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Nonlinear statistical inverse learning problem

Model

A is a known nonlinear operator from a separable Hilbert space H1 to
another Hilbert space H2.

The problem of interest can be described as

yi := g(xi ) + εi , A(f ) = g , i = 1, . . . ,m,

at a given set of observations z = {(xi , yi )}mi=1.

The random observations z are drawn independently and identically
according to the unknown joint probability distribution ρ.

(εi )
m
i=1 are independent centered noise variables satisfying Eρ[εi |xi ] = 0.

The goal: Provide an estimator fz of f from the given set of examples
z = {(xi , yi )}mi=1.

This is commonly called the statistical learning setting and the model is
referred as nonlinear statistical inverse learning problem.
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Expected risk

The goodness of the estimator f can be measured by the expected risk:

E(f ) = Eρ(f ) =

∫
Z

||A(f )(x)− y ||2Y dρ(x , y).

The goal is to find an estimator which minimizes the above risk function
E(f ) over an admissible class of functions which is referred as hypothesis
space.
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Ideal function

Under the condition Eρ[ε|x ] = 0 for y := A(f )(x) + ε.

Assumption

The conditional expectation w.r.t. ρ of y given x exists, and it holds for all
x ∈ X:

Eρ[y |x ] =

∫
Y

ydρ(y |x) = A(f )(x) = A(fρ)(x), for some fρ ∈ D(A) ⊂ H1.

Proposition (Cucker, Smale (2002))

For every f : X → Y ,

E(f ) =

∫
X

||A(f )(x)− A(fρ)(x)||2Y dρX (x) + σ2
ρ

where σ2
ρ =

∫
X

∫
Y
||y − A(fρ)(x)||2Y dρ(y |x)dρX (x) and ρ(·|x), ρX are

conditional probability, marginal probability, respectively.
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Tikhonov regularization

But, in general, the probability measure ρ is unknown.

Given a training set z, we define the empirical error:

Ez(f ) =
1

m

m∑
i=1

||A(f )(xi )− yi ||2Y .

A widely used approach to the estimation problem is nonlinear Tikhonov
regularization:

fz,λ = argmin
f∈D(A)⊂H1

{
1

m

m∑
i=1

||A(f )(xi )− yi ||2Y + λ||f − f ∗||2H1

}
,

where λ is the positive regularization parameter.

Here f ∗ ∈ D(A) ⊂ H1 denotes some initial guess of the ideal solution,
which offers the possibility to incorporate a-priori information.

The regularizer should encode some notion of smoothness/complexity of
the solution

The regularization parameter λ trade-offs the two terms.

If A is one-to-one and weakly sequentially closed, then there exists a
global minimum of the Tikhonov functional. But it is not necessarily
unique, since A is nonlinear.
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Hypothesis space - Reproducing kernel Hilbert space

Definition (Reproducing Kernel Hilbert Space (RKHS))

Let X be an arbitrary set and H be a Hilbert space of real-valued functions on
X . The evaluation functional over the Hilbert space of functions H is a linear
functional that evaluates each function at a point x ,

Lx : f 7→ f (x) ∀f ∈ H.

We say that H is a reproducing kernel Hilbert space if Lx is a continuous
function for any x in X .

Definition (Mercer kernel)

K : X × X → R is a Mercer kernel if it is continuous, symmetric, and positive
semidefinite.

Remark (N. Aronszajn, 1950)

There is one to one correspondence between the reproducing kernel Hilbert
spaces and the reproducing kernels.
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Mercer kernels

Construction of HK from a given kernel K

1) K : X × X → R is the mercer kernel; Kx = K(x , ·).

2) HK = {f : f =
r∑

j=1

cjKxj }, Kxj = K(xj , ·)

3) 〈f , g〉K = 〈
r∑

j=1

cjKxj ,
s∑

i=1

diKti 〉K :=
r∑

j=1

s∑
i=1

cjdiK(xj , ti )

4) HK is the completion of HK w.r.t ‖ · ‖K

∀f ∈ HK f (x) = 〈Kx , f 〉K

Examples

Gaussian RBF kernel K(x , t) = e−||x−t||2

Polynomial of degree d kernel function K(x , t) = (1 + x · t)d

Suppose k ∈ L2(Rn, ν;R) be continuous, even function and the Fourier
transform of k is nonnegative. Then the kernel K(x , y) = k(x − y) is a
Mercer kernel on Rn.

