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| - 1 Motivations : Learning with Bayesian Frequentist procedures

Consider a family of probability distributions
(]P’g)gg(-) 0 c Rp.

We observe i.i.d. realizations (X;)i1<i<v Sampled from Py, .

> Frequentist paradigm : 6, exists as a hidden parameter to be
recovered from the observations (X;)i>1.
Main typical tool : law of large number

» Bayesian paradigm : 6, is randomly picked with a probability 7, over ©
that translates a prior knowledge on the parameter.
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Statistical goal : recover some function of 6.



| - 1 Motivations : Learning with Bayesian Frequentist procedures
Bayesian paradigm : use the information brought by (X;);>: to update our
belief on ® and compute a posterior distribution
Main typical tools :

> Likelihood of the observations :

L,(0) = ﬁ]P’g (Xi)

> Posterior distribution 7, obtained by the Bayes rule :

(0) = P[OIX1, ..., X,] = 2 [;[‘)’(; - _’_X")];:]"[‘g] o 70(6) L (6)
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» The posterior distribution 7, is a random probability distribution over ©
» Randomness is brought by the observations X, ..., X,.



| - 1 Motivations : Learning with Bayesian Frequentist procedures

Bayesian learning : Expect a good behaviour of m, to produce inference
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The larger n, the better the information for 6,, translated in ...
But not so easy to compute T,...

» Purely Bayesian approaches : design some efficient (stochastic)
algorithms to compute or approximate the posterior distribution .
Design a distribution ¢,, over © such that :

qt, = Tn-

> Frequentist Bayes point of view : quantify the information brought by the
concentration of ,.

Ty —> 09,7



| - 2 Cost of Bayesian learning

Two important questions :

» Question Q; : _ _ ‘
There is no reason to believe in an easy close formula for ,. Bayesian
computations are commonly using :

> Markov Chains Metropolis Hastings procedures
> Continuous time Langevin diffusions
(g:) such that
D(g:,m) < vy

» Question 0 :
To recover any function f(6y), we need to quantify the amount of
information brought by n observations

d(mn, 09,) <€ — 0 when n— 4+

Key remark :

The budget constraint of n observations naturally limits the statistical
accuracy in Q> we can expect...

There is no need to do too much computations in Q,, with a too large .

t, =inf{t = 0| vy < &}



| - 2 Cost of Bayesian learning

In this talk :

» Question Q; : ¢, will be the distribution at time ¢ of a continuous time
Markov process :

d9, = Vo[log(moL,)](0:)dr + dB, (1)

Our estimator will be related to this S.D.E.

» Question Q- : The Bayesian estimator that translates the posterior
contraction around 6, will be the posterior mean :

by = L Odr, (6). @

Therefore, we need to mix several stories :
> sharp analysis of the behaviour of the posterior distribution (2) :
E[10, — 6] < e,

» ergodicity of the Langevin diffusion process (1) and Cesaro averaging :

<y

13
’1 J O,ds — v (1)
tJo




| - 3 State of the art - Bayesian consistency

Not up-to-date state of the art :

» Bayesian consistency is an old story : Doob (1949) and Freedman, Le
Cam and Schwartz, Ibragimov and Hasminskii’ in the 60s-70s (positive
results, no rates)

> Evidences that the situation is not so obvious with negative results of
Freedman and Diaconis (1986).

> Key results of Barron (1988), Ghosal, Gosh and van der Vaart (2000) :
tight conditions on the prior and on the complexity of (Pg)sce.

» Castillo, van der Vaart, van Zanten, Nickl with Bernstein von Mises like
theorems in various situations. Incidentally, results on the posterior mean

0, = Er,[6].



| - 3 State of the art - Ergodicity of Markov processes

Not up-to-date state of the art :

» Ergodicity of Markov chains / processes : coupling arguments Doeblin
(1940)

» Lyapunov type conditions : Hasminskii , Meyn-Tweedie (1970-1990)
LV B—aV

» Quantitative results with spectral approach / functional inequalities :
Bakry and Ledoux, Cattiaux, ... (2000-.)

