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Abstract
We characterize in this paper the class of reciprocal processes associated to a Brownian

diffusion (therefore not necessarily Gaussian) as the set of Probability measures under which a
certain integration by parts formula holds on the path space C([0, 1]; R). This functional equation
can be interpreted as a perturbed duality equation between Malliavin derivative operator and
stochastic integration. An application to periodic Ornstein-Uhlenbeck process is presented. We
also deduce from our integration by parts formula the existence of Nelson derivatives for general
reciprocal processes.
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1 Introduction

The present paper deals with reciprocal processes which we characterize by a simple functional
equation, an integration by parts formula, on the space of continuous paths. Reciprocal processes
are Markovian fields with respect to the time parameter and therefore a generalization of Markov
processes. The interest in these processes was motivated by a Conference of Schrödinger [24]
about the most probable dynamics for a Brownian particle whose laws at two different times
are given. Actually, Schrödinger was only concerned with Markovian reciprocal processes. His
interpretation in terms of (large) deviations from an expected behavior was further developed by
Föllmer, Cattiaux and Léonard, Gantert. Schrödinger processes were also analysed by Zambrini
and Nagasawa for their possible connections to quantum mechanics. One year after Schrödinger,
Bernstein noticed the importance of non-Markovian processes with given conditional dynamics,
where the conditioning is made at two fixed times. This was the beginning of the study of general
reciprocal processes.

Jamison [11] proved that the set of reciprocal processes is partitioned into classes; each
subclass is characterized by a set of functions, called Reciprocal Characteristics ([4], [13]). The
main result we obtain is that, for real-valued processes, each class of reciprocal processes with
Reciprocal Characteristics (1, F ) coincides with the set of solutions of a functional equation in
which the function F plays a similar role as the Hamilton function associated to a set of Gibbs
measures ([21]). This functional equation is indeed an integration by parts formula on the path
space C([0, 1]; R) and it exhibits a perturbed duality relation between the stochastic integration
w.r.t. a reciprocal process and the Malliavin derivative operator along a class of test functions
which is smaller than the usual one on the Wiener space.

Then, to illustrate our approach of reciprocal processes, we consider some Stochastic Dif-
ferential Equations with time boundary conditions (initial and final times). Solutions of such
stochastic equations form a wide class of non adapted (then anticipative) non Markovian pro-
cesses and we hope that our way to identify their reciprocal properties will be a help in the
analysis of such processes.

The search of a characterization of reciprocal processes as the set of solutions of some second
order equation was proposed by Krener (cf [13]). It was achieved in the Gaussian case by Krener,
Frezza and Levy in [15]. (For the Gaussian stationary case see also [2].) As far as we know,
no such characterization was available in the non Gaussian case. Our result fills this gap in
dimension 1.

Concerning the general non Gaussian case, one of the authors proved in [25] that reciprocal
processes satisfy a stochastic Newton equation which involves Nelson derivatives, the reciprocal
characteristics as well as a stochastic version of acceleration. At the end of section 4 of the present
paper, we study the relationship between our result and the result of [25]. The integration by
parts formula which we introduce provides sufficient conditions for a reciprocal process to be
differentiable in Nelson’s sense.

Reciprocal processes are time random fields defined on a compact time interval. When the
time parameter belongs to an interval with infinite length, the problematic is closed to time
Gibbs measure, or quasi-invariant measure on the space of continuous functions, as introduced
in the seventies in the context of Euclidean Quantum Field theory by Courrège and Renouard
[5] (see also [23]). Still a lot of problems in this direction remain open.
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The paper is devided into the following sections.

1. Introduction.

2. Notations and framework.

3. Characterization of R(P ), the reciprocal class associated to the Brownian motion.

4. Characterization of the reciprocal class associated to a Brownian diffusion.

5. Application to the periodic Ornstein-Uhlenbeck process.

2 Notations and framework

Let Ω = C([0, 1]; R) be the canonical - polish - path space of continuous real-valued functions
on [0, 1], endowed with F , the canonical σ-field. Let (Xt)t∈[0,1] denote the family of canonical
projections from Ω into R.

P(Ω) is the set of probability measures on Ω. We use equivalently the notation Q(f) or EQ(f)
for the integral of the function f under a probability measure Q.
Let P ∈ P(Ω) denote the Wiener measure on Ω satisfying P (X0 = 0) = 1.
More generally, for x ∈ R, P x is the shifted Wiener measure satisfying P (X0 = x) = 1.

