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2-class supervised classification

e Objective : forecast a label Y € {0,1} using covariates X € RP
using a classifier.
A classifier is a function g : RP — {0, 1} that predicts the label of
an observation.

e Learning the classification rule from a learning sample.
Observations : i.i.d copies (Y, Xj) € {0,1} x RP with i =1,...,n of
a random variable (Y, X) with distribution P.

e Defining the classification error : misclassification if Y # g(X).

L(g) = 1{v2g(x)}

The error should be controled not only for learning sample but for all
observations drawn with the same distribution.

R(g) = P((y,x) € {0,1} x R : y # g(x))



Best Classifier

f, = argmin P(Y # g(X))
g
is the best classifier (Bayes rule)
n(x) = P(Y =1|X = x)

(X)) = 100> 1-

Not tractable : n() is unknown since P is unknown.
Measure the difficulty of the problem

L* = L(£).



Empirical Error vs Classification Error

1 n
Ro(g) = D laxy#viys
i=1

where [g(x)2y) = 1 if g(X) # Y and 0 otherwise.

e Select a class of classifier F
e Optimize the classifier among the selected class

f, € arg ?y]rg R, (f).

Eventually control the complexity of the class to promote sparsity
e The classifier is evaluated not on the training set but for all similar

observations

L(£) = P(Y # F(X)).

Control the efficiency of the method with respect to optimal error

~ ~

E(fa) = L(fa) — L.



Sometimes life is complicated




How to face difficulties ?

The error of a classifier depends on the classifier but on the distribution

P(Y # £(X)) = L(f, P).

e Trying to classify all points at all cost by boosting methods
Constructing more complex classifiers or several classifiers and
aggregating them;

Putting weights to the data which are badly classified and force the
classifier to take them into account.
A large amount of statistical literature ...
e ... or being (pick you own adjective) optimistic, tazy, data—resilient,
robust
1. Accept to say maybe or refuse to answer
Bartlett and Wegkamp (2014) (learning with reject option)
2. Accept not to classify all points and remove some points ... of course
not all : amounts to change the distribution of the data.



How to face difficulties ?

LB dowises Shadok
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_s’iL N'Y A Pas pE soLUTION
CEST QUL NY A PAS DE PROBLENE.

... the initial distribution of the data should not change too much



Removing data using trimming method

Definition 1
Given « € (0,1), we define the set of a-trimmed versions of P by

RQ(P):—{QGPZ Q<<P7C£<1LXP—3.5.}.

Q@ € Ro(P) can be seen as a close modification of a distribution P
obtained by removing a certain quantity of data.

Given « € (0,1), we define the trimmed classification error of a rule as
the infimum of the a-trimmed probabilities of misclassifying future

observations

R.(g):= _inf Q(g(x)#y).

QER(P)



Admissible trimmed probabilities P = (po, Po, Py ).

Let AC {0,1} x RP, we denote A; = {x € RP: (i,x) € A}, for i =0, 1.
= ({0} x Ag) U ({1} x A1) AC {0,1} x RP and every probability
P e {0,1} x RP,

P(A) = poPo(Ao) + p1P1(A1), (1)

where po = P({0} x RP), py =1 — py,
Po(Ag) = P(AlY =0) = P({0} x Ag)/po and
P1(A1) = P(AlY =1) = P({1} x A1)/p1. Py Py probabilities in RP.

Lemma 2
Q = (qo, Qo, Q1) with qo € (0,1), then Q € R, (P) if and only if

1—Po
1-—

Po
1—a’

QO € le%(lfa)(PO) and Q]_ € R 1 qo(l ()()(Pl)'

qo < 1—qo <



How to minimize Q — Q(g(x) # y)?

Qg(x) #y) = / <qo/(g(x)_1)(ii0 + (1= qo0)lig(x)= )C:jc;)j)
Aim : concentrate the probability Qo in the set (g(x) = 0).
But Qp < qi)Po
1. Po(g(x) =0) = 2(1—a): As ( ao(i=ayFo = 1 we can group all the
probability Qg in the set {x € Rp/g( ) =0} and hence
Qo(g(x) = 0) =
2. Po(g(x)=0) < (1 — a) : Now we can not give to Quo(g(x) =0)
probability 1, hence Qo(g(x) =0) = Ple()=0)

40(1 (X)
Lemma 3
Ra(g) =
i | (0 2Pl =0)) + (1= a0 - E2Pue00 = 1)
-T2 <q<1%y - + :



Getting rid of all problems , if little problems ...

