖1−η

L2

for any η > 0. Using (4.40), we get(
1

2n 〈g2〉+ 1
4n3(n+2)α4

)−1/2

> 4(n−1)(1−ξ)3/2

(1+ξ)3/2
√

n(n+2)
(τ − τ0),

from which we have ‖g‖L2 ∈ O(τ−1) and α2 6 (1+ξ)3/2

(1−ξ)3/2

n(n+2)
2(n−1)(τ−τ0)

. Finally, for any η > 0,

‖h‖Hs 6 (n − 1)s/2

√
(1+ξ)3/2

(1−ξ)3/2

n(n+2)
2(n−1)(τ−τ0)

+ O(τ−1+η).

So there exists τ1 > τ0 such that, for all τ > t1, the following holds for any η > 0:

‖h‖Hs 6 (1 + ξ)(n − 1)s/2

√
(1+ξ)3/2

(1−ξ)3/2

n(n+2)
2(n−1)(τ−τ0)

,

In conclusion, we have that for any r < 2
n(n−1)s−1(n+2) , there exists t1 > 0 such that, for all

τ > τ1, we have ‖ f (τ)− 1‖Hs 6 1√
rτ

, i.e. there is asymptotic algebraic rate of convergence
equal to 1/2.



5

A generalization

We consider the same model as before, but now we assume that the flock is comprised of
two different populations, let’s say A and B. We then have different interactions: between
individuals of the same population, and of opposite one.
We assume that the probability an individual belongs to A rather than to B is 1/2; in other
words, the type of a particle is given by a random variable Ti ∼ Be(1/2). Let (Xi, Vi) denote
an individual of the first population, (Yi, W i) and individual of the second one.
Let N = NA + NB be the total population size, with NA being the number of individuals of
A, and NB the number of individuals of B. We assume that the two families have different
diffusion coefficients. More precisely, the dynamics of our model is given by the coupled
system 

dXi
t = Vi

t dt, dYi
t = W i

t dt

dVi
t =

√
2d(I − Vi

t ⊗ Vi
t ) ◦ dBi

t + (I − Vi
t ⊗ Vi

t )Ji
t(Xi

t)dt

dW i
t =

√
2b(I − W i

t ⊗ W i
t ) ◦ dBi

t + (I − W i
t ⊗ W i

t )Ji
t(Y

i
t )dt,

(5.1)

where, for Zi
t = Xi

t or Yi
t , the function J is defined as

Ji
t(Zi

t) =
1

NA

NA

∑
j=1

K(|Zi
t − X j

t|)V
j
t +

1
NB

NB

∑
j=1

K(|Zi
t − Y j

t |)W
j
t .

We would like to prove the same mean-field and macroscopic results as in the previous
chapters. In particular, we wish to show that the empirical distributions f NA and gNB tend,
as N → ∞, to certain probability density functions f and g, which satisfy a particular PDE
system. Moreover, we would like to see if it is possible to determine the equilibria of such
a model.
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It is fairly easy to show that, in the hydrodynamic limit, the presence of different interactions
between the two populations does not affect the form of the equilibria. We can then assume
that the interaction kernel K does not distinguish between the two.

5.1 Mean-field limit

Theorem 5.1. There exists a unique solution for the following non-linear system

dX̄i
t = V̄i

t dt, dȲi
t = W̄ i

t dt

dV̄i
t =

√
2d(I − V̄i

t ⊗ V̄i
t )dBi

t + (I − V̄i
t ⊗ V̄i

t ) J̄ f+g(X̄i
t)dt − (n − 1)V̄i

t dt

dW̄ i
t =

√
2b(I − W̄t ⊗ W̄ i

t )dBi
t + (I − W̄t ⊗ W̄ i

t ) J̄ f+g(Ȳi
t )dt − (n − 1)W̄ i

t dt

ft = Law(X̄i
t, V̄i

t ), gt = Law(Ȳi
t , W̄ i

t ),

(5.2)

with (Bi
t)t>0 N independent n-dimensional Brownian motions, and

J̄ f (x) =
∫

S
(K ∗ f )(x, ω, t)ω dω,

where ∗ denotes the convolution on the space variable.

