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I - 1 Motivations : Learning with Bayesian Frequentist procedures

Consider a family of probability distributions

pPθqθPΘ Θ Ă Rp.

We observe i.i.d. realizations pXiq1ďiďN sampled from Pθ0 .

§ Frequentist paradigm : θ0 exists as a hidden parameter to be
recovered from the observations pXiqiě1.
Main typical tool : law of large number

§ Bayesian paradigm : θ0 is randomly picked with a probability π0 over Θ
that translates a prior knowledge on the parameter.

Statistical goal : recover some function of θ0.



I - 1 Motivations : Learning with Bayesian Frequentist procedures
Bayesian paradigm : use the information brought by pXiqiě1 to update our
belief on Θ and compute a posterior distribution
Main typical tools :

§ Likelihood of the observations :

Lnpθq “
n
ź

i“1

PθpXiq

§ Posterior distribution πn obtained by the Bayes rule :

πnpθq “ Prθ|X1, . . . ,Xns “
PθrX1, . . . ,Xnsπ0rθs

PrX1, . . . ,Xns
9π0pθqLnpθq

§ The posterior distribution πn is a random probability distribution over Θ

§ Randomness is brought by the observations X1, . . . ,Xn.



I - 1 Motivations : Learning with Bayesian Frequentist procedures
Bayesian learning : Expect a good behaviour of πn to produce inference

The larger n, the better the information for θ0, translated in πn...
But not so easy to compute πn...

§ Purely Bayesian approaches : design some efficient (stochastic)
algorithms to compute or approximate the posterior distribution πn.
Design a distribution qtn over Θ such that :

qtn » πn.

§ Frequentist Bayes point of view : quantify the information brought by the
concentration of πn.

πn ÝÑ δθ0 ?



I - 2 Cost of Bayesian learning

Two important questions :
§ Question Q1 :

There is no reason to believe in an easy close formula for πn. Bayesian
computations are commonly using :

§ Markov Chains Metropolis Hastings procedures
§ Continuous time Langevin diffusions

pqtq such that
Dpqt, πnq ď νt

§ Question Q2 :
To recover any function f pθ0q, we need to quantify the amount of
information brought by n observations

dpπn, δθ0q ď εn ÝÑ 0 when n ÝÑ `8

Key remark :
The budget constraint of n observations naturally limits the statistical
accuracy in Q2 we can expect...
There is no need to do too much computations in Q1, with a too large t.

tn “ inftt ě 0 | νt À εnu.



I - 2 Cost of Bayesian learning
In this talk :

§ Question Q1 : qt will be the distribution at time t of a continuous time
Markov process :

dθt “ ∇θrlogpπ0Lnqspθtqdt ` dBt (1)

Our estimator will be related to this S.D.E.
§ Question Q2 : The Bayesian estimator that translates the posterior

contraction around θ0 will be the posterior mean :

θ̂n :“

ż

Θ

θdπnpθq. (2)

Therefore, we need to mix several stories :
§ sharp analysis of the behaviour of the posterior distribution (2) :

Er|θ̂n ´ θ0|
2
s ď ε2

n

§ ergodicity of the Langevin diffusion process (1) and Cesaro averaging :
ˇ

ˇ

ˇ

ˇ

1
t

ż t

0
θsds´ ν8pIdq

ˇ

ˇ

ˇ

ˇ

ď νt



I - 3 State of the art - Bayesian consistency

Not up-to-date state of the art :
§ Bayesian consistency is an old story : Doob (1949) and Freedman, Le

Cam and Schwartz, Ibragimov and Hasminskii’ in the 60s-70s (positive
results, no rates)

§ Evidences that the situation is not so obvious with negative results of
Freedman and Diaconis (1986).

§ Key results of Barron (1988), Ghosal, Gosh and van der Vaart (2000) :
tight conditions on the prior and on the complexity of pPθqθPΘ.

§ Castillo, van der Vaart, van Zanten, Nickl with Bernstein von Mises like
theorems in various situations. Incidentally, results on the posterior mean

θ̂n “ Eπn rθs.



I - 3 State of the art - Ergodicity of Markov processes

Not up-to-date state of the art :
§ Ergodicity of Markov chains / processes : coupling arguments Doeblin

(1940)
§ Lyapunov type conditions : Hasminskii , Meyn-Tweedie (1970-1990)

LV ď β ´ αV

§ Quantitative results with spectral approach / functional inequalities :
Bakry and Ledoux, Cattiaux, . . . (2000-.)

