# Uniformly valid confidence intervals post-model-selection

François Bachoc, David Preinerstorfer and Lukas Steinberger

Institut de Mathématiques de Toulouse Université Libre de Bruxelles University of Freiburg

Toulouse - Potsdam
Stochastic processes and statistical machine learning, II
March 2019

# Talk outline

- The post-model selection inference setting
- 2 The confidence intervals for Gaussian homoscedastic linear models
- 3 The confidence intervals for more general situations
- Some simulation results

# Data and models

#### Data:

- We consider a triangular array of independent  $1 \times I$  random vectors  $y_{1,n},...,y_{n,n}$
- We let  $\mathbb{P}_n = \bigotimes_{i=1}^n \mathbb{P}_{i,n}$  be the distribution of  $y_n = (y'_{1,n}, \dots, y'_{n,n})'$ , where  $\mathbb{P}_{i,n}$  is the distribution of  $y_{i,n}$

#### Models:

- We now consider a set  $M_n = \{M_{1,n}, \dots, M_{d,n}\}$  composed of d models
- $\mathbb{M}_{i,n}$  is a set of distributions on  $\mathbb{R}^{n \times \ell}$
- d does not depend on n (fixed-dimensional asymptotics)

 $\Longrightarrow$  We do not assume that the observation distribution  $\mathbb{P}_n$  belongs to one of the  $\{\mathbb{M}_{1,n},\ldots,\mathbb{M}_{d,n}\}$ . The set of models can be misspecified

# Parameters and estimators

#### Parameters:

- We define for each model  $\mathbb{M} \in M_n$  an optimal parameter  $\theta_{\mathbb{M},n}^* = \theta_{\mathbb{M},n}^*(\mathbb{P}_n)$ , that we assume to be non-random and of fixed dimension  $m(\mathbb{M})$
- Typically,  $\mathbb{M} \in M_n$  is a set of distributions parameterized by  $\theta_{\mathbb{M}} \in \mathbb{R}^{m(\mathbb{M})}$ , and  $\theta_{\mathbb{M},n}^*$  corresponds to the projection of  $\mathbb{P}_n$  on  $\mathbb{M}$ , for some distance
- ullet The optimal parameter  $heta_{\mathbb{M},n}^*$  is specific to the model  $\mathbb{M}$

#### Estimators:

• We consider, for each  $\mathbb{M}\in\mathsf{M}_n$ , an estimator  $\hat{\theta}_{\mathbb{M},n}$  of the optimal parameter  $\theta_{\mathbb{M},n}^*$ 

# Example: binary regression 1

#### Data:

- l = 1: scalar observations
- n × 1 observation vector

$$y_n = \begin{pmatrix} y_{1,n} \\ \vdots \\ y_{n,n} \end{pmatrix}$$

- independent components
- $y_i \in \{0, 1\}$
- For i=1,...,n,  $\mathbb{P}(y_{i,n}=1)\in[\delta,1-\delta]$  for fixed  $\delta>0$  (technical for asymptotics)

 $\Longrightarrow \mathbb{P}_n$  is a distribution on  $\{0,1\}^n$  with independent components and non-vanishing 'randomness'

# Example: binary regression 2

#### Models:

- Let  $X_n$  be a  $n \times p$  design matrix
- Let  $X_{i,n}$  be the *j*th row of  $X_n$
- Each model  $M_i$  is identified by
  - a set of variables  $M_i \subset \{1,...,p\}$
  - a response function  $h_i : \mathbb{R} \to [0,1]$
- Under model  $M_i$  we assume that for j = 1, ..., n

$$\mathbb{P}(y_{j,n}=1)=h_i(X_{j,n}[M_i]\theta_{\mathbb{M}_i})$$

- for some  $|M_i| \times 1$  vector  $\theta_{\mathbb{M}_i}$
- with  $X_{i,n}[M_i]$  the jth line of  $X_n[M_i]$
- where  $X_n[M_i]$  is obtained by keeping the columns of  $X_n$  with indices in  $M_i$
- we also assume independent components
- $\Longrightarrow \mathbb{M}_i$  is the set of distributions on  $\mathbb{R}^n$  with independent components in  $\{0,1\}$  and with mean vector in  $h_i(\operatorname{span}(X_n[M_i]))$

