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Definitions Let

- f be the density you wish to sample from. (target density)
- g be a density that is easy to sample from. (proposal density)
- M be a constant such that Mg > f. (rejection constant)
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ADAPTIVE REJECTION SAMPLING

Let n be the budget. Let S = ) be the set of samples from f.

Procedure Ateachstept<n,

{04, f(%)), - o (Xea, f(Xe—1)) } are known.

- gt, My are chosen.

- A rejection sampling step is done using (g, M;). This generates X;.
- If X¢ is not rejected, it is added to S.

Definition of the loss L, =n— #S x {vVt < n: f< Mg}
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OUR CONTRIBUTIONS

1. Nearest Neighbor Adaptive Rejection Sampling (NNARS).
2. Minimax lower bound.

3. NNARS is minimax near-optimal.
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MINIMAX OPTIMALITY

Let

- A be the set of ARS algorithms.

- JFo be the set of densities: positively lower bounded, with
bounded support, and (s, H)-Holder (0 < s < 1):

wx,y € [0,1)% [f(x) = f¥)] < HlIx = VlI%

Minimax rate
Ln(A; )

n
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MINIMAX OPTIMALITY

Let

- A be the set of ARS algorithms.

- JFo be the set of densities: positively lower bounded, with
bounded support, and (s, H)-Holder (0 < s < 1):

wx,y € [0,1)% [f(x) = f¥)] < HlIx = VlI%

Minimax rate

. Ln(A;
o= inf supin( ’f).
AEAfe]:O n
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OBTAINING AN UPPER BOUND/FOCUS ON ONE ALGORITHM

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains twice
the number of steps round k — 1 has.
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OBTAINING AN UPPER BOUND/FOCUS ON ONE ALGORITHM

Nearest Neighbor Adaptive Rejection Sampling.
Divide the n steps into K rounds, where each round k contains twice
the number of steps round k — 1 has.

Ateachround 0 < R < K—-1:

- Use an estimatorﬁ of f based on the previous evaluations.

- Take Mrs1)Gk+1) = o + 7, where 7, is a confidence bound for

Ife — 1.
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APPROXIMATE NEAREST NEIGHBOR ESTIMATOR]ACk

At round Kk,

- we know {(X1, f(X1)), - -, (Xn,, f(Xi, ) -

- build a uniform grid of ~ Ny, cells with side-length ~ N, /9.

Let us determine f,(x).
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APPROXIMATE NEAREST NEIGHBOR ESTIMATOR]ACk

At round Kk,

- we know {(X1, f(X1)), - -, (Xn,, f(Xi, ) -

- build a uniform grid of ~ N, cells with side-length ~ N, /9.

Let us determine f,(x).

1. xisin the [-th cell.
2. Let X; be the nearest neighbor of the center of the [-th cell.

3. Then fiu(x) = f(X).
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APPROXIMATE NEAREST NEIGHBOR ESTIMATOR]ACk

Choice of parameter

Nearest Neighbor Estimator:

- Choice of an optimal number of neighbors?
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APPROXIMATE NEAREST NEIGHBOR ESTIMATOR%/?

Choice of parameter

Nearest Neighbor Estimator:

- Choice of an optimal number of neighbors?
- Noiseless setting = 1-NN is optimal.

Optimal bandwidth for a Kernel Estimator:

- Noisy setting: h = N~1/(d+29),
- Noiseless setting: h = N='/9,
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APPROXIMATE NEAREST NEIGHBOR ESTIMATOR]ACk

Why approximate?

- Direct 1-NN = Voronoi cells.
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APPROXIMATE NEAREST NEIGHBOR ESTIMATOR]ACk

Why approximate?

- Direct 1-NN = Voronoi cells.

- Approximate NN = hypercubes.

Then

A

X)+Tp .
Jhyr i X — % is easy to sample from.

R+1
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THE ALGORITHM: NNARS

First step of NNARS: uniform sampling
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THE ALGORITHM: NNARS

First step of NNARS: building the proposal
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THE BOUNDS OBTAINED

Assume n is large enough.

Upper bound
E¢Ly(NNARS) < 40Hc;'(1+ /2 log(3n))(log(2n))*/In'~=/
+ (25 +80c; "+ 2(10H)d/5c;1‘d/5) log’(n)
= 0(log’(n)n"=*/9).
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THE BOUNDS OBTAINED

Assume n is large enough.

Upper bound
E¢Ly(NNARS) < 40Hc;'(1+ /2 log(3n))(log(2n))*/In'~=/
+ (25 +80c; "+ 2(10H)d/5c;1‘d/5) log’(n)
= 0(log’(n)n"=*/9).

Lower bound

inf sup Ef(Ln(A)) > 3—12—1—35—2d5—s/dn1—s/d
ACA fe 7y(s1,1/2,d)N{f =1}

_ O(n1fs/d).

12/18



OBTAINING THE LOWER BOUND

Simpler setting. An algorithm in A’ chooses

1. n points in order to evaluate them with f.

2. an envelope in order to sample n other points using rejection
sampling.

. Ln(A:
©f = inf supin( )
A€“4ﬁ5fb n
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Reduction of the space
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OBTAINING THE LOWER BOUND

Reduction of the space
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SUMMARY OF THE CONTRIBUTIONS

- A minimax lower bound was found for the adaptive rejection
sampling problem.

- NNARS is a near-optimal adaptive rejection sampling algorithm.
- NNARS does well experimentally.
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QUESTIONS?