[ = vt Pav) < 6, [ 1P

> Link between functional approaches and Lyapunov one, additive
functionals : Cattiaux, Chafai, Guillin, Zitt (2012).
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Il - 1 Bayesian consistency - Formulation of a result
Bayesian consistency translates

“the concentration of 7, near a Dirac mass at 6,".
Naturally : result on the probability distributions (Pg)¢co, Not one on 6 € ©.
O finite
Introducing A, (6) = /2% and F, = o(Xi, . .., X,), we remark that
E[Ax(0) |Fuz1] = A1 (0).

If ¢ is a concave function, the Jensen inequality yields

E[¢(An(0)) | Fu-1] < ©(An—1(6)).
Take ¢ =,/ and obtain a quantitative result in terms of the Hellinger

distance :
o[ |[20 | < tionn [l

L,(6o) L,—1(60)
Then use the sumis 1 :

1
0;@7”’(0) =1 = m\(0) = 1+ 29#90 72(0)/7n(60)

and




Il - 1 Bayesian consistency - Formulation of a result
O finite
» Exponential concentration of 7, (6y) — 1 at rate
o~ info20, d (Po,Pg,)

» Two important effects :
> Size of ©
> Size of the prior my(6y)

O infinite
Generalization not straightforward :
> |dentifiability is needed :
Pgl = ]P)QZ —— 01 = 92

> Need to understand By, (0, €) and their number. The exponential
contraction has to fight vs the number of balls (entropy bracketing)
» The prior mass of a ball around 6, is important.




Il - 1 Bayesian consistency - Formulation of a result

Define P = (Pg)oco. AImost exact statement :

Theorem (Ghosal - Gosh - van der Vaart - 2000)
Assume that e, is a sequence such that e, —> 0 and ne? — +o with :
» log Nie,1 (P, du) < ne

2
> 7T()(Bd,_,(0(), 6,,)) > e ",

Then a sufficiently large constant M exists such that
7n(Bay (60, Me,)) — 1 when n— +0o0

in Py, probability.
Result translated to 4 itself if we can prove that for a suitable « and ¢ :

du(Po,Po,) = ¢ A [0 — 0o
Annoying fact : not enough for an upper bound of

Ey, [Hé” - HOHZ]



Il - 2 Bayesian posterior mean - Tail behaviour ?
Consider a > 0 and the former sequence ¢,, the Jensen inequality leads to

+o0
Eo,[[6n — HOHZ] <dé+ ZJ (a€n + 1) Eo, [m0 (|0 — 00| = ae, + r)]dr
0 —

=Ta,n

Need to produce an upper bound of the expectation of the posterior tail.
Approach of Castillo and van der Vaart (2012) ! to obtain an upper bound of
the quadratic loss.
> Introduce a family of tests ¢, € {0, 1} such that
Eg,[¢}] < ¢ o and sup  Ep[(1—g})] S & e

6:1160—0601=ra,n
» Exponential decay of the type | and type Il errors (with a uniform
control) :
Po,[¢pr = 1] < e M and sup  Py[¢, =0] < e M,
0:\\0790\\27““,,,

» How to obtain this family of tests ? Use concentration inequalities.
Main example : location model with log-concave densities
U a convex function, © = R? and

V(x,0) e R x RY  Py(dx)oce V" Dax
1. Proof slightly incorrected in [CvdV12] for Eg, (16, — 60]*]




Il - 2 Bayesian posterior mean - Tail behaviour ?

