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1. Motivation

Motivation

Homogamy is a mating pattern in which individuals with similar phenotypes
reproduce more frequently than expected under random uniform mating.

How does such mechanism arise in a randomly mating population ?
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Motivation

Eco-Evolutionary framework : take into account the underlying
environment :

e Varying size populations

Interactions with other individuals (competition for resource)
Adaptive dynamics : Metz and al 1996, Bolker and Pacala 1997, ...

In the context of stochastic individual based models : Fournier and
Méléard 2004, Champagnat 2006, ...
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2. Existence of preference mecanisms Uniformly mating population

Uniformly mating population

Genotypes J

e Aora

Ecological parameters
e b mating rate
e d intrinsic death rate

e C competitive pressure.

e K € N rescales the competition & carrying capacity.
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2. Existence of preference mecanisms Uniformly mating population

Random mating

e Initially, individuals mate uniformly
e Every individual, at rate b, chooses independently a mate uniformly
e Mendelian inheritance A x a — 1/254 + 1/20,

Birth rate
Ng + Ng /2 0.Nz + Ny /2
bo(N)=b|N,—2 % F—— = bN,,
(V) <“ N, + N5 “ N, + Nj ’
Death rate

do(N) = (d+ %(/\/A n /\/a))/\/“, a € {A a}.
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2. Existence of preference mecanisms Uniformly mating population

Dimorphic population with random mating

When population size of order K, rescaled population process (Na + N,)/K
evolves as a competitive Lotka-Volterra equation (Ethier and Kurtz 1986) :

ZA = (b —d - C(ZA + Za))ZA
za=(b—d—c(za+z1))z,

Positive equilibrium if b > d

b—d
b—d—clza+2z,)=0<=za+z,=2=
c

A __—0= infinity of equilibria, any allele proportions
Zp + 25
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2. Existence of preference mecanisms Uniformly mating population

Mutation impacting the mate choice

When random mating : allele p; new mutant : allele P

On a chromosome different from the chromosome coding for a/A

Benefit : higher birth rate with individuals of the same type (a/A) :

b(1 + b1), (81 > 0)

Cost : smaller birth rate with individuals of the other type (a/A) :

b1 5)  (0<Ba<1)

Assortative mating : preference for individuals of the same type ]
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2. Existence of preference mecanisms Uniformly mating population

Birth rate

Possible couples to generate Ap (first parent choosing and second parent
chosen)

(1) Apx Ap (1/2) Ap x ap
(1/2) Ap x AP (1/4) ap x AP
(1/2) AP x Ap

Assortative birth rate

(1/2) ap x Ap
(1/4) Ap x aP
(1/4) AP x ap (1/4) aP x Ap

b 1 1 1
bap(N) “Nai N, [1NAPNAP + QNApNap + §Nap/VAp + ENAPNAP

1 1

+ ZNapNAP + ZNApNaP}
(1+51)b{1 (1-p2)br1 1
2 | —NapN } 7{7N N, ~N,pNap|.
Nat N, L2/ APNae] Ty = [ AP Nap g Napap
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2. Existence of preference mecanisms Uniformly mating population

Assortative birth rate

b 1 1
bap(N) =bNap + N |:621NAPNAp — B2 (4NAPNap + 4NaPNAp)]

b
- ﬁ [NaPNAp - NAPNap] .

b 1
bap(N) =bNap + N [51NAP (NAP + 2NAp>

1 1
— B (NAP (naP + 4Nap) + 4NaPNAp) }

b
+ ﬂ [NaPNAp - NAPNap] .
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2. Existence of preference mecanisms Uniformly mating population
Death rates

When the population is in state N = (Nap, Nap, Nap, Nap)
the total death rate of / individuals (i € {AP,aP, Ap, ap}) :

C
N; (d + < (Nap + Nop + Ny + Nap)) .
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2. Existence of preference mecanisms Uniformly mating population

Questions

Under which conditions may the mutant P invade?

What is the invasion probability ?

What is the final state of the population?