Abhishake Nonlinear statistical inverse learning problems



Vector-valued reproducing kernel Hilbert space

Micchelli and Pontil (2005) introduced the concept of vector-valued
reproducing kernel Hilbert space.

Definition (Vector-valued reproducing kernel Hilbert space (RKHSvv))

For non-empty set X and the real Hilbert space (Y , 〈·, ·〉Y ), the Hilbert space
(H, 〈·, ·〉H) of functions from X to Y is called reproducing kernel Hilbert space
if for any x ∈ X and y ∈ Y the linear functional which maps f ∈ H to
〈y , f (x)〉Y is continuous.

Definition (Operator-valued positive definite kernel)

Suppose L(Y ) be the Banach space of bounded linear operators on Y . A
function K : X × X → L(Y ) is said to be an operator-valued positive definite
kernel if for each pair (x , z) ∈ X × X , K(x , z)∗ = K(z , x), and for every finite
set of points {xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y ,

N∑
i,j=1

〈yi ,K(xi , xj)yj〉Y ≥ 0.
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The Representer Theorem

Tikhonov regularization for the direct learning scheme (A = I and
H1 = H2 = H):

fz,λ = argmin
f∈H

{
1

m

m∑
i=1

||f (xi )− yi ||2Y + λ||f ||2H

}
,

An important result

The minimizer of the Tikhonov regularization problem over RKHS H can be
represented by the expression:

fz,λ =
m∑
i=1

ciKxi , for c = (c1, . . . , cm) = (K + λmI)−1y,

where K = (K(xi , xj))mi,j=1 and I is identity of size m ×m.

Hence, minimizing over the (possibly infinite dimensional) Hilbert space, boils
down to minimizing over Rm.
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Empirical risk minimization

Similarly we can prove that the solution of empirical risk minimization

min
f∈H

1

m

m∑
i=1

(yi − f (xi ))2

can be written as

fz(x) =
m∑
i=1

ciK(x , xi )

where the coefficients satisfy
Kc = y.
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The Role of Regularization

Now we can observe that adding a penalty has an effect from a numerical point
of view:

Kc = y⇒ (K + mλI)c = y

it stabilizes a possibly ill-conditioned matrix inversion problem.

This is the point of view of regularization for (ill-posed) inverse problems.
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Ill-posed Inverse Problems

Hadamard introduced the definition of ill-posedness. Ill-posed problems are
typically inverse problems.

If g ∈ G and f ∈ F , with G ,F Hilbert spaces, a linear, continuous operator L,
consider the equation

g = Lf

The direct problem is to compute g given f ; the inverse problem is to compute
f given the data g .

The inverse problem of finding f is well-posed when

the solution exists,

is unique and

is stable, that is depends continuously on the initial data g .

Otherwise the problem is ill-posed.
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Linear System for ERM

In the finite dimensional case the main problem is numerical stability.

For example, in the learning setting the kernel matrix can be decomposed as
K = QΣQT , with Σ = diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ . . . σn ≥ 0 and q1, . . . , qn
are the corresponding eigenvectors.
Then

c = K−1y = QΣ−1QTy =
m∑
i=1

1

σi
〈qi , y〉qi

In correspondence of small eigenvalues, small perturbations of the data can
cause large changes in the solution. The problem is ill-conditioned.
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Regularization as a Filter

For Tikhonov regularization

c = (K + mλI)−1y

= Q(Σ + mλI)−1QTy

=
m∑
i=1

1

σi + mλ
〈qi , y〉qi

Regularization filters out the undesired components.

For σ � λm, then 1
σi+mλ

∼ 1
σi

.

For σ � λm, then 1
σi+mλ

∼ 1
λm

.
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Objective

Main objective: To analyze the theoretical properties of the regularized
estimator fz,λ.

In particular, the rates of convergence of its estimator fz,λ to the ideal
function fρ in a reproducing kernel Ansatz.
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Basic Assumptions

Let the input space X be a locally compact countable Hausdorff space and the
output space (Y , 〈·, ·〉Y ) be a real separable Hilbert space.

Assumption

For all x ∈ X, Kx : Y → H is a Hilbert-Schmidt operator and

κ :=
√

sup
x∈X

Tr(K∗x Kx) <∞, where for Hilbert-Schmidt operator

F ∈ L(H2), Tr(F ) :=
∞∑
k=1

〈Fek , ek〉 for an orthonormal basis {ek}∞k=1 of H2.