# Example: binary regression 3

## Target:

For a model M

$$\theta_{\mathbb{M},n}^* \in \operatorname{argmin}_{\theta_{\mathbb{M}} \in \mathbb{R}^{|M|}} \operatorname{KL}(\mathbb{P}_{\mathbb{M},\theta_{\mathbb{M}}},\mathbb{P}_n),$$

with

- ullet  $\mathbb{P}_{\mathbb{M},\, heta_{\mathbb{M}}}$  the distribution in model  $\mathbb{M}$  with parameter  $heta_{\mathbb{M}}$
- $\mathbb{P}_n$  the true distribution of the observation vector

#### Estimator:

•  $\hat{\theta}_{\mathbb{M},n}$  : the maximum likelihood estimator in the model  $\mathbb{M}$ 

## Post-model selection inference

#### Model selection:

- We consider a model selection procedure : a function  $\hat{\mathbb{M}}_n : \mathbb{R}^{n \times \ell} \to \mathsf{M}_n$
- We are hence interested in constructing confidence intervals for the random quantity of interest  $\theta^*_{\hat{\mathbb{M}}_2}$  ,
- This is the post-model-selection inference framework

#### Related work:

- Van der Geer et al. 2014, AoS lasso for linear models
- Lee et al. 2016, AoS lasso for linear models
- Taylor and Tibschirani 2017, CJoS lasso for generalized linear models
- Berk et al 2013, AoS any model selector for Gaussian linear models

The post-model selection inference setting

2 The confidence intervals for Gaussian homoscedastic linear models

The confidence intervals for more general situations

Some simulation results

# Setting 1

Gaussian vector of observations

$$y_n = \begin{pmatrix} y_{1,n} \\ \vdots \\ y_{n,n} \end{pmatrix} = \mu + \sigma^2 U$$

with

$$\iota$$
 fixed and unknown and  $U \sim \mathcal{N}(0, I_n)$ 

- Homoscedastic linear models, with Gaussian errors
  - Observed n × p design matrix X<sub>n</sub>
  - For  $M \subset \{1, \dots, p\}$ ,  $|M| \le n$ ,  $X_n[M]$  corresponds to selecting columns in M
  - ullet Model  $\mathbb{M}$ , defined by M, with |M| imes 1 parameter  $heta_{\mathbb{M}}$  assumes that

$$y_n = X_n[M]\theta_{\mathbb{M}} + \mathcal{N}(0, \sigma^2 I_n)$$

• We consider that  $M \in \mathcal{I} \subset \{M; M \subset \{1, \dots, p\}\}$ 



# Setting 2

•  $\theta_{\mathbb{M},n}^*$  corresponds to the projection of the true mean vector on  $\mathrm{span}(X_n[M])$  with  $M\subset\{1,...,p\}$ 

$$\theta_{\mathbb{M}, n}^* = (X_n[M]'X_n[M])^{-1}X_n[M]'\mu$$

- $\theta_{\mathbb{M},n}^*$  is the model-dependent target of inference
- $\hat{\theta}_{\mathbb{M},n}$  is the least square estimator based on  $\mathrm{span}(X_n[M])$

$$\hat{\theta}_{\mathbb{M},n} = (X_n[M]'X_n[M])^{-1}X_n[M]'y_n$$



# Confidence intervals

#### Confidence intervals:

- ullet Berk et al 2013, AoS observe that  $\{\hat{ heta}_{\mathbb{M},n}- heta_{\mathbb{M},n}^*\}_{\mathbb{M}\in\mathcal{I}}$  is Gaussian
- They use a worst case approach (in terms of the selected model) and obtain a family of confidence intervals

$$\left\{\operatorname{CI}_{1-\alpha,\mathbb{M}}^{(j)}\right\}_{\mathbb{M}\in\mathsf{M}_n,j=1,\ldots,m(\mathbb{M})},$$

satisfying

$$\mathbb{P}_n\left(\left[\theta^*_{\hat{\mathbb{M}}_n,n}\right]_j\in \mathrm{CI}_{1-\alpha,\hat{\mathbb{M}}_n}^{(j)} \text{ for all } j=1,\ldots,m(\hat{\mathbb{M}}_n)\right)\geq 1-\alpha$$