Remark. Since all the coefficients are Lipschitz and bounded, we have existence and unique-
ness of the solutions (X̄i

t, V̄i
t , Ȳi

t , W̄ i
t )t>0. It only remains to show that ft and gt are weak

solutions of a certain PDE system.
Following what we have done in Chapter 2, it is easy to obtain (cf. Equation 2.4){

∂t ft + ω · ∇x ft = −∇ω ·
(
(I − ω ⊗ ω) J̄ f+g ft

)
+ d ∆ω ft

∂tgt + ω · ∇xgt = −∇ω ·
(
(I − ω ⊗ ω) J̄ f+ggt

)
+ b ∆ωgt.

(5.3)

We expect the equilibria for this model (which we are going to define better in the next
section) to somehow reflect the difference in the diffusion terms between the two equations.

5.2 Hydrodynamic scaling and equilibria

We introduce a small parameter ε > 0 and perform the scaling x′ = εx and t′ = εt. Writing
f ε(x′, ω, t′) = f (x, ω, t), gε(x′, ω, t′) = g(x, ω, t), Kε(x′) = 1

εn K(x), and using (5.3), we
have {

ε
(
∂t f ε + ω · ∇x ft

)
= −∇ω ·

(
(I − ω ⊗ ω) J̄ε

f+g f ε
)
+ d ∆ω f ε

ε
(
∂tgε + ω · ∇xgε

)
= −∇ω ·

(
(I − ω ⊗ ω) J̄ε

f+ggε
)
+ b ∆ωgε,

(5.4)

where J̄ε
f+g(x, t) =

∫
S
(Kε ∗ ( f + g)ε)(x, ω, t)ω dω. For the time being, we study the equa-

tion for f ; the same reasoning will apply to g.

ε
(
∂t f ε + ω · ∇x f ε +∇ω · (Fε f ε)

)
= ∇ω(d ∇ω f ε). (5.5)
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Definition 5.2. For two given probability density functions f and g on S, we define

Q( f ) = −∇ω ·
(
(I − ω ⊗ ω)J f+g f

)
+ d ∆ω f

and
P( f ) = ∇ω ·

(
(I − ω ⊗ ω)

(
(ω · ∇x)J f+g

)
f
)

.

where J f+g(x, t) =
∫

S
( f + g)(x, ω, t)ω dω.

Notice that
J̄ε

f+g = Jε
f+g + αε(ω · ∇x)Jε

f+g + O(ε2),

for some constant α, with Jε
f+g =

∫
S
( f ε + gε)(ω)dω. So, by dropping the O(ε2) term, we

can rewrite (5.5) as

ε
(
∂t f ε + ω · ∇x f ε + αP( f ε)

)
= Q( f ε) + O(ε2). (5.6)

Since Q( f ε) is the only term of order 0 in ε, we are again interested in finding its null-space.
In order to do so, we introduce the Von-Mises-Fischer distribution

Md
κΩ(ω) =

e
κω·Ω

d∫
S

e
κv·Ω

d dv
.

We also recall that, since MκΩ depends on κ and Ω only through their product, we can
consider MJ for any J ∈ Rn. Since ∇ω(MJ) = (I − ω ⊗ ω)JMJ , the collision operator can
be written as

Q( f ) = d ∇ω ·
(

MJ f+g∇ω

(
f

MJ f+g

))
.

Using Green’s formula, we get∫
S

Q( f )
f

MJ f+g

dω = −d
∫

S

∣∣∣∇ω

( f
MJ f+g

)∣∣∣2MJ f+g dω 6 0.

This means that f
MJ f+g

is constant in ω, so we can write f = ρ f MκΩ, with κΩ = J f+g. In

other words, if f and g are such that Q( f ) and Q(g) are equal to zero, then they are of the
form

f = ρ f C1 exp
(

κω · Ω
d

)
, g = ρg C2 exp

(
κω · Ω

b

)
. (5.7)

We then have that, for any κΩ ∈ Rn, there exist constant C1 and C2 such that the functions
defined in (5.7) are equilibria.
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5.3 Phase transition

In this section we would like to find, as we did in the one-population case, a phase
transition for our model. In order to do so, we search for a compatibility condition of the
form C(κ) = κ. From the above computations, we have:

JMd
κΩ

=
∫

S
ωMd

κΩ dω = 〈ω〉Md
κΩ

= 〈cos θ〉Md
κΩ

Ω =: c( κ
d )Ω

JMb
κΩ

= c( κ
b )Ω,

where cos θ = ω · Ω. We get

κΩ = J f+g =
∫

S
ω( f + g) dω =

∫
S

ω
(

ρ f Md
κΩ + ρg Mb

κΩ

)
dω =

= ρ f JMd
κΩ

+ ρg JMb
κΩ

= ρ f c( κ
d )Ω + ρg c( κ

b )Ω.