The real-valued function φ : X × X → R, defined by
φ(x , t) = 〈Ktv ,Kxw〉H2 , is measurable ∀v ,w ∈ Y .
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Class of probability measures Pφ,b

Covariance operator

For the canonical injection IK : H → L2(X , ρX ;Y ) the covariance operator
T : H → H is defined as

T = I ∗K IK .

There exist some constants M,Σ such that for almost all x ∈ X ,∫
Y

(
e||ε||Y /M − ||ε||Y

M
− 1

)
dρ(y |x) ≤ Σ2

2M2

for ε = y − fρ(x).

fρ ∈ Ωr,R := {f ∈ H : f − f ∗ = φ(T )g and ||g ||H ≤ R},
where φ is a continuous increasing index function defined on the interval
[0, κ2] with the assumption φ(0) = 0. This condition is usually referred to
as general source condition.

The eigenvalues (tn)n∈N of the operator T follow the polynomial decay:

αn−b ≤ tn ≤ βn−b ∀n ∈ N, α, β > 0, b > 1.
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Effective dimension

Remark

General source condition fρ ∈ Ωφ,R corresponding to index function φ covers
wide range of source conditions as Hölder’s source condition φ(t) = tr ,
logarithm source condition φ(t) = tp log−ν

(
1
t

)
.

Effective dimension

The effective dimension N (λ), measures the complexity of RKHS, can be
defined as:

N (λ) := Tr
(

(T + λI )−1T
)
.
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Convergence rates

We are interested in exponential tail inequalities such that with probability at
least 1− η

||fz − fρ|| ≤ ε(m)log

(
1

η

)
for some positive decreasing function ε(m) and 0 < η ≤ 1.
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Error bound of Tikhonov regularization for direct learning A = I

x = (x1, . . . , xm)
y = (y1, . . . , ym)
Sx = (f (x1), . . . , f (xm))

For the regularized solution
fz,λ = (S∗x Sx + λI )−1S∗x y
and
fλ = (T + λI )−1Tfρ.

Now fz,λ − fρ can be expressed as

fz,λ − fλ = (S∗x Sx + λI )−1{S∗x y − S∗x Sxfλ − T (fρ − fλ)}︸ ︷︷ ︸
Sample error

+ fλ − fρ︸ ︷︷ ︸
Approximation error

First term: Under the noise condition

Pz∈Zm

{
||fz,λ − fλ||H ≤ C

(
1

mλ
+
√
N (λ)
mλ

)
log
(

4
η

)}
≥ 1− η

Second term: Under the source condition
||fλ − fρ||H ≤ Rφ(λ)
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Convergence rates for Tikhonov regularization

Theorem

Let z be i.i.d. samples drawn according to the probability measure ρ ∈ Pφ,b
where φ is the index function satisfying the conditions that φ(t), t/φ(t) are
nondecreasing functions. Then for all 0 < η < 1 and the parameter choice

λ ∈ (0, 1], λ = Ψ−1(m−1/2) where Ψ(t) = t
1
2

+ 1
2b φ(t), the convergence of the

estimator fz,λ to the target function fρ can be described as

Probz

{
||fz,λ − fρ||H ≤ Cφ(Ψ−1(m−1/2)) log

(
4

η

)}
≥ 1− η.

Corollary

For Hölder’s source condition fρ ∈ Ωφ,R , φ(t) = tr , for all 0 < η < 1, with

confidence 1− η, for the parameter choice λ = m−
b

2br+b+1 , we have

||fz,λ − fρ||H ≤ Cm−
br

2br+b+1 log

(
4

η

)
for 0 ≤ r ≤ 1.
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Assumptions on the nonlinear operator A

D(A): convex

A : D(A) ⊂ H1 → H2 ↪→ L2(X , ρX ;Y ) is weakly sequentially closed.

[i.e., if a sequence (fm)m∈N ⊂ D(A) converges weakly to some f ∈ H1 and
if the sequence (A(fm))m∈N converges weakly to some g ∈ L2(X , ρX ;Y ),
then f ∈ D(A) and A(f ) = g .]

A: Fréchet differentiable

||A′(fρ)||H1→H2 ≤ L

∃ γ ≥ 0 3 ∀ f ∈ D(A) ⊂ H1 in a sufficiently large ball around fρ:

||IK{A′(fρ)− A′(f )}||H1→L2(X ,ρX ;Y ) ≤ γ||fρ − f ||H1 .
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Operators

Let IK denote the canonical injection map H2 → L2(X , ρX ;Y ).

