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e Probability space (U, B(U), Py).
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MEM method in action

o Probability space (U, B(U), Py).
e General method of reconstruction for a multidimensional function
f(x) = (f}(x),...,fP(x))T defined on U, from partial knowledge.

. Solution to an inverse problem.
. At designs points {x/}/=1,... n, we observe

P
Z NO)Fixg) =2z  1<I<N, (1)
i=1

where A € L2(U,R) are known contribution functions.
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MEM method in action

o For generalization purpose, problem (1) is rewritten

/ Z)\i(x)ff(x)dq;/(x) eK, 1</I<N, (2)
U

i=1

where A € L?(U,R) are known contribution functions,
®,; some positive measures.
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Introduction

Context

o For generalization purpose, problem (1) is rewritten

/ DN x)dex) ek 1IN,
U

i=1

where A € L?(U,R) are known contribution functions,
®,; some positive measures.

e Generalized moment and interpolation problem features a mix of
®(x) = dx/(x)
®(x) = x'Py(x).

)
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e Recall Kullback-Leibler divergence K of measure P with respect to Q

eo-{ L0

(%) dP if PK Q and log (%) € L1(P)
else.

3
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e Recall Kullback-Leibler divergence K of measure P with respect to Q

K(P:Q)_{ {::g (%) dP ifP<K Q and log (%) € L1(P)

else.
(3)

Context

MEM method in action

e Problem
. Probability space (V,B(V), Py).
. Find probability measure P < Py on (V,B(V)) such that

/ @(t)dP(t) € A, ACR. (4)
v
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e Recall Kullback-Leibler divergence K of measure P with respect to Q

K(P:Q)_{ {::g (%) dP ifP<K Q and log (%) € L1(P)

Context

MEM method in action

else.
3)
e Problem
. Probability space (V,B(V), Py).
. Find probability measure P < Py on (V,B(V)) such that
/ o(t)dP(t) € A, ACR. (4)
v

e Maximum Entropy (ME) principle: solution PME is solution of following
problem with continuous ¢

min K(P, Py)

/ (5)
s.t. p(t)dP(t) € A.
v
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MEM method in action

e Maximum Entropy on the Mean (MEM) method

. Discretize set V' with deterministic points (t;)i=1,... n-
. Define random measure v,

n
1
Vp = ; Z \/i(st,'y
i=1

n
1
ith — ot — P 6
wi nE t; v (6)
i=1

where J¢; are Dirac measures located at points t; and Y; are i.i.d.
random amplitudes at point t;, Q is a prior measure for the

(v1,..

YT
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MEM method in action

e Maximum Entropy on the Mean (MEM) method

. Discretize set V' with deterministic points (t;)i=1,... n-
. Define random measure v,

n n
1 Z 1 Z
Vp = ; \/,'(St,-, with ; 6t,‘ — PV (6)
i=1 i=1

where J¢; are Dirac measures located at points t; and Y; are i.i.d.
random amplitudes at point t;, Q is a prior measure for the

(Y1,---, Ya)T.
Discretized moment con- MEM problem : solution Q,MEM is
straint solution of following problem

1 — min K(Q, Qn)
Eq |- ) e(t)Yi| €A
i=1

n

1 7

s.t. Eg - E p(t)Yi| € A. ")
i=1
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e Maximum Entropy on the Mean (MEM) method

Context

e . Discretize set V' with deterministic points (t;)i=1,... n-
. Define random measure v,
n n
1 o1
Up = — E Yidt, with = E oy, — Py (6)
n n
i=1 i=1

where J¢; are Dirac measures located at points t; and Y; are i.i.d.
random amplitudes at point t;, Q is a prior measure for the

(Y1,---, Ya)T.
Discretized moment con- MEM problem : solution Q,MEM is
straint solution of following problem

1 — min K(Q, Qn)
Eq |- ) e(t)Yi| €A
i=1

n

1 7

s.t. Eg - E p(t)Yi| € A. ")
i=1

Define PMEM — E omem [% S 1 Yi&,—}

i=

We want PMEM _, PME ' [Gamboa, Gassiat, 1997]
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From a convex analysis point-of-view

e In convex analysis, study of more general y-divergence/~-projection :

[Borwein and Lewis, 1991], [Borwein and Lewis, 1993].

From a convex analysis
point-of-view

Alternative objective function to consider

dp?
D~ (P, Py) = dP
’7( ) U) /’y(dPU) U
with

. 7y is some convex function
. PP Py.

Via linear transfer

For a discretized measure

. For a measure P
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Via I ansfer

For a discretized measure

e In convex analysis, study of more general y-divergence/~-projection :
[Borwein and Lewis, 1991], [Borwein and Lewis, 1993].

To MEM problem for function
reconstruction

From a convex analysis point-of-view

Alternative objective function to consider

. For a measure P

with

dp?
D+ (P, Py) =/7 (dPU) dPy

. 7y is some convex function

. PP Py.

