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e compute L(Ng|Ng) =: T(Ng, -)
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Warm-up for splitting

Indirect problem

Now L(N) unknown

T(qu : )

E(Nc’;
Which N satisfy the splitting equation

EF(Nq, N2) = E[E[f(Nq, N;)|NqH - // F(k, 1) (k, d1)Bq(d/)
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Warm-up for splitting

Indirect problem

Now L(N) unknown

T(Nq’ : )

L(Ng

q» )
Which N satisfy the (dependent) convolution equation

Eg(N) = E[E[g(Nq + N;;)\Nq]] - //g(k + )T (k, dI)P(dk)

DA
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Ny is observed, conditional law of N;‘ given Ng = kis ...
Example 1 T(k, -) = Poi(1 — q);
then N ~ Poi(1) and this is the only choice!

Example 2 T(k, -) = Bin (n — k, M);
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Example 3 T(k, -) = NegBin(n+ k, p(1 — q));
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Warm-up for splitting

Examples

Ny is observed, conditional law of N;‘ given Ng = kis ...
Example 1 T(k, -) = Poi(1 — q);
then N ~ Poi(1) and this is the only choice!
Example 2 T(k, -) = Bin (n — k, Pl(ii;g));
then N ~ Bin(n, p)

Example 3 T(k, -) = NegBin(n+ k, p(1 — q));
then N ~ NegBin(n, p)



Integration by parts

Distributions

Integration by parts formula
N satisfies IBPF for some function 7 : Ng — R, if for bounded f,
E[Nf(N)] = E[x(N)f(N + 1)].

Problem
Given 7, what is the distribution of N?



Integration by parts

Distributions

Integration by parts formula

N satisfies IBPF for some function 7 : Ng — R, if for bounded f,
E[Nf(N)] = E[x(N)f(N + 1)].

Problem
Given 7, what is the distribution of N?

Examples
@ 7(k) =1 for all k € Ny, then N ~ Poi(1)
@® 7w(k)=z(n—k) for k=0,1,...,n, then N ~ Bin (n,ﬁ);
© 7(k) = z(n+ k) for k € Ng, then N ~ NegBin(n, z).
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Distributions

Integration by parts formula

N satisfies IBPF for some function 7 : Ng — R, if for bounded f,
E[Nf(N)] = E[r(N)f(N + 1)].

How to determine the law of N7?

@ choose f = 1743, then kP(N = k) = w(k)P(N = k — 1),
k=1,2,...



Integration by parts

Distributions

Integration by parts formula

N satisfies IBPF for some function 7 : Ng — R, if for bounded f,
E[Nf(N)] = E[r(N)f(N + 1)].

How to determine the law of N7?

@ choose f = 1743, then kP(N = k) = w(k)P(N = k — 1),
k=1,2,...

QIP’(N:k):W P(N = 0)

© P(N = k) = exp(—m)—— [k]



Splitting and integration by parts

Connection

g-Splitting kernel
If N satisfies IBPF(7), then T(k, -) satisfies
IBPF((1 — q)m(k + -)).

Nq
Ng satisfies an IBPF. If N satisfies IBPF(7), then that function is

the “average” g ; m(k +j)T(k,)).



Splitting and integration by parts

Connection

g-Splitting kernel
If N satisfies IBPF(7), then T(k, -) satisfies
IBPF((1 — q)m(k + -)).

N

q
Ng satisfies an IBPF. If N satisfies IBPF(7), then that function is
the “average” g m(k +j)T(k,j).

Equivalent statements

@ N satisfies IBPF(7)
® N satisfies the splitting equation

© N satisfies the (dependent) convolution equation
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Point processes

A point process is a random point measure
(r.v. Nis now {Np}a).
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Point processes

Point processes

A point process is a random point measure
(r.v. Nis now {Np}n). ")

Poisson process *)
QY9
o Np ~ Poi(m(A))
) 9 .

e given Np, points are distributed iid ‘9
— 3

@

e ANN =0, then Ny and Ny

independent
Q ¥




Spatial picture

Point processes

Point processes

A point process is a random point measure
(r.v. Nis now {Np}n).

Gibbs process

e defined locally by
G ﬁ e V(- |pac) p
(' ‘ A) (1) = T A

e existence? uniqueness?




Spatial picture

Point processes

A point process is a random point measure
(r.v. Nis now {Np}n).

GIbbS pI’OCGSS Nguyen, Zessin 79
DLR equations equivalent to IBPF

[ i@
= [[ Hx ity e m(@x)G )

Point processes




Spatial picture

Point processes

A point process is a random point measure
(r.v. Nis now {Np}a).

Papangelou process
replace e~ V() dm by 7(p, -)

[ e utax)pian)
= [ s+ 5.y )P

Point processes
v )

Qv 9
v Q

*)
2.8
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Spatial picture

Point processes

Point processes

A point process is a random point measure
(r.v. Nis now {Np}a).

Papangelou process, examples

o m(u,-)=m

o m(p, ) =z(m—p)

o m(p, ) =z(m+ p)
Each N, satisfies an IBPF.