What is the invasion time scale?
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2. Existence of preference mecanisms The invasion phase

Dynamics

e 1- Invasion phase
e 2- Comparison with a deterministic limit
e 3- Extinction

Resident population

T T T T T T T
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2. Existence of preference mecanisms The invasion phase

Invasion phase

First idea to study the beginning of the invasion process

e Consider that as long as the mutant population size is small (< K) it
has a small impact on the resident individuals

e Freeze the resident population size and allele proportions

e Compare the mutant population to a bitype branching process.

nap nap

Resident population Mutant population
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2. Existence of preference mecanisms The invasion phase

Mathematical issues

e Proportions in the resident population not an hyperbolic equilibrium

e No large deviation results to ensure that they stay almost constant
during an exponential time

e Proportions in the resident population very dependent on the
P-population size

= p and P — populations have to be studied together
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2. Existence of preference mecanisms The invasion phase

Step 1 : control of the resident population size

e Coupling of the p-population size with two logistic processes with
close birth and death rates as long as the P-population size is smaller
than eK

e Classical large deviation results to ensure that the total p-population
size stays close to (b — d)K/c during an exponential time

e Invasion time of order log K
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Step 2 : Control of the proportions in the resident population

e As long as
b—d
c

N
0< Np <efK and ‘Kp_ <eg,

the proportions in the resident population stay close to their initial

value :
NAP NAP(O)

Ny Np(0)

< (Be)'/*

e Idea of the proof : amounts to control

1 Te
—E [ / /vp(s)ds] < Cées.
K 0

Achieved by finding a function such that
t t
/ Np < / LF(Naps Nop, Nap, Nop) = F(N(£)) — F(N(0)) + Mart
0 0
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2. Existence of preference mecanisms The invasion phase

Step 3 : comparison of the P mutant population with a
bitype branching process

e Once we know that the size and proportions vary slightly during the
invasion, we can compare the p mutant population with a bi-type
branching process

» If supercritical, positive probability of invasion,
» if subcritical, no invasion

e Also give the invasion time scaling if supercritical (log K/A, where A
maximal eigenvalue of the mean matrix of the branching process)
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2. Existence of preference mecanisms The invasion phase

How to compute the approximation

Assume (Nap, Nap) = 1—pa)and Np ~ ¢ :

ﬂ2 Na
bap(N) =bNap [14— (/VAP-i- NAp> — N \MeP g Nap - 2/\7

+ bNyp——F— ( ) Nap
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2. Existence of preference mecanisms The invasion phase

How to compute the approximation

Assume (Nap, Nap) =

b;d(pA, 1—pa)and Np ~ ¢ :

_ [ /81 1 ﬂ2 Nap
bap(N) =bNap _1 N Nap + ENAp TR Nap T
(2 - p2)
+ bN,p N Nap
[ PA 1—pa 1—pa
~bN 1 —_— — —
AP | + 61 > B2 2 5 ]
2 —
ronp 2o,

18 / 30



2. Existence of preference mecanisms The invasion phase

How to compute the approximation

Assume (Nap, Nap) = b;d(pA, 1—pa)and Np ~ ¢ :

_ /81 1 ﬂ2 Nap
bap(N) —b/VAP 1+ N Nap + ENAp — N \MeP g Nap T
2-5)
+ bN,p N Nap
[ PA 1—pa 1—pa
~bN 1 —_— — —
AP | + 61 > B2 2 5 ]
2 —
+ bNaP( 4ﬁ2) A

C
dAP(N) = NAp(d + RN) ~p
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Mutant population of size eK

Comparison of the mutant population with supercritical branching process

Infinitesimal generator :

b (pa(l+ 1)
2

—%(1—pA)—1 (1—pA)(—ﬁ) )
pa(1-%) (1= pa)(1+B1) — Zpa—1

Kesten-Sigmung Theorem

If 7 = (7, 7,) is the normalized left eigenvector associated to the maximal
eigenvalue

= the proportions of A and a in the mutant population close to 7 when
the mutant population reaches a size of order K.
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2. Existence of preference mecanisms The invasion phase

Invasion with positive probability

From the branching approximation, we deduce that invasion has a positive
probability (1 — ga/1 — q,) if and only if

1> [ or 1-— < — = .
Lo Pl =pa) < 5 B3 G + 2)