. For a function p

L(p) = /W(P) dPy.

(®)

(9)
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To MEM problem for function
reconstruction

From a convex analysis point-of-view

e In convex analysis, study of more general y-divergence/~-projection :

[Borwein and Lewis, 1991], [Borwein and Lewis, 1993].

Alternative objective function to consider

dp?
D~ (P, Py) = dP
’7( ) U) /’y(dPU) U
with

. 7y is some convex function
. PP Py.

. For a measure P

. For a function p
/v(p):/v(P)dPu-

e Our problem is now

min [, (f)

s.t. / Z)\i(x)f’(x)d¢,(x)ElC/ 1</
U =1

N

(®)

(9)

(10)
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e Problem

To MEM problem for function
reconstruction

From a convex analysis point-of-view

min [, (f)

s.t.

U

Z N(x)Fi(x)dd,(x) € K 1
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e Problem
From a convex analysis

point-of-view min [, (f)

Via linear transfer

For a discretized measure

P
s.t. / D N (de(x) €K 1IN
U =1

e Assumptions

. 7y is closed positive convex function differentiable on its domain,
. 7y is essentially strictly convex,
. 1) convex conjugate of y

W(iz)= sup {y"z—~(y)}
yedom(~)

has full domain RP.
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From a convex analysis point-of-view

e Problem
From a convex analysis

point-of-view min [, (f)

Via linear transfer

For a discretized measure

P
s.t. / D N (de(x) €K 1IN
U =1

e Assumptions

. 7y is closed positive convex function differentiable on its domain,
. 7y is essentially strictly convex,
. 1) convex conjugate of y

W(iz)= sup {y"z—~(y)}
yedom(~)

has full domain RP.
e Recall

v:RP - R
Y :RP - R
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To MEM problem for function
reconstruction

From a convex analysis point-of-view

Theorem
Suppose there exists a RP-valued function f which meets the constrains and
is in the interior of v domain for all x € U, Py-a.s.

Let L be the subspace of RN such that for given (®1,...,®y) absolutely
continuous with respect to Py

P
L={veRV:y = / Z,\'(x)f"(x)d¢,(x),/: 1,...,N
Ui=1

The minimum of the ~y-projection under the constraints can be expressed by

veRN | ceKnL

,(C) = max{ inf <V,c>_/¢(71(x, V), mP(x,v)) dPU(x)} (11)
U

with 7 (x,v) = S N (x)vigi(x).

Then, for v° € RN optimum of (11), optimum function under the constraints
; o
fo(x) = » (Tl(X, vO), ..., TP (x, v°)) , Vi=1,...,p. (12)
oTi

Proof relies on a Fenchel duality result.
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To MEM problem for function
reconstruction

From a convex analysis point-of-view

e When @, is not absolutely continuous with respect to Py?
Recall Lebesgue decomposition of @,

¢ =¢Py+Xx

with ¢; the Radon-Nikodym derivative with respect to Py.
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To MEM problem for function
reconstruction

From a convex analysis point-of-view

e When @, is not absolutely continuous with respect to Py?
Recall Lebesgue decomposition of @,

¢ =¢Py+Xx

with ¢; the Radon-Nikodym derivative with respect to Py.

e Problem constraints become

/Z N (x)Fi (x)dd(x) € K
i=1

P p
& / D NEOF ()i(x)dPy(x) + / D N (x)dE(x) p € K
i=1 i=1

& / SN ()oi(x)dPu(x) € Ky # K.
i=1
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From a convex analysis point-of-view

e When @, is not absolutely continuous with respect to Py?
Recall Lebesgue decomposition of @,

¢ =¢Py+Xx

with ¢; the Radon-Nikodym derivative with respect to Py.

e Problem constraints become

P
/ZAf(x)ff(x)mp,(x) €K
i=1
P p
& / D NEOF ()i(x)dPy(x) + / D N (x)dE(x) p € K
i=1 i=1

& / SN ()oi(x)dPu(x) € Ky # K.
i=1

e Theorem is not well suited for the interpolation problem!
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of measures F.

To MEM proble

function r
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For a discretized measure

To MEM problem for function
reconstruction

Via linear transfer

e Instead of reconstruction of functions vector f, we reconstruct a vector

of measures F.

e That is, find measures (F1,..., FP) such that

P
Z/ Qi(t)dFi(t) €Ky |
i=1 7V

=1,...

,N

(13)
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To MEM problem for function
reconstruction

Via linear transfer

e Instead of reconstruction of functions vector f, we reconstruct a vector
of measures F.

e That is, find measures (F1,..., FP) such that
P
Z/ Qi(t)dFi(t) ek, I=1,...,N (13)
i1V V

e Links with the previous problem.
We choose K'(.,.) on U x V for each i =1,...,p such that

fi(x) :/K"(x,t)dF"(t) Vi=1,...,p;
v

oi(t) —/X'(x) i(x, t)dd,(x) Vi=1,...,p, VI=1,...,N.