We define now the space of smooth cylindrical functionals on Ω :

S = {Φ,Φ(ω) = ϕ(ωt1 , . . . , ωtn) where ϕ is a bounded C∞-function
from Rn in R with bounded derivatives and 0 ≤ t1 ≤ . . . ≤ tn ≤ 1}.

Clearly S ⊂ L2(Ω;P ).
On S we define the derivation operator D in the direction g ∈ L2(0, 1) by

DgΦ(ω) =
n∑

i=1

∂ϕ

∂xi
(ωt1 , . . . , ωtn)

∫ ti

0
g(t)dt

=
∫ 1

0
g(t)DtΦ(ω)dt

where

DtΦ(ω) =
n∑

i=1

∂ϕ

∂xi
(ωt1 , . . . , ωtn)1t≤ti .

It is clear that DgΦ is also equal to the Gâteaux-derivative of Φ in the direction
∫ .
0 g(t)dt, which

is a typical element of the Cameron-Martin space.
We can now define the space D1,2 as the closure of S for the following norm :

‖Φ‖2
1,2 = EP (Φ2) + EP

( ∫ 1

0
DtΦ2dt

)
.

It is well known (see for example [1]) that the operator D (also called Malliavin derivation)
is the dual operator on D1,2 of the stochastic integration operator δ defined on Ω by δ(g)(ω) =∫ 1
0 g(t)dωt :

∀g ∈ L2(0, 1),∀Φ ∈ D1,2, EP (DgΦ) = EP

(
Φ δ(g)

)
(1)

3



The main object we deal with in this paper are the so called reciprocal classes.
We consider a given Markov diffusion P̃ ∈ P(Ω) such that, for each 0 ≤ s < t ≤ 1, the map
(x, y) 7→ P̃ ( ./Xs = x,Xt = y) is continuous on R2. The reciprocal class associated to P̃ is the
subset R(P̃ ) of P(Ω) defined by :

R(P̃ ) = {Q ∈ P(Ω),∀0 ≤ s < t ≤ 1, Q( ./Fs ∨ F̂t) = P̃ ( ./Xs, Xt)} (2)

where the forward (resp. backward) filtration (Ft)t∈[0,1] (resp. (F̂t)t∈[0,1]) is given by

Ft = σ(Xs, 0 ≤ s ≤ t), (resp. F̂t = σ(Xs, t ≤ s ≤ 1)).

Each element of R(P̃ ) is called a reciprocal process associated to P̃ .
From the definition (2) of a reciprocal class, it is clear that each reciprocal process Q is a

Markovian field in the sense that, for 0 ≤ s < t ≤ 1, Fs∨F̂t and σ(Xr; s ≤ r ≤ t) are independent
under Q conditionnally to σ(Xs, Xt).

Nevertheless, a reciprocal process is not necessarily a Markov process. Jamison gave in [11]
the following description of the subset RM (P̃ ) whose elements are the Markovian processes of
R(P̃ ) :

RM (P̃ ) = {Q ∈ R(P̃ ),∃ν0, ν1 σ-finite measures on R,
Q ◦ (X0, X1)−1(dx, dy) = p̃(0, x, 1, y)ν0(dx)ν1(dy)} (3)

where p̃(s, x, t, y) is the probability transition density of P̃ (which always exists and is regular
in the cases treated in this paper). Due to historical reasons recalled in the introduction, the
elements of RM (P̃ ) are called in the litterature “Schrödinger processes”.

Let us mention the following equivalent definition of R(P̃ ) as the class of processes having
the same bridges as P̃ (see [11]) :

R(P̃ ) = {Q ∈ P(Ω),∃m ∈ P(R2), Q =
∫

R2

P̃ ( /X0 = x,X1 = y)m(dx, dy)}. (4)

Remark that from the above definition (4) any reciprocal process Q in R(P̃ ) is a mixture of
bridges of P̃ .

