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Talk outline

0 The post-model selection inference setting
@ The confidence intervals for Gaussian homoscedastic linear models
© The confidence intervals for more general situations

° Some simulation results
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Data and models

Data :
@ We consider a triangular array of independent 1 x / random vectors y1 n, ..., ¥n,n
o We let P = ®j., P; , be the distribution of y, = (y{yn, --sYh.n)'s where P; , is the
distribution of y;
Models :
@ We now consider a set My, = {My ,, ..., My n} composed of d models
@ M; , is a set of distributions on R7*¢
@ d does not depend on n (fixed-dimensional asymptotics)

— We do not assume that the observation distribution P, belongs to one of the
{Mj p,...,Mg n}. The set of models can be misspecified
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Parameters and estimators

Parameters :

@ We define for each model M € My an optimal parameter 65 , = 6 ,(Pn), that we assume to
be non-random and of fixed dimension m(M)

@ Typically, M € M, is a set of distributions parameterized by 6y € R™™) and 051
corresponds to the projection of P, on M, for some distance

@ The optimal parameter O30 is specific to the model M

Estimators :
@ We consider, for each M € My, an estimator éM,n of the optimal parameter 6,
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Example : binary regression 1

Data :

@ / =1 :scalar observations
@ n x 1 observation vector
Y1,n
Yn =
Yn,n
o independent components
e yy € {0,1}
e Fori=1,...,n,P(yj,=1) € [§,1 — 5] for fixed § > 0 (technical for asymptotics)

= Pp is a distribution on {0, 1}" with independent components and non-vanishing 'randomness’
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Example : binary regression 2

Models :
@ Let X, be a n x p design matrix
@ Let X; , be the jth row of X,

@ Each model Mj; is identified by

e asetof variables M; C {1,...,p}
e aresponse function h; : R — [0, 1]

@ Under model M; we assume thatforj =1,...,n

P(yj,n = 1) = hi(X;,n[M]6ns;)

for some |M;| x 1 vector 9Mf

with X; o[M] the jth line of X,[M]

where X,[M;] is obtained by keeping the columns of X, with indices in M;

we also assume independent components

= M is the set of distributions on R" with independent components in {0, 1} and with mean
vector in h;(span(Xn[Mi]))
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Example : binary regression 3

Target :
@ For a model M
Ohn,n € argmineMeRW‘KL([P’MVGM,IPHL
with

o Pur,op, the distribution in model M with parameter 0y
o P, the true distribution of the observation vector

Estimator :
° éM,,, : the maximum likelihood estimator in the model M
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Post-model selection inference

Model selection :
@ We consider a model selection procedure : a function ¥, : R"<¢ — Mp,
@ We are hence interested in constructing confidence intervals for the random quantity of
interest 0;@1 N
ns

@ This is the post-model-selection inference framework

Related work :
@ Van der Geer et al. 2014, AoS lasso for linear models
@ Lee et al. 2016, AoS lasso for linear models
@ Taylor and Tibschirani 2017, CJoS lasso for generalized linear models
@ Berk et al 2013, AoS any model selector for Gaussian linear models
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9 The confidence intervals for Gaussian homoscedastic linear models
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Setting 1

@ Gaussian vector of observations
y1,n
o= 1 | =n+sfU
Yn,n
with
w  fixed and unknown and U ~ N(0, In)

@ Homoscedastic linear models, with Gaussian errors

@ Observed n x p design matrix X,
e ForM C {1,...,p}, M| < n, Xy[M] corresponds to selecting columns in M
o Model M, defined by M, with |M| x 1 parameter 0, assumes that

Yo = Xa[M]61s + N0, 6% 1)
@ WeconsiderthatM e Z c {(M;McC {1,...,p}}
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Setting 2

@ 0y , corresponds to the projection of the true mean vector on span(Xs[M]) with M C {1, ..., p}
O3t = (XnIM)' Xa[M]) ™ Xa[ M)’ 1

