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Introduction

M. Sommerfeld and A. Munk (2018) : “Transportation cost distance is an attractive tool
for data analysis but statistical inference is hindered by the lack of distributional limits”
Kantorovich formulation:

- A transportation plan between two probabilities P and Q on R? is a joint
probability = on R? x R¢ with marginals P and Q

- The optimal transportation cost is the minimal value of
I[m] = / c(z, y)dn(z,y)
R4 xR4

among all transportation plans = between P and @
- lfe(z,y) = cp(z,y) = |z — y||”, p > 1, the optimal transportation cost is

WE(P.Q) = inf / =yl (z,)
R2 xR

m€EI(P,Q)

Wasserstein distance: W, defines a metric in the set 7, (R?) of probabilities on
R with finite p-th moment.
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Introduction
Consider X1, ..., X, iid. P,P,;and Y1,...,Y,, i.i.d. Q,Qmn
Assuming that P and @ have finite p-th moment,

WE(Pn,Q) — WP (P,Q), as n — oo, a.s.
WP (P, Qm) — WH(P,Q), as n,m — oo, a.s.

Distributional limit theorem?
a) case P = @ : goodness-of-fit problems
e d>1
- M. Atjai et al. (1984) and M. Talagrand and J.E. Yuckich (1993) : P = Q@
uniform distribution on the unit hypercube
- V. Dobri¢ and J.E. Yuckich (1995), N. Fournier and A. Guillin (2015):
rates of convergence
e d=1
- p=1: E. Del Barrio, E. Giné and C. Matran (1999) (integrability
conditions) Wi (Py,, P) = Op(n~"/2) with /W1 (Py, P) =
non-Gaussian
- p=2: E. del Barrio, J.A. Cuesta-Albertos, C. Matran and J.M.
Rodriguez-Rodriguez (1999), E. del Barrio, E. Giné and F. Utzet (2005)
(integrability + smoothness conditions on P) v/nW,(Pp, P) —w
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Introduction
Provide statistical certification that the data are not too far from a model P = Q
x Not rejecting the null Hy : P =Q
Rejection of the null Hy : p(P,Q) > A, for some distance p
b) case P # Q
Ho : Wo(P,Q) > Ao

Tn (Wg(Pny Q) - an)

Trn,m (WE (P, Qm) — n,m)
e d=1,p=2: A Munk and C. Czado (1998) W, or trimmed version
ed>1,p>1:

- M. Sommerfeld and A. Munk (2018): P, Q finitely supported
- A. Tameling, M. Sommerfeld and A. Munk (2018): P, @ countable
support

e d>1,p=2:E.del Barrio and J.-M. Loubes (2017): P and @Q continuous,
CLT in general dimension: if Q has a positive density in the interior of its
convex support and P and @ have finite moments of order 4 + ¢ for some
6 > 0then

CLT : } = Computation of approximate p — values

V(W3 (Pn, Q) — EOV3(Pn,Q))) —w N(0,0%(P,Q))

for some o%(P, Q), which is not null if and only if P # Q.
+ two-sample version
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Main contributions of the paper

d=1,p>1
— CLT for general cost on the real line:
V(WE (Pa, Q) = EOWVE(Pa,Q))) —w N(0,0°(P,Q))

— p > 1: under sharp moment and smoothness assumptions
— p = 1: when strict convexity of the cost function is lost, non-normal limits can
occur, even in the case P # Q

+ two sample version: if —— — X\ € (0,1)

n—+m

V(W (Po, Q) = EOWVE (Pa, Qm))) =w N(0, (1 = N)o®(P,Q) + Ao™(Q, P))
— General conditions under which E(WE (P, Q)) can be replaced by WE (P, Q) as
centering constant
— Consistent estimator of the asymptotic variance in the CLT
— Confidence interval for W5 (P, Q) of asymptotic level 1 — o
— Consistent test Ho : W,,(P,Q) > Ag Vs Hy: Wp(P,Q) < Ao
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CLT for L, transportation cost on the real line

P and Q probabilities on R, F, G d.f's

1
W;’(F,G):/ |F~(t) — G~ (t)["dt, (C. Villani, 2003)
0

Set hy(z) = |z, z € R, p > 1, and

Fh@)
cp(t; F, Q) ::/ h;(s—G’_l(F(s)))ds, 0<t<1

F1(3)

1
(4 F,G) ::cp(t;F,G)—/ cp(s; F,G)ds, 0<t<1
0

Lemma

IfF,G € Fop,p>1,thency,(; F,G) € L2(0,1) and ¢, (+; F, G) € L2(0,1).
Furthermore, if Fy,, G € Fop satisfy Wap (Fm, F) = 0, Wop(Gr, G) — 0and G~ is
continuous on (0,1) then ¢, (+; Frn, Gm) — ¢ (3 F, G) in L2(0,1) as m — oo.
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CLT for L, transportation cost on the real line