3 Characterization of R(P ), the reciprocal class associated to the
Brownian motion

3.1 Duality under the Brownian bridge

We recalled in the above equality (1) the duality between Malliavin derivative D and stochastic
integration δ under the Wiener measure P . In fact, (1) remains valid if P is replaced by any
other Wiener measure P x, x ∈ R , and therefore, by linearity of this equation with respect to
the integrator, equality (1) is also true under Pµ, a µ-mixture of (P x, x ∈ R):

Pµ =
∫

R
P x µ(dx), µ ∈ P(R). (5)

What is more surprising is the fact that the duality between D and δ holds also under any
desintegration of the Wiener measure in Brownian bridges, if we restrict the class of test functions
g in (1) to a smaller space than L2(0, 1). So let us introduce the function space

L2
0(0, 1) =

{
g ∈ L2(0, 1),

∫ 1

0
g(r) dr = 0

}
.
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It is the orthogonal subspace in L2(0, 1) to the constant functions.
Let us stress the following remark: for the characterization based on integration by parts

formula developed in the rest of the paper, it is enough to consider the class of step functions
g ∈ L2

0(0, 1). For these functions, δ(g) is intrinsically and trivially defined; in particular the
stochastic integral does not depend on the reference probability measure on Ω.

We have

Proposition 3.1 Let (x, y) ∈ R2 and P x,y ∈ P(Ω) be the law of the Brownian bridge on [0, 1]
from x to y. Then

∀g step function in L2
0(0, 1),∀Φ ∈ S, P x,y(DgΦ) = P x,y

(
Φ δ(g)

)
. (6)

Proof : The duality formula (6) has been proved by Driver in [8] even for the Brownian bridge
on a Riemannian manifold. His proof relies on the absolute continuity of P x,y with respect to
P x on Fτ , with 0 < τ < 1. However for the sake of completeness, let us sketch an alternative
proof of this duality. As noticed at the beginning of the section 3.1, the duality

Pµ
(
Φ δ(g)

)
= Pµ(DgΦ) (7)

holds for any g step function, Φ ∈ S and µ ∈ P(R).
Taking Φ(ω) = φ0(ω0)φ1(ω1)Φ̃(ω) for φ0, φ1 ∈ C∞(R), and Φ̃ ∈ S, one obtains from (7)

Pµ
(
φ0(X0)φ1(X1)Pµ(Φ̃δ(g)/X0, X1)

)
=

Pµ
(
φ0(X0)φ1(X1)Pµ(DgΦ̃/X0, X1)

)
+ Pµ

(
φ0(X0)φ′1(X1)Φ̃

) ∫ 1

0
g(r) dr.

So, for g step function in L2
0(0, 1), the last term vanishes and this implies

PX0,X1

(
Φ̃δ(g)

)
= Pµ

(
Φ̃δ(g)/X0, X1

)
= PX0,X1

(
DgΦ̃

)
for a.s.(X0, X1) under Pµ.

By continuity of the map (x, y) 7→ P x,y the duality formula (6) holds for all (x, y) ∈ R2. �

Remark 3.2 : To prove the duality equation (6) under P 0,0 we could also use the correspon-
dence between the Gauss space of the Brownian bridge P 0,0 and the Wiener space (Ω, P ), based
on the isomorphism α between L2

0(0, 1) and L2(0, 1) defined by :

∀g ∈ L2
0(0, 1), α(g)(r) = g(r) +

1
1− r

∫ r

0
g(s) ds.

In fact, following Gosselin and Wurzbacher ([10], Proposition 2.2), if X is a Brownian motion
under P , the image process of X under the transformation

Θ : ω→
(
t→(Θω)t = (1− t)

∫ t

0

dωs

1− s

)
0≤t<1

is a Brownian bridge with law P 0,0; the stochastic integral δ(g)(ΘX) =
∫ 1
0 g(r)d(ΘX)r is well

defined for g ∈ L2
0(0, 1) and moreover :

δ(g)(ΘX) = δ(α(g))(X) P − a.s..

So, to deduce (6) from (1) it is enough to remark that, for g ∈ L2
0(0, 1) and Φ ∈ S,

DgΦ ◦Θ = Dα(g)(Φ ◦Θ).
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3.2 Characterization of the conditional probabilities

The natural question is now to analyse if the duality under a measure Q between D and δ tested
on all (g,Φ) ∈ L2

0(0, 1) × S characterizes the bridges of Q. The positive answer is the object of
the following :

Proposition 3.3 Let Q ∈ P(Ω) such that Q(supt∈[0,1] |Xt|) < +∞. If

∀g step function in L2
0(0, 1),∀Φ ∈ S, Q(DgΦ) = Q

(
Φ δ(g)

)
(8)

then Q( ./X0, X1) = PX0,X1 Q− a.s..