@ 0y , is the model-dependent target of inference

° GAM,,, is the least square estimator based on span(Xh[M])

Ovi,n = (XM XaM]) ™ Xa MY yn
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Confidence intervals

Confidence intervals :
@ Berk et al 2013, AoS observe that {éM’,, - 9&}1,,7}1\4161 is Gaussian

@ They use a worst case approach (in terms of the selected model) and obtain a family of
confidence intervals

()
{CI‘*aaM}MeMn,j:Lm,m(M) ’
satisfying
Pn ([e&mn]j eal? . forallj= 1,...,m(Mn)) >1-a

1—a,
Universality :
@ holds for any model selector N, : universally valid (Berk et al.)

@ particularly beneficial when the statistician has limited control on the model selection
procedure : informal , cost-driven...
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Computational and asymptotic aspects

Case n < p (for concision)
@ The confidence intervals of Berk et al 2013 are based on computing quantiles of

line i of (Xa[M)/ Xa[M])~" Xa[M]’
MET  norm of ine 7 of (XM} Xa[M])— Xa[M]

i=1,..,[M|

where U ~ N(0, In)

@ Typically Z = {M C {1,...,p}; IM| < s} with sparsity s
Several challenges :

@ Sampling the maximum of a high-dimensional Gaussian vector with small rank covariance
matrix

@ Asymptotic behavior of the quantiles ? As a function of X, ? Some results in Berk et al. 2013,
Bachoc Leeb Pétscher 2019, Bachoc Neuvial Blanchard 2019
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© The confidence intervals for more general situations
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Main idea and notation

Main idea :
@ We aim at showing a joint asymptotic normality of {éMy,, - %W}MeMn
@ We then use the same construction as in Berk et al for the confidence intervals
@ Additional difficulty : we do not know the asymptotic covariance matrix

Notation :
© On =04y, - 005, 0)
© 05 = (031, o+ Oin, )

o Letk =3¢, m(M; ,), be the dimension of J,
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Joint Asymptotic normality

o Letr,=40,—06;

@ Let Sp = VCp(rn)

@ Let dy be a distance generating the topology of weak convergence for distributions on an
Euclidean space

@ Let corr(X) = diag(X) /2% diag(X)~1/2, where diag(X) is obtained by setting the
off-diagonal elements of X to 0.

Under some conditions, we have, with P, o f the push-forward measure of a function f under Pp,

dy (Pn o [diag(Sn)~"/2 (62— 6;)] , N0, corr(Sn))) — 0
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@ For a € (0,1) and for a covariance matrix I, let K; _(I") be the 1 — a-quantile of || Z|| s for
Z ~ N(0,T)
@ ForM=M;,€eMpandje {1,...,mM)} let
i—1
j*M = m(Ml,n) +/7
=1

(j * M is the index of (65 ,); in (65, -+ 0, )')
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Confidence intervals based on a consistent estimator of the asymptotic

covariance matrix

Let a € (0,1). Let &, be so that, with ||.|| the largest singular value of A,
|| corr(8n) — corr (VCn(ra)) || + || diag(VCn(r))~ " diag(8n) — k|| —p O

Consider, for M € Mp and j = 1, ..., m(M) the confidence interval

CIY&?M = é&),n £/ [Snljert Ki—a (corr(é,,))

Then, Pp <[9§7ﬂn ”]j € CIYIZ‘EM forallM € My andj=1,... ,m(M)) goesto1l —aasn— oco. In

particular, for any model selection procedure M, we have

—a,

. * (), est . <1
Iknlgp” ([Omn,n]j € Cl . for all j = 1,...,m(Mn)> >1 -«
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Confidence intervals based on a conservative estimator of the

asymptotic covariance matrix

@ When the models are misspecified it may not be possible to estimate VCp(rs) consistently
@ We show how to overestimate the diagonal components of VCp(rn)
@ This is based on overestimating V(y; ,) based on