This yields the following

1 =
ρ f c( κ

d ) + ρg c( κ
b )

κ
= dρ f

c(κ/d)
κ/d

+ bρg
c(κ/b)

κ/b
. (5.8)

Since we have already seen that c(κ)
κ

κ→0−−→ 1
n , we get that, in order for there to be a positive

solution to (5.8), the following limit has to be greater than 1:

lim
κ↓0

dρ f
c(κ/d)

κ/d
+ bρg

c(κ/b)
κ/b

=
dρ f

n
+

bρg

n
!
> 1.

Summarizing, we have found the following

Proposition 5.3 (Compatibility condition).

1. If dρ f + bρg 6 n, then κ = 0 is the unique solution of (5.8). The only equilibria are
the isotropic ones, f = ρ f and g = ρg.

2. If dρ f + bρg > n, then (5.8) has 2 roots: κ = 0 and κ(ρ) > 0. The equilibria for κ = 0
are f = ρ f and g = ρg; the ones associated to κ(ρ) consist of the Von-Mises-Fischer
distributions ρ f Md

κ(ρ)Ω and ρg Mb
κ(ρ)Ω, for Ω ∈ S arbitrary.
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Proof of Lemma 3.12

Lemma A.1. For X =
∫

S

(
∂t(ρMκΩ) + ω · ∇x(ρMκΩ)

)
`κ(ω · Ω)ω dω, the expression

(I − Ω ⊗ Ω)X = 0

is equivalent to
ρ
(
∂tΩ + c̃(Ω · ∇x)Ω

)
+ λ(I − Ω ⊗ Ω)∇xρ = 0,

where the coefficients c̃ and λ are given by

c̃ = 〈cos θ〉M̃κ :=

∫ π
0 cos θ`κ(cos θ)eκ cos θ sinn θ dθ∫ π

0 `κ(cos θ)eκ cos θ sinn θ dθ
,

λ = 1
κ +

ρ
κ

dκ
dρ (c̃ − c).

Proof. We begin by providing some useful formulas for the following.
For any constant vector V ∈ Rn, we have

∇ω(ω · V) = (I − ω ⊗ ω)V,

∇ω ·
(
(I − ω ⊗ ω)V

)
= −(n − 1)ω · V.

For any constant matrix A, we then have

∇ω ·
(
(I − ω ⊗ ω)Aω

)
= A : (I − nω ⊗ ω).

As usual, we write ω · Ω = cos θ, and

∇ω MκΩ = κ(I − ω ⊗ ω)ΩMκΩ,
∇Ω MκΩ = κ(I − Ω ⊗ Ω)ωMκΩ,

∂κ MκΩ = (cos θ − 〈cos θ〉Mκ) MκΩ.
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Using these and the chain rule, and denoting with κ̇ = d
dρ κ, we get

(∂t + ω · ∇x)(ρMκΩ) =
(
1 + (cos θ − 〈cos θ〉Mκ)ρκ̇

)
MκΩ(∂t + ω · ∇x)ρ+

+ ρκ(I − Ω ⊗ Ω)ωMκΩ · (∂t + ω · ∇x)Ω =

=
(
1 + (cos θ − 〈cos θ〉Mκ)ρκ̇

)
MκΩ(∂tρ + ω · ∇xρ)+

+ ρκMκΩ(ω · ∂tΩ + ω ⊗ ω : ∇xΩ).

We write X = X1 + X2 + X3, where

X1 =
∫

S
`κ(cos θ)γ1(cos θ)ωMκΩ dω,

X2 =
∫

S
`κ(cos θ)ω ⊗ ω

(
γ2(cos θ)∇xρ + ρκ∂tΩ

)
MκΩ dω,

X3 =
∫

S
`κ(cos θ)γ3(cos θ)ω(ω ⊗ ω : ∇xΩ)MκΩ dω,

with

γ1(cos θ) =
(
1 + (cos θ − c)ρκ̇

)
∂tρ,

γ2(cos θ) = 1 + (cos θ − c)ρκ̇,
γ3(cos θ) = ρκ.

