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Data and models

Data :

We consider a triangular array of independent 1× l random vectors y1,n, ..., yn,n

We let Pn =
⊗n

i=1 Pi,n be the distribution of yn = (y ′1,n, . . . , y
′
n,n)′, where Pi,n is the

distribution of yi,n

Models :

We now consider a set Mn = {M1,n, . . . ,Md,n} composed of d models

Mi,n is a set of distributions on Rn×`

d does not depend on n (fixed-dimensional asymptotics)

=⇒We do not assume that the observation distribution Pn belongs to one of the
{M1,n, . . . ,Md,n}. The set of models can be misspecified
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Parameters and estimators

Parameters :

We define for each model M ∈ Mn an optimal parameter θ∗M,n = θ∗M,n(Pn), that we assume to
be non-random and of fixed dimension m(M)

Typically, M ∈ Mn is a set of distributions parameterized by θM ∈ Rm(M), and θ∗M,n
corresponds to the projection of Pn on M, for some distance

The optimal parameter θ∗M,n is specific to the model M

Estimators :

We consider, for each M ∈ Mn, an estimator θ̂M,n of the optimal parameter θ∗M,n
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Example : binary regression 1

Data :

l = 1 : scalar observations

n × 1 observation vector

yn =

y1,n
...

yn,n


independent components
yi ∈ {0, 1}
For i = 1, ..., n, P(yi,n = 1) ∈ [δ, 1− δ] for fixed δ > 0 (technical for asymptotics)

=⇒ Pn is a distribution on {0, 1}n with independent components and non-vanishing ’randomness’
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Example : binary regression 2

Models :

Let Xn be a n × p design matrix

Let Xj,n be the j th row of Xn

Each model Mi is identified by
a set of variables Mi ⊂ {1, ..., p}
a response function hi : R→ [0, 1]

Under model Mi we assume that for j = 1, ..., n

P(yj,n = 1) = hi (Xj,n[Mi ]θMi )

for some |Mi | × 1 vector θMi
with Xj,n[Mi ] the j th line of Xn[Mi ]
where Xn[Mi ] is obtained by keeping the columns of Xn with indices in Mi
we also assume independent components

=⇒Mi is the set of distributions on Rn with independent components in {0, 1} and with mean
vector in hi (span(Xn[Mi ]))
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Example : binary regression 3

Target :

For a model M
θ∗M,n ∈ argminθM∈R|M|KL(PM,θM ,Pn),

with
PM,θM the distribution in model M with parameter θM
Pn the true distribution of the observation vector

Estimator :

θ̂M,n : the maximum likelihood estimator in the model M
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Post-model selection inference

Model selection :

We consider a model selection procedure : a function M̂n : Rn×` → Mn

We are hence interested in constructing confidence intervals for the random quantity of
interest θ∗

M̂n,n

This is the post-model-selection inference framework

Related work :

Van der Geer et al. 2014, AoS lasso for linear models

Lee et al. 2016, AoS lasso for linear models

Taylor and Tibschirani 2017, CJoS lasso for generalized linear models

Berk et al 2013, AoS any model selector for Gaussian linear models
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Setting 1

Gaussian vector of observations

yn =

y1,n
...

yn,n

 = µ+ σ2U

with
µ fixed and unknown and U ∼ N (0, In)

Homoscedastic linear models, with Gaussian errors
Observed n × p design matrix Xn
For M ⊂ {1, . . . , p}, |M| ≤ n, Xn[M] corresponds to selecting columns in M
Model M, defined by M, with |M| × 1 parameter θM assumes that

yn = Xn[M]θM +N (0, σ2In)

We consider that M ∈ I ⊂ {M; M ⊂ {1, . . . , p}}
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Setting 2

θ∗M,n corresponds to the projection of the true mean vector on span(Xn[M]) with M ⊂ {1, ..., p}

θ∗M,n = (Xn[M]′Xn[M])−1Xn[M]′µ

θ∗M,n is the model-dependent target of inference

θ̂M,n is the least square estimator based on span(Xn[M])