## Universality:

- holds for any model selector  $\hat{\mathbb{M}}_n$ : universally valid (Berk et al.)
  - particularly beneficial when the statistician has limited control on the model selection procedure: informal, cost-driven...

# Computational and asymptotic aspects

## Case n < p (for concision)

The confidence intervals of Berk et al 2013 are based on computing quantiles of

$$\max_{\substack{M \in \mathcal{I} \\ i=1,\dots,|M|}} \frac{\text{line } i \text{ of } (X_n[M]'X_n[M])^{-1}X_n[M]'}{\text{norm of line } i \text{ of } (X_n[M]'X_n[M])^{-1}X_n[M]'}U,$$

where  $U \sim \mathcal{N}(0, I_n)$ 

• Typically  $\mathcal{I} = \{M \subset \{1, \dots, p\}; |M| \leq s\}$  with **sparsity** s

## Several challenges:

- Sampling the maximum of a high-dimensional Gaussian vector with small rank covariance matrix
- Asymptotic behavior of the quantiles? As a function of  $X_n$ ? Some results in Berk et al. 2013, Bachoc Leeb Pötscher 2019, Bachoc Neuvial Blanchard 2019

13 / 25

The post-model selection inference setting

2 The confidence intervals for Gaussian homoscedastic linear models

- The confidence intervals for more general situations
- Some simulation results

# Main idea and notation

#### Main idea:

- We aim at showing a joint asymptotic normality of  $\{\hat{\theta}_{\mathbb{M},n} \theta_{\mathbb{M},n}^*\}_{\mathbb{M} \in \mathsf{M}_n}$
- We then use the same construction as in Berk et al for the confidence intervals
- Additional difficulty: we do not know the asymptotic covariance matrix

### Notation:

- $\bullet \ \hat{\theta}_n = (\hat{\theta}'_{\mathbb{M}_1,n}, \dots, \hat{\theta}'_{\mathbb{M}_d,n})'$
- $\bullet \ \theta_n^* = (\theta_{\mathbb{M}_1,n}^{*'}, \dots, \theta_{\mathbb{M}_d,n}^{*'})'$
- Let  $k = \sum_{j=1}^d m(\mathbb{M}_{j,n})$ , be the dimension of  $\hat{\theta}_n$

# Joint Asymptotic normality

- Let  $r_n = \hat{\theta}_n \theta_n^*$
- Let  $S_n = \mathbb{VC}_n(r_n)$
- Let d<sub>w</sub> be a distance generating the topology of weak convergence for distributions on an Euclidean space
- Let  $\operatorname{corr}(\Sigma) = \operatorname{diag}(\Sigma)^{-1/2} \Sigma \operatorname{diag}(\Sigma)^{-1/2}$ , where  $\operatorname{diag}(\Sigma)$  is obtained by setting the off-diagonal elements of  $\Sigma$  to 0.

### Lemma

Under some conditions, we have, with  $\mathbb{P}_n \circ f$  the push-forward measure of a function f under  $\mathbb{P}_n$ ,

$$d_{w}\left(\mathbb{P}_{n}\circ\left[\mathsf{diag}(S_{n})^{-1/2}\left(\hat{\theta}_{n}-\theta_{n}^{*}\right)\right],\mathsf{N}(0,\mathsf{corr}(S_{n}))\right)\to0$$