We now write ω = cos θΩ + sin θv, for a v ∈ Sn−2. Supposing that
∫

Sn−2 dv = 1, we have
the following formulas:∫

Sn−1
a(ω)dω = C

∫ π

0

∫
Sn−1

a(θ, v) sinn−2 dvdθ,∫
Sn−2

v dv = 0,∫
Sn−2

v ⊗ v dv = 1
n−1 (I − Ω ⊗ Ω).

We use the fact that, for any function γ(cos θ), the following equalities hold:∫
ω∈S

γ(cos θ)MκΩω dω = 〈cos θγ(cos θ)〉Mκ Ω∫
ω∈S

ω ⊗ ωγ(cos θ)MκΩω dω = 〈cos2(θ)γ〉MκΩ ⊗ Ω +
〈sin2 θγ〉Mκ

n − 1
(I − Ω ⊗ Ω).

We then have:

1. Since ∂tΩ and Ω are orthogonal, (I − Ω ⊗ Ω)X1 = 0.
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2. (I − Ω ⊗ Ω)X2 =
〈sin2 θγ2`κ〉Mκ

n − 1
(I − Ω ⊗ Ω)∇xρ +

ρκ〈sin2 θ`κ〉Mκ

n − 1
∂tΩ.

3. Since (ω · ∇x)Ω and Ω are orthogonal, we have

(I − Ω ⊗ Ω)ω(ω ⊗ ω : ∇xΩ) = sin θv
(
ω · (ω · ∇x)Ω

)
= sin2 θv

(
v · (ω · ∇x)Ω

)
.

Moreover, from
∫

v∈Sn−2 v(v ⊗ v : ∇xΩ)dv = 0 we get, since (Ω · ∇x)Ω and Ω are
orthogonal,

(I − Ω ⊗ Ω)X3 = 〈sin2 θ cos θγ3`κ〉Mκ

∫
v∈Sn−2

v ⊗ v dv(Ω · ∇x)Ω =

=
〈sin2 θ cos θγ3`κ〉Mκ

n − 1
(Ω · ∇x)Ω.

We have that (I − Ω ⊗ Ω)X = 0 is equivalent to the following equation:

ρκ〈sin2 θ`κκ〉Mκ∂tΩ + 〈sin2 θ cos θγ3`κ〉Mκ(Ω · ∇x)Ω + 〈sin2 θγ2`κ〉Mκ∇xρ = 0.

We remark that for any function γ(cos θ), the weighted mean

〈γ(cos θ)〉M̃κ :=

∫ π
0 γ(cos θ)`κ(cos θ)eκ cos θ sinn θ dθ∫ π

0 `κ(cos θ)eκ cos θ sinn θ dθ
,

can be written in terms of 〈·〉Mκ:

〈γ(cos θ)〉M̃κ =
sin2 θ`κ(cos θ)γ(cos θ)〉Mκ

〈sin2 θ`(cos θ)〉Mκ

.

Dividing by κ〈sin2 θ`κ(cos θ)〉Mκ concludes the proof, as we get that (I − Ω ⊗ Ω)X = 0 is
equivalent to

ρ
(
∂tΩ + c̃(Ω · ∇x)Ω

)
+ λ(I − Ω ⊗ Ω)∇xρ = 0,

for coefficients c̃ and λ as above.
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B

Taylor expansions

We wish to provide Taylor expansions, as κ → 0 and κ → ∞, for the following averages:

1. 〈 f (θ)〉Mκ =

∫ π
0 f (θ)eκ cos θ sinn−2 θdθ∫ π

0 eκ cos θ sinn−2 θdθ
,

2. 〈 f (θ)〉Mκ =

∫ π
0 f (θ)`κ(cos θ)eκ cos θ sinn θdθ∫ π

0 `κ(cos θ)eκ cos θ sinn θdθ
.

B.1 Asymptotics of 〈 f (θ)〉Mκ

For a given function f such that f sinn−2 θ ∈ L1(0, π), we define

ap =
1
p!

∫ π

0
cosp θ sinn−2 θdθ,

bp =
1
p!