θ̂M,n = (Xn[M]′Xn[M])−1Xn[M]′yn
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Confidence intervals

Confidence intervals :

Berk et al 2013, AoS observe that {θ̂M,n − θ∗M,n}M∈I is Gaussian

They use a worst case approach (in terms of the selected model) and obtain a family of
confidence intervals {

CI(j)
1−α,M

}
M∈Mn,j=1,...,m(M)

,

satisfying

Pn

([
θ∗M̂n,n

]
j
∈ CI(j)

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α

Universality :

holds for any model selector M̂n : universally valid (Berk et al.)

particularly beneficial when the statistician has limited control on the model selection
procedure : informal , cost-driven...
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Computational and asymptotic aspects

Case n < p (for concision)

The confidence intervals of Berk et al 2013 are based on computing quantiles of

max
M∈I

i=1,...,|M|

line i of (Xn[M]′Xn[M])−1Xn[M]′

norm of line i of (Xn[M]′Xn[M])−1Xn[M]′
U,

where U ∼ N (0, In)

Typically I = {M ⊂ {1, . . . , p}; |M| ≤ s} with sparsity s

Several challenges :

Sampling the maximum of a high-dimensional Gaussian vector with small rank covariance
matrix

Asymptotic behavior of the quantiles ? As a function of Xn ? Some results in Berk et al. 2013,
Bachoc Leeb Pötscher 2019, Bachoc Neuvial Blanchard 2019
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Main idea and notation

Main idea :

We aim at showing a joint asymptotic normality of {θ̂M,n − θ∗M,n}M∈Mn

We then use the same construction as in Berk et al for the confidence intervals

Additional difficulty : we do not know the asymptotic covariance matrix

Notation :

θ̂n = (θ̂′M1,n
, . . . , θ̂′Md ,n

)′

θ∗n = (θ∗
′

M1,n
, . . . , θ∗

′
Md ,n

)′

Let k =
∑d

j=1 m(Mj,n), be the dimension of θ̂n
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Joint Asymptotic normality

Let rn = θ̂n − θ∗n
Let Sn = VCn(rn)

Let dw be a distance generating the topology of weak convergence for distributions on an
Euclidean space

Let corr(Σ) = diag(Σ)−1/2Σ diag(Σ)−1/2, where diag(Σ) is obtained by setting the
off-diagonal elements of Σ to 0.

Lemma

Under some conditions, we have, with Pn ◦ f the push-forward measure of a function f under Pn,

dw

(
Pn ◦

[
diag(Sn)−1/2

(
θ̂n − θ∗n

)]
,N(0, corr(Sn))

)
→ 0
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Some notation

For α ∈ (0, 1) and for a covariance matrix Γ, let K1−α(Γ) be the 1− α-quantile of ‖Z‖∞ for
Z ∼ N(0, Γ)

For M = Mi,n ∈ Mn and j ∈ {1, . . . ,m(M)} let

j ?M :=

i−1∑
l=1

m(Ml,n) + j,

(j ?M is the index of (θ∗
′

M,n)j in (θ∗
′

M1,n
, . . . , θ∗

′
Md ,n

)′ )
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Confidence intervals based on a consistent estimator of the asymptotic
covariance matrix

Let α ∈ (0, 1). Let Ŝn be so that, with ||.|| the largest singular value of A,

‖ corr(Ŝn)− corr (VCn(rn)) ‖+ ‖ diag(VCn(rn))−1 diag(Ŝn)− Ik‖ →p 0

Consider, for M ∈ Mn and j = 1, . . . ,m(M) the confidence interval

CI(j),est
1−α,M = θ̂

(j)
M,n ±

√
[Ŝn]j?M K1−α

(
corr(Ŝn)

)

Theorem

Then, Pn

([
θ∗
M̂n,n

]
j
∈ CI(j),est

1−α,M for all M ∈ Mn and j = 1, . . . ,m(M)