ż

rf pxq ´ ν8pf qs2dνpxq ď Cp

ż

|∇f |2pxqdνpxq

§ Link between functional approaches and Lyapunov one, additive
functionals : Cattiaux, Chafai, Guillin, Zitt (2012).
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II - 1 Bayesian consistency - Formulation of a result
Bayesian consistency translates

“the concentration of πn near a Dirac mass at θ0”.

Naturally : result on the probability distributions pPθqθPΘ, not one on θ P Θ.

Θ finite

Introducing Λnpθq “
Lnpθq
Lnpθ0q

and Fn “ σpX1, . . . ,Xnq, we remark that

ErΛnpθq |Fn´1s “ Λn´1pθq.

If ψ is a concave function, the Jensen inequality yields

ErψpΛnpθqq |Fn´1s ď ψpΛn´1pθqq.

Take ψ “ ? and obtain a quantitative result in terms of the Hellinger
distance :

E

«
d

Lnpθq

Lnpθ0q
|Fn´1

ff

ď e´
1
2 d2

HpPθ,Pθ0
q

d

Ln´1pθq

Ln´1pθ0q
.

Then use the sum is 1 :
ÿ

θPΘ

πnpθq “ 1 ùñ πnpθ0q “
1

1`
ř

θ‰θ0
πnpθq{πnpθ0q

and
πnpθq

πnpθ0q
“

π0pθq

π0pθ0q
Lnpθq.



II - 1 Bayesian consistency - Formulation of a result
Θ finite

§ Exponential concentration of πnpθ0q ÝÑ 1 at rate

e´n infθ‰θ0
d2

HpPθ,Pθ0
q

§ Two important effects :
§ Size of Θ
§ Size of the prior π0pθ0q

Θ infinite

Generalization not straightforward :
§ Identifiability is needed :

Pθ1 “ Pθ2 ùñ θ1 “ θ2

§ Need to understand BdH pθ, εq and their number. The exponential
contraction has to fight vs the number of balls (entropy bracketing)

§ The prior mass of a ball around θ0 is important.



II - 1 Bayesian consistency - Formulation of a result

Define P “ pPθqθPΘ. Almost exact statement :

Theorem (Ghosal - Gosh - van der Vaart - 2000)
Assume that εn is a sequence such that εn ÝÑ 0 and nε2

n ÝÑ `8 with :
§ log NrεnspP, dHq ď nε2

n

§ π0pBdH pθ0, εnqq ě e´nε2
nC.

Then a sufficiently large constant M exists such that

πnpBdH pθ0,Mεnqq ÝÑ 1 when n ÝÑ `8

in Pθ0 probability.

Result translated to θ itself if we can prove that for a suitable α and c :

dHpPθ,Pθ0q ě c^ }θ ´ θ0}
α

Annoying fact : not enough for an upper bound of

Eθ0 r}θ̂n ´ θ0}
2
s



II - 2 Bayesian posterior mean - Tail behaviour?
Consider a ą 0 and the former sequence εn, the Jensen inequality leads to

Eθ0 r}θ̂n ´ θ0}
2
s ď a2ε2

n ` 2
ż `8

0
paεn ` rq
looomooon

:“ra,n

Eθ0 rπnp}θ ´ θ0} ě aεn ` rqsdr

Need to produce an upper bound of the expectation of the posterior tail.
Approach of Castillo and van der Vaart (2012) 1 to obtain an upper bound of
the quadratic loss.

§ Introduce a family of tests φr
n P t0, 1u such that

Eθ0 rφ
r
ns À e´cnrβa,n and sup

θ:}θ´θ0}ěra,n

Eθrp1´ φr
nqs À e´cnrβa,n

§ Exponential decay of the type I and type II errors (with a uniform
control) :

Pθ0 rφ
r
n “ 1s À e´cnrβa,n and sup

θ:}θ´θ0}ěra,n

Pθrφr
n “ 0s À e´cnrβa,n .

§ How to obtain this family of tests? Use concentration inequalities.
Main example : location model with log-concave densities
U a convex function, Θ “ Rp and

@px, θq P Rd
ˆ Rd Pθpdxq9e´Upx´θqdx

1. Proof slightly incorrected in [CvdV12] for Eθ0 r}θ̂n ´ θ0}
2
s



II - 2 Bayesian posterior mean - Tail behaviour?
Introduce the (random) normalizing constant :

