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Introduction
Setting
Consider the Euclidean space (R”, |- |) endowed with the

probability measure dyu(x) oc e~V (*)dx, where V is some smooth
potential with Hessian matrix V2V bounded from below.

Canonical diffusion operator: Lf = Af — VV - Vf, for which:
o L is (essentially) self-adjoint:

ngd,u:/ Lfgdu=— Vf-Vgdu.
Rn n Rn

o By spectral theorem, we define P; := eft, t > 0, a family of
symmetric operators on L?(1), satisfying the semigroup
property:

PtOPSZPsOPt:Pt+S, and Pozid,

and for which p is invariant:

/ Pfdu = fdu.
n Rn



Introduction
Probabilistic interpretation

Markov diffusion process (X¢)¢>0 on R”, solution to the
Stochastic Differential Equation

(]

dX; = —VV(X;)dt + v2dB:,

where (B:)s>0 is a standard Brownian motion on R”.

Law of the process coincides with the semigroup:
E[f(X:) | Xo = x] = P:f(x).

The process has (infinitesimal) generator L.

Invariance: if Xo ~ p then X; ~ p for all t > 0.

Symmetry of the semigroup: if Xo ~ p then for all T > 0, the
processes (Xt)¢epo,7] and (X7—t)tefo, 7] have the same law.
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Examples

o The Gaussian case:
|x|?

V(x) o

and p = v the standard Gaussian distribution A/(0, /).

@ The Subbotin, or exponential power, distribution:

xJ7

o
with a € [1, 00], the case & = 0o being the uniform measure
on the Euclidean unit ball.

o More generally, the log-concave case, i.e. V is convex.

o Heavy-tailed case: Generalized Cauchy:

V(x) = B log(1 + |x|?),
with 5 > n/2, so that

dp(x)

V(x) =

N T
(1+Ix[?)
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@ The double-well potential:

_ X IxP

V(x) 2 5

@ Product measures perturbed by an interacting term:

V(x) = Vi) + ) ollxi = xieen])-
=1 =1



Introduction

Long-time behaviour

As t — o0, we have
Xy = X5 inlaw, where X, ~ p.
Many different notions of convergences, and among them:
o Convergence in L?(p1) (related to the x? divergence):

Var,(Pef) = ||Pef — p(F)[ 72, 20

where i(f) := [pa f dp.
o Convergence in L'(1) (related to the total variation distance).

o Convergence in relative entropy (related to the
Kullback-Leibler divergence).

e Convergence in Wasserstein (or Kantorovich) distances.
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Poincaré inequality and spectral gap

Letting A > 0, the following assertions are equivalent:

o Exponential convergence in L?(p): for all f € L?(p),

1Pef — ()l 2y < €A NI = i)l i2(p-

o Poincaré inequality PI(\): for all f € D(L),

AVar,(f) < /R" f(—Lf)dp.

Actually, one has: PI(A\) <= o(—L) C {0} U [\, o0), with o(—L)
the spectrum of the non-negative operator —L.

The largest \ is called the spectral gap of —L and is denoted \;.
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Brascamp-Lieb inequality

Theorem (Brascamp-Lieb ('76))

Assume V is strictly convex, i.e. V2V is a positive definite matrix.
Then for all f smooth enough,

Var,(f) < /]Rd Vf - (V2V) 1 Vfdu. (2.1)

o In particular if V is strongly convex, i.e., V2V > X\, for some
A > 0 - an instance of the famous Bakry-Emery
curvature-dimension criterion ('85) - then PI()\) holds.

@ Except the Gaussian case, none of the previous examples enter
into the strongly convex situation.

@ The proof of BL uses a tedious induction on the dimension.

@ The inequality is saturated for f = VV - ¢, with ¢ € R" some
constant vector.
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Classical intertwining

Helffer ('98) revisited the BL inequality, by proposing a simple
proof based on an intertwining relation between gradient and
operator, the so-called Witten Laplacian approach:

VLf = (L — V?V)(VF),

with £ = diag(L) a (diagonal) matrix diffusion operator acting on
vector fields and V2V is a multiplicative, or O-order, operator.