Proof :
First, following the same argument as in Proposition 3.1, it is clear that (8) also holds under

Q( ./X0, X1)Q− a.s.. For simplicity, let us denote by Qx,y ∈ P(Ω) the law of the bridge of Q on
[0, 1] between x and y, (x, y) ∈ R2. Let g̃ a fixed step function on [0, 1], and for λ ∈ R, define

ψ(λ) = Qx,y
(

exp(iλδ(g̃))
)
. (9)

By recentering g̃, we also introduce the step function

g = g̃ −
∫ 1

0
g̃(r) dr ∈ L2

0(0, 1). (10)

Now, remarking that ψ is differentiable on R, we obtain

ψ′(λ) = iQx,y
(
δ(g̃) exp(iλδ(g̃))

)
= iQx,y

((
δ(g) + (y − x)

∫ 1

0
g̃(r) dr

)
exp(iλδ(g̃))

)
= ieiλ(y−x)

∫ 1
0 g̃(r) drQx,y

(
δ(g) exp(iλδ(g))

)
+ i(y − x)

∫ 1

0
g̃(r) dr ψ(λ).

From (8), using the fact that Φ = exp(iλδ(g)) ∈ S, we deduce that forQ◦(X0, X1)−1a.a.(x, y),

Qx,y
(
δ(g) exp(iλδ(g))

)
= Qx,y

(
Dg(exp(iλδ(g))

)
which is equivalent to

Qx,y
(
δ(g) exp(iλδ(g))

)
= iλ

∫ 1

0
g2(r) dr Qx,y

(
exp(iλδ(g))

)
So,

ψ′(λ) =
(
i(y − x)

∫ 1

0
g̃(r) dr − λ

( ∫ 1

0
g̃2(r) dr − (

∫ 1

0
g̃(r) dr)2

))
ψ(λ).

The unique solution of this differential equation with initial condition ψ(0) = 1 is

ψ(λ) = exp
(
− λ2

2

( ∫ 1

0
g̃2(r) dr − (

∫ 1

0
g̃(r) dr)2

)
+ iλ(y − x)

∫ 1

0
g̃(r) dr

)
. (11)
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Thus, for Q ◦ (X0, X1)−1 almost all (x, y), equality (11) holds true for all g̃ in the following
countable set of step functions : {

∑p
i=0 αi1[si,si+1[, 0 = s0 < . . . ≤ sp < sp+1 = 1, p ∈ N, si, αi ∈

Q}. This set is dense in L2(0, 1), so equality (11) holds also true for each g ∈ L2(0, 1) , since its
both sides are L2(0, 1)-continuous functionals of g̃ under the assumption that Q(supt∈[0,1] |Xt|) <
+∞.

Next step is to identify the process with the above characteristic functional. Let us indicate
two possibilities :

Either one verifies that the following process

Yt = x(1− t) +Bt + t(y −B1)

where B is a Brownian motion, is indeed a Brownian bridge with law P x,y and admits ψ as
characteristic functional ( cf. for example Theorem IV.40.3 in [22]).

Or one remarks that ψ is associated to a Gaussian process : by taking λ = 1 and

g̃ =
p∑

i=0

αi1[ti−1,ti[, 0 = t0 < t1 < . . . < tp−1 < tp = 1,

it is clear that Qx,y
(

exp(iδ(g̃))
)

is the exponential of a bilinear form in (αi). Moreover, taking
now g̃ = 1[s,t], we obtain the first two moments of this Gaussian process :

Qx,y
(

exp(iλδ(1[s,t]))
)

= e−
λ2

2
(t−s−(t−s)2)+iλ(y−x)(t−s)

implies
Qx,y(Xt) = ty + (1− t)x and Cov(Xs, Xt) = s(1− t), s ≤ t.

These moments also characterize the law of the Brownian bridge. �

3.3 The class R(P ) as the set of solutions of a duality equation

It is known that the duality (1) characterizes the set of Wiener measures {Pµ, µ ∈ P(R)} ⊂ P(Ω)
(see [21], Theorem 1.2). By restricting the class of test functions g to those with vanishing integral
on [0; 1], it is clear that the set of Probability measures under which the duality holds is larger.
The following theorem does explicit this subset of P(Ω).