Zn “

ż

Θ

Lnpθq

Lnpθ0q
π0pθqdθ

Use the Tonelly relationship and decompose the red term into three parts

Eθ0 rπnp}θ ´ θ0} ě ra,nqs ď Eθ0 rφ
r
ns ` Eθ0

“

1Znďδr,n

‰

` Eθ0

“

p1´ φr
nqπnp}θ ´ θ0} ě ra,nq1Zněδr,n

‰

ď Pθ0 rφ
r
n “ 1s ` Pθ0 rZn ď δn,rs`

`

ż

θ:}θ´θ0}ěra,n

Eθ0

«

1Zněδr,n

p1´ φr
nq

Lnpθq
Lnpθ0q

Zn

ff

π0pθqdθ,

ď Pθ0 rφ
r
n “ 1s ` Pθ0 rZn ď δn,rs

` δ´1
n,r

ż

θ:}θ´θ0}ěra,n

Eθ0

„

p1´ φr
nq

Lnpθq

Lnpθ0q



π0pθqdθ

Key remark : change of measure

Eθ0

„

p1´ φr
nq

Lnpθq

Lnpθ0q



“ Eθ rp1´ φr
nqs



II - 3 Family of tests pφr
nq Log-concave translation model in Rp

Pθpxqdx “ e´Upx´θqdx
with

§ U a convex function over Rp

§ U is C1
L : ∇U is a L Lipschitz function.

Define
mpθq “ EθrXs

§ As a translation model, θ ÞÝÑ Pθ is an injective map and the statistical
model is therefore identifiable.

§ Denote by X̄n the empirical mean of the n sample pX1, . . . ,Xnq and define

φr
n “ 1

|X̄n´mpθ0q|ą
ra,n

2
.

§ As a log-concave distribution, Pθ satisfies a Poincaré inequality (Bobkov
1999) of constant CU :

Varθpf q ď CU

ż

}∇f pxq}2dPθpxq

§ Concentration inequality then holds (Bobkov-Ledoux, 1997) :

Pθ0 rφ
r
n “ 1s À e

´cn
r2
a,n
CU
^

ra,n?
CU and sup

θ :}θ´θ0}ěra,n

Pθ rφr
n “ 0s À e

´cn
r2
a,n
CU
^

ra,n?
CU



II - 4 Prior
In our translation model with log-concave density, the effect of the dimension
p is null when looking at the complexity of the model (easy testing).
But... the dimension p acts on the size of δn,r. Small fraud in this talk, details
are skipped.
We can prove that

Eθ0 rπnp}θ ´ θ0} ě ra,nqs À e
´cn

r2
a,n
CU
^

ra,n?
CU r1` elog π´1

0 pBpθ0,εnqqs.

where Bpθ0, εnq is the Euclidean ball centered at θ0 of radius εn.

§ When r “ 0, we need to design the sequence εn such that

log π´1
0 pBpθ0, εnqq ď

nε2
n

CU

§ For a prior with continuous density π0, the volume of Bpθ0, εq satisfies :

log π´1
0 pBpθ0, εqq À p log ε´1

` logpΓpp{2` 1qq.

§ We are led to the choice :

εn “

c

pCU
logpnq

n
.



II - 5 Posterior mean - Log-concave translation model

Recall that
Pθpxqdx “ e´Upx´θqdx

and
θ̂n “

ż

Rp
θdπnpθq

Theorem
Assume that U : Rp

ÝÑ R` is convex and ∇U is L-Lipschitz. Consider a
standard Gaussian prior π0 over Rp, then

Eθ0 r}π̂n ´ θ0}
2
s À CUp

log n
n

§ Seems that we obtain the good convergence rate (up to the log term) . . .
§ if CU does not depend on p
§ If we trust in the K.L.S. conjecture, why not?
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III - 1 Langevin diffusion

Question : how to sample πn ?

Consider W a convex potential over Θ “ Rp, pBtqtě0 a p dimensional standard
Brownian motion and the diffusion

dθt “ ´∇Wpθtqdt `
?

2dBt and θ0 „ Q0 (3)

§ Under mild assumptions on W, we shall assume existence of trajectories.
§ pθtqtě0 is a Markov process and we have existence and uniqueness of

the invariant measure as well.
§ The invariant measure is a.c. w.r.t. Lebesgue measure. The associated

density µ8 is given by the Gibbs field

µ8pθq9e´Wpθq

§ Popular idea in Bayesian statistics : use (3) with the data-dependent
potential :

Wpθq “ log πnpθq
´1
“ log π0pθq

´1
`

n
ÿ

i“1

log UθpXiq.

so that
µ8 “ πn.



III - 2 Ergodic behaviour of the Langevin diffusion
The semi-group being elliptic, for any t ą 0, the law Qt of θt is absolutely
continuous w.r.t. the Lebesgue measure. We denote by qt the density :

@θ P Θ qtpθq “
dQtpθq

dλpθq
.

Two approaches :
§ Coupling with a Lyapunov function (à la Meyn-Tweedie) to obtain some

Wasserstein or Total variation upper bounds

W1pqt, µ8q ď ψW1ptq or TVpqt, µ8q ď ψTVptq.

