
The dynamics of Schrödinger bridges

Giovanni Conforti

Stochastic processes and statistical machine learning

February, 15, 2018

Giovanni Conforti The dynamics of Schrödinger bridges



Plan of the talk

The Schrödinger problem and relations with
Monge-Kantorovich problem

Newton’s law for entropic interpolation

The entropy along the entropic interpolations

The talk is based on

G. Conforti. A second order equation for Schrödinger
bridges with applications to the hot gas experiment and
entropic transportation cost.
Probability Theory and Related Fields(to appear)

Giovanni Conforti The dynamics of Schrödinger bridges



Part I: The of Schrödinger problem and
relations with the Monge-Kantorovich

problem
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Schrödinger’s thought experiment

An old story from Schrödinger back in 1931...

“ Imaginez que vous observez un système de particules en
diffusion, qui soient en équilibre thermodynamique.

Admettons qu’ à un instant donné 0 vous les ayez trouvées en
répartition à peu près uniforme et quà 1 vous ayez trouvé
un écart spontané et considérable par rapport à cette

uniformité. On vous demande de quelle manière cet écart sest
produit. Quelle en est la manière la plus probable ?”

A more recent story from C.Villani’s textbook..

Take a perfect gas in which particles do not interact, and ask
him to move from a certain prescribed density field at time
t = 0, to another prescribed density field at time t = 1. Since

the gas is red lazy, he will find a way to do so that it needs a
minimal amount of work (least action path).
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Schrödinger bridge; Problem formulation

To model Schrödinger’s experiment we need

An ambient space ↪→ A Riemannian manifold M

The equilibrium dynamics for the particles ↪→
stationary Brownian motion P

The non-interacting particles ↪→ X1
· , . . . ,XN· independent

stationary Brownian motions

The particle-configuration ↪→ empirical measure µN

µN(A) =
1

N
Card({i : Xi· ∈ A})

The initial and final prescribed configurations ↪→ ν0,ν1.

Giovanni Conforti The dynamics of Schrödinger bridges



Schrödinger bridge; Problem formulation

To model Schrödinger’s experiment we need

An ambient space ↪→ A Riemannian manifold M

The equilibrium dynamics for the particles ↪→
stationary Brownian motion P

The non-interacting particles ↪→ X1
· , . . . ,XN· independent

stationary Brownian motions

The particle-configuration ↪→ empirical measure µN

µN(A) =
1

N
Card({i : Xi· ∈ A})

The initial and final prescribed configurations ↪→ ν0,ν1.

Giovanni Conforti The dynamics of Schrödinger bridges



Schrödinger bridge; Problem formulation

To model Schrödinger’s experiment we need

An ambient space ↪→ A Riemannian manifold M

The equilibrium dynamics for the particles ↪→
stationary Brownian motion P

The non-interacting particles ↪→ X1
· , . . . ,XN· independent

stationary Brownian motions

The particle-configuration ↪→ empirical measure µN

µN(A) =
1

N
Card({i : Xi· ∈ A})

The initial and final prescribed configurations ↪→ ν0,ν1.

Giovanni Conforti The dynamics of Schrödinger bridges



Schrödinger bridge; Problem formulation

To model Schrödinger’s experiment we need

An ambient space ↪→ A Riemannian manifold M

The equilibrium dynamics for the particles ↪→
stationary Brownian motion P

The non-interacting particles ↪→ X1
· , . . . ,XN· independent

stationary Brownian motions

The particle-configuration ↪→ empirical measure µN

µN(A) =
1

N
Card({i : Xi· ∈ A})

The initial and final prescribed configurations ↪→ ν0,ν1.

Giovanni Conforti The dynamics of Schrödinger bridges



Schrödinger bridge; Problem formulation

To model Schrödinger’s experiment we need

An ambient space ↪→ A Riemannian manifold M

The equilibrium dynamics for the particles ↪→
stationary Brownian motion P

The non-interacting particles ↪→ X1
· , . . . ,XN· independent

stationary Brownian motions

The particle-configuration ↪→ empirical measure µN

µN(A) =
1

N
Card({i : Xi· ∈ A})

The initial and final prescribed configurations ↪→ ν0,ν1.

Giovanni Conforti The dynamics of Schrödinger bridges



Schrödinger bridge problem: dynamic formulation

We denote the law µN by PN

Sanov’Theorem

1

N
log PN

(
µN = Q

)
� −H ∗(Q|P)

Thus, the “most likely evolution” is found solving

Schrödinger Problem (SP)

inf
Q

Hpath(Q|P)

Q ∈ P(C([0, 1],M)), (X0)#Q = ν0, (X1)#Q = ν1

Hpath is the relative entropy for laws on the path space
C([0, 1],M)

The Schrödinger bridge (SB) is the optimal solution of
(SP)
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Some notation and two classical results

Marginal flow of SB entropic interpolation ↪→ (µt)

The optimal value of SP is the entropic cost↪→ TH(ν0,ν1)

Theorem (fg-decompostion)

Under some mild regularity assumptions on M,ν0,ν1 there
exist non-negative functions ft,gt such

∀t ∈ [0, 1], µt = ftgt

ft,gt solve the equation

∂tft =
1

2
∆ft, ∂tgt = −

1

2
∆gt

Theorem (Vague statement)

In the small noise regime (SP) Γ -converges to the
Monge-Kantorovich problem.
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What about Machine Learning?