Theorem 3.4 Let Q ∈ P(Ω) such that Q(supt∈[0,1] |Xt|) < +∞.
The following two assertions are equivalent :

i) ∀g step function in L2
0(0, 1),∀Φ ∈ S, Q(DgΦ) = Q

(
Φ δ(g)

)
ii) Q ∈ R(P ), i.e. Q is a reciprocal process in the same class as the Brownian motion.

Proof :
By Proposition 3.3, i) implies the a.s. equality between the bridges of Q and those of P . But

Q =
∫

R2

Q( /X0 = x,X1 = y)m(dx, dy)

where m = Q ◦ (X0, X1)−1.Then using the definition of R(P ) given in (4) we obtain directly
assertion ii).

Reciprocally, if Q ∈ R(P ), the desintegration (4) holds. So Q is a mixture in (x, y) of bridges
P x,y. But, by Proposition 3.1, under each bridge the duality between D and δ holds. This
property remains valid by mixing the underlying measure. So i) holds. �
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4 Characterization of the reciprocal class associated to
a Brownian diffusion.

In this section we want to extend the results obtained in the previous section for other classes of
reciprocal processes than R(P ). So we take as reference process no more a Brownian motion but
a Markovian Brownian semi-martingale, also called Brownian diffusion, and defined as solution
of the stochastic differential equation :{

dXt = dBt + b(t,Xt) dt
X0 = x

(12)

where B is a Brownian motion and the drift b satisfies the following regularity assumptions :

b ∈ C1,2([0, 1]× R ; R) (13)

∃K > 0, ∀(t, x) ∈ [0, 1]× R, x b(t, x) ≤ K(1 + x2). (14)

Since condition (13) implies that b is locally lipschitz continuous uniformly on time, both
conditions (13) and (14) ensure existence and uniqueness of a strong solution to equation (12)
(see for example [3] p.234). We denote by P̃ ∈ P(Ω) the law of this solution.

We introduce the following supplementary regularity assumption on the probability transition
density associated to P̃ - it will be useful when we compute the reciprocal characteristics of bridges
of P̃ - :

p̃(s, x, t, y) = P̃ (Xt ∈ dy/Xs = x)/dy is strictly positive for any s, t ∈ [0, 1], x, y ∈ R and
belongs, as function of (s, x)(resp.(t, y)), to C1,3(]0, 1]× R ; R)(resp.C1,3([0, 1[×R ; R)).(15)

Let us now introduce a space-time function F defined on [0, 1]× R and derived from b by :

F (t, x) =
∂

∂t
b(t, x) + b(t, x)

∂

∂x
b(t, x) +

1
2
∂2

∂x2
b(t, x). (16)

This function together with the diffusion coefficient 1 (due to the fact that the martingale
part of X is a Brownian motion) are the so-called local reciprocal characteristics associated to P̃
(cf [4] and [13]). The function F , as functional of the drift, is invariant on the set RM (P̃ ) and
moreover the pair (1, F ) characterizes completely the reciprocal class R(P̃ ) (see Theorem 1 in
[4] when b is bounded and Theorem 4.7 in [26] under less restrictive assumptions).

4.1 An integration by parts formula

Let us now investigate how the duality equation i) in Theorem 3.4 satisfied by every reciprocal
process in the Brownian class R(P ) is perturbated when the reference process admits a drift
b 6= 0.

Proposition 4.1 Let Q ∈ P(Ω) a reciprocal process in the class R(P̃ ). Suppose moreover that

Q( sup
t∈[0,1]

|Xt|2) < +∞ and Q
( ∫ 1

0
|F (t,Xt)|2dt

)
< +∞. (17)

Then the following integration by parts formula is satisfied under Q :

∀g step function in L2
0(0, 1),∀Φ ∈ S, Q(DgΦ) = Q

(
Φ δ(g)

)
+Q

(
Φ

∫ 1

0
g(r)

∫ 1

r
F (t,Xt) dtdr

)
.(18)
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As anounced below, the perturbation term - the second term of the r.h.s. - is given by F . In
the course of the proof we will need the following

Lemma 4.2 Let Pβ ∈ P(C([0, τ ]; R)) be the law of a Brownian diffusion with initial value x and
drift β, for some 0 < τ ≤ 1. We assume the following :

β ∈ C1,2([0, τ ]× R ; R) and β(τ,Xτ ) ∈ L2(Pβ)

Fβ(t,Xt) ∈ L2(dt⊗ dPβ) where Fβ =
∂

∂t
β + β

∂

∂x
β +

1
2
∂2

∂x2
β.