Introduce the (random) normalizing constant :

[ L)
Z, = J@ L.(60) 0(0)d9

Use the Tonelly relationship and decompose the red term into three parts

Eo, [74 (|0 — 00 = ra)] < Eg, [¢5] + Eo, [1z,<6,., ]
+ Eg, [(1 = ¢n)mi(10 — 0o = ran)1z,25,,]
< Po, [0 = 1] + Po, [Zy < 0uyr] +
(l _ ¢;) La(6)
+ J Ea, |:12n>5r,nZL"(90) mo(6)d6,
0:]|0—0¢=ra,n n

< ]P)90 [()b; = 1] + PQO [Zn < 5n,r]

1o E%ﬂ1—¢w

0:(/60—0¢]=ra,n

L,(0)
Ln (90)

] 0(0)d0

Key remark : change of measure

L,(0)
Ln (90)

B | (1= ) (205 | = B 0= 00



[l - 3 Family of tests (¢}) Log-concave translation model in R?

Po(x)dx = e V"D ax
with
» U a convex function over R”
» Uis C} : VU is a L Lipschitz function.
Define
m(0) = Eg[X]

> As a translation model, § — Py is an injective map and the statistical
model is therefore identifiable.
» Denote by X, the empirical mean of the n sample (X, ..., X,) and define
O = g, —non)> "4

» As a log-concave distribution, Py satisfies a Poincaré inequality (Bobkov
1999) of constant Cy :

Varo(f) < Co [ 197 0[P aPota)
» Concentration inequality then holds (Bobkov-Ledoux, 1997) :

i
Py, [¢, = 1] Se " @ V& and sup  Polgp =0l <e " vV

6 :[0—060]=ra,n




Il - 4 Prior
In our translation model with log-concave density, the effect of the dimension
p is null when looking at the complexity of the model (easy testing).
But... the dimension p acts on the size of 4,,,. Small fraud in this talk, details

are skipped.
We can prove that

a,n Ta,n

Eoy [ma(10 = b0 > ran)] S "V VU

[1 4 elosm (B00e).

where B(6y, ¢,) is the Euclidean ball centered at 6, of radius e,.

» When r = 0, we need to design the sequence ¢, such that

2
ne,

log o ' (B(0, €)) <
Cy
» For a prior with continuous density o, the volume of B(6y, ¢) satisfies :
log 7, ' (B(6o, €)) < ploge™" +log(T(p/2 + 1)).

> We are led to the choice :



Il - 5 Posterior mean - Log-concave translation model

Recall that
Po(x)dx = e V"D ax
and
0, = | 0dm.(0)
RP
Theorem

Assume that U : R — R is convex and VU is L-Lipschitz. Consider a
standard Gaussian prior o over R”, then

R logn
Eg, [ — 60l] < Cop=o™

» Seems that we obtain the good convergence rate (up to the log term) ...

> if Cy does not depend on p
> If we trust in the K.L.S. conjecture, why not ?
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[ll - 1 Langevin diffusion
Question : how to sample 7, ?

Consider W a convex potential over © = R”, (B;):=0 a p dimensional standard
Brownian motion and the diffusion

db, = —VW(8,)dt + V2dB, and 6y ~ Qo 3)

» Under mild assumptions on W, we shall assume existence of trajectories.

(6:):=0 is @ Markov process and we have existence and uniqueness of

the invariant measure as well.

» The invariant measure is a.c. w.r.t. Lebesgue measure. The associated
density u is given by the Gibbs field

v

MW(O)OCEW(Q)
> Popular idea in Bayesian statistics : use (3) with the data-dependent
potential :
W(0) = logm,(0) ™" = logmo(0) " + Zlog Uy (Xi).
i=1
so that

oo = Tn.



[l - 2 Ergodic behaviour of the Langevin diffusion
The semi-group being elliptic, for any ¢ > 0, the law Q, of 6, is absolutely
continuous w.r.t. the Lebesgue measure. We denote by ¢, the density :

Voe®©  q(f) = Z(%((;)).

Two approaches :

» Coupling with a Lyapunov function (a la Meyn-Tweedie) to obtain some
Wasserstein or Total variation upper bounds

W1 (qT7 :LLOC) < 1/’W1 (t) or TV(q?7 lj’:fu) < 1/}1“‘/(1‘).