1
oo (F,G) = / et F,G)dt
0

o [\G € Fop = 0p(F,G) < @

e F'=G=o0.(F,G)=0

o G = G 'oF # Idon aset of positive measure (G~ o F =o.tm. F — G)
and o(F,G) > 0if F is not a Dirac measure

e o2(F, Q) is not symmetric in F and G

Theorem (Central Limit Theorem for W, with p > 1)
Assume that F,G € F», and G~ is continuous on (0,1) andp > 1. Then
() If Xy1,..., X, areiid. F and F,, is the empirical d.f. based on the X;’s

V(WE(Fp,G) — EWE(Fn, G)) —w N(0,04(F, Q).

(ii) If, furthermore, F~' is continuous, Y1, . .., Y, areiid. G, independent of the X, s,
Gn Is the empirical d.f. based on theY;'’s and —*— — X € (0, 1) then

n+m

A (WE(F, Gim) — EWE(Fp, Gm)) —w N(0, (1 = N)op(F,G) + Ao (G, F)).
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The assumptions in the CLT are sharp

1. W(F,,G) = fo |Ft ®)|Pdt =" 1[ X -G ' = GeF,
2. F satisfies (i) for every G € F,
G Dirac’s measure on 0, WE(F,,,G) = 2 3" |Xi|P = F € Fa,
3. 02(F,G) < oo forall F € Fap & G € Fo,
= F,G € F», minimal requirement for (i) to hold
+ E. del Barrio and J.-M. Loubes (2017): p=2 — F,G € Fs4s,0 >0

4. Continuity of G™*

e S. Bobkov and M. Ledoux (2014) : F = G — absolute continuity of F~! is
a necessary condition for E(W, (Fy, F)) = O(ﬁ)

e E. del Barrio and J.-M. Loubes (2017) — G is supported in a (possibly
unbounded) interval and G~! is differentiable in the interior of that interval

e M. Sommerfeld and A. Munk (2018): finitely supported probabilities on R
— nonnormal limiting distributions
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Role of the centering constants in the CLT

Kantorovich duality: (C. Villani, 2003)

WE(F,G) = sup /nde-l—/de,

(p¥)EP)p

d,, set of pairs of integrable functions (with respect to F' and G, respectively)
satisfying o(z) + ¢ (y) < [z — y|?

EWy(F.,G)) > sup E(/nden) +/de

(p,)EP)

= sup /(deJr/de:ij(F,G)

(p¥)EPp

If0 < Vn(EWE(F.,G)) — WE(F,G)) — 0
= we can replace the centering constants in CLT:

\/E(Wzg(anG) - WII;(F? G)) —w N(0,0’E(F, G))
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Sufficient conditions for \/n(E(WE(F,, G)) — WE(F,G)) — 0 with p > 2
F is twice differentiable
f nonvanishing density in the interior of supp(F') = cl{z : F(z) ¢ {0,1}}

t(1 = DI (FHD)

1) supieo,1) PET®)

I) forsome sc (§,%), nEWJ(F.,F) =0 asn— oo,

L[ =)
y —= / PO

//P SM_S(t) Ty <o

Proposition

Assume p > 2. Under the assumptions of the CLT,
(i) if F satisfies 1) to IV) then \/n(WF(F,,G) — WE(F,G)) —w N(0,04(F, G)).
(i) if, furthermore, G satisfies 1) to IV) and — A€ (0,1) then

n+m

VI (WE (Fo, Gn) — WE(F,G)) —uw N(0, (1 = N)o2(F, G) + Ao2(G, F)).
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Sufficient conditions for \/n(E(WE(F,, G)) — WE(F,G)) — 0 with p > 2
F is twice differentiable
f nonvanishing density in the interior of supp(F') = cl{z : F(z) ¢ {0,1}}

t(1 = DI (FHD)

1) sup,eo,1) FAE1(1)) )

II) for some 36(4,2) n*EWP(Fn,F) -0 asn — oo,

1/2
) f/ an) ———————dt — 0,
s/\t—st)
/ / TN ) P <
))p/2 -
V)/0 7fp( ] dt < = 1), 1), V)
Proposition

Assume p > 2. Under the assumptions of the CLT,
(i) if F satisfies 1) to IV) then \/n(WF(F,,G) — WE(F,G)) —w N(0,04(F, G)).
(i) if, furthermore, G satisfies 1) to IV) and — A€ (0,1) then

n+m

VI (WE (Fo, Gn) — WE(F,G)) —uw N(0, (1 = N)o2(F, G) + Ao2(G, F)).
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Statistical application of the CLT: two sample case
P and @ probabilities on R
Xi,..., X, iid. P,F, Fp;and Ya, ..., Yy, iid. Q, G, G, independent of the X;’s
hp(z) = |z|”, zeRp>1
Rec ”{ (4 FG) = [F) O b (s — GTI(F(s))ds, 0<t<1
F— 1( ) bl