16 / 25

## Some notation

- For  $\alpha \in (0,1)$  and for a covariance matrix  $\Gamma$ , let  $K_{1-\alpha}(\Gamma)$  be the  $1-\alpha$ -quantile of  $\|Z\|_{\infty}$  for  $Z \sim \mathcal{N}(0,\Gamma)$
- For  $\mathbb{M} = \mathbb{M}_{i,n} \in \mathsf{M}_n$  and  $j \in \{1, \ldots, m(\mathbb{M})\}$  let

$$j \star \mathbb{M} \quad := \quad \sum_{l=1}^{i-1} m(\mathbb{M}_{l,n}) + j,$$

 $(j\star\mathbb{M}$  is the index of  $({\theta^*_{\mathbb{M},n}}^*)_j$  in  $({\theta^*_{\mathbb{M}_1,n}}^*,\dots,{\theta^*_{\mathbb{M}_d,n}}^*)'$ )



# Confidence intervals based on a consistent estimator of the asymptotic covariance matrix

Let  $\alpha \in (0, 1)$ . Let  $\hat{S}_n$  be so that, with ||.|| the largest singular value of A,

$$\|\operatorname{corr}(\hat{S}_n) - \operatorname{corr}(\mathbb{VC}_n(r_n))\| + \|\operatorname{diag}(\mathbb{VC}_n(r_n))^{-1}\operatorname{diag}(\hat{S}_n) - I_k\| \to_{p} 0$$

Consider, for  $\mathbb{M} \in M_n$  and  $j = 1, ..., m(\mathbb{M})$  the confidence interval

$$\mathrm{CI}_{1-lpha,\mathbb{M}}^{(j),\mathrm{est}} = \hat{ heta}_{\mathbb{M},n}^{(j)} \pm \sqrt{[\hat{S}_n]_{j\star\mathbb{M}}} \; K_{1-lpha}\left(\mathrm{corr}(\hat{S}_n)\right)$$

## Theorem

Then,  $\mathbb{P}_n\left(\left[\theta_{\tilde{\mathbb{M}}_n,n}^*\right]_j\in \mathrm{CI}_{1-\alpha,\mathbb{M}}^{(j),\mathrm{est}} \text{ for all } \mathbb{M}\in \mathsf{M}_n \text{ and } j=1,\ldots,m(\mathbb{M})\right) \text{ goes to } 1-\alpha \text{ as } n\to\infty.$  In particular, for any model selection procedure  $\hat{\mathbb{M}}_n$ , we have

$$\liminf_{n\to\infty} \mathbb{P}_n\left(\left[\theta^*_{\hat{\mathbb{M}}_n,n}\right]_j \in \mathrm{CI}^{(j),\mathrm{est}}_{1-\alpha,\hat{\mathbb{M}}_n} \text{ for all } j=1,\ldots,m(\hat{\mathbb{M}}_n)\right) \geq 1-\alpha$$

18 / 25

François Bachoc Valid confidence intervals February 2019

# Confidence intervals based on a conservative estimator of the asymptotic covariance matrix

- When the models are misspecified it may not be possible to estimate  $\mathbb{VC}_n(r_n)$  consistently
- We show how to overestimate the diagonal components of  $\mathbb{VC}_n(r_n)$
- This is based on overestimating  $\mathbb{V}(y_{i,n})$  based on

$$\mathbb{V}(y_{i,n}) \leq \mathbb{E}((y_{i,n} - \hat{y}_{i,n})^2)$$

where  $\hat{y}_{i,n}$  is obtained from a misspecified model M

- Also there exist upper-bounds of  $K_{1-\alpha}$  (corr( $S_n$ )) (see Berk et al 2013, Bachoc Leeb Pötscher 2019)
- $\Longrightarrow$  We obtain the same asymptotic guarantee as before with more conservative confidence intervals

# **Applications**

- We have seen a general method that can be applied to specific situations on a case by case basis
- Need uniform central limit theorems for fixed models in misspecified cases (sandwich rule)
- Need to consistently overestimate variances
- In the paper, we provide applications to
  - homoscedastic linear models to homoscedastic data
  - heteroscedastic linear models to heteroscedastic data
  - Binary regression models to binary data