Z/ X)Fi(x)dd(x) = Z/cp, t)dFi(t (14)
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From a convex analysis

point-of-view e Minimization of «-divergence under the constraints:
Via linear transfer
For a discretized measure .

e min Dy (F, Py)

P
s.t. Z/ Gi(t)dFi(t) e K 1<I<N.
i=1 7V
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e Minimization of «-divergence under the constraints:

From a convex analysis

point-of-view

Via linear transfer
min D~ (F, Py)

For a discretized measure
P
s.t. Z/ i) dFi(t)y ek, 1<
i=1 7V

<N

e Additional assumptions:
V is a compact metric space and Py, has full support,

. <p; are continuous,
(1) are linearly independent for each i =1,...,p
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From a convex analysis

point

e Minimization of «-divergence under the constraints:

Via linear transfer

For a discretized measure min DW(F, PV)

P
s.t. Z/ Gi(t)dFi(t) e K 1<I<N.
i=1 7V

e Additional assumptions:

V is a compact metric space and Py, has full support,
. <p; are continuous,

. (gpj), are linearly independent for each i =1,...,p.

e Problem is now similar to a ME problem introduced before.
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To MEM problem for function
reconstruction

For a discretized measure

o Discretize constraints of problem (13).
. Discretize set V with deterministic points (ti)i=1,...,n-

1 n

- 5:. — Py. 15

= by Py (15)
i=1

. Define p random measures v},

i 1 - i
Vi = ;Zyjstj. (16)
j=1

where 0, are Dirac measures located at points t; and Y; are random
amplitudes with values in R at point t;. Y; are RP-valued i.i.d.
samples of prior distribution Qp.
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point-of-view
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For a discretized measure

To MEM problem for function
reconstruction

For a discretized measure

o Discretize constraints of problem (13).

. Discretize set V with deterministic points (t;)i=1,... n-

1 n

- 5:. — Py. 15

= by Py (15)
i=1

. Define p random measures v},

i 1 - i
Vi = ;Zyjstj. (16)
j=1

where 0, are Dirac measures located at points t; and Y; are random
amplitudes with values in R at point t;. Y; are RP-valued i.i.d.
samples of prior distribution Qp.

. Force v to meet the constraints.



To MEM problem for function
reconstruction
e Prior measure Qg for Y.

For a discretized measure

«Or «Fr o«

DA



MEM method for
inverse problems

Lawrence, CEA Saclay
& IMT

From a convex analysis
point-of-view

Via linear transfer

For a discretized measure

To MEM problem for function
reconstruction

For a discretized measure
e Prior measure Qg for Y.
e Choice of ¢: log of Qo moment generating function

P(z) = log </ eXP(ZTY)dQO()’)) :

(17)
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To MEM problem for function
reconstruction

For a discretized measure

e Prior measure Qg for Y.
e Choice of ¢: log of Qo moment generating function

Y(z) = log </ EXP(ZT}’)on(Y)> . (17)
e Provides it exists y; = (yjl7 . ,yjp)T such that
1~
SO el ekn =10, (18)
j=1 i=1

By standard theory of the ME method, Q,",”EM exists.
QMEM belongs to the exponential family through Q((Jg’" spanned by the
statistics (18) for / =1,..., N.

n

QYEM = "exp (7 vy — (1)) @F" (19)
j=1
with
: 7-J = (Tl(tj’ VO)) ] Tp(tj7 VD))

Tt v) = 3N vigi(t)
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For a discretized measure

To MEM problem for function
reconstruction

For a discretized measure

n

QLB = 3o (17 - 905 05"

with

Jj=1

-7 = (T Vo), TP (), V0))

Tt v) = 3N viei(t)

® Vv, is maximizer of

Hp(v) = Cigf’c<v, c)

TP, V) -

(20)

(21)
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Via linear transfer

For a discretized measure

To MEM problem for function
reconstruction

For a discretized measure

n

QLB = 3o (17 - 905 05"

Jj=1
with
ST = (Tl(tj7 VO)? R Tp(tﬁ VO))

Tt v) = 3N viei(t)

® Vv, is maximizer of

Hn(v) = Cinf (v,c) — 1 Z'l,lz (Tl(tj, v),...

ex n

e Function reconstruction is

n
. 1 ; oY
fox () = > Z K'(x, tj)g (Tl(tjv Vo), .-
j=1

, 7P (¢, v)) .

TPt v6)) -

(20)

(21)

(22)
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Perspectives

Directions for next work:

e Integration of prior information.

e So far, reconstruction in a simple case study.
Generalization to real problems in Thermodynamics.

e Study of uncertainties propagation.
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