)
goes to 1− α as n→∞. In

particular, for any model selection procedure M̂n, we have

lim inf
n→∞

Pn

([
θ∗M̂n,n

]
j
∈ CI(j),est

1−α,M̂n
for all j = 1, . . . ,m(M̂n)

)
≥ 1− α
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Confidence intervals based on a conservative estimator of the
asymptotic covariance matrix

When the models are misspecified it may not be possible to estimate VCn(rn) consistently

We show how to overestimate the diagonal components of VCn(rn)

This is based on overestimating V(yi,n) based on

V(yi,n) ≤ E((yi,n − ŷi,n)2)

where ŷi,n is obtained from a misspecified model M
Also there exist upper-bounds of K1−α (corr(Sn)) (see Berk et al 2013, Bachoc Leeb
Pötscher 2019)

=⇒We obtain the same asymptotic guarantee as before with more conservative confidence
intervals
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Applications

We have seen a general method that can be applied to specific situations on a case by case
basis

Need uniform central limit theorems for fixed models in misspecified cases (sandwich rule)

Need to consistently overestimate variances
In the paper, we provide applications to

homoscedastic linear models to homoscedastic data
heteroscedastic linear models to heteroscedastic data
Binary regression models to binary data
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Some simulation results

In a Monte Carlo simulation (1000 repetitions) for logistic regression (p = 10, n = 30, 100), we
compare

CI coverage for a nominal level at 0.9 (cov. 0.9)

CI median length (med.)

CI 90% quantile length (qua.)

for

our post-selection inference CI (P)

the CI by Taylor and Tibshirani, 2017, specific to the lasso (L)

the naive CI that ignores the presence of model selection (N)

model cov. 0.9 med. qua.
selector P L N P L N P L N
lasso (1) 0.99 0.89 0.84 4.26 7.44 2.09 6.97 43.33 3.42
lasso (2) 1.00 0.85 0.68 1.63 2.31 0.74 1.90 13.52 0.84
lasso (3) 1.00 0.25 0.98 2.22 1.23 1.01 2.83 3.50 1.24
sig. hun. 0.95 0.39 4.40 2.63 6.22 3.63
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Some simulation results in high dimension 1

In a Monte Carlo simulation (1000 repetitions) for homoscedastic linear models
(p = 1000, n = 50)

The model selector is forward stepwise
we compare

CI coverage for a nominal level at 0.9 (cov. 0.9)

CI median length (med.)

CI 90% quantile length (qua.)

for

our post-selection inference CI (P)

the CI by Tibshirani et al. 2017, specific to forward-stepwise (FS)

the naive CI that ignores the presence of model selection (N)
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Some simulation results in high dimension 2

Step 1 Step 2 Step 3 Simult.
cov. med. qua. cov. med. qua. cov. med. qua. cov.

P 0.99 8.33 9.38 1.00 10.39 12.73 1.00 11.49 14.35 0.99
FS 0.94 11.66 55.76 0.88 786.92 Inf 0.90 1754.00 Inf 0.77
N 0.58 3.54 3.98 0.49 3.33 4.08 0.45 3.22 4.03 0.08

P 0.91 7.24 8.07 1.00 9.34 12.15 1.00 10.36 13.68 0.91
FS 0.93 15.15 72.67 0.88 752.74 Inf 0.90 1582.32 Inf 0.76
N 0.00 3.07 3.43 0.12 3.00 3.90 0.19 2.91 3.84 0.00

Remark

Top 3 rows : design matrix X has independent columns

Bottom 3 rows : design matrix X has correlated columns

The CI’s P and FS use the knowledge that k variables are selected at step k
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Conclusion

The paper :

0 F. Bachoc, D. Preinerstorfer, L. Steinberger. Uniformly valid confidence intervals
post-model-selection, https://arxiv.org/abs/1611.01043
Annals of statistics, forthcoming

We provide general asymptotic post-model selection confidence intervals
. general results
. applications to homoscedastic and heteroscedastic linear models and to binary regression

for misspecified models

with encouraging numerical behavior

Open questions : high-dimensional asymptotics, computational aspects

Thank you for your attention !
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