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Introduction

M. Sommerfeld and A. Munk (2018) : “Transportation cost distance is an attractive tool
for data analysis but statistical inference is hindered by the lack of distributional limits”

Kantorovich formulation:
- A transportation plan between two probabilities P and Q on Rd is a joint

probability π on Rd × Rd with marginals P and Q

- The optimal transportation cost is the minimal value of

I[π] =
∫
Rd×Rd

c(x, y)dπ(x, y)

among all transportation plans π between P and Q

- If c(x, y) = cp(x, y) = ‖x− y‖p, p ≥ 1, the optimal transportation cost is

Wp
p (P,Q) = inf

π∈Π(P,Q)

∫
Rd×Rd

‖x− y‖pdπ(x, y)

Wasserstein distance: Wp defines a metric in the set Fp(Rd) of probabilities on
Rd with finite p-th moment.
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Introduction
Consider X1, . . . , Xn i.i.d. P, Pn; and Y1, . . . , Ym i.i.d. Q,Qm
Assuming that P and Q have finite p-th moment,

Wp
p (Pn, Q)→Wp

p (P,Q), as n→∞, a.s.

Wp
p (Pn, Qm)→Wp

p (P,Q), as n,m→∞, a.s.

Distributional limit theorem?
a) case P = Q : goodness-of-fit problems

• d ≥ 1
- M. Atjai et al. (1984) and M. Talagrand and J.E. Yuckich (1993) : P = Q

uniform distribution on the unit hypercube
- V. Dobrić and J.E. Yuckich (1995), N. Fournier and A. Guillin (2015):

rates of convergence
• d = 1

- p = 1 : E. Del Barrio, E. Giné and C. Matrán (1999) (integrability
conditions)W1(Pn, P ) = OP (n−1/2) with

√
nW1(Pn, P )→w

non-Gaussian
- p = 2 : E. del Barrio, J.A. Cuesta-Albertos, C. Matrán and J.M.

Rodrı́guez-Rodrı́guez (1999), E. del Barrio, E. Giné and F. Utzet (2005)
(integrability + smoothness conditions on P )

√
nWp(Pn, P )→w
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Introduction
Provide statistical certification that the data are not too far from a model P = Q

× Not rejecting the null H0 : P = Q

X Rejection of the null H0 : ρ(P,Q) ≥ ∆0 for some distance ρ
b) case P 6= Q

H0 : Wp(P,Q) ≥ ∆0

CLT :
rn
(
Wp
p (Pn, Q)− an)

rn,m
(
Wp
p (Pn, Qm)− an,m)

}
⇒ Computation of approximate p− values

• d = 1, p = 2: A. Munk and C. Czado (1998)W2 or trimmed version
• d ≥ 1, p ≥ 1:

- M. Sommerfeld and A. Munk (2018): P,Q finitely supported
- A. Tameling, M. Sommerfeld and A. Munk (2018): P,Q countable

support
• d ≥ 1, p = 2 : E. del Barrio and J.-M. Loubes (2017): P and Q continuous,

CLT in general dimension: if Q has a positive density in the interior of its
convex support and P and Q have finite moments of order 4 + δ for some
δ > 0 then

√
n
(
W2

2 (Pn, Q)− E(W2
2 (Pn, Q))

)
→w N(0, σ2(P,Q))

for some σ2(P,Q), which is not null if and only if P 6= Q.
+ two-sample version
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Main contributions of the paper

d = 1 , p ≥ 1

→ CLT for general cost on the real line:
√
n
(
Wp
p (Pn, Q)− E(Wp

p (Pn, Q)))→w N(0, σ2(P,Q))

→ p > 1: under sharp moment and smoothness assumptions
→ p = 1: when strict convexity of the cost function is lost, non-normal limits can

occur, even in the case P 6= Q

+ two sample version: if n
n+m → λ ∈ (0, 1)

√
n
(
Wp
p (Pn, Qm)− E(Wp

p (Pn, Qm)))→w N(0, (1− λ)σ2(P,Q) + λσ2(Q,P ))