At the level of semigroups, we have
VP =PV (VF),

with (PY°Y)¢s0 the Feynman-Kac semigroup acting on vector
fields with generator the Schrédinger operator £ — V2V.
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Classical intertwining

In dimension 1, the Feynman-Kac semigroup (Ptv2v)t20 admits a
simple probabilistic representation: denoting (X)¢>0 the process
with Xg = x € R,

PY'F(x) = E [f(Xf) exp (— /0 VX ds>] |
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Helffer's proof of the BL inequality

Since we have

V(—L)lf:/ VPtfdt:/ PV (VF) dt = (—L4V2V)L (VF),
0 0
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Helffer's proof of the BL inequality

Since we have
V(—L)lf:/ VPtfdt:/ PV (VF) dt = (—L4V2V)L (VF),
0 0

we get after some computations,
Var,(f) = / V- -VP:fdudt
0 RA
= / VE-PYV(VF) dudt
0 RA
= Vf - (—L+V2V)" (V) du

RN

< Vf - (V2V) 1 Vfdy,
Rn

where we used the following inequality, to understand in the sense
of self-adjoint operators: (—£ + V2V)~1 < (V2V) L.



Intertwinings and Brascamp-Lieb inequalities

A new intertwining

Question: how to correct the lack of (strong) convexity in the
previous examples 7

Idea: to introduce a weight in the previous intertwining.

Letting x € R” — A(x) € GL,(R) be a smooth mapping seen as a
weight, we have

AVLF = A(L—-V?V)(ATAVS)
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Question: how to correct the lack of (strong) convexity in the
previous examples 7
Idea: to introduce a weight in the previous intertwining.
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A new intertwining

Question: how to correct the lack of (strong) convexity in the
previous examples 7

Idea: to introduce a weight in the previous intertwining.

Letting x € R” — A(x) € GL,(R) be a smooth mapping seen as a
weight, we have

AVLE = A(L—V2V)(A1AVS)
= (L+2AV(AY)-V)(AVS)
LA
—(AV2VA1 AL(A™Y) (AVF)
::MA
= (La— Mga)(AVF).
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intertwining

L is a (non-diagonal) matrix diffusion operator acting on
vector fields, and My, is 0-order.

The scalar product of interest on vectors fields is
L2 ((AAT)™1 1), so that —La is (essentially) self-adjoint and
non-negative as soon as

AT MAA=V2V — LAY A,

is a symmetric matrix which is bounded from below.

In terms of semigroups, the intertwining with weight A means
that
AVPf = PR (AVS),

with (73 2 )e>0 the Feynman-Kac semigroup acting on vector
fields, assouated to the operator L4 — Mj4.



Intertwinings and Brascamp-Lieb inequalities

A new intertwining

In dimension 1, the intertwining with weight a is nothing but a
composition of the classical intertwining with Doob’s 1/a-transform:
"we multiply inside by 1/a and divide outside by 1/a":

(Pye) = B[O e (- [ e “)]

0



Intertwinings and Brascamp-Lieb inequalities

A new intertwining
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composition of the classical intertwining with Doob’s 1/a-transform:
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0
t
- E [f’(x;t) exp <— / V'(XZ,) ds) ME"”)],
0

where (Xt(a))tzo is the diffusion process with generator L, and

(Mga))tzo is the Girsanov martingale

o = 5 ()
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A new intertwining

In dimension 1, the intertwining with weight a is nothing but a
composition of the classical intertwining with Doob’s 1/a-transform:
"we multiply inside by 1/a and divide outside by 1/a":

(Pye) = B[O e (- [ e “)]

0
t
- E [f’(x;t) exp <— / V'(XZ,) ds) ME"”)],
0

where (Xt(a))tzo is the diffusion process with generator L, and

(Mga))tzo is the Girsanov martingale

= 2 g ([0 0

_ "’(:(%) exp ( /0 CaL(1/2) (X2) ds> ,
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A new intertwining

so that the intertwining with weight a rewrites as

a(Pf)(x)=E [(af’)(X;t) exp <— /Ot(V“ - aL(l/a))(X;s)ds>] .
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Generalized BL inequality

Var,(f) = /0 - V- VP:f dudt
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0 n
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Generalized BL inequality

Var,(f) = /0 Ran-VPtfd,udt
_ / /AVf-(AAT)_lAVPtfdudt
0 n

= / /AVf-(AAT)—IPN;(Aw)det
0 n '
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Generalized BL inequality

Var,(f) = /0 Ran-VPtfd,udt
= / /AVf-(AAT)_lAVPtfd#dt
0 n
= / /AVf-(AAT)—IPN;(Aw)det
0 n '

= /AVf-(AAT)1(—L’A+MA)1(AVf)dM
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Generalized BL inequality

Var,(F) = /OOO [tV dpe
_ /OOO/HAVf-(AAT)_lAVPtfdudt
_ /OOO/HAW-(AAT)—lpfﬂ;(AVf)dudt
= / AVE - (AAT) Y (=La+ Ma) L (AVF)dpu