§ Spectral approach with a functional inequality on µ8 to obtain some L2

or Ent results :

}qt ´ µ8}
2
2 ď ψL2ptq or Entpqt, µ8q ď ψEntptq

Pro and cons of the two methods above :
§ Lyapunov functions are easy to derive and M-T estimates can be

obtained without too much computations
§ Quantitative estimates obtained by coupling are overly pessimistic 2

§ Spectral approaches are sharp for some specific functions
§ Obtaining functional inequalities is sometimes not so obvious

2. among other, bad scaling with the dimension



III - 2 Ergodic behaviour of the Langevin diffusion

Log-concave translation model

Wnpθq “ log π0pθq
´1
`

n
ÿ

i“1

log UpXi ´ θq

§ The second part of Wn is convex.
§ The choice of π0 is up to the user (at the moment, we do not need to

choose an annoying heavy tail prior. 3.

If π0 is chosen log-concave, we will obtain Poincaré inequalities on πn.
Consequence : @f P L2

pπnq :
ż

Θ

rEϑrf pθtqs ´ πnpf qs2dπnpϑq ď e´2λnt
ż

Θ

rf pϑq ´ πnpf qs2dπnpϑq.

Our target is the posterior mean, i.e.,

θ̂n “ πnpIq “
ż

Θ

θdπnpθq

obtained with f “ I (f pθq “ θ).

3. aka Exponential Weighted Aggregates for high dimensional regression



III - 3 Averaging along a trajectory of a Langevin diffusion

Given one trajectory, we use the convergence Lpθtq ÝÑ πn with θ̃T :

θ̃T “
1
T

ż T

0
θsds

Following arguments of Cattiaux, Chafai and Guillin 2012, we can prove the
following result

Theorem
For any α ą 1 and any time t ą 0 :

Er}θ̃T ´ θ̂n}
2
s ď 10αpJ0 ^ 1q

?
M4

„

CWn

log T
T

` T´α


,

where
§ J0 “ }m0 ´ 1}2

L2pπnq
where m0 is the density of θ0 w.r.t. πn.

§ CWn is the Poincaré constant associated to the distribution e´Wn

§ M4 is the fourth-order moment of the distribution πn :

M4 “ πnpI4
q.



III - 3 Averaging along a trajectory of a Langevin diffusion

θ̃T “
1
T

ż T

0
θsds

Er}θ̃T ´ θ̂n}
2
s ď 10αpJ0 ^ 1q

?
M4

„

CWn

log T
T

` T´α


,

§ CWn “ λ´1
n quantifies the rate of convergence of θt towards the stationary

regime.
§ CWn is small when the potential function Wn has an important curvature.
§ If m0 is close to 1 (J0 close to 0), good behaviour.
§ We need an upper bound of M4.
§ T quantifies the horizon of simulation.

Most of the objects above are sample dependent



III - 4 Fourth order moment

Wnpθq “
n
ÿ

i“1

UpXi ´ θq ` logpπ´1
0 pθqq and πn9e´Wn .

Use the convexity of U and the Jensen inequality to prove the following result

Proposition
If U is convex and C1

L, if π0 is Gaussian prior, then a constant C exists such
that

M4 ď Cr1` } arg min Wn}
4
s.

§ A priori : M4 does not really increase with n.
§ We can use other prior (here for the sake of convenience Gaussian)
§ We only need to understand the sample dependent random variable

} arg min Wn}
4.



III - 5 Poincaré constant

Wnpθq “
n
ÿ

i“1

UpXi ´ θq ` logpπ´1
0 pθqq and πn9e´Wn .

Use the Bakry-Emery result to state the following result

Proposition
If U is strongly convex and π0 is a log-concave prior, then

CWn À
1
n

Not straigthforward to extend the study to the simple convex situation...
Help of a Bobkov’s result (AOP 1999) on log-concave distributions?

Proposition
If U is convex and π0 a log-concave prior, then

CWn ď 432M2.



III - 6 Computational cost

Log-concave translation model
The horizon time T needed to obtain and admissible estimation should satisfy

Er}θ̃T ´ θ̂n}
2
s ď CUp

log n
n

.

We obtain that :

Tn,p ě
n

p log n
ˆ

CWn

?
M4

CU
.

Example of πn in the Gaussian situation :
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IV Frauds and on-going issues
§ Understand the statistical properties of CWn

§ θ̃T is not tractable . . . Urgent need to implement a discretization.
§ Euler scheme
§ Romberg scheme
§ Multi-level strategies

§ Discretization is certainly carrying the main computational effort.
§ On-line flow of observations X1, . . . ,Xn.

How to produce an on-line numerical scheme?
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