For fixed g, trimming reduces the classification error

Theorem 4

Given a trimming level o € (0,1) and a classification rule g,

Recall L*(Q) = inf; Rn(g) achieved for Bayes classifier gg

Lo(P) = _inf _ L*(@) = min Ra(g) = Ru(e8).

The following proposition compares these two errors.

Erro(P) = (R(ng)_;a)Jr _ (L*l:z)+’




Empirical trimmed classification error

R(F) :=min R(f) = R(f™).

fer
In the same way we denote the trimmed error of the class F as R, (F).
Hence (R(F) )
-«
R := min R,(f) = min ————+.
o) =R =
Using empirical distribution :
Rn @ = i f X Y
o(g):= _inf  Qe(X)#Y)
Rra(€) i= iy, ) wilatspn) (3)
=
with
1 n
W={w=(wp,...,w,)/0<w < m; i=1.,...,n/\§w,-:1}.
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Empirical Trimmed Classification Error

Empirical trimmed distribution reweighs the initial empirical distribution.

Controling the bias of empirical distribution :

Theorem 5

Raal8) = T (Ra(&) — 0+
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Now let Y be a random variable such that Y =9 X, Y and X are
independent, this implies E(Y) = Ex(Y'), using Jensen's inequality (for
(.)+) and conditional mean’s properties we get

E((X - E(X))) = E((X - E(Y)):) = E((X - Ex(¥))+) = E((Ex(X — ¥
< E(Ex((X = Y)3)) = E((X = Y)s).

Now we are using that X — Y is a symmetric variable, that it also is a

centered variable,

E(X=Y)y) = ZEX-Y)<Z(Var(X - Y))/2 = %(Var(X) + Var(Y))?

N|

(2Var(X))Y/2.

NI R—R N~
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How to select o ?

Trimmed models enable to decrease the classification error : not
sensitive to outliers or misclassified data

Robust classification.

e Selecting the amount of data to be removed

e corresponds to the optimal trimming level.

Aim : Build a data driven rule to select & which achieves balance
between minimization of the classification risk without removing a too
large quantity of information about the initial distribution.
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For a fixed classifier : oracle inequality

Let & = (Y1, X1), ..., En = (Ya, Xn) be n i.i.d with distribution P in
{0,1} x RP. Let g be a given classifier and amax € (0,1).

Theorem 6

Consider the penalization function

&=arg min R,.(g)+ pen(a),

a€[0,0max
then the following bound holds,

@ €[0,0tmax] n(l—a)

E(Ra(e)) < _inf (Ra(g)+pen(a) AT )

1 2 1
—+

— _—.
(1—amax)V n n(1 — amax)?
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Typical proof of empirical risk minimization :

&=arg min R,.(g)+ pen(a)

QG[Oaamax

Rn,a(g) + pen(&) < Ry o(g) + pen(c).

Ra(g) < Ra(g)+pen(a)+(Rna(g)—Ra(g))—pen(&)+(Ra(g)—Rna(g))-

RnA,a(g) - Ra(g) = [Rn,a(g) - E(Rn,a(g))] + [E(Rn,a(g)) - Ra(g)],

Remains to control using a concentration bound

[Rn,a(g) - E(Rn,oz(g))]

15



Mc Diarmid’s inequality R, o(g) = F(&1,...,&n) where & = (Y}, Xj). As
1
|F(&1y -y &iyee oy &n) — F(&1y -0 &0 60)| < oA —a)

we can apply the inequality and hence

P(Rna(g) — E(Rna(g)) > t) < o2t n(1—a)*

Given z > 0 take t =, /2”(1;—(%)2’ we get

P (Roal®) ~ E(Ruale)) 2 | [y ) <.
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except in a set of probability not greater than e~ %,

Ra(g) < Ra(g) + pen(a) +
+ /7%(12_ aF pen(&)
+ (Ra(g) — Rn,a(g))-

Ra(g) — Rn.a(g) < sup(Ra(g) — Rna(g))

a€A

Need for uniformity in Mc Diarmid achieved since « is in a compact set.
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Extension to your favorite choice of classifiers

Let {Gm}men C F be a family of classes of classifiers with
Vapnik-Chervonenkis dimension Vg, < oo for all m € N. Let

amax € (0,1) and let X be a non-negative constant. Consider {xm}men a
family of non-negative weights such that

Z e m <Y < oo.
meN

Consider the penalization function

pen(a, Gm) = In(n) + xm 1 \/ng In(n+1) + In(2)