→ General conditions under which E(Wp
p (Pn, Q)) can be replaced byWp

p (P,Q) as
centering constant

→ Consistent estimator of the asymptotic variance in the CLT

→ Confidence interval forWp
p (P,Q) of asymptotic level 1− α

→ Consistent test H0 :Wp(P,Q) ≥ ∆0 vs Ha :Wp(P,Q) < ∆0
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CLT for Lp transportation cost on the real line

P and Q probabilities on R, F,G d.f.’s

Wp
p (F,G) =

∫ 1

0
|F−1(t)−G−1(t)|pdt, (C. Villani, 2003)

Set hp(x) = |x|p, x ∈ R, p > 1, and

cp(t;F,G) :=
∫ F−1(t)

F−1( 1
2 )
h′p
(
s−G−1(F (s))

)
ds, 0 < t < 1

c̄p(t;F,G) :=cp(t;F,G)−
∫ 1

0
cp(s;F,G)ds, 0 < t < 1

Lemma
If F,G ∈ F2p, p > 1, then cp(·;F,G) ∈ L2(0, 1) and c̄p(·;F,G) ∈ L2(0, 1).
Furthermore, if Fm, Gm ∈ F2p satisfyW2p(Fm, F )→ 0,W2p(Gm, G)→ 0 and G−1 is
continuous on (0, 1) then c̄p(·;Fm, Gm)→ c̄p(·;F,G) in L2(0, 1) as m→∞.
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CLT for Lp transportation cost on the real line

σ2
p(F,G) =

∫ 1

0
c̄2p(t;F,G)dt

• F,G ∈ F2p ⇒ σ2
p(F,G) <∞

• F = G⇒ σ2
p(F,G) = 0

• F 6= G⇒ G−1 ◦ F 6= Id on a set of positive measure (G−1 ◦ F = o.t.m. F → G)
and σ2

p(F,G) > 0 if F is not a Dirac measure

• σ2
p(F,G) is not symmetric in F and G

Theorem (Central Limit Theorem forWp with p > 1)
Assume that F,G ∈ F2p and G−1 is continuous on (0, 1) and p > 1. Then

(i) If X1, . . . , Xn are i.i.d. F and Fn is the empirical d.f. based on the Xi’s
√
n(Wp

p (Fn, G)− EWp
p (Fn, G))→w N(0, σ2

p(F,G)).

(ii) If, furthermore, F−1 is continuous, Y1, . . . , Ym are i.i.d. G, independent of theXi’s,
Gm is the empirical d.f. based on the Yj ’s and n

n+m → λ ∈ (0, 1) then√
nm
n+m (Wp

p (Fn, Gm)− EWp
p (Fn, Gm))→w N(0, (1− λ)σ2

p(F,G) + λσ2
p(G,F )).
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The assumptions in the CLT are sharp

1. Wp
p (Fn, G) =

∫ 1
0 |F

−1
n (t)−G−1(t)|pdt =

∑n

i=1

∫ i
n
i−1
n

|X(i) −G−1(t)|p ⇒ G ∈ Fp

2. F satisfies (i) for every G ∈ Fp
G Dirac’s measure on 0,Wp

p (Fn, G) = 1
n

∑n

i=1 |Xi|
p ⇒ F ∈ F2p

3. σ2
p(F,G) <∞ for all F ∈ F2p ⇔ G ∈ F2p

=⇒ F,G ∈ F2p minimal requirement for (i) to hold

∗ E. del Barrio and J.-M. Loubes (2017): p = 2 −→ F,G ∈ F4+δ, δ > 0

4. Continuity of G−1

• S. Bobkov and M. Ledoux (2014) : F = G −→ absolute continuity of F−1 is
a necessary condition for E(Wp(Fn, F )) = O( 1√

n
)

• E. del Barrio and J.-M. Loubes (2017) −→ G is supported in a (possibly
unbounded) interval and G−1 is differentiable in the interior of that interval

• M. Sommerfeld and A. Munk (2018): finitely supported probabilities on R
−→ nonnormal limiting distributions
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Role of the centering constants in the CLT