Define:

{ dinn(X,Y) = Y, [}X(]-) — GRM AN - | X - G;}(%)ﬂ, i=2,. .
0

2
= a-%nm L Zz 1 znm X7 Y) - (% Z?:l di,n,m(X, Y))

&2,n,m similarly exchanging the roles of the X;’s and the Y;’s

Proposition (Consistency of variance estimation)
IfF,G € Fop, F~,G™" are continuous on (0,1) and

— A€ (0,1), then

n+m

Gnm = =0T + =05 nm — (1= Nop(F,G) + Aoy (G, F)

almost surely.
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Statistical application of the CLT

If, additionally, ' # G and F (or G) is not a Dirac measure then
Wg (Fn, Gm) — WE(F, G))

On,m

nm
n+m

—w N(0,1)
— Confidence interval for WP (F, G) with asymptotic confidence level 1 — «
(WP (Fn, Gin) £ /2260 @ (1 - )]
— Testing problem with asymptotic level o
Hy : Wp(F, G) > Ao, vs H,: Wp(F, G) < Ao,

where Ay is some threshold
= Rejection of the null if

WP (Fn,Gm) < Af — 4/ 7:“7;”6”,7”@’1(1 —a)




Normal model: variance estimates

Example: n=m, p=1

~2 2
6, — 0

Simulation results

@00

F ~ N(0,1),G ~ N(u, 1)
op(F,G) = 0p(G, F) = p*u*"™?

5

1 N
¥

MSE = 6% —o*[” N = 1000
j=1
n p=1 p=2 p=3
50 | 0.03076 | 2.28517 | 79.70453
100 | 0.01434 | 1.25248 | 36.57057
200 | 0.00634 | 0.74908 | 15.10497
400 | 0.00290 | 0.32747 | 6.15403
500 | 0.00237 | 0.21351 | 5.50914
800 | 0.00148 | 0.18638 | 3.20970
1,000 | 0.00112 | 0.13431 | 2.59728
2,000 | 0.00054 | 0.0711 | 1.41032
5,000 | 0.00021 | 0.0304 | 0.52269
10,000 | 0.00011 | 0.0145 | 0.24127
o’ 1 4 9
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Normal location model: finite performance of the test
(i) 1,000 data sets: P = N(0,1),Q = N(u, 1) with Ag = W, (N(0,1), N(1,1)) =1

P n =1 1=0.9 | pu=0.7 | pu=0.5

50 0.062 | 0.146 | 0.481 | 0.825

100 | 0.055 | 0.193 | 0.698 | 0.974
200 | 0.053 | 0.275 | 0.918 1
1 400 | 0.051 | 0.413 | 0.995 1
500 | 0.051 | 0.481 | 0.999 1
800 | 0.052 | 0.64 1 1
1,000 | 0.054 | 0.728 1 1
2,000 | 0.047 | 0.937 1 1

50 0.074 | 0.167 | 0.513 | 0.839

100 | 0.063 | 0.198 | 0.717 | 0.979
200 | 0.059 | 0.272 | 0.927 1
2 400 | 0.055 | 0.422 | 0.995 1
500 0.05 | 0.484 | 0.999 1
800 | 0.053 | 0.651 1 1
1,000 | 0.053 | 0.736 1 1
2,000 | 0.051 | 0.935 1 1

50 0.071 | 0.154 | 0.515 | 0.822

100 | 0.066 | 0.206 | 0.715 | 0.973
200 | 0.057 | 0.266 | 0.925 1
3 400 | 0.052 | 0.422 | 0.992 1
500 | 0.057 | 0.497 | 0.997 1
800 | 0.053 | 0.652 1 1
1,000 | 0.053 | 0.733 1 1
2,000 | 0.051 | 0.937 1 1

on to fair learning
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Normal location-scale model: finite performance of the test
(i) 1,000 data sets: P = N(0,1),Q = N(u, \) with Ao = W, (N(0,1), N(1,2))

