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Setting

Consider the Euclidean space (Rn, | · |) endowed with the
probability measure dµ(x) ∝ e−V (x)dx , where V is some smooth
potential with Hessian matrix ∇2V bounded from below.
Canonical diffusion operator: Lf = ∆f −∇V · ∇f , for which:

L is (essentially) self-adjoint:∫
Rn

f Lg dµ =

∫
Rn

Lf g dµ = −
∫
Rn
∇f · ∇g dµ.

By spectral theorem, we define Pt := etL, t ≥ 0, a family of
symmetric operators on L2(µ), satisfying the semigroup
property:

Pt ◦ Ps = Ps ◦ Pt = Pt+s , and P0 = id,

and for which µ is invariant:∫
Rn

Pt f dµ =

∫
Rn

f dµ.
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Probabilistic interpretation

Markov diffusion process (Xt)t≥0 on Rn, solution to the
Stochastic Differential Equation

dXt = −∇V (Xt)dt +
√
2dBt ,

where (Bt)t≥0 is a standard Brownian motion on Rn.
Law of the process coincides with the semigroup:
E[f (Xt) | X0 = x ] = Pt f (x).
The process has (infinitesimal) generator L.
Invariance: if X0 ∼ µ then Xt ∼ µ for all t > 0.
Symmetry of the semigroup: if X0 ∼ µ then for all T > 0, the
processes (Xt)t∈[0,T ] and (XT−t)t∈[0,T ] have the same law.
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Examples

The Gaussian case:

V (x) =
|x |2

2
,

and µ = γ the standard Gaussian distribution N (0, In).
The Subbotin, or exponential power, distribution:

V (x) =
|x |α

α
,

with α ∈ [1,∞], the case α =∞ being the uniform measure
on the Euclidean unit ball.
More generally, the log-concave case, i.e. V is convex.
Heavy-tailed case: Generalized Cauchy:

V (x) = β log(1 + |x |2),

with β > n/2, so that

dµ(x) ∝ 1

(1 + |x |2)β
dx .
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The double-well potential:

V (x) =
|x |4

4
− |x |

2

2
.

Product measures perturbed by an interacting term:

V (x) =
n∑

k=1

Vk(xk) +
n∑

k=1

ϕ(|xk − xk+1|).
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Long-time behaviour

As t →∞, we have

Xt =⇒ X∞ in law, where X∞ ∼ µ.

Many different notions of convergences, and among them:
Convergence in L2(µ) (related to the χ2 divergence):

Varµ(Pt f ) := ‖Pt f − µ(f )‖2L2(µ) −→t→∞
0,

where µ(f ) :=
∫
Rn f dµ.

Convergence in L1(µ) (related to the total variation distance).
Convergence in relative entropy (related to the
Kullback-Leibler divergence).
Convergence in Wasserstein (or Kantorovich) distances.
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Poincaré inequality and spectral gap

Proposition
Letting λ > 0, the following assertions are equivalent:

Exponential convergence in L2(µ): for all f ∈ L2(µ),

‖Pt f − µ(f )‖L2(µ) ≤ e−λt ‖f − µ(f )‖L2(µ).

Poincaré inequality PI(λ): for all f ∈ D(L),

λVarµ(f ) ≤
∫
Rn

f (−Lf ) dµ.

Actually, one has: PI(λ)⇐⇒ σ(−L) ⊂ {0} ∪ [λ,∞), with σ(−L)
the spectrum of the non-negative operator −L.
The largest λ is called the spectral gap of −L and is denoted λ1.
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Brascamp-Lieb inequality

Theorem (Brascamp-Lieb (’76))

Assume V is strictly convex, i.e. ∇2V is a positive definite matrix.
Then for all f smooth enough,

Varµ(f ) ≤
∫
Rd
∇f · (∇2V )−1∇f dµ. (2.1)

In particular if V is strongly convex, i.e., ∇2V ≥ λ In for some
λ > 0 - an instance of the famous Bakry-Émery
curvature-dimension criterion (’85) - then PI(λ) holds.
Except the Gaussian case, none of the previous examples enter
into the strongly convex situation.
The proof of BL uses a tedious induction on the dimension.
The inequality is saturated for f = ∇V · c , with c ∈ Rn some
constant vector.
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Classical intertwining