Kantorovich duality: (C. Villani, 2003)

Wp
p (F,G) = sup

(ϕ,ψ)∈Φp

∫
ϕdF +

∫
ψdG,

Φp set of pairs of integrable functions (with respect to F and G, respectively)
satisfying ϕ(x) + ψ(y) ≤ |x− y|p

E(Wp
p (Fn, G)) ≥ sup

(ϕ,ψ)∈Φp
E
( ∫

ϕdFn
)

+
∫
ψdG

= sup
(ϕ,ψ)∈Φp

∫
ϕdF +

∫
ψdG =Wp

p (F,G)

If 0 ≤
√
n
(
E(Wp

p (Fn, G))−Wp
p (F,G)

)
→ 0

⇒ we can replace the centering constants in CLT:
√
n(Wp

p (Fn, G)−Wp
p (F,G))→w N(0, σ2

p(F,G))



Introduction CLT forLp transportation cost on the real line Simulation results Application to fair learning

Sufficient conditions for
√

n
(
E(Wp

p (Fn, G))−Wp
p (F, G)

)
→ 0 with p ≥ 2

F is twice differentiable
f nonvanishing density in the interior of supp(F ) = cl{x : F (x) /∈ {0, 1}}

I) supt∈(0,1)
t(1− t)|f ′(F−1(t))|

f2(F−1(t)) <∞

II) for some s ∈ ( p4 ,
p
2 ), nsEWp

p (Fn, F )→ 0 as n→∞,

III)
1√
n

∫ 1− 1
n

1
n

(t(1− t))1/2

f2(F−1(t)) dt→ 0,

IV)
∫ 1

0

∫ 1

0

(s ∧ t− st)2

f2(F−1(s))f2(F−1(t))dsdt <∞.

V)
∫ 1

0

(t(1− t))p/2

fp(F−1(t)) dt <∞ ⇒ II), III), IV)

Proposition
Assume p ≥ 2. Under the assumptions of the CLT,

(i) if F satisfies I) to IV) then
√
n(Wp

p (Fn, G)−Wp
p (F,G))→w N(0, σ2

p(F,G)).
(ii) if, furthermore, G satisfies I) to IV) and n

n+m → λ ∈ (0, 1) then√
nm
n+m (Wp

p (Fn, Gm)−Wp
p (F,G))→w N(0, (1− λ)σ2

p(F,G) + λσ2
p(G,F )).
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√
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Statistical application of the CLT: two sample case
P and Q probabilities on R
X1, . . . , Xn i.i.d. P, F, Fn; and Y1, . . . , Ym i.i.d. Q,G,Gm, independent of the Xi’s

Recall

{
hp(x) = |x|p, x ∈ R, p > 1
cp(t;F,G) =

∫ F−1(t)
F−1( 1

2 ) h
′
p

(
s−G−1(F (s))

)
ds, 0 < t < 1

Define:{
di,n,m(X,Y ) :=

∑i

j=2

[∣∣X(j) −G−1
m ( j−1

n
)
∣∣p − ∣∣X(j−1) −G−1

m ( j−1
n

)
∣∣p], i = 2, . . . , n

d1,n,m(X,Y ) := 0

⇒ σ̂2
1,n,m = 1

n

∑n

i=1 d
2
i,n,m(X,Y )−

(
1
n

∑n

i=1 di,n,m(X,Y )
)2

σ̂2
2,n,m similarly exchanging the roles of the Xi’s and the Yj ’s

Proposition (Consistency of variance estimation)
If F,G ∈ F2p, F−1, G−1 are continuous on (0, 1) and n

n+m → λ ∈ (0, 1), then

σ̂2
n,m = m

n+m σ̂
2
1,n,m + n

n+m σ̂
2
2,n,m → (1− λ)σ2

p(F,G) + λσ2
p(G,F )

almost surely.
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Statistical application of the CLT

If, additionally, F 6= G and F (or G) is not a Dirac measure then√
nm
n+m

(Wp
p (Fn, Gm)−Wp

p (F,G))
σ̂n,m

→w N(0, 1)