V(¥i,n) <E((Yin— }A’f,n)z)

where J; , is obtained from a misspecified model M

@ Also there exist upper-bounds of Ki_,, (corr(Sn)) (see Berk et al 2013, Bachoc Leeb
Pétscher 2019)

— We obtain the same asymptotic guarantee as before with more conservative confidence
intervals
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Applications

@ We have seen a general method that can be applied to specific situations on a case by case
basis

@ Need uniform central limit theorems for fixed models in misspecified cases (sandwich rule)

@ Need to consistently overestimate variances

@ In the paper, we provide applications to

@ homoscedastic linear models to homoscedastic data
o heteroscedastic linear models to heteroscedastic data
@ Binary regression models to binary data

Frangois Bachoc Valid confidence intervals February 2019 20/25



0 Some simulation results
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Some simulation results

In a Monte Carlo simulation (1000 repetitions) for logistic regression (p = 10, n = 30, 100), we
compare

@ Cl coverage for a nominal level at 0.9 (cov. 0.9)
@ Cl median length (med.)
@ Cl 90% quantile length (qua.)
for
@ our post-selection inference Cl (P)
@ the Cl by Taylor and Tibshirani, 2017, specific to the lasso (L)
@ the naive Cl that ignores the presence of model selection (N)

model cov. 0.9 med. qua.
selector P L N P L N P L N
lasso (1) | 0.99 0.89 0.84 | 426 744 209 | 6.97 4333 3.42
lasso(2) | 1.00 0.85 068 | 1.63 231 0.74 | 1.90 1352 0.84
lasso(3) | 1.00 025 098 | 222 123 1.01 | 2.83 3.50 1.24
sig. hun. | 0.95 0.39 | 440 2.63 | 6.22 3.63
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Some simulation results in high dimension 1

In a Monte Carlo simulation (1000 repetitions) for homoscedastic linear models
(p = 1000, n = 50)
@ The model selector is forward stepwise
we compare
@ Cl coverage for a nominal level at 0.9 (cov. 0.9)
@ Cl median length (med.)
@ Cl 90% quantile length (qua.)
for
@ our post-selection inference Cl (P)
@ the Cl by Tibshirani et al. 2017, specific to forward-stepwise (FS)
@ the naive Cl that ignores the presence of model selection (N)
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Some simulation results in high dimension 2

Step 1 Step 2 Step 3 Simult.

cov. med. qua. cov. med. qua. cov. med. qua. cov.

P 0.99 8.33 9.38 1.00 10.39 12.73 1.00 11.49 14.35 0.99
FS 0.94 11.66 55.76 0.88 786.92 Inf | 0.90 1754.00 Inf 0.77
N 0.58 3.54 3.98 0.49 3.33 4.08 0.45 3.22 4.03 0.08
P 0.91 7.24 8.07 1.00 9.34 12.15 1.00 10.36 13.68 0.91
FS 0.93 15.15 72.67 0.88 752.74 Inf | 0.90 1582.32 Inf 0.76
N 0.00 3.07 3.43 0.12 3.00 3.90 0.19 2.91 3.84 0.00

Remark
@ Top 3 rows : design matrix X has independent columns
@ Bottom 3 rows : design matrix X has correlated columns
@ The CI's P and FS use the knowledge that k variables are selected at step k
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Conclusion

The paper :

< F. Bachoc, D. Preinerstorfer, L. Steinberger. Uniformly valid confidence intervals
post-model-selection, https://arxiv.org/abs/1611.01043
Annals of statistics, forthcoming

@ We provide general asymptotic post-model selection confidence intervals

> general results
> applications to homoscedastic and heteroscedastic linear models and to binary regression

@ for misspecified models
@ with encouraging numerical behavior
@ Open questions : high-dimensional asymptotics, computational aspects

Thank you for your attention !
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