∫ π

0
f (θ) cosp θ sinn−2 θdθ.

We can then write

〈 f (θ)〉Mκ =
∑N

i=0 bpκp + O(κN+1)

∑N
i=0 apκp + O(κN+1)

.

For f (θ) = cosθ, bp = (p + 1)ap+1 and, using the integration by parts formula, we find the
following induction relation:

(p + 2)(p + n)ap+2 = ap.
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Since a1 = 0, the odd terms vanish and we can write

c(κ) = 〈cos θ〉Mκ =
a0

κ
n + a0

κ3

2n(n+2) + O(κ5)

a0 + a0
κ2

2n + O(κ4)
=

=

κ
n + κ3

2n(n+2) + O(κ5)

1 + κ2

2n + O(κ4)
=

κ

n
− κ3

n2(n + 2)
+ O(κ5).

For the expansion as κ → ∞, we need the following

Lemma B.1 (Watson’s Lemma). Let p be a function in L1(0, T), with T > 0, and let Ik(p) =∫ T
0 p(t)e−κtdt. Supposed that, in a neighbourhood of 0, we have p(t) = tβ

(
∑N−1

i=0 aiti +

O(tN)
)
, with β > −1. Then

Ik(p) = κ−β−1

(
N−1

∑
i=0

aiΓ(β + i + 1)κ−1 + O(κ−N)

)
,

as κ → ∞.

We apply this lemma to the integrals of the form [ f (θ)]κ =
∫ π

0 f (θ)eκ cos θ sinn−2 θ dθ.
Performing the change of variable t = 1 − cos θ, we get

[ f (θ)]κ = eκ
∫ 2

0
f
(

arccos(1 − t)
)
e−κt(2t − t2)

n−3
2 dt.

Let f (θ) = 1 − cos θ. We have

(2t − t2)
n−3

2 = 2
n−3

2 t
n−3

2 (1 − 1
2 t)

n−3
2 = 2

n−3
2 t

n−3
2
(
1 − n−3

4 t + O(t2)
)
.

We call this function A, and apply Watson’s Lemma to A and tA. This yields:

[1]κ =
2

n−3
2

κ
n−1

2

(
Γ( n−1

2 )− n−3
4 Γ( n+1

2 ) 1
κ + O(κ−2)

)
,

[ f (θ)]κ =
2

n−3
2

κ
n+1

2

(
Γ( n+1

2 )− n−3
4 Γ( n+3

2 ) 1
κ + O(κ−2)

)
.

Using Γ(p + 1) = p Γ(p), we get

〈 f (θ)〉Mκ =
[ f (θ)]κ
[1]κ

=
n − 1

2κ
− (n − 1)(n − 3)

8κ2 + O(κ−3).

In particular, as κ → ∞, we have the following expansion:

c(κ) = 1 − n − 1
2κ

+
(n − 1)(n − 3)

8κ2 + O(κ−3). (B.1)
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B.2 Asymptotics of 〈 f (θ)〉M̃κ

We wish to decompose `κ(cos θ) as a polynomial in κ or κ−1. In order to do so, we provide
the following

Proposition B.2. Let L and D be two linear operators on the space of polynomials, defined
by

L(P) = −(1 − X2)P′′ + (n + 1)XP′ + (n − 1)P

D(P) = −(1 − X2)P′ + XP.

We then have the following expansions for `κ:

`κ(cos θ) =
N

∑
p=0

Hp(cos θ)κp + RN
κ,0(cos θ), as κ → 0,

`κ(cos θ) =
N

∑
p=1

Gp(cos θ)κ−p + RN
κ,∞(cos θ), as κ → ∞,

where Hp and GN
p are polynomials of degree p and at most N − p, respectively, given by

the following induction relations:{
L(H0) = 1
L(Hp+1) = −D(Hp)

and

D(GN
1 )(cos θ) = 1 + O0(θ

2N)(
D(GN

p+1) + L(GN
p )
)
(cos θ) = O0(θ

2(N−p)),
(B.2)

and where the remainders RN
κ,0 and RN

κ,∞ satisfy, for any function f such that θ 7→ f (θ) sin
n
2 θ

belongs to L2(0, π) and | f (θ)| = O(θ2β) in a neighbourhood of 0, the following estimates,
for κ → 0 and κ → ∞, respectively:

〈 f (θ)RN
κ,0(cos θ) sin2 θ〉Mκ = O0(κ

N+1)

〈 f (θ)RN
κ,∞(cos θ) sin2 θ〉Mκ = O∞(κ

−β−N−2).

