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Introduction Differential expression studies in cancer research

Example: Leukemia data set

Expression measurements (mRNA) of m = 12625 genes in n = 79
cancer patients:
Two groups of patients:

BCR/ABL: 37 patients
NEG: 42 patients

Question: find genes whose average expression differs between the two
groups
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Introduction Differential expression studies in cancer research

Large-scale inference

Setup: one statistical test for each gene g
e.g. Student’s t test of H0,g : no difference between group means

Goal: select a subset S of genes with a “small” number V (S) of false
positives (genes in S but for which H0,g is true)

Step 1 (user): choose a (multiple testing) risk of interest
1 P(V (S) > 0): Family-Wise Error Rate
2 E(V (S)/(|S| ∨ 1)): False Discovery Rate

and an acceptable target level for this risk: α

Step 2 (statistician): select S satisfying the desired guarantee
1 Bonferroni, Bonferroni-Holm, Hommel, . . .
2 Benjamini-Hochberg, Storey, . . .
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Introduction Differential expression studies in cancer research

Example: FWER and FDR thresholding

State of the art answer
With α = 0.05,

1 FWER control: |S1| = 20: 1635_at, 1636_g_at, 1674_at. . .
41815_at

2 FDR control: |S2| = 163: 1000_at, 1001_at, 1002_f_at. . .
1148_s_at

Post hoc questions
can we incorporate prior biological knowledge: fold change, gene pathways

inference on S = S1 ∪ S ′1?
inference on S = S2 \ S ′2
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Introduction Differential expression studies in cancer research

User-defined selection 1: volcano plot
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Introduction Differential expression studies in cancer research

User-defined selection 2: top k genes
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Introduction Differential expression studies in cancer research

User-defined selection 3: gene pathways
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Introduction Differential expression studies in cancer research

User-defined selection: toy example
Classical multiple testing Post hoc inference
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How can JER control be achieved?
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Introduction Post hoc inference

The need for post hoc inference

Challenges
large-scale multiple testing is exploratory in nature
no formal statistical guarantee on such user-defined selections

Proposal: post hoc confidence bounds
H = {1, . . .m}: m null hypotheses to be tested
H0 ⊂ H: true null hypotheses, m0 = |H0|
H1 = H \H0
V (S) = |S ∩H0|: number of false postives in S ⊂ H

Goal: find V α such that

P
(
∀S ⊂ {1 . . .m}, V (S) ≤ V α(S)

)
≥ 1− α
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Introduction Post hoc inference

Related works: selective inference

for a specific selection rule
Inference for a specific selection rule S

Lockhart et al. (2014), Fithian et al. (2014)

for an arbitrary, pre-decided selection rule
Inference for an arbitrary selection rule, to be chosen before looking at the
data

Benjamini and Yekutieli (2005)

Omnibus
Inference simultaneously over all S ⊂ {1, . . . ,m}, possibly chosen
after looging at the data

Genovese and Wasserman (2006), Goeman and Solari (2011), Berk et
al. (2013)
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Post hoc bounds from JER control JER control: definition and associated bounds

Basic idea: reference family

Reference set
Assume that we know an upper bound for V (R) := |R ∩H0| for some
R ⊂ H

Then for any S ⊂ H, we have V (S) ≤ |S ∩ Rc |+ V (R)

Proof: simply note that V (S) = |S ∩H0| = |S ∩H0 ∩ Rc |+ |S ∩H0 ∩ R|

Reference family
Idea: build a family of sets (R1, . . . ,RK ) for which we have an upper bound
on V (Rk) for each k.
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Post hoc bounds from JER control JER control: definition and associated bounds

Post hoc bound via JER control

Definition (Joint Family-Wise Error Rate control)
Let R = (Rk)k be a reference family of subsets of H.