Helffer (’98) revisited the BL inequality, by proposing a simple
proof based on an intertwining relation between gradient and
operator, the so-called Witten Laplacian approach:

∇Lf = (L−∇2V ) (∇f ),

with L = diag(L) a (diagonal) matrix diffusion operator acting on
vector fields and ∇2V is a multiplicative, or 0-order, operator.
At the level of semigroups, we have

∇Pt f = P∇2V
t (∇f ),

with (P∇2V
t )t≥0 the Feynman-Kac semigroup acting on vector

fields with generator the Schrödinger operator L−∇2V .
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Classical intertwining

In dimension 1, the Feynman-Kac semigroup (P∇2V
t )t≥0 admits a

simple probabilistic representation: denoting (X x
t )t≥0 the process

with X0 = x ∈ R,

PV ′′
t f (x) = E

[
f (X x

t ) exp
(
−
∫ t

0
V ′′(X x

s ) ds
)]

.
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Helffer’s proof of the BL inequality

Since we have

∇(−L)−1f =

∫ ∞
0
∇Pt f dt =

∫ ∞
0
P∇2V

t (∇f ) dt = (−L+∇2V )−1 (∇f ),

we get after some computations,

Varµ(f ) =

∫ ∞
0

∫
Rn
∇f · ∇Pt f dµ dt

=

∫ ∞
0

∫
Rn
∇f · P∇2V

t (∇f ) dµ dt

=

∫
Rn
∇f · (−L+∇2V )−1 (∇f ) dµ

≤
∫
Rn
∇f · (∇2V )−1∇f dµ,

where we used the following inequality, to understand in the sense
of self-adjoint operators: (−L+∇2V )−1 ≤ (∇2V )−1.
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A new intertwining

Question: how to correct the lack of (strong) convexity in the
previous examples ?
Idea: to introduce a weight in the previous intertwining.
Letting x ∈ Rn → A(x) ∈ GLn(R) be a smooth mapping seen as a
weight, we have

A∇Lf = A (L−∇2V ) (A−1 A∇f )

=
(
L+ 2A∇(A−1) · ∇

)︸ ︷︷ ︸
=:LA

(A∇f )

−
(
A∇2V A−1 − AL(A−1)

)︸ ︷︷ ︸
=:MA

(A∇f )

= (LA −MA) (A∇f ).
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A new intertwining

LA is a (non-diagonal) matrix diffusion operator acting on
vector fields, and MA is 0-order.
The scalar product of interest on vectors fields is
L2 ((AAT )−1, µ

)
, so that −LA is (essentially) self-adjoint and

non-negative as soon as

A−1 MA A = ∇2V − L(A−1)A,

is a symmetric matrix which is bounded from below.
In terms of semigroups, the intertwining with weight A means
that

A∇Pt f = PMA
t,A (A∇f ),

with (PMA
t,A )t≥0 the Feynman-Kac semigroup acting on vector

fields, associated to the operator LA −MA.
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A new intertwining

In dimension 1, the intertwining with weight a is nothing but a
composition of the classical intertwining with Doob’s 1/a-transform:
"we multiply inside by 1/a and divide outside by 1/a":

(Pt f )′(x) = E
[
f ′(X x

t ) exp
(
−
∫ t

0
V ′′(X x

s ) ds
)]

= E
[
f ′(X x

a,t) exp
(
−
∫ t

0
V ′′(X x

a,s) ds
)

M(a)
t

]
,

where (X (a)
t )t≥0 is the diffusion process with generator La and

(M(a)
t )t≥0 is the Girsanov martingale

M(a)
t =

a(X x
a,t)

a(x)
exp
(
−
∫ t

0

La(a)

a
(X x

a,s) ds
)

=
a(X x

a,t)

a(x)
exp
(∫ t

0
a L(1/a) (X x

a,s) ds
)
,
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A new intertwining

so that the intertwining with weight a rewrites as

a (Pt f )′(x) = E
[

(af ′)(X x
a,t) exp

(
−
∫ t

0
(V ′′ − a L(1/a))(X x

a,s) ds
)]