We define the operator:

B : H1 → L
2(X , ρX ;Y )

f 7→ Bf := [IK ◦ (A′(fρ))]f = IK (A′(fρ)f ),

The operator B is bounded and satisfies ||B||H1→L2(X ,ρX ;Y ) ≤ κL.

T := B∗B are positive, self-adjoint operators.
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Consistency

Theorem

Assume that D(A) is weakly closed with nonempty interior and
A : D(A) ⊂ H1 → H2 is Lipschitz continuous, one-to-one and that noise
condition holds true and σ2

ρ :=
∫
Z
||y − A(fρ)(x)||2Y dρ(x , y) <∞. Let fz,λ

denote a (not necessarily unique) solution to the minimization problem and
assume that the regularization parameter λ(m) > 0 is chosen such that

λ→ 0,
1

λ
√
m
→ 0 as m→∞.

Then we have that

Ez

(
‖fz,λ − fρ‖2

H1

)
→ 0 as |z| = m→∞.
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Error bounds for nonlinear Tikhonov regularization under general source
condition

Theorem

Let z be i.i.d. samples drawn according to the probability measure ρ ∈ Pφ,b
where φ(t) =

√
tψ(t) is the index function satisfying the conditions that φ(t)

and t/φ(t) are nondecreasing functions. Then under Assumption on the
operator A, for all 0 < η < 1, with confidence 1− η, for the regularized
estimator fz,λ the following upper bound holds:

||fz,λ − fρ||H1 ≤ C

{
Rφ(λ) +

κM

mλ
+

√
Σ2N (λ)

mλ

}
log

(
4

η

)
provided that

8κ2 max(1, L2) log(4/η) ≤
√
mλ

and
2γ||T−1/2(fρ − f ∗)||H1 < 1.
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Upper convergence rates for nonlinear Tikhonov regularization

Theorem

Under the same assumptions of above theorem, for the polynomial decay
condition on the eigenvalues of T and the parameter choice λ ∈ (0, 1],

λ = Ψ−1(m−1/2) where Ψ(t) = t
1
2

+ 1
2b φ(t), the convergence of the estimator

fz,λ to the function fρ can be described as:

Probz

{
||fz,λ − fρ||H1 ≤ C ′φ(Ψ−1(m−1/2)) log

(
4

η

)}
≥ 1− η

and
lim
τ→∞

lim sup
m→∞

sup
ρ∈Pφ,b

Probz

{
||fz,λ − fρ||H1 > τφ(Ψ−1(m−1/2))

}
= 0.
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Lower convergence rates for nonlinear Tikhonov regularization

Theorem

Let z be i.i.d. samples drawn according to the probability measure ρ ∈ Pφ,b
under the hypothesis dim(Y ) = d <∞. Then for Ψ(t) = t

1
2

+ 1
2b φ(t), the

estimator fz corresponding to any learning algorithm (z→ fz ∈ H1) converges
to the regression function fρ with the following lower rate:

lim
τ→0

lim inf
m→∞

inf
l∈A

sup
ρ∈Pφ,b

Probz

{
||f lz − fρ||H1 > τφ

(
Ψ−1(m−1/2)

)}
= 1.
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Convergence rates for Tikhonov regularization under Hölder’s source
condition

Theorem

Under the same assumptions of above theorem, for the parameter choice

λ = m−
b

2br+b+1 , for all 0 < η < 1, we have with confidence 1− η, for the
regularized estimator fz,λ the following convergence rate holds:

||fz,λ − fρ||H1 ≤ Cm−
br

2br+b+1 log

(
4

η

)
for

1

2
≤ r ≤ 1.
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Quick summary

Model y = A(f )(x) + ε

||fz,λ−fρ||H Scheme Optimal

rates

Rastogi Direct

et al. (2017) m−
br

2br+b+1 learning
√

Blanchard Linear

et al. (2016) m−
br

2br+b+1 inverse learning
√

Our Nonlinear

Results m−
br

2br+b+1 inverse learning
√
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Further questions and developments

develope statistically and computationally effective algorithms.

obtain confidence regions for the nonparametric model.

evaluate the performance of nonparametric covariate-parameter modeling
against simulated data from a so-called physiologically based
pharmacokinetic model and design specific kernels for the application field.

focusing on methodological aspects of the inverse problem and on
applications.
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Thank you !
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