< / AVE-(AAT) P MY AVFdu



Intertwinings and Brascamp-Lieb inequalities

Generalized BL inequality

Var,(F) = /OOO [tV dpe
_ /OOO/HAVf-(AAT)_lAVPtfdudt
_ /OOO/HAW-(AAT)—lpfﬂ;(AVf)dudt
= / AVE - (AAT) Y (=La+ Ma) L (AVF)dpu
< /"AVf.(AAT)—lmglAVfdu

= VF-(VAV - LAY A) T v d
Rn



Intertwinings and Brascamp-Lieb inequalities

Generalized BL inequality and spectral gap

Theorem (Arnaudon, Bonnefont, J. ('18))

Let x € R" — A(x) € GL,(R) be a smooth mapping such that
V2V — L(A™Y) A is a symmetric positive definite matrix. Then,

Var,(f) < [ VF-(V2V - L(A ) A) ! Vidp.
Rn

Corollary

As a consequence, for all such matrices A,

A > inf p(V2V = L(ATY) A) (x),

xERN

where, if M stands for some symmetric matrix, p(M) denotes its
smallest eigenvalue.
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Generalized BL inequality and spectral gap

Why such a form V2V — L(A71)A?
Through the Bakry-Emery IM>-calculus, the generalized BL
inequality is equivalent to its dual form

/ (LF)*dp > Vf-(V2V — L(AY) A) Vfdp,
n Rn
which is true since

/ (LF)?du = Vf-V(-L)fdu

]Rn
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Generalized BL inequality and spectral gap

Why such a form V2V — L(A71)A?
Through the Bakry-Emery IM-calculus, the generalized BL
inequality is equivalent to its dual form

/ (LF)*dp > Vf-(V2V — L(AY) A) Vfdp,
n Rn
which is true since

/ (LF)>dy = Vf-V(-L)fdu

]Rn

= Vf- (=L +V?V) (Vf)du
Rn

> V- (=LA A+ V2V) Vfdy,
Rn

the inequality being a generalization of Barta's inequality at the
level of gradients.
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Generalized BL inequality and spectral gap

Question: Case of equality in the generalized BL inequality 7

Answer: If H is some diffeomorphism on R”, then choose the
matrix A = (Jac H™)™1, so that

V2V - LAY A= —Jac LHT (JacHT) 1,

and provided this matrix is symmetric positive definite, then the
equality holds for f = LH - ¢, with ¢ € R"” some constant vector,
generalizing the extremal functions in the classical BL inequality: if
H = id, then Lid = -V V.

Question: Case of equality for the spectral gap ?

Answer: It depends on the structure of the associated eigenspace...
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Generalized BL inequality and spectral gap

Example: The term involving the matrix A allows to compensate
the lack of strong convexity, as in the following model: a Lipschitz
perturbation of a non-strongly log-concave product measure.

The potential is
n ’X |Ol n
k
V(x) = ; T + B ; |xk — xkr1|, x €R",

with 1 < a < 2.

Proposition

For 3 small enough, there exists A > 0 such that for all n > 1, the
spectral gap satisfies A\ > \.

It seems that our approach goes beyond the classical method of
requiring uniform estimate for the one-dimensional conditional
distributions (Helffer, Ledoux, Gentil-Roberto in the end '90), for
which some strong convexity at infinity is often needed.
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Other consequences of the intertwining approach

@ Second-order generalized BL inequalities (Bonnefont, J. ('18)),
in the spirit of Cordero-Fradelizi-Maurey ('04) about the
so-called B-conjecture.

A second-order BL inequality is: for all f such that
Cov,(f,id) =0,

Var,(F) < [ V- (V2V+Ail,) " VFdp.
Rn
o Comparison of spectra of the diffusion operator —L and the
Schrédinger-type operators —£ + V2V and —L4 + My acting
on gradients (Bonnefont, J. ('19); such a comparison has been
emphasized in the non-weighted case by Johnsen ('00)):

o(—L\{0} = o(=L+ V2V |v) =0(—La+ Ma |av).

@ Optimality in dimension 1 and higher eigenvalues estimates
(Bonnefont, J. ('19)).
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Dimension 1

Optimality in dimension 1

In dimension 1, can we get the equality in

A1 > sup imfR (V" —al(1/a)) (x) ?
a XE

Taking the weight of the form a = 1/#’, with some function A’ > 0,
then

(—=Lh)

W
If the spectral gap \; is attained, then the associated eigenfunction
g1 is strictly monotone with g; non-vanishing, so that taking
h = g1 entails the desired equality, recovering Chen's famous
variational formula ('97) obtained by coupling.

V" —al(l/a) =

Question: Does the intertwining approach allow to go beyond the
spectral gap 7
Answer: Yes.



