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Introduction Differential expression studies in cancer research

Example: Leukemia data set

o Expression measurements (MRNA) of m = 12625 genes in n = 79
cancer patients:
@ Two groups of patients:

e BCR/ABL: 37 patients
o NEG: 42 patients

Question: find genes whose average expression differs between the two
groups
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Introduction Differential expression studies in cancer research

Large-scale inference

@ Setup: one statistical test for each gene g

o e.g. Student's t test of Hg 4: no difference between group means

@ Goal: select a subset S of genes with a “small” number V/(S) of false
positives (genes in S but for which Hp 4 is true)

Step 1 (user): choose a (multiple testing) risk of interest

Q@ P(V(S) > 0): Family-Wise Error Rate
@ E(V(S)/(]S] v 1)): False Discovery Rate

and an acceptable target level for this risk: «

Step 2 (statistician): select S satisfying the desired guarantee

@ Bonferroni, Bonferroni-Holm, Hommel, . ..
@ Benjamini-Hochberg, Storey, . ..

v
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Differential expression studies in cancer research
Example: FWER and FDR thresholding

State of the art answer

With o = 0.05,
@ FWER control: |S;| =20: 1635_at, 1636_g_at, 1674_at. ..
41815_at
@ FDR control: |S;| = 163: 1000_at, 1001_at, 1002_f_at. ..
1148_s_at

Post hoc questions
can we incorporate prior biological knowledge: fold change, gene pathways

e inference on S =S5, U S;?
e inference on S = 5\ S5
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Introduction Differential expression studies in cancer research

User-defined selection 1: volcano plot
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Introduction Differential expression studies in cancer research

User-defined selection 2: top k genes
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Introduction Differential expression studies in cancer research

User-defined selection 3: gene pathways
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Introduction Differential expression studies in cancer research

User-defined selection: toy example

Classical multiple testing Post hoc inference
° T T T T T T el T : T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
FDR < 25% With probability > 75%

|ISNH1| >2and ‘SlﬂHﬂ >1
How can JER control be achieved?
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Introduction Post hoc inference

The need for post hoc inference

Challenges

@ large-scale multiple testing is exploratory in nature
@ no formal statistical guarantee on such user-defined selections

Proposal: post hoc confidence bounds

e H ={1,...m}: m null hypotheses to be tested

@ Ho C H: true null hypotheses, mg = |Hy|

o Hi=H \ Ho

e V(S) =|SNHo|: number of false postives in S C H

Goal: find V,, such that

P(vSC{1...m}, V(S) < Vu(§)) 21-a
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Post hoc inference
Related works: selective inference

for a specific selection rule

Inference for a specific selection rule S

@ Lockhart et al. (2014), Fithian et al. (2014)

for an arbitrary, pre-decided selection rule

Inference for an arbitrary selection rule, to be chosen before looking at the
data

e Benjamini and Yekutieli (2005)

Omnibus

Inference simultaneously over all S C {1,..., m}, possibly chosen
after looging at the data

@ Genovese and Wasserman (2006), Goeman and Solari (2011), Berk et
al. (2013)
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e e e T
Basic idea: reference family

Reference set

Assume that we know an upper bound for V/(R) := |R N Hy| for some
RCH

Then for any S C H, we have V(S) <|SNR°|+ V(R)

Proof: simply note that V(S) = [SNHo| = [SNHoNR|+[SNHoNR|

Reference family

Idea: build a family of sets (Ry, ..., Rk) for which we have an upper bound
on V/(Ry) for each k.
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Post hoc bounds from JER control JER control: definition and associated bounds

Post hoc bound via JER control

Definition (Joint Family-Wise Error Rate control)
Let R = (Rk)« be a reference family of subsets of .

JER(R) :=P(3k, V(Rk) > k) <«
That is, £ = {Vk : V(Rk) < k — 1} is of probability > 1 — «

Proposition: post hoc upper bound on the number of false positives
On the event &, for any set S C {1,...m},

V(S) <|S|A mkin{\Sﬁ Ri| + k—1}

Recall: V(S) <|SN R+ V(R)

Applicable to any number of possibly data-driven sets! J
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Post hoc bounds from JER control JER control: definition and associated bounds

Post hoc inference: toy example

Classical multiple testing Post hoc inference
° T T T T T T el T : T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
FDR < 25% With probability > 75%

|ISNH1| >2and ‘SlﬂHﬂ >1
How can JER control be achieved?
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Post hoc bounds from JER control JER control based on Simes’ inequality

Simes-based! JER control and post hoc bound
Simes’ inequality
o If the p-values (p;), 1 < i < m, are independent then
P(3k € {1,...,mo} : puey) < ak/mg) = a

e Under some forms of positive dependence (PRDS(Hp)): < «

(PRDS = Positive Regression Dependency on a Subset)

Corollary: Simes-based JER control and post hoc bound
Under PRDS, the Simes reference family (R ), with

Rk ={1<i<m: pi<ak/m}

achieves JER control at level o and thus provides a post hoc bound

'R. J. Simes. Biometrika 73.3 (1986), pp. 751-754.
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Post hoc bounds from JER control JER control based on Simes’ inequality

Simes-based JER control and post hoc bound

Post hoc bound for the Simes family
Under PRDS, with probability larger than 1 — «, for any S,

V(S) < |S] /\mkin Zl{p; >ak/m}+k—1
ieS

Comments
@ Recovers the closed testing bound of Goeman and Solari (2011)
@ JER: a generic device to build post hoc bounds
e Independence/PRDS assumption:

e can we obtain dependence-free JER control?
e how sharp is the Simes inequality under PRDS?
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Post hoc bounds from JER control JER control based on Simes’ inequality

Application: Leukemia data set
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Post hoc bounds from JER control Limitations of Simes-based JER control

Dependence-free JER control?