2n(l—ap  (I-a) 5
Define

(&, M) = arg (a’m)er[g’i(gmaxw Rn,a(Gm) + pen(a, Gm),

18



Main Result

Theorem 7
R(Gm)
E R& m Roz m m T A1\
(Ra(Gn)) < min ]< Gr) + pen(a, Gn) + 7”(1_@))

1+% i
—
170‘max 2n ]-*amax

Need to know VC dimension of the classifiers.
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Example of linear classifiers

Gm = family of linear classifiers built only using x(™ first m components
of X; € RP.
Set mc M ={1,...,p}.
gm = {g e F: g(X) = /[aTx(m)+bZO]; ac Rm; be R} .
ng =m+ 1.
We can choose x,, = In(p) for all m e M and X = 1.

E(Rs(Gn) < omin (Ra(gm) N
1 (m+1)In(n+1)+In(2) VR(Gm)
* (1a)\/ P +m(1a)>
1 T 1
_|_

(1= amax) V 27 " (1 = amax)?’
good as long as In(p) is smaller than n.

20



Comments : do not always trust the data

Removing data is not lazy point of view because sometimes the data are
too numerous with many outliers (especially true in medicine)
The famous V Veracity in Big Data.
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Convexity is easier for feasible minimization

Change the loss for a convex loss function
Hinge loss : Y € {—1,1} v(x) = (1 — x)+
L(Y, £(X)) = ~(YF(X))
+0oo
Re) = poa | Pallxe R :q(-g(x) = thae
0

+oo
+op [ Pl{x € R in(—g) 2 e
0
Theorem 8
Let a €[0,1),

Ra(g) = /O = (P, x) 108 () > th =)y

11—«
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Let & = (Y, Xi) with Y; € {—1,1} and X; € RP. Let {Gi} men such that
Vg, < oo forall me N and [g(Xi)| < K with K < +00. amax € (0,1)

Ze*Xm§Z<oo.

meN

2K2(In(n) + Xm 201+ K) [4Vg In(n+1)+1In(2)3

e Gy = 1[I ) | 2014 K) [, 100+ 1) 02
n(l—a) l-«a nin(2)

&, M) = J i Rna m sy Im)s I:: i Ra 5

(&, i) g aamin (Gm)+pen(a, Gm), & g i (&)

m

Theorem 9

E(Rs(Gn) < <Ra (o) + pen(a, Gy) + — K )

(ctm e[o amax]xN n(l—a)
K(1+X) / + 1+K
1 — Oémax 1 — Oémax
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In practice

Linear Regression : g(X;) = X;3

&, m) = arg min Rn,a(Gm) + pen(a, G
( ) (a,m)€[0,amax] X {1,...,p} ( ) ( )

L 2K2(In(n) + In(p))
min ; wi(l — Yig(Xi))+ + \/ n(l—a)?

= ar,

min
. (a,m)€[0,¢max] X {1,...,p}

+

2(1+K) [4Vg, In(n+1)+In(2)3
11—« nin(2)2

where W = {(Wl,...,w,,):OS w; < ﬁ;zwiz 1}
Iterative Algorithm to minimize

min ; wi(1— Yig(X))+
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In practice

Selecting |H| = h = n — na points that provide the best residuals

By = arg min, Q(Hx. B) = arg min, ;:(1 — YiXiB)+ (5)
1€ Mk

with residuals
ri = (1 = YiXiBi)+-

Algorithm C-step and minimization with gradient descent.

Fit the regression on Hy then select the h smaller residuals among all
observations then update Hy.1.

Application for medical data : remove fuzzy classified observations in
large cohorts.
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Extension : controlling the deviation using Wasserstein distance

R(Q) = Q({(y,x) : g(x) # y}) + LWV3(Px, Qx) (6)

R,,(Q) ZI’7TT11II"I ZZTFUCU

i=1 j=1

s.t ZWU*TQ{)’I.:]-’“.’n

Z L
i — = ./... n
j = n7 p Uy

with c;j = £(g; yi, x;j) + L || Xi — X; ||> with ¢(g; yi, x;;) a positive loss
function.

Need to study the statistical properties (open collaboration)
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Using regression

Ra(g) = - Eo(ll Y — g(X) [I).

a

Let F(t) = P({(y,x):|ly —g(x) |?’< t}) and A = F}(1 — a), so

Role) = = |R®)—da— [ - Aoy

:1_a A

Possible to do the same things to get robust methods using Lasso penalty
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