.
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Generalized BL inequality

Varµ(f ) =

∫ ∞
0

∫
Rn
∇f · ∇Pt f dµ dt

=

∫ ∞
0

∫
Rn

A∇f · (AAT )−1 A∇Pt f dµ dt

=

∫ ∞
0

∫
Rn

A∇f · (AAT )−1 PMA
t,A (A∇f ) dµ dt

=

∫
Rn

A∇f · (AAT )−1 (−LA + MA)−1 (A∇f ) dµ

≤
∫
Rn

A∇f · (AAT )−1 M−1
A A∇f dµ

=

∫
Rn
∇f ·

(
∇2V − L(A−1)A

)−1 ∇f dµ.
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Generalized BL inequality and spectral gap

Theorem (Arnaudon, Bonnefont, J. (’18))

Let x ∈ Rn → A(x) ∈ GLn(R) be a smooth mapping such that
∇2V − L(A−1)A is a symmetric positive definite matrix. Then,

Varµ(f ) ≤
∫
Rn
∇f ·

(
∇2V − L(A−1)A

)−1 ∇f dµ.

Corollary
As a consequence, for all such matrices A,

λ1 ≥ inf
x∈Rn

ρ
(
∇2V − L(A−1)A

)
(x),

where, if M stands for some symmetric matrix, ρ(M) denotes its
smallest eigenvalue.
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Generalized BL inequality and spectral gap

Why such a form ∇2V − L(A−1)A ?
Through the Bakry-Émery Γ2-calculus, the generalized BL
inequality is equivalent to its dual form∫

Rn
(Lf )2 dµ ≥

∫
Rn
∇f ·

(
∇2V − L(A−1)A

)
∇f dµ,

which is true since∫
Rn

(Lf )2 dµ =

∫
Rn
∇f · ∇(−L)f dµ

=

∫
Rn
∇f ·

(
−L+∇2V

)
(∇f ) dµ

≥
∫
Rn
∇f ·

(
−L(A−1)A +∇2V

)
∇f dµ,

the inequality being a generalization of Barta’s inequality at the
level of gradients.
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level of gradients.
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Generalized BL inequality and spectral gap

Question: Case of equality in the generalized BL inequality ?
Answer: If H is some diffeomorphism on Rn, then choose the
matrix A = (Jac HT )−1, so that

∇2V − L(A−1)A = −Jac LHT (Jac HT )−1,

and provided this matrix is symmetric positive definite, then the
equality holds for f = LH · c , with c ∈ Rn some constant vector,
generalizing the extremal functions in the classical BL inequality: if
H = id , then Lid = −∇V .
Question: Case of equality for the spectral gap ?
Answer: It depends on the structure of the associated eigenspace...
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Generalized BL inequality and spectral gap

Example: The term involving the matrix A allows to compensate
the lack of strong convexity, as in the following model: a Lipschitz
perturbation of a non-strongly log-concave product measure.
The potential is

V (x) =
n∑

k=1

|xk |α

α
+ β

n∑
k=1

|xk − xk+1|, x ∈ Rn,

with 1 < α < 2.

Proposition
For β small enough, there exists λ > 0 such that for all n ≥ 1, the
spectral gap satisfies λ1 ≥ λ.

It seems that our approach goes beyond the classical method of
requiring uniform estimate for the one-dimensional conditional
distributions (Helffer, Ledoux, Gentil-Roberto in the end ’90), for
which some strong convexity at infinity is often needed.
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Other consequences of the intertwining approach

Second-order generalized BL inequalities (Bonnefont, J. (’18)),
in the spirit of Cordero-Fradelizi-Maurey (’04) about the
so-called B-conjecture.
A second-order BL inequality is: for all f such that
Covµ(f , id) = 0,

Varµ(f ) ≤
∫
Rn
∇f ·

(
∇2V + λ1 In

)−1 ∇f dµ.

Comparison of spectra of the diffusion operator −L and the
Schrödinger-type operators −L+∇2V and −LA + MA acting
on gradients (Bonnefont, J. (’19); such a comparison has been
emphasized in the non-weighted case by Johnsen (’00)):

σ(−L)\{0} = σ(−L+∇2V |∇) = σ(−LA + MA |A∇).

Optimality in dimension 1 and higher eigenvalues estimates
(Bonnefont, J. (’19)).
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Optimality in dimension 1

In dimension 1, can we get the equality in

λ1 ≥ sup
a

inf
x∈R

(
V ′′ − a L(1/a)

)
(x) ?