Under arbitrary dependence, with probability larger than 1 — «, for any S,

V(S) <|S|A mkin Zl{p,- > a/Cnk/m}+k—1
ieS

)

Cn =71 k71 ~ log(m): Hommel's correction factor for dependency?

Dependence-free adjustment is not a sensible objective

@ implies adjusting to a worst case dependency
@ very conservative (cf Benjamini-Yekutieli for FDR control)

We want to be adaptive to dependency

2G Hommel. “Tests of the overall hypothesis for arbitrary dependence structures”.
Biometrische Zeitschrift 25.5 (1983), pp. 423-430.
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Post hoc bounds from JER control Limitations of Simes-based JER control

Sharpness and conservativeness of the Simes family

Simes’ equality is sharp under independence, but conservative under positive
dependence.

Conservativeness of JER control under PRDS

Example: Gaussian equi-correlation, white setting (mo = m = 1,000):
Test statistics ~ A(0,X) with X; =1 and X;; = p for i # j.

Equi-correlation level: p | 0 0.1 | 0.2 0.4 || 0.8
Achieved JER xa~! 0.99 | 0.85 | 0.72 || 0.42 || 0.39

Can we build a family achieving sharper JER control?
We want to be adaptive to dependency
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Calibration of a rejection template
JER control with A-calibration

Rejection template

Consider a reference family R, = (Rk(a))«, where

Re(a) ={1<i<m: pi < ty(a)}
where t,(0) = 0 and t,(-) is non-decreasing and left-continuous on [0, 1]
e Example (Simes family): tx(a) = ak/m

Associated rejection template: collection (tx(A\))x forall 0 <A <1

Single-step A-calibration

)\(a):max{)\>0 IP’(mkm{ k1< (kHo)>} <)\> <a}

The family R (4) controls JER at level a.

4
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Adaptive JER control Calibration of a rejection template

Example: Gaussian location model

Setting: X ~ N (11, L), pi = 29(|Xi|)

)\(O[) = max {)\ 2 0: PZNN(072)<ml(in {tk_l <26(|Z(k)|)>} S )\) S Oé}
yields JER(%)\(Q)) <a

Choice of the template

o Linear template: t,(\) = Ak/m (generalizes Simes)
o Balanced template: t,()) such that t; ' (20(| X(x)|)) ~ U[0,1]

A-calibration

e If X is known, A\(«) can be calibrated by Monte-Carlo
e If ¥ is unknown, A(«) can be calibrated by sign-flipping

v
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control with A-calibration for the linear template

Example under positive dependency (Gaussian equi-correlation)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Linear template, known dependence (calibration by Monte-Carlo)

e X; ~ N(0,1) under Hy

x .
w Linear family -
2 ~oracte e X; ~ N(f,1) under Hy
g o
g S olumer e cor(X, X;) = p for

010- | 75_]

o =025
020~ &

Pierre Neuvial (IMT) Post hoc inference via multiple testing SPSML, Potsdam 2018-02-14 23 /32



Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Linear template, unknown dependence (calibration by sign-flipping)

Empirical JER
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Balanced template, known dependence (calibration by Monte-Carlo)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

JER control under Gaussian equi-correlation

Balanced template, unknown dependence (calibration by sign-flipping)
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Adaptive JER control Numerical experiments for Gaussian equi-correlation

Estimation power for under independence
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R L OCE DS
A-Calibration by permutations

For two sample tests, the distribution of

min {t;" () |

can be sampled from using permutations of the group labels
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations

bourgon method
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Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations

bourgon method
1.00-
—— Linear, single step
Linear, step down
a ——— Balanced, single step
00.75
[ Balanced, step down
§
.g ~—— Simes
E] Simes, adant
3 Simes, adaptive
a8
Yo.50
c
@
=2
=
c
8
.
o]
&n.25-
=]
0.00-

Number of genes selected

Pierre Neuvial (IM Post hoc inference via multiple testing SPSML, Potsdam 2018-02-14 30/ 32



Adaptive JER control Application: Leukemia data set

Improved confidence envelope using permutations

bourgon method
1.00-
Linear, single step
Linear, step down
a ——— Balanced, single step
00.75
[ —— Balanced, step down
c
<]
.g ~—— Simes
E] Simes, adant
3 Simes, adaptive
a8
Yo.50
c
@
=2
=
8
.
o]
&n.25-
=]
0.00-

Number of genes selected

Pierre Neuvial (IM

Post hoc inference via multiple testing SPSML, Potsdam 2018-02-14 31/32



Application: Leukemia data set
Conclusions

Summary

@ JER control induces post hoc bounds
e Existing bounds recovered from probabilistic inequalities (Simes)
@ Framework to build adaptive JER control

Results not discussed here

@ Step-down procedures (adaptation to |Ho|)
@ Detection power: connection to “higher criticism” in a sparse setting

Ongoing/future works

Choice of the template and its size

e Applications (GWAS, differential expression, neuro-imaging)
@ Structured rejection sets: algorithms and statistical results
@ Software (R package sansSouci) and visualization tools
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