The proof of this result can be found in Appendix B.1 of [9]. We can then expand

〈 f (θ)〉M̃κ =


∑N

p=0〈 f (θ)Hp(cos θ) sin2 θ〉Mκκp

∑N
p=0〈Hp(cos θ) sin2 θ〉Mκκp

+ O0(κ
N+1)

∑N
p=1〈 f (θ)GN

p (cos θ) sin2 θ〉Mκκ−p

∑N
p=1〈GN

p (cos θ) sin2 θ〉Mκκ−p
+ O∞(κ

−β−N).

Since we have

H0 =
1

n − 1
, H1 = −X

X
2n(n − 1)

, G2
1 =

4 − X
3

, G2
2 =

2(n − 2)
3

,
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we have

〈cos θ〉M̃κ =

1
n−1 〈cos θ sin2 θ〉Mκ − κ

2n(n−1) 〈cos2 θ sin2 θ〉Mκ

1
n−1 〈sin2 θ〉Mκ − κ

2n(n−1) 〈cos θ sin2 θ〉Mκ

+ O0(κ
2),

〈cos θ − 1〉M̃κ =
1

3κ 〈cos θ(4 − cos θ) sin2 θ〉Mκ − 2(n−2)
3κ2 〈cos θ sin2 θ〉Mκ

1
3κ 〈(4 − cos θ) sin2 θ〉Mκ − 2(n−2)

3κ2 〈sin2 θ〉Mκ

+ O∞(κ
−3).

The last step consists of computing the terms of the form 〈cosi θ sin2 θ〉Mκ. We do so by
expressing them in terms of c(κ). Integrating by parts, we have

〈sin2 θ〉Mκ = n−1
κ c,

〈cos θ sin2 θ〉Mκ = n−1
κ (1 − n

κ c),

〈cos2 θ sin2 θ〉Mκ = 〈sin2 θ〉Mκ − 〈sin4 θ〉Mκ = n−1
κ

(
c − n+1

κ (1 − n
κ c)
)

.

Finally, we get the following expansion:

c̃(κ) = 〈cos θ〉M̃κ =

{ 2n−1
2n(n+2)κ + O0(κ

2),

1 − n+1
2κ + (n+1)(3n−7)

24κ2 + O∞(κ
−3).

(B.3)

We are now ready to provide the following

Proposition B.3. We have the following expansions:

1. For ρ → n,

c =
√

n+2
n

√
ρ − n + O(ρ − n),

c̃ = 2n−1
2n

√
n+2

√
ρ − n + O(ρ − n),

λ = −1
4
√

n+2
1√

ρ−n + O(1),

θc =
π
2 − 2√

n(n+2)

√
ρ − n + O(ρ − n).

2. For ρ → ∞,

c = 1 − n−1
2 ρ−1 + (n−1)(n+1)

8 ρ−2 + O(ρ−3),

c̃ = 1 − n+1
2 ρ−1 + (n+1)(3n+1)

24 ρ−2 + O(ρ−3),

λ = − n+1
6 + O(ρ−3),

θc = arctan
(√

6(n+1)
4

)
+ O(ρ−1).
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Proof. First we compute an expansion of ρ =
κ

c
(compatibility condition):

ρ =

{
n + 1

n+2 κ2 + O0(κ
4),

κ + n−1
2 + (n−1)(n+1)

8κ + O∞(κ
−2),

which we can reverse to find

κ =

{√
n + 2

√
ρ − n + On(ρ − n),

ρ − n−1
2 − (n−1)(n+1)

8ρ + O∞(ρ
−2).