Dimension 1

Higher order eigenvalues

Assume for simplicity that oess(—L) = 0, i.e., o(—L) = o4isc(—L).
The eigenvalues (Ap)nen, ordered according to the Courant-Fisher
min-max theorem, form a sequence tending to infinity as n — oo.

We have

1 !/
Lf = Lf+2a<> f!

a
_ f” o Vl f/ . Iog(a2)/ fl
— f// _ V/ f/

with V, = V + log(a?), the associated invariant measure p, having
Lebesgue-density proportional to e~V = e~V /22



Dimension 1

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the
previous comparison of spectra rewrites as follows: letting a = a1,
then for all k € N,

)‘k-l-l(_l-) = /\k(_L81+Ma1)
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Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the
previous comparison of spectra rewrites as follows: letting a = a1,
then for all k € N,

)‘k-l-l(_l-) = /\k(_Lal + Ma1)
> A(—La +inf My,)



Dimension 1

Higher order eigenvalues

The restriction to gradients being useless in dimension 1, the
previous comparison of spectra rewrites as follows: letting a = a1,
then for all k € N,

)‘k-l-l(_l-) = /\k(_Lal + Ma1)
> A(—La +inf My,)
= )\k(_Lal) + inf Mal,
where M,, = V" — a3 L(1/a1), which is for k = 0 the spectral gap
estimate provided by the generalized BL inequality.

In dimension 1, we can iterate the argument: let us see how it
works for k = 1: the intertwining with some smooth positive weight
ay (say) applied to L,, gives

az (La1 f)/ = (L31><32 - M:f) (82 f/)a

where
/Waal2 = Va//1 — ar Lal(l/az).
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Higher order eigenvalues

Hence,

Ao(—=L) > A(=La,)+inf M,
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Higher order eigenvalues

Hence,

Xa(=L) > Ai(—La,) +inf M,
Ao(—Layay + M32) +inf M,



Dimension 1

Higher order eigenvalues

Hence,

A2(—L)

v

)\1(—Lal) + inf M,
= Ao(—Laya, + M3?) +inf M,
> No(—Laya, +inf M22) +inf My,
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Higher order eigenvalues

Hence,

A2(—L)

v

A1(—La,) +inf My,

Ao(—Layay + M32) +inf M,
No(—Laya, + inf M22) 4 inf My,
inf M32 4 inf M,,.
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Higher order eigenvalues

Hence,

Aa(—L) M(—=La,) +inf My,
Ao(—Layay + M32) +inf M,
Mo(—Laya, + inf M2) +inf Ma,

= inf M32 4 inf M,,.

v

Theorem
In the case oess(—L) = 0, we have for all k > 1,

M(=L) = sup inf My +inf M3 + ... +inf M3k

air...ag—1’
ay,...,a>0

the equality being satisfied when choosing the a; conveniently in
terms of the eigenfunctions g, . . ., gk.




Dimension 1

Higher order eigenvalues

Choosing the a; = 1 in the strongly convex case, we recover:
Theorem (Milman ('18))

Assume that V is strongly convex, i.e. inf V' > p > 0. Then for
all k > 1,

M(=L) > M(=Lou,) (= pk),

where

Lou,pf(x) = F'(x) = px F'(x),  Vou,(x) = plx?/2.

We also prove an estimate on the gap between consecutive
eigenvalues:

Under the same assumption, we have for all k > 1,

Ak — Ak—1 = p-




Dimension 1

Higher order eigenvalues

A non-strongly convex example: Subbotin distribution:

[x|*

V(X):X—, l<a<2
a

Choosing the a; = €%V for some convenient constants ¢;, then we
get for all kK > 1,
2
A > Cock® a7,

in accordance with Weyl's law describing the asymptotic behaviour
of eigenvalues:
2
A ~ G k>~

k—o00



Perspectives

Some perspectives and open questions

@ Structure of the eigenspace associated to A1 (Barthe-Klartag,
forthcoming).

o lteration of the intertwinings, to recover and extend Milman'’s
theorem.

@ The case of Riemannian manifolds.

@ Relate our Barta inequality to the dimensional aspect in the
Bakry-Emery curvature-dimension criterion.

@ Understand the probabilistic representation of the operator L 4.

@ Study the gap between consecutive eigenvalues in the
non-strongly convex case, at least in dimension 1.

o Explore the consequences of the intertwinings in terms of:

o Other functional inequalities (for instance log-Sobolev);
o Stability by measure-transformation;
o Concentration of measure.
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Steiner, forthcoming ?



As predicted by Jim Morrison, this is the end...
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FOR YOUR ATTENTION
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