JER(R) := P
(
∃k,V (Rk) ≥ k

)
≤ α

That is, E = {∀k : V (Rk) ≤ k − 1} is of probability ≥ 1− α

Proposition: post hoc upper bound on the number of false positives
On the event E , for any set S ⊂ {1, . . .m},

V (S) ≤ |S| ∧min
k
{|S ∩ Rc

k |+ k − 1}

Recall: V (S) ≤ |S ∩ Rc |+ V (R)

Applicable to any number of possibly data-driven sets!
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Post hoc bounds from JER control JER control: definition and associated bounds

Post hoc inference: toy example
Classical multiple testing Post hoc inference
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FDR ≤ 25% With probability ≥ 75%
|S ∩H1| ≥ 2 and |S ′ ∩H1| ≥ 1

How can JER control be achieved?
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Post hoc bounds from JER control JER control based on Simes’ inequality

Simes-based1 JER control and post hoc bound

Simes’ inequality
If the p-values (pi ), 1 ≤ i ≤ m, are independent then

P(∃k ∈ {1, . . . ,m0} : p(k:H0) ≤ αk/m0) = α

Under some forms of positive dependence (PRDS(H0)): ≤ α

(PRDS = Positive Regression Dependency on a Subset)

Corollary: Simes-based JER control and post hoc bound
Under PRDS, the Simes reference family (Rk)k , with

Rk = {1 ≤ i ≤ m : pi ≤ αk/m}

achieves JER control at level α and thus provides a post hoc bound
1R. J. Simes. Biometrika 73.3 (1986), pp. 751–754.
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Post hoc bounds from JER control JER control based on Simes’ inequality

Simes-based JER control and post hoc bound

Post hoc bound for the Simes family
Under PRDS, with probability larger than 1− α, for any S,

V (S) ≤ |S| ∧min
k

∑
i∈S

1 {pi > αk/m}+ k − 1

 .
Comments

Recovers the closed testing bound of Goeman and Solari (2011)
JER: a generic device to build post hoc bounds
Independence/PRDS assumption:

can we obtain dependence-free JER control?
how sharp is the Simes inequality under PRDS?
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Post hoc bounds from JER control JER control based on Simes’ inequality

Application: Leukemia data set
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Post hoc bounds from JER control Limitations of Simes-based JER control

Dependence-free JER control?

Under arbitrary dependence, with probability larger than 1− α, for any S,

V (S) ≤ |S| ∧min
k

∑
i∈S

1 {pi > α/Cmk/m}+ k − 1

 ,

Cm =
∑m

k=1 k−1 ∼ log(m): Hommel’s correction factor for dependency2

Dependence-free adjustment is not a sensible objective
implies adjusting to a worst case dependency
very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

2G Hommel. “Tests of the overall hypothesis for arbitrary dependence structures”.
Biometrische Zeitschrift 25.5 (1983), pp. 423–430.

Pierre Neuvial (IMT) Post hoc inference via multiple testing SPSML, Potsdam 2018-02-14 18 / 32



Post hoc bounds from JER control Limitations of Simes-based JER control

Sharpness and conservativeness of the Simes family

Simes’ equality is sharp under independence, but conservative under positive
dependence.

Conservativeness of JER control under PRDS
Example: Gaussian equi-correlation, white setting (m0 = m = 1, 000):
Test statistics ∼ N (0,Σ) with Σii = 1 and Σij = ρ for i 6= j .

Equi-correlation level: ρ 0 0.1 0.2 0.4 0.8
Achieved JER ×α−1 0.99 0.85 0.72 0.42 0.39

Can we build a family achieving sharper JER control?
We want to be adaptive to dependency
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Adaptive JER control Calibration of a rejection template

JER control with λ-calibration

Rejection template
Consider a reference family Rα = (Rk(α))k , where

Rk(α) = {1 ≤ i ≤ m : pi ≤ tk(α)}

where tk(0) = 0 and tk(·) is non-decreasing and left-continuous on [0, 1]

Example (Simes family): tk(α) = αk/m

Associated rejection template: collection (tk(λ))k for all 0 ≤ λ ≤ 1

Single-step λ-calibration

λ(α) = max
{
λ ≥ 0 : P

(
min

k

{
t−1k

(
p(k:H0)

)}
≤ λ

)
≤ α

}
The family Rλ(α) controls JER at level α.
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Adaptive JER control Calibration of a rejection template