Now, inserting this expansion into

λ =

{
− 1

4κ + O0(1)

− n+1
6κ2 + O∞(κ

−3)

and

θc =


π
2 − 2

(n+2)
√

n κ + O0(κ
2)

arctan
(√

n+1
√

6
4

)
+ O∞(κ

−1),

the claim follows.
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C

The codes

C.1 Simulation of the Vicsek model

1 % SIMULATION OF A VICSEK-TYPE FLOCK IN A SQUARE
2 c l e a r a l l
3 rng ( ' s h u f f l e ' )
4 s i z e =25 . ; % s i z e o f the box
5 v=0.03 ; % speed module
6 dt=1. ; % time step
7 r =1; % i n t e r a c t i o n radius
8 to ta l t ime =10000;
9 eta=0.1 ; % no i se i n t e n s i t y

10 nf lock =300; % f l o c k dimension
11

12 f i g u r e
13 ax i s ( [ 0 s i z e 0 s i z e ] )
14 ax i s ( ' square ' )
15 box on
16 hold on
17 s e t ( gca , ' x t i ck ' , [ ] , ' y t i ck ' , [ ] )
18

19 id=ones ( nf lock , 1 ) ;
20 x=rand ( nf lock , 1 ) . ∗ s i z e ;
21 y=rand ( nf lock , 1 ) . ∗ s i z e ;
22 theta=2. ∗ p i . ∗randn ( nf lock , 1 ) ;
23 m=mean( theta ) ;
24 vx=v. ∗ cos ( theta ) ;
25 vy=v. ∗ s in ( theta ) ;
26 meandir=theta ;
27 % BEGIN INTERACTIONS
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28 f o r nsteps =1: tota l t ime
29 nsteps
30 f o r ind iv =1: n f l ock
31 % p e r i o d i c i t y
32 i f (x ( ind iv )<0) ; x( ind iv )=x( ind iv )+s i z e ; end
33 i f (y ( ind iv )<0) ; y( ind iv )=y( ind iv )+s i z e ; end
34 i f (x ( ind iv )>s i z e ) ; x ( ind iv )=x( ind iv ) - s i z e ; end
35 i f (y ( ind iv )>s i z e ) ; y ( ind iv )=y( ind iv ) - s i z e ; end
36

37 % 1 . CALCULATE THE DISTANCE
38 d i s t ( 1 : n f l ock )=( i d . ∗x( ind iv ) -x ( 1 : n f l ock ) ) . ^2+( i d . ∗y( ind iv )...

↪→ -y ( 1 : n f l ock ) ) . ^2;
39 % 2 . COMPUTE THE NEW DIRECTION,
40 % CONSIDER ONLY THE INDIVIDUALS WHICH ARE 'CLOSE'
41 % these s teps could be made more e f f i c i e n t
42 index=f ind ( d i s t <r ) ;
43 thetanear=theta ( index ) ;
44 c=mean( cos ( thetanear ) ) ;
45 s=mean( s in ( thetanear ) ) ;
46 meandir ( ind iv )=atan2 ( s , c ) ; % four - quadrant inve r s e tangent
47 end
48 % 3 . AND INTRODUCING SOME UNIFORMLY DISTRIBUTED NOISE
49 theta=meandir+e t a . ∗( rand ( nf lock , 1 ) ) - . 5 ∗ eta ∗ id ;
50 vx=v. ∗ cos ( theta ) ;
51 vy=v. ∗ s in ( theta ) ;
52 x=x+vx. ∗dt ;
53 y=y+vy. ∗dt ;
54 c l a % c l e a r s the p lot
55 s e t ( gcf , ' doublebuf fe r ' , ' on ' ) % avoids f l i c k e r i n g
56 quiver (x , y , vx , vy ,0 . 5 )
57 quiver (12 .5 ,12 .5 ,1∗ cos (mean( theta ) ) ,1∗ s in (mean( theta ) ) ,2 , ' ...

↪→ LineWidth ' ,2 , ' MaxHeadSize ' ,1 , ' Color ' , ' black ' )
58 c i r c l e s (x (1) ,y (1) , r , ' f a c e c o l o r ' , ' r ' , ' edgeco lor ' , ' r ' , ' FaceAlpha...