)

)
)
)

)
)

3




Spatial picture

Point processes

g-splittings and thinnings

e choose colour for each “ball”
independently, e.g. blue with
probability g

e joint law of red and blue point ’
configurations is g-splitting S9 0
e marginals are thinnings O

e conditional law of red point 8
configuration given blue point 0 ’
configuration is splitting kernel




Spatial picture

Point processes

Examples

@ Poisson process P ,:

P%, = Pgm, 7= Pom ® P(1_g)m Q °
@® Difference process D, p: ’
DIpm=D_a . oY 9
T+(1—q)z’
T(Vv ) D(l—q)z,m—u o 0 ’
© Sum process S, o

e 3
Sm T S g™

T(V7 ) = S(lfq)z,m+1/ 0 O




Spatial picture

Properties of Splittings and Thinnings

Sphtt'ng kernel ( (1) Karr; (2) Nehring, R, Zessin)

@ If P is finite, then T(v, -) ~ (1 — q)"P).
@ If P satisfies IBPF for 7, then T (v, -) satisfies IBPF for
1=qn(v+-, )



Spatial picture

Properties of Splittings and Thinnings

Sphtt'ng kernel ( (1) Karr; (2) Nehring, R, Zessin)

@ If P is finite, then T(v, -) ~ (1 — q)"P).
@ If P satisfies IBPF for 7, then T (v, -) satisfies IBPF for
1=qn(v+-, )

Th'nn|ngs (Nehring, R, Zessin)
If P satisfies IBPF for 7, then also P9 does for

q [ wlot v TG a)



Spatial picture

Equivalence

Characterization (ehring, R, Zessin)
The following statements are equivalent

® P solves IBPF for 7;
® P satisfies the splitting equation

Se(h) = | [ b, )P

© P satisfies the (dependent) convolution equation

P(6) = / / H(4+ 1)V (1, ) PI(d )



Spatial picture

Consequences

Uniqueness of solutions of splitting and convolution equation

Uniqueness of solutions of IBPF implies uniqueness for splitting
and convolution equation.



Spatial picture

Consequences

Uniqueness of solutions of splitting and convolution equation
Uniqueness of solutions of IBPF implies uniqueness for splitting
and convolution equation.

a-condensability (Ambartzumian)
P is a-condensable if there exists Q such that Q7= = P
o if P soIves IBPF for o, condensability “reduces” to solving
=q [7(v+p )T(v,dp)



Spatial picture
Consequences
Spatial birth processes

Let P solve IBPF for 7w, (Ng)q (point measure valued) process such
that transition kernel

Pa.q' (15 ) = Tqq(ps )

solves an IBPF for (¢’ — q) [ m(p + &, -)T9 (11, dr).
e law of Ny is P9

e q+— Ny increasing



Spatial picture
Consequences
Spatial birth processes

Let P solve IBPF for 7w, (Ng)q (point measure valued) process such
that transition kernel

Pa.q' (15 ) = Tqq(ps )

solves an IBPF for (¢’ — q) [ m(p + &, -)T9 (11, dr).
e law of Ny is P9

e q+— Ny increasing

Cox processes and condensability
P is a Cox process iff g — N9 extends to R;..
e (otherwise only on [0, T] for some T > 1)

e exit space of pure birth process given by mixtures of Poisson
pure birth



Further examples

Negative binomial process

Negative binomial process (cregoire 82)
P ~ BN(r,v) if P has Laplace transform

L(F) = [1+/1—efdy}r.

e shares only one-dimensional marginals with sum process

IBPF
If v is finite, then P ~ BN/(r,v) satisfies IBPF with kernel

r+ |yl

v(dx).



Further examples

Negative binomial process

Negative binomial process (cregoire 82)
P ~ BN(r,v) if P has Laplace transform

L(f) = [1+/1—efdy}r.

Splitting
If v is finite, then then the g-splitting ernel of P ~ BN (r,v) is

T, ) = BN<r+!u! 1—|—q|qz/|)



Further examples

log-Gauss Cox process

|Og—Ga uss COX pI’OCGSS (Coles, Jones 91; Mgiller, Syversveen, Waagepetersen 98)

P ~1GC(u, c) if P is a Cox process driven by e, where Y is
Gaussian with mean p and covariance c.

Reduced Palm measures of log-Gauss Cox processes (ceuroly, Malier,
Waagepetersen 15)

If P~ IGC(, c), then its reduced Palm measure P., for a simple
and finite point measure v is log-Gauss Cox with parameters

/L+/CX7.V(dX), c.



Further examples

log-Gauss Cox process

Thinning
If P ~I1GC(u, c), then its g-thinning is log-Gauss Cox
P ~1GC(1+Ing,c).

Splitting
If P~ IGC(u,c) a finite process, then its g-splitting kernel is

N
T(Vv): (1 Zq) 'Dlln

i.e. is log-Gauss Cox process with parameters

w4 / e, v(dx) +In(l —q), c.



Further examples

Gauss Poisson process

Ga uss- POISSOH prOCGSS (Newman 70; Milne, Westcott 72; Macchi 72)
P ~ GP(\, H) if P has Laplace fransform

L(f) = exp (— / 1—e T \(dx)
// e TM][1 - e V)] H(dx,dy)> .

Th | nn | ng (Milne, Westcott 72)

If P ~ GP(A, H), then its g-thinning is Gauss-Poisson
P9 ~ GP(q\, g>H).



Extensions

e replace independent thinning by dependent thinning
e pairs of thinning and condensing kernels
e integration by parts
e relation between birth-and-death process and thinned
birth-and-death process



e described point processes in three different ways: DLR
equations, integration by parts, splittings/dependent
convolutions

29 29 °e
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Q 9 2 e ©

and thinnings

e derived properties of Papangelou processes and their splittings




e described point processes in three different ways: DLR
equations, integration by parts, splittings/dependent
convolutions
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e derived properties of Papangelou processes and their splittings
and thinnings
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