Then, for g ∈ L2(0, τ) and Φ any Fτ -measurable function in S,

Pβ(DgΦ) = Pβ

(
Φ δ(g)

)
+ Pβ

(
Φ

∫ τ

0
g(r)

∫ τ

r
Fβ(t,Xt) dtdr

)
−

∫ τ

0
g(r)dr Pβ

(
Φβ(τ,Xτ )

)
. (19)

Proof of Lemma 4.2: Let us denote by Mβ the density of Pβ with respect to P x,

Mβ = exp
( ∫ τ

0
β(t,Xt)dXt −

1
2

∫ τ

0
β2(t,Xt)dt

)
.

We denote by Mn,β the r.v. defined by Mn,β = exp
(
χn(logMβ)

)
where χn is a smooth bounded

function with bounded derivative on R satisfying{
χn1[−n−1,n+1]c = −(n+ 1)1]−∞,−n−1[ + (n+ 1)1]n+1,+∞[

χn1[−n,n] = Id.1[−n,n].

Such a cut-off for Mβ appears in [7]. Remark that 0 ≤Mn,β ≤Mβ + 1.
Let Pn

β ∈ P(C([0, τ ]; R)) be the positive measure with Radon-Nikodym derivative Mn,β with
respect to the Wiener measure P x. By definition of Pn

β ,

Pn
β (DgΦ) = P x

(
Mn,βDgΦ

)
= P x

(
Dg(ΦMn,β)

)
− P x

(
ΦDgM

n,β
)

which implies, by integration by parts formula under the Wiener measure, that

P x
(
Mn,βDgΦ

)
= P x

(
ΦMn,βδ(g)

)
− P x

(
ΦDgM

n,β
)
.

By dominated convergence, the l.h.s. of the above identity converges to P x
(
MβDgΦ

)
= Pβ

(
DgΦ

)
.

The same argument applies to P x
(
ΦMn,βδ(g)

)
which therefore converges to P x

(
ΦMβδ(g)

)
=

Pβ

(
Φδ(g)

)
. By definition,

DgM
n,β = Mn,βχ′n(logMβ)Dg(logMβ).

Morever,

Dg(logMβ) =
∫ τ

0
g(r)

(
β(r,Xr) +

∫ τ

r

∂

∂x
β(t,Xt)dXt

−
∫ τ

r
β(t,Xt)

∂

∂x
β(t,Xt)dt

)
dr
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which, by Ito’s formula, is equal to

β(τ,Xτ )
∫ τ

0
g(r)dr −

∫ 1

0
g(r)

∫ τ

r
Fβ(p,Xp) dpdr.

The last term for which we have to study the convergence is therefore

P x
(
ΦMn,βχ′n(logMβ)

(
β(τ,Xτ )

∫ τ

0
g(r)dr −

∫ 1

0
g(r)

∫ τ

r
Fβ(p,Xp) dpdr

))
.

We conclude since

|Mn,βχ′n(logMβ)| ≤ Mn,β1[−(n+1),n+1](logMβ)

≤ Mβ1[−(n+1),n+1](logMβ)

and, by assumption, the r.v.

Mβ
(
β(τ,Xτ )

∫ τ

0
g(r)dr −

∫ 1

0
g(r)

∫ τ

r
Fβ(p,Xp) dpdr

)
.

is in L1(P x) since the r.v. into parenthesis is in L2(Pβ). �
Proof of Proposition 4.1:
Let us denote by µ the law of (X0, X1) under Q. It is sufficient to prove identity (18) under

Qx,y for µ-a.a. (x, y), since it will remain true by reintegration under µ.
Obviously, assumption (17) remains true under Qx,y for µ-a.a. (x, y). In the sequel of the

present proof, we fix such an (x, y). Moreover, since Q ∈ R(P̃ ), Qx,y coincides with P̃ x,y and is
therefore the law of a Brownian diffusion on each [0, τ ], τ < 1 whose drift β satisfies