The use of Sinkhorn’s algorithm to compute (approximate)
solutions of OT has led to a dramatic reduction in the
computational cost, O(d2) vs. O(d3 logd).

Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport.
In Advances in neural information processing systems,
pages 2292–2300, 2013

The regularized problem solved using Sinkhorn is a discrete
Schrödinger problem!

The reason why we can use Sinkhorn’s algorithm is the fg
decomposition Theorem
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Motivating question

“What is the shape of the particle cloud at t = 1
2?”

Entropy minimization  particles try to arrange
according to the equilibrium configuration m.

Prescribed initial and final configurations  
particles are forced into a configuration far from
equilibrium at t = 0, 1.

“Does µ1/2 look like m?”

m

“ How big is Hmarg(µ1/2|m)?”

The key to answer the question is to view the entropic
interpolation (µt) as a curve in a Riemannian manifold.
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Part II: Newton’s law for the entropic
interpolation
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The “Otto metric”

Formally, it is the Riemannian metric on P2(M) whose
associated geodesic distance is the Wasserstein distance W2.

The tangent space at µ ∈ P2(M) is identified with the
gradient vector fields

Tµ = {∇ϕ,ϕ ∈ C∞
c }
L2(µ)

We define the Riemannian metric on it

“Riemannian metric” on Tµ

〈∇ϕ,∇ψ〉Tµ :=

∫
M

〈∇ϕ,∇ψ〉dµ.

The velocity of an absolutely continuous curve (µt) is
given by

Continuity equation

∂tµt +∇ · (vtµt) = 0, vt ∈ Tµt
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Construction of the covariant derivative

The Benamou-Brenier formula tells indeed that the geodesic
distance for this Riemannian metric is the Wasserstein distance.

Displacement interpolations are geodesics

W2
2(ν0,ν1) = inf

(µ,v)
µ0=ν0,µ1=ν1

∫1
0
|vt|

2
Tµt

dt,

In a Riemannian manifold, the acceleration of a curve is the
covariant derivative of its velocity

Acceleration of a curve

∇W2
vt
vt = ∂tvt +

1

2
∇
(
|vt|

2
)
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The acceleration of a SB

“Particles move from configuration ν0 to configuration ν1
minimizing relative entropy”

The natural way of doing it would be to follow the gradient
flow

Gradient flow

vt = −
1

2
∇W2S(µt), µ0 = ν0.

If particles go along the gradient flow µ1 6= ν1
IDEA: Modify the gradient flow equation as little as
possible in order to be able to impose the terminal
condition
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Tweaking a gradient flow

Gradient flow in Rd

ẋt = −∇S(xt)

Second order equation for the gradient flow

ẍt = −∇2S(xt) · ẋt
= ∇2S(xt) · ∇S(xt)

=
1

2
∇
(
|∇S(xt)|2

)
Back to the OT setting (S = Relative entropy)

The Fisher information I is the norm squared of the gradient
of the entropy

I(µ) =
∣∣∇W2S(·)

∣∣2
Tµ

Thus, we have a candidate equation...
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Second order equation for entropic interpolation

Theorem (C.’17)

Let (µt) be the entropic interpolation between ν0 and ν1 and
(vt) its velocity field. Under suitable regularity assumptions
(µt) solves the equation

∇W2
vt
vt =

1

8
∇W2I(µt)

The equation answers in a precise way

“What kind of 2nd order equation the bridge of a diffusion
satisfies?”

and thus gives grounding to the intuition that the
Brownian bridge is the stochastic version of a geodesic.

To prove a rigorous statement, we took advantage of Gigli’s
rigorous version of the Otto calculus
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Proof sketch

It relies on the representation µt = ftgt.

Lemma (Representation of the velocity field)

The velocity field of (µt) is 1
2∇(log gt − log ft).

log ft(resp log gt) solve the forward(backward) HJB equation

HJB

∂t log ft =
1

2
∆ log ft +

1

2
|∇ log ft|

2,

∂t log gt = −
1

2
∆ log gt −

1

2
|∇ log gt|

2

Gradient of the Fisher information

We have
∇W2I(µ) = −2∇∆ logµ−∇|∇ logµ|2
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Proof sketch

Recall that ∇W2
vt
vt = ∂tvt +

1
2∇
(
|vt|

2
)
. We have, using HJB

∂tvt = −
1

2
∇∂t log ft +

1

2
∇∂t log gt

HJB
= −

1

4
∇(∆ log ft + ∆ log gt) −

1

4
[|∇ log ft|

2 + |∇ log gt|
2]