→ Confidence interval forWp
p (F,G) with asymptotic confidence level 1− α[

Wp
p (Fn, Gm)±

√
n+m
nm

σ̂n,mΦ−1(1− α
2 )
]

→ Testing problem with asymptotic level α

H0 : Wp(F,G) ≥ ∆0, vs Ha : Wp(F,G) < ∆0,

where ∆0 is some threshold

⇒ Rejection of the null if

Wp
p (Fn, Gm) < ∆p

0 −
√

n+m
nm

σ̂n,mΦ−1(1− α)
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Normal model: variance estimates

F ∼ N(0, 1), G ∼ N(µ, 1)

σ2
p(F,G) = σ2

p(G,F ) = p2µ2p−2

Example: n = m, µ = 1

σ̂2
n → σ2

σ̂2

1

4

9

log10(n)2 3 4 5

p
3
2
1

MSE = 1
N

N∑
j=1

∣∣σ̂2
j − σ2∣∣2 , N = 1000

n p = 1 p = 2 p = 3
50 0.03076 2.28517 79.70453

100 0.01434 1.25248 36.57057
200 0.00634 0.74908 15.10497
400 0.00290 0.32747 6.15403
500 0.00237 0.21351 5.50914
800 0.00148 0.18638 3.20970

1,000 0.00112 0.13431 2.59728
2,000 0.00054 0.0711 1.41032
5,000 0.00021 0.0304 0.52269
10,000 0.00011 0.0145 0.24127
σ2 1 4 9
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Normal location model: finite performance of the test
(i) 1, 000 data sets: P = N(0, 1), Q = N(µ, 1) with ∆0 =Wp(N(0, 1), N(1, 1)) = 1

p n µ=1 µ=0.9 µ=0.7 µ=0.5

1

50 0.062 0.146 0.481 0.825
100 0.055 0.193 0.698 0.974
200 0.053 0.275 0.918 1
400 0.051 0.413 0.995 1
500 0.051 0.481 0.999 1
800 0.052 0.64 1 1

1,000 0.054 0.728 1 1
2,000 0.047 0.937 1 1

2

50 0.074 0.167 0.513 0.839
100 0.063 0.198 0.717 0.979
200 0.059 0.272 0.927 1
400 0.055 0.422 0.995 1
500 0.05 0.484 0.999 1
800 0.053 0.651 1 1

1,000 0.053 0.736 1 1
2,000 0.051 0.935 1 1

3

50 0.071 0.154 0.515 0.822
100 0.066 0.206 0.715 0.973
200 0.057 0.266 0.925 1
400 0.052 0.422 0.992 1
500 0.057 0.497 0.997 1
800 0.053 0.652 1 1

1,000 0.053 0.733 1 1
2,000 0.051 0.937 1 1
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Normal location-scale model: finite performance of the test
(ii) 1, 000 data sets: P = N(0, 1), Q = N(µ, λ) with ∆0 =Wp(N(0, 1), N(1, 2))

p n
µ = 1
λ = 2

µ = 1
λ = 1.5

µ = 0
λ = 2

µ = 0
λ = 1.5

1

50 0.047 0.165 0.535 0.996
100 0.045 0.195 0.8 1
200 0.036 0.323 0.974 1
400 0.052 0.532 1 1
500 0.056 0.614 1 1
800 0.035 0.810 1 1

1,000 0.045 0.895 1 1
2,000 0.050 0.994 1 1

2

50 0.078 0.376 0.595 0.998
100 0.067 0.551 0.823 1
200 0.062 0.786 0.976 1
400 0.055 0.969 1 1
500 0.059 0.985 1 1
800 0.052 1 1 1

1,000 0.056 1 1 1
2,000 0.05 1 1 1

3

50 0.091 0.569 0.571 0.997
100 0.093 0.762 0.758 1
200 0.072 0.935 0.939 1
400 0.06 1 0.996 1
500 0.064 0.999 0.997 1
800 0.069 1 1 1