β(t, z) = b(t, z) +
∂

∂z
log p̃(t, z, 1, y)

where p̃ is the transition probability density of P̃ . Let us first notice that, when
∫ τ
0 g(r)dr = 0,

it is easy to verify that in the proof of Lemma 4.2 the assumption β(τ,Xτ ) ∈ L1(Pβ) is no more
required. The remaining assumptions of Lemma 4.2 on β and Fβ ≡ F are direct consequences
of assumptions (15) and (17). Therefore, for all Φ ∈ S,Fτ -measurable and all step functions
g ∈ L2

0(0, τ), one has

Qx,y(DgΦ) = Qx,y
(
Φ δ(g)

)
+Qx,y

(
Φ

∫ τ

0
g(r)

∫ τ

r
F (t,Xt) dtdr

)
. (20)

Let us now fix Φ ∈ S,F1-measurable, and g a step function in L2
0(0, 1). These are the testing

objects which we need in order to prove (18). Since Φ ∈ S, there exists a function ϕ and a real
number τ < 1 such that Φ(X) = ϕ(x,Xt1 , · · · , Xτ , y), Qx,y-a.s.. We also fix n large enough so
that τ < 1− 1

n and g is constant on [1− 2
n ; 1[. Let us set

gn = g1[0,1− 2
n

[ + n(
∫ 1

1− 2
n

g(r)dr)1[1− 2
n

,1− 1
n

].

By construction gn ∈ L2
0(0, 1− 1

n) since g ∈ L2
0(0, 1). From Lemma 4.2, we deduce the identity

Qx,y(DgnΦ) = Qx,y
(
Φ δ(gn)

)
+Qx,y

(
Φ

∫ 1− 1
n

0
gn(r)

∫ 1− 1
n

r
F (t,Xt) dtdr

)
.

It remains to verify that each term converges when n tends to infinity towards the corresponding
term in (18) written under Qx,y. We have the followinginequalities :
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• |Qx,y(DgnΦ−DgΦ)| ≤ ‖DΦ‖∞‖gn − g‖1 = 2C
n ‖DΦ‖∞

where C is the constant value of g on [1− 2
n , 1[.

•
∣∣Qx,y

(
Φ (δ(gn − g))

)∣∣ ≤ ‖Φ‖∞Qx,y
(
|X1 −X1− 2

n
|
)

which converges to 0 by a.s. continuity of paths and dominated convergence theorem thanks
to assumption (17).

•
∣∣Qx,y

(
Φ(

∫ 1− 1
n

0 gn(r)
∫ 1− 1

n
r F (t,Xt)dtdr −

∫ 1
0 g(r)

∫ 1
r F (t,Xt)dtdr)

)∣∣
which vanishes thanks to assumption (17).

�

4.2 Characterization of the reciprocal class R(P̃ ).

We are now interested by the converse statement of Proposition 4.1. More precisely, our main
result is to show that the integration by parts formula (18) characterizes the regular elements of
R(P̃ ). More precisely, recall that in the previous section, we introduced the regularity assump-
tions (13) and (15) in order to define the reciprocal characteristic F . In the same way, in order
to prove a converse statement to Proposition 4.1, we have to consider probabilities on Ω which a
priori satisfy the following set of regularity conditions which will be denoted by (A) in the sequel:

- (A1) ∀t < u, y, z there exists a density function q(t, z, u, ., 1, y) such that

Q(Xu ∈ dw/ Xt = z,X1 = y) = q(t, z, u, w, 1, y)dw

- (A2) ∀x, y, u, w, q(0, x, u, w, 1, y) is strictly positive
- (A3) ∀u,w, y, (t, z) 7→ q(t, z, u, w, 1, y) belongs to C1,2([0, 1[×R ; R) and for all (t, z) there

exists a neighborhood V of (t, z) and a function φV(u,w, 1, y) such that

sup
(s,ξ)∈V

|∂tq(s, ξ, u, w, 1, y)|+ |∂zq(s, ξ, u, w, 1, y)|+ |∂zzq(s, ξ, u, w, 1, y)| ≤ φV(u,w, 1, y)

and
∫ 1
0

∫
R φV(u,w, 1, y)|F (u,w)|dudw < +∞.

Theorem 4.3 Let Q ∈ P(Ω) satisfying (A) and such that

Q( sup
t∈[0,1]

|Xt|2) < +∞ and Q
( ∫ 1

0
|F (t,Xt)|2dt

)
< +∞. (21)

If the following integration by parts formula is satisfied under Q :

∀g step function in L2