µt=ftgt
= −

1

4
∇∆ logµt −

1

4
∇[|∇ log ft|

2 + |∇ log gt|
2]

polarization
= −

1

4
∇∆ logµt −

1

8
∇|∇ log ft +∇ log gt|

2

−
1

8
∇|∇ log gt −∇ log ft|

2

= −
1

8
[2∇∆ logµt −∇|∇ logµt|

2] −
1

2
∇|vt|2

=
1

8
∇W2I(µt) −

1

2
|vt|

2

which (formally) concludes the proof.
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Part III: The entropy along entropic
interpolations
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First and second derivative of the entropy

We want to study how does the particle configuration evolves

“How much does µ1/2 look like m?”

The relative entropy can be decomposed into

S(µt) =

∫
M

log ftdµt +

∫
M

log gtdµt :=
−→
h (t) +

←−
h (t)

−→
h (t) is the forward entropy,

←−
h (t) the backward entropy.

First derivative -forward entropy

We have

∂t
−→
h (t) = −

1

2

∣∣vt − 1

2
∇W2S

∣∣2
Tµt

Second derivative-forward entropy

∂tt
−→
h (t) =

1

2

〈
∇W2
ξt
∇W2S, ξt

〉
Tµt

with ξt :=
1
2∇
W2S− vt
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Curvature enters the game

Assume now that the Ricci curvature is bounded below,
i.e. Ricx(w,w) > λ|w|2 uniformly in x,w ∈ TxM.

A fundamental result of OT is that S is a λ-convex
functional.

Differential inequality-forward entropy

∂tt
−→
h (t) =

1

2

〈
∇W2
ξt
∇W2S, ξt

〉
Tµt

>
λ

2
|ξt|

2
Tµt

=
λ

2

∣∣∣1
2
∇W2S− vt

∣∣∣2
Tµt

= −λ ∂t
−→
h (t)
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The entropy along entropic interpolations

Theorem (C. ’17)

Let M be a compact manifold with Ricci curvature bounded
below

∀x ∈M,w ∈ TxM, Ricx(w,w) > λ|w|2

Then, for all ν0,ν1 and t ∈ [0, 1] the entropic interpolation (µt)
satisfies:

S(µt) 6
1 − exp(−λ(1 − t))

1 − exp(−λ)
S(ν0) +

1 − exp(−λt)

1 − exp(−λ)
S(ν1)

−
cosh(λ2 ) − cosh(−λ(t− 1

2))

sinh(λ2 )
TH(ν0,ν1).
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About the entropy bound

If M has a Ricci curvature bound, then the particle
configuration at t = 1

2 is very close to the equilibrium
measure m, and we have a way to quantify this.

In the small noise regime, the entropy estimate becomes
the well known convexity of the entropy along
entropic interpolations.

There is a version of the Theorem when P is the Langevin
dynamics
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About the entropic transportation cost

The entropic cost TH(µ,m) measures how difficult it is to
steer Brownian particles which start “out of
equilibrium” into the equilibrium configuration m in one
unit of time.

We expect that the more µ looks like m, the smaller is TH

“How to bound TH? And with what?”

Theorem (C.’17)

Assume Ric > λ. Then for all µ we have

TH(µ,m) 6
1

1 − exp(−λ)
S(µ)

We call this an entropy-entropy inequality.
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About the entropy-entropy inequality

The bound is useful since TH(µ,m) is hard to compute and
S(µ) is easy to compute (it is just an integral).

In the small noise regime the entropy-entropy inequality
becomes

Talagrand’s transportation entropy inequality

W2
2(µ,m) 6 2λS(µ)

The inequality implies concentration of measure
properties for m (work in progress)

It allows to bound a joint entropy, TH(µ,m) with a
marginal entropy (S(µ))!
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Dual form of the entropy-entropy inequality

Under the curvature condtion, it is known that the heat
semigroup (Pt)t>0 is hypercontractive.

For all p,q> 1 s.t. q−1
p−1 = exp(2λt) we have

∀f s.t.
∫
fdm = 0, ‖Ptf‖Lq(m) 6 ‖f‖Lp(m)

It is known that hypercontractivity is equivalent to the
Logarithmic Sobolev inequality.

Theorem (C.’18)

The following are equivalent

i) The entropy entropy inequality with constant 1/(1 − exp(−λ)).

ii) For all p∈ (0, 1),q< 1 s.t. q−1
p−1 = exp(2λt), and for all f s.t.∫

fdm = 0,
‖Ptf‖Lq(m) 6 ‖f‖Lp(m)
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Some thoughts for the future

Is the entropy bound equivalent to curvature even if we do
not look at the small noise regime?

How close is the entropic interpolation to the
displacement interpolation?

How to construct a Schrödinger bridge for a system of
weakly interacting particles system? Is there a
Netwon’s law?
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Thank you very much!
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