pn=1 p=1 pn=0 n=0
Py A=2 A=15 A=2 A=15
50 0.047 0.165 0535 0.996
100 | 0.045 0.195 0.8 1
200 | 0.036 0.323 0.974 1
;| 400 | 0052 0.532 1 1
500 | 0.056 0.614 1 1
800 | 0.035 0.810 1 1 )
1,000 | 0045 | 0895 1 1 Distances W, (N (0, 1), N (i, A))
2,000 | 0.050 0.994 1 1 ) 1 2 3
w0 | 006y | ouer | oss | TP || AZ5 | nteses| tatazn | retiz0
@0 | ooee | 07 | oste | 1T | e | 1a0es
21 500 | 0.059 0.985 1 1 =0
800 | 0052 1 1 1 - 0.79788 1 1.16858
1,000 | 0.056 1 1 1 =0
2,000 0.05 1 1 1 A=15 0.39894 0.5 0.58429
50 0.091 0.569 0.571 0.997
100 | 0.093 0.762 0.758 1
200 | 0.072 0.935 0.939 1
5 | 400 0.06 1 0.996 1
500 | 0.064 0.999 0.997 1
800 | 0.069 1 1 1
1,000 | 0.06 1 1 1
2,000 | 0.049 1 1 1
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Fair Learning setting

-Y :{ 0 Jailure target class
1 success

- X eRY, d > 1, visible attributes

) S—{ 0 wunfavored

1 favored protected attribute

- G family of binary classifiers g : R* — {0,1}
Criteria of fairness

e Disparate Impact
Plg(X)=1]5=0)
P(g(X)=1]|5=1)

— g is said not to have Disparate Impact at level = € (0,1] if DI(g,X,S) > 7

DI(g,X,S) =

e Balanced Error Rate

PX)=0[S=1)+P(gX)=1[5=0)
2

BER(g, X, §) =

— Given e > 0, S is not e—predictable from X if BER(g, X,S) >¢,forallg e G
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Application to Fair Learning

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):
* . 1
g = IHGISBER(Q7X7 S) = 5 (1 - dTV (HO,,UJ))7 Hs = ‘C’(X | S = S)
g

= S is not e—predictable from X foralle < ¢*

= the maximal value of €™ is 1/2 < drv (po, p1) =0
& total confusion between po and ps
< complete absence of bias in the training data
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E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):
* . 1
€ = IHGISBER(97X75) = 5 (1 —drv (HO,,UJ))7 Hs = ‘C(X | S = S)
g

= S is not e—predictable from X foralle < ¢*

= the maximal value of €™ is 1/2 < drv (po, p1) =0
& total confusion between po and ps
< complete absence of bias in the training data

Fairness assessment:
x Ho :drv (/Lo,,u,l) > Ao VS H, : drv (M07M1) < AQ, for Ao >0 (Barron, 1989)
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Application to Fair Learning

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018):
* . 1
¢ =minBER(g, X, 8) = 5 (1 —drv (o, 1)), ps = LIX [ § = 5)
g

= S is not e—predictable from X foralle < ¢*

= the maximal value of €™ is 1/2 < drv (po, p1) =0
< total confusion between o and w1
< complete absence of bias in the training data

Fairness assessment:
x Ho :drv (/Lo,,u,l) > Ao VS H, : drv (M07M1) < AQ, for Ao >0 (Barron, 1989)
Ho : Wy (po, pp1) > Ao VS Ho : Wy (po, 1) < Ao, for Ag >0andp > 1
e Confidence intervals for W, (10, p1) using CLT (two-sample version)
e Application to high-dimensional data:
-score f:RY 5 R --» Wo(L(f(X) | S=0),L(f(X)]|S=1))
- f logistic regression (other regression models or machine learning
techniques: SVM, random forest...)
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Repairing the data with Wasserstein barycenter

Goal: X — X such that

po~x|s=o MRS p(Xs=0)=£(X|5=1)
. ~ ~
=L(gX)|S=0)=L(g(X)|S=1),Yg€eg
°
X ~pgoTg? = DI(g,X,S) =1

M. Feldman et al. (2015) — Geometric Repair: move uo, 1 only part towards pp
along Wasserstein’s geodesic

1o fo,  HB gm ﬁl fex = LOTS(X) + (1= N)X | S = s),
) o ° A € [0, 1] amount of repair desired for X

E. del Barrio, F. Gamboa, P. Gordaliza and J.-M. Loubes (2018): under some
regularity conditions, £(X) := Rp(X) — Rp(X, S)

2
E(X) < 2v2K (Z wswg(usmsuTs)) K >0

s=0,1
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Application to a real data example: Adult Income data

y=J1 income exceeds $ 50.000/year
~ 10 otherwise 0.4-

X =(age, education number, capital gain,
capital loss, worked hours/ week)

_ 0 female L
S_gender{ L male 0.2 \

P. Besse, E. del Barrio, P. Gordaliza and J.-M. Loubes (2018). ;.
Confidence intervals for testing disparate impact in fair learning.
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A central limit theorem on the real line with application to fairness assessment in

machine learning.
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Thanks for the attention!



	Introduction
	CLT for Lp transportation cost on the real line
	Simulation results
	Application to fair learning