» Spectral approach with a functional inequality on p. to obtain some 1>
or Ent results :

lgr — proo|3 < hi2(r) O Ent(qs, o) < b (1)

Pro and cons of the two methods above :

> Lyapunov functions are easy to derive and M-T estimates can be
obtained without too much computations

» Quantitative estimates obtained by coupling are overly pessimistic 2
» Spectral approaches are sharp for some specific functions

> Obtaining functional inequalities is sometimes not so obvious
2. among other, bad scaling with the dimension




[l - 2 Ergodic behaviour of the Langevin diffusion

Log-concave translation model

Wa(0) = logmo(6) ' + > log U(Xi — 0)
i=1

» The second part of W, is convex.

» The choice of m is up to the user (at the moment, we do not need to
choose an annoying heavy tail prior. 3.

If 7, is chosen log-concave, we will obtain Poincaré inequalities on ,.
Consequence : Vf € L(m,) :

f [Eol(6)] — mu(F)Pdma(9) < e j [F(9) — () Pdma(9).
(€] €]

Our target is the posterior mean, i.e.,

By = (1) = L 0 (6)

obtained with f = I (f(0) = 6).

3. aka Exponential Weighted Aggregates for high dimensional regression



[l - 3 Averaging along a trajectory of a Langevin diffusion

Given one trajectory, we use the convergence £(6,) — , with 7 :

- 1 ("
07 = — J Qsds
T 0

Following arguments of Cattiaux, Chafai and Guillin 2012, we can prove the
following result

Theorem
Forany a > 1 and any timet > 0 :

log T

E[|6r — 0.]*] < 10a(Jo A 1)v/My [Cwn + T‘“] ,

where
> Jo = |mo — 1“112‘2(7‘_’1) where my is the density of 6y w.r.t. ,.
» Cw, is the Poincaré constant associated to the distribution e="

» M, is the fourth-order moment of the distribution =, :

My = 7r,1(14).



[l - 3 Averaging along a trajectory of a Langevin diffusion

~ 1 (7
9T = ? L Qsds
log T

E[|6r — 6,]*] < 10a(/o A 1)v/ ML, [cw,, —+ T’“] ,

» Cw, = )\, ' quantifies the rate of convergence of 6, towards the stationary
regime.

> Cw, is small when the potential function W, has an important curvature.
> If my is close to 1 (/, close to 0), good behaviour.
> We need an upper bound of VL.
» T quantifies the horizon of simulation.
Most of the objects above are sample dependent



Il - 4 Fourth order moment

Z U(X: — 6) + log(m, ' (6)) and maoce” "

Use the convexity of U and the Jensen inequality to prove the following result

Proposition

If U is convex and C}, if my is Gaussian prior, then a constant C exists such
that

My < C[1 + | arg min WnH4].

> A priori : My does not really increase with n.
» We can use other prior (here for the sake of convenience Gaussian)
» We only need to understand the sample dependent random variable

| arg min W, ||*.

WORK IN PROGRESS



[l - 5 Poincaré constant

EU X, —0) +log(my ' (0)) and  moce ™.

Use the Bakry- Emery result to state the following result
Proposition
IfU is strongly convex and , is a log-concave prior, then

1
Cw, < -
n

Not straigthforward to extend the study to the simple convex situation...
Help of a Bobkov’s result (AOP 1999) on log-concave distributions ?

Proposition
If U is convex and m, a log-concave prior, then

Cw,, < 432Mb.



[ll - 6 Computational cost

Log-concave translation model

The horizon time T needed to obtain and admissible estimation should satisfy

. 1
E[|6r - 6./] < Cop=2=.
We obtain that :

7, > "« CnvMs
plogn Cy
Example of 7, in the Gaussian situation :

— n=0
n=100
Nn=200
! n=300
8 :m n=400

il n=500
'/ | -~ theta0
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IV Frauds and on-going issues

» Understand the statistical properties of Cy,

> 67 is not tractable ... Urgent need to implement a discretization.
> Euler scheme
> Romberg scheme
> Multi-level strategies

> Discretization is certainly carrying the main computational effort.

> On-line flow of observations X, ..., X,.
How to produce an on-line numerical scheme ?
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