Two conditions may foster the invasion
e Advantage of the homogamous reproduction has to be larger than cost

e Small initial allelic diversity
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2. Existence of preference mecanisms The invasion phase

Invasion probability

Invasion probability If first mutant of type o, 1 — g, where (ga, g2)
smallest solution of

(1—QA)+%[1+pA(1+51)—%(1—0/\)}%(1—%)4-12 [1—%}%( -1)=0

(=)t [l+(1*pA)(1+51)* %pA} %(1—a) + 2 [1— %} ga(ga—1) =0,

A special case If pa =1 (only A individuals), g =2/(2 + 51)

_ _ - 5 — B2\ ?
el (6=Pa+am ﬂz_\/(ﬁ BiB2 + 4B ﬂz) —42-B) .
2— B3 24 51 2+ /1
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2. Existence of preference mecanisms

ga, for B, = 0.7

The invasion phase
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2. Existence of preference mecanisms The invasion phase
ga, for p1 =0.2
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2. Existence of preference mecanisms Mean field and extinction

Mean field phase

4-dimensional dynamical system Once p- and P-populations of order K,

we can compare the evolution of the system to this of a dynamical system
(Ethier and Kurtz 1986)

. b z Zap
Zap = bzop + — |:6lzaP (zcxP + ﬂ) 62 <ZaP (zaP + 7) + Zop ) ):|
z 2 4 4
+ Z (zapzap — zapzap) — (d + cz)zop
z Zap z
zap - bzap + - |:/Blzap (;P 62 <Zo¢p% + aPﬂ)}

4
b
~ 3, (zapzap — Zarzap) — (d + c2)zap

a € {a, A}.
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Convergence of the dynamical system

Assume that the initial condition z satisfies zap > z,p and zap, > z,p and
moreover that

20(0) 245(0) _ Bi(B2+2)

PL>Ba o =0y 2.(0) < 2+ B) B+ 2)°

then the solution z(t) converges as t — oo toward

ZAP:f and ZaP:zAp:Zap:O
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|dea of the proof

o If 3 ty, (zap — zar)(zap — Zap)(to) > 0, holds true for any t > to

e Let us introduce D — z47,/(z4 + z,)°. Then

: B1b
D < *97(2/\/9 — Zap)(zAp — Zap)

D positive, decreasing, thus converges to a limit point such that D = 0

e Among the possible limits, we prove that only one is possible :

(1+Bl)b—d’0>‘

(ZAp,ZapaZAPaZaP) = <070’ c
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2. Existence of preference mecanisms Mean field and extinction

Extinction phase

Combining previous steps, with the Markov property we can assume that

(1+ﬂ1)b_di
C

(ZApazapvaPazaP) € [0777]2 X n| X [0777]

e Coupling with a subcritical birth and death process. Time to reach 0
for the p-population size :

2
“ logK.
b3, B
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2. Existence of preference mecanisms Summary of the results

Summary of the results

Initial condition (N,p(0), N5p(0)) = (1,0), aecA

<Z£\<p(0)’Z§;(O)) K%oo (PAb_ d;(l - pA)b_ d> . pa>1/2

C C

Stopping times

TE = inf{t > 0, Nap(t) + N,p(t) = 0} extinction of mutant

Ts, =inf{t > 0,N(t) € S} invasion of mutant
where

5# = {(ZAP723P>ZApazap) S W:(l:)b_d :l:M:| X {0}3}
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2. Existence of preference mecanisms Summary of the results

Summary of the results

Theorem

Assume furthermore that A # 0.

Then there exists a Bernoulli random variable B with parameter 1 — q,, such that
forany 0 < p < (b(1+ 1) —d)/c:

C (Ts, ATE 1 2
| ———1 =B —_+ —1
Koo ( InK ~ {T$“<T°P}> - (b)\(PAaﬁl,ﬂz) A ) ’

where the convergence holds in probability.
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Future work

e Recombinations
e Dimorphic populations and dominance?

e Applications to mosquitoes
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Future work

e Recombinations
e Dimorphic populations and dominance?

e Applications to mosquitoes

Thank you for your attention !
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