1,000 0.06 1 1 1
2,000 0.049 1 1 1

DistancesWp(N(0, 1), N(µ, λ))
p 1 2 3

µ = 1
λ = 2 1.16664 1.41421 1.61120

µ = 1
λ = 1.5 1.00849 1.11803 1.20538

µ = 0
λ = 2 0.79788 1 1.16858

µ = 0
λ = 1.5 0.39894 0.5 0.58429
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Fair Learning setting

- Y =
{

0 failure
1 success

target class

- X ∈ Rd, d > 1, visible attributes

- S =
{

0 unfavored
1 favored

protected attribute

- G family of binary classifiers g : Rd → {0, 1}
Criteria of fairness

• Disparate Impact

DI(g,X, S) = P(g(X) = 1 | S = 0)
P(g(X) = 1 | S = 1)

→ g is said not to have Disparate Impact at level τ ∈ (0, 1] if DI(g,X, S) > τ

• Balanced Error Rate

BER(g,X, S) = P (g(X) = 0 | S = 1) + P (g(X) = 1 | S = 0)
2

→ Given ε > 0, S is not ε−predictable from X if BER(g,X, S) > ε, for all g ∈ G
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Application to Fair Learning

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):

ε∗ := min
g∈G

BER(g,X, S) = 1
2 (1− dTV (µ0, µ1)) , µs = L(X | S = s)

⇒ S is not ε−predictable from X for all ε < ε∗

⇒ the maximal value of ε∗ is 1/2⇔ dTV (µ0, µ1) = 0
⇔ total confusion between µ0 and µ1
⇔ complete absence of bias in the training data

Fairness assessment:
× H0 : dTV (µ0, µ1) ≥ ∆0 vs Ha : dTV (µ0, µ1) < ∆0, for ∆0 > 0 (Barron, 1989)

X H0 :Wp(µ0, µ1) ≥ ∆0 vs Ha :Wp(µ0, µ1) < ∆0, for ∆0 > 0 and p ≥ 1
• Confidence intervals forWp(µ0, µ1) using CLT (two-sample version)

• Application to high-dimensional data:
- score f : Rd → R 99KWp(L(f(X) | S = 0),L(f(X) | S = 1))
- f logistic regression (other regression models or machine learning

techniques: SVM, random forest...)
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Repairing the data with Wasserstein barycenter

µ0 ∼ X | S = 0
µ1 ∼ X | S = 1

X̃ ∼ µS ◦ T−1
S

Goal: X −→ X̃ such that
L
(
X̃ | S = 0

)
= L

(
X̃ | S = 1

)
⇒ L

(
g(X̃) | S = 0

)
= L

(
g(X̃) | S = 1

)
, ∀g ∈ G

⇒ DI(g, X̃, S) = 1

M. Feldman et al. (2015)→ Geometric Repair: move µ0, µ1 only part towards µB
along Wasserstein’s geodesic

µ0 µ0,λ
µ1µ1,λµB µs,λ = L(λTs(X) + (1− λ)X | S = s),

λ ∈ [0, 1] amount of repair desired for X

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018): under some
regularity conditions, E(X̃) := RB(X̃)−RB(X,S)

E(X̃) ≤ 2
√

2K

(∑
s=0,1

πsW2
2 (µs, µs]Ts)

) 1
2

,K > 0
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Application to a real data example: Adult Income data

Y =
{

1 income exceeds $ 50.000/year
0 otherwise

X =(age, education number, capital gain,
capital loss, worked hours/ week)

S = gender
{

0 female
1 male

P. Besse, E. del Barrio, P. Gordaliza and J.-M. Loubes (2018).
Confidence intervals for testing disparate impact in fair learning.
arXiv
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E. del Barrio, P. Gordaliza and J.-M. Loubes. (December, 2018)
A central limit theorem on the real line with application to fairness assessment in
machine learning.
Accepted for publication in Information and Inference.

Thanks for the attention!


	Introduction
	CLT for Lp transportation cost on the real line
	Simulation results
	Application to fair learning