Example: Gaussian location model

Setting: X ∼ N (µ,Σ), pi = 2Φ(|Xi |)

λ(α) = max
{
λ ≥ 0 : PZ∼N (0,Σ)

(
min

k

{
t−1k

(
2Φ(|Z(k)|)

)}
≤ λ

)
≤ α

}
yields JER(Rλ(α)) ≤ α

Choice of the template
Linear template: tk(λ) = λk/m (generalizes Simes)
Balanced template: tk(λ) such that t−1k (2Φ(|X(k)|)) ∼ U [0, 1]

λ-calibration
If Σ is known, λ(α) can be calibrated by Monte-Carlo
If Σ is unknown, λ(α) can be calibrated by sign-flipping
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control with λ-calibration for the linear template
Example under positive dependency (Gaussian equi-correlation)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Linear template, known dependence (calibration by Monte-Carlo)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Linear template, unknown dependence (calibration by sign-flipping)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Balanced template, known dependence (calibration by Monte-Carlo)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Balanced template, unknown dependence (calibration by sign-flipping)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

Estimation power for under independence

●
●

●
● ● ● ●

●●

●

● ● ● ●

●
●

● ● ● ● ●

●●
●●

●●

●●

●●

●●
●●

●
●

●
● ● ● ●

●●

●

● ● ● ●

●
●

●
● ● ● ●

●●
●●

●●

●●

●●
●●

●●

●

●

●
●

● ● ●

●●

●

● ● ● ●

●
●

●
● ● ● ●

●●

●●

●●

●●

●●

●●

●●

●
●

●
● ● ● ●

●●

●

● ● ● ●

●

●

●
● ● ● ●

●●

●●

●●

●●

●●
●●

●●

●
●

●
● ● ● ●

●●

●

● ● ● ●

●

●

●
● ● ● ●

●●

●●

●●

●●

●●
●●

●●

●
●

●
● ● ● ●

●●

●

● ● ● ●

●

●

●
● ● ● ●

●●

●●

●●

●●

●●

●●
●●

●
●

●
●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●●

●●

●●
●●

●●
●●

●

●

●

●
●

●
●

●●

●

●
●

● ●

●

●

●

●
●

●
●

●●

●●

●●

●●
●●

●●
●●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●●

●●
●●

●●
●●

π0 : 0.8 −  µ : 2.5 π0 : 0.9 −  µ : 3 π0 : 0.99 −  µ : 4.3

R
=

N
m

R
=

{p <
=

 0.05}
R

=
B

H
(0.05)

0.
01

0.
02

0.
05

0.
10

0.
15

0.
20

0.
25

0.
01

0.
02

0.
05

0.
10

0.
15

0.
20

0.
25

0.
01

0.
02

0.
05

0.
10

0.
15

0.
20

0.
25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Target JER level

A
ve

ra
ge

d 
po

w
er Family

●

●

●

●

●

Balanced (K=10)
Balanced (K=2m1)
Balanced (K=m)
Linear
Simes

Xi ∼ N (0, 1) under H0

Xi ∼ N (µ̄, 1) under H1

cor(Xi ,Xj) = 0 for
i 6= j
µ̄ = 2
Estimation power:
E (S(H1))/m1

Pierre Neuvial (IMT) Post hoc inference via multiple testing SPSML, Potsdam 2018-02-14 27 / 32



Adaptive JER control Application: Leukemia data set

λ-Calibration by permutations

For two sample tests, the distribution of

min
k

{
t−1k

(
p(k:H0)

)}
can be sampled from using permutations of the group labels
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations
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Adaptive JER control Application: Leukemia data set

Conclusions

Summary
JER control induces post hoc bounds
Existing bounds recovered from probabilistic inequalities (Simes)
Framework to build adaptive JER control

Results not discussed here
Step-down procedures (adaptation to |H0|)
Detection power: connection to “higher criticism” in a sparse setting

Ongoing/future works
Choice of the template and its size
Applications (GWAS, differential expression, neuro-imaging)
Structured rejection sets: algorithms and statistical results
Software (R package sansSouci) and visualization tools
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https://github.com/pneuvial/sanssouci
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