The post-model selection inference setting

The confidence intervals for Gaussian homoscedastic linear models

- The confidence intervals for more general situations
- Some simulation results

## Some simulation results

In a Monte Carlo simulation (1000 repetitions) for logistic regression (p = 10, n = 30, 100), we compare

- CI coverage for a nominal level at 0.9 (cov. 0.9)
- CI median length (med.)
- CI 90% quantile length (qua.)

for

- our post-selection inference CI (P)
- the CI by Taylor and Tibshirani, 2017, specific to the lasso (L)
- the naive CI that ignores the presence of model selection (N)

| model     | cov. 0.9 |      |      |      | med. |      | qua. |       |      |
|-----------|----------|------|------|------|------|------|------|-------|------|
| selector  | Р        | L    | Ν    | P    | L    | Ν    | Р    | L     | N    |
| lasso (1) | 0.99     | 0.89 | 0.84 | 4.26 | 7.44 | 2.09 | 6.97 | 43.33 | 3.42 |
| lasso (2) | 1.00     | 0.85 | 0.68 | 1.63 | 2.31 | 0.74 | 1.90 | 13.52 | 0.84 |
| lasso (3) | 1.00     | 0.25 | 0.98 | 2.22 | 1.23 | 1.01 | 2.83 | 3.50  | 1.24 |
| sig. hun. | 0.95     |      | 0.39 | 4.40 |      | 2.63 | 6.22 |       | 3.63 |

# Some simulation results in high dimension 1

In a Monte Carlo simulation (1000 repetitions) for homoscedastic linear models (p = 1000, n = 50)

The model selector is forward stepwise

#### we compare

- CI coverage for a nominal level at 0.9 (cov. 0.9)
- CI median length (med.)
- CI 90% quantile length (qua.)

#### for

- our post-selection inference CI (P)
- the CI by Tibshirani et al. 2017, specific to forward-stepwise (FS)
- the naive CI that ignores the presence of model selection (N)

# Some simulation results in high dimension 2

|    | cov. | Step 1 med. | qua.  | cov. | Step 2 med. | qua.  | COV. | Step 3 med. | qua.  | Simult. cov. |
|----|------|-------------|-------|------|-------------|-------|------|-------------|-------|--------------|
| Р  | 0.99 | 8.33        | 9.38  | 1.00 | 10.39       | 12.73 | 1.00 | 11.49       | 14.35 | 0.99         |
| FS | 0.94 | 11.66       | 55.76 | 0.88 | 786.92      | Inf   | 0.90 | 1754.00     | Inf   | 0.77         |
| N  | 0.58 | 3.54        | 3.98  | 0.49 | 3.33        | 4.08  | 0.45 | 3.22        | 4.03  | 0.08         |
| Р  | 0.91 | 7.24        | 8.07  | 1.00 | 9.34        | 12.15 | 1.00 | 10.36       | 13.68 | 0.91         |
| FS | 0.93 | 15.15       | 72.67 | 0.88 | 752.74      | Inf   | 0.90 | 1582.32     | Inf   | 0.76         |
| N  | 0.00 | 3.07        | 3.43  | 0.12 | 3.00        | 3.90  | 0.19 | 2.91        | 3.84  | 0.00         |

#### Remark

- Top 3 rows : design matrix X has independent columns
- Bottom 3 rows : design matrix X has correlated columns
- The CI's P and FS use the knowledge that k variables are selected at step k

## Conclusion

## The paper:

- F. Bachoc, D. Preinerstorfer, L. Steinberger. Uniformly valid confidence intervals post-model-selection, https://arxiv.org/abs/1611.01043 Annals of statistics, forthcoming
- We provide general asymptotic post-model selection confidence intervals
  - general results
  - applications to homoscedastic and heteroscedastic linear models and to binary regression
- for misspecified models
- with encouraging numerical behavior
- Open questions: high-dimensional asymptotics, computational aspects

Thank you for your attention!