Taking the weight of the form a = 1/h′, with some function h′ > 0,
then

V ′′ − a L(1/a) =
(−Lh)′

h′
.

If the spectral gap λ1 is attained, then the associated eigenfunction
g1 is strictly monotone with g ′1 non-vanishing, so that taking
h = g1 entails the desired equality, recovering Chen’s famous
variational formula (’97) obtained by coupling.
Question: Does the intertwining approach allow to go beyond the
spectral gap ?
Answer: Yes.
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Higher order eigenvalues

Assume for simplicity that σess(−L) = ∅, i.e., σ(−L) = σdisc(−L).
The eigenvalues (λn)n∈N , ordered according to the Courant-Fisher
min-max theorem, form a sequence tending to infinity as n→∞.
We have

Laf = Lf + 2 a
(
1
a

)′
f ′

= f ′′ − V ′ f ′ − log(a2)′ f ′

= f ′′ − V ′a f
′,

with Va = V + log(a2), the associated invariant measure µa having
Lebesgue-density proportional to e−Va = e−V /a2.
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Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the
previous comparison of spectra rewrites as follows: letting a = a1,
then for all k ∈ N,

λk+1(−L) = λk(−La1 + Ma1)

≥ λk(−La1 + inf Ma1)

= λk(−La1) + inf Ma1 ,

where Ma1 = V ′′ − a1 L(1/a1), which is for k = 0 the spectral gap
estimate provided by the generalized BL inequality.
In dimension 1, we can iterate the argument: let us see how it
works for k = 1: the intertwining with some smooth positive weight
a2 (say) applied to La1 gives

a2 (La1 f )′ = (La1×a2 −Ma2
a1

) (a2 f ′),

where
Ma2

a1
= V ′′a1

− a2 La1(1/a2).
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Higher order eigenvalues

Hence,

λ2(−L) ≥ λ1(−La1) + inf Ma1

= λ0(−La1a2 + Ma2
a1

) + inf Ma1

≥ λ0(−La1a2 + inf Ma2
a1

) + inf Ma1

= inf Ma2
a1

+ inf Ma1 .

Theorem
In the case σess(−L) = ∅, we have for all k ≥ 1,

λk(−L) = sup
a1,...,ak>0

inf Ma1 + inf Ma2
a1

+ . . .+ inf Mak
a1...ak−1

,

the equality being satisfied when choosing the ai conveniently in
terms of the eigenfunctions g1, . . . , gk .
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Higher order eigenvalues

Choosing the ai = 1 in the strongly convex case, we recover:

Theorem (Milman (’18))

Assume that V is strongly convex, i.e. inf V ′′ ≥ ρ > 0. Then for
all k ≥ 1,

λk(−L) ≥ λk(−LOU,ρ) (= ρ k),

where

LOU,ρf (x) = f ′′(x)− ρ x f ′(x), VOU,ρ(x) = ρ |x |2/2.

We also prove an estimate on the gap between consecutive
eigenvalues:

Theorem
Under the same assumption, we have for all k ≥ 1,

λk − λk−1 ≥ ρ.
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Higher order eigenvalues

A non-strongly convex example: Subbotin distribution:

V (x) =
|x |α

α
, 1 < α ≤ 2.

Choosing the ai = eε iV for some convenient constants εi , then we
get for all k ≥ 1,

λk ≥ Cα,εk2− 2
α
−ε ,

in accordance with Weyl’s law describing the asymptotic behaviour
of eigenvalues:

λk '
k→∞

Cα k2− 2
α .
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Some perspectives and open questions

Structure of the eigenspace associated to λ1 (Barthe-Klartag,
forthcoming).
Iteration of the intertwinings, to recover and extend Milman’s
theorem.
The case of Riemannian manifolds.
Relate our Barta inequality to the dimensional aspect in the
Bakry-Emery curvature-dimension criterion.
Understand the probabilistic representation of the operator LA.
Study the gap between consecutive eigenvalues in the
non-strongly convex case, at least in dimension 1.
Explore the consequences of the intertwinings in terms of:

Other functional inequalities (for instance log-Sobolev);
Stability by measure-transformation;
Concentration of measure.
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Steiner, forthcoming ?
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As predicted by Jim Morrison, this is the end...

THANK YOU
FOR YOUR ATTENTION
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