↪→ ' , .2 , ' EdgeAlpha ' , . 3 )
59 drawnow
60 end

C.2 Computation of λ

1 % MAIN: WE COMPUTE LAMBDA AND PLOT IT AS A FUNCTION OF RHO
2 c l e a r a l l
3 f i g u r e
4 ax i s ( [ 0 8 -3 0 ] )
5 s e t ( gca , ' x t i ck ' , [ 0 , 2 , 4 , 6 , 8 ] , ' y t i ck ' , [ - 3 , - 2 .5 , - 2 , - 1 .5 , - 1 , - 0 .5 , 0 ] )
6 box on
7 hold on
8
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9 f o r n=2:4
10 i =0;
11 f o r k=0.1 :0 . 1 : 8
12 i=i +1;
13 c ( i )=Cfunction (k , n) ;
14 c t i l d e ( i )=Ct i lde funct ion (k , n) ;
15 r ( i )=k/c ( i ) ;
16 lambda ( i )=(r ( i ) -n - k∗ c t i l d e ( i ) ) /(k∗( r ( i ) -n - k∗c ( i ) ) ) ;
17 end
18

19 plot ( r , lambda , ' LineWidth ' ,0 . 8 )
20 end
21

22 x labe l ( ' Density \rho ' ) % x - ax i s l a b e l
23 y labe l ( ' \lambda ' ) % y - ax i s l a b e l
24 legend ({ 'n=2 ' , 'n=3 ' , 'n=4 ' } , ' Pos i t ion ' , [ 0 . 7 0 .7 0 .12 0 .1 ] )

1 funct ion [A]= f fun c t i on (k , n)
2 % WE CONSIDER f SUCH THAT f_k (x)=(s inx ) ^(n/2 -1)g_k(x)
3 % WE WISH TO COMPUTE IT USING A FINITE DIFFERENCE APPROACH
4 N=3000;
5 f o r i =1:N-1
6 theta ( i )=i ∗ pi /N;
7 end
8 f o r i =1:N-1
9 b( i )=-N^2/ pi ^2∗exp (k∗ cos ( ( i +1/2)∗ pi /N) ) /exp (k∗ cos ( ( i ) ∗ pi /N...

↪→ ) ) ;
10 b t i l d e ( i )=-N^2/ pi ^2∗exp (k∗ cos ( ( i -1/2) ∗ pi /N) ) /exp (k∗ cos ( ( i ) ...

↪→ ∗ pi /N) ) ;
11 d( i )=(n -2 ) /(2∗ s in ( theta ( i ) ) . ^2) ∗(1+(n -2 ) /2∗ cos ( theta ( i ) ) . ...

↪→ ^2) -k∗ cos ( theta ( i ) )+N^2/ pi ^2∗( exp (k∗ cos ( ( i -1/2) ∗ pi /...
↪→ N) )+exp (k∗ cos ( ( i +1/2)∗ pi /N) ) ) /exp (k∗ cos ( ( i ) ∗ pi /N) ) ;

12 end
13 b t i l d e=b t i l d e (2 :end ) ;
14 b=b(1 :end -1) ;
15 A=g a l l e r y ( ' t r i d i a g ' ,N-1 , bt i lde , d , b) ;
16 end

1 funct ion [ c ]=Cfunction (k , n)
2 N=3000;
3 f o r i =1:N-1
4 theta ( i )=i ∗ pi /N;
5 end
6 c1=cos ( theta ) . ∗exp (k∗ cos ( theta ) ) . ∗ s in ( theta ) . ^(n -2 ) ;
7 c2=exp (k∗ cos ( theta ) ) . ∗ s in ( theta ) . ^(n -2 ) ;
8 C1=trapz ( c1 ) ;
9 C2=trapz ( c2 ) ;
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10 c=C1/C2 ;
11 end

1 funct ion [ c t i l d e ]= Ct i lde funct ion (k , n)
2 N=3000;
3 f o r i =1:N-1
4 theta ( i )=i ∗ pi /N;
5 end
6 A=f f unc t i on (k , n) ;
7 S=s in ( theta ) . ^(n/2) ;
8 S=S ' ;
9 F=A\S ; %vector o f funct ions f ^i_k , so lu t i on o f AF=S

10 G=(s in ( theta ) ' . ^(1 -n/2) ) . ∗F; %vector o f funct ions g^i_k
11 H=G. ∗(( s in ( theta ) ) . ^( -1) ) ;
12 theta=theta ' ;
13 c1=cos ( theta ) . ∗H.∗exp (k∗ cos ( theta ) ) . ∗ s in ( theta ) . ^n ;
14 c2=H.∗exp (k∗ cos ( theta ) ) . ∗ s in ( theta ) . ^n ;
15 C1=trapz ( c1 ) ;
16 C2=trapz ( c2 ) ;
17 c t i l d e=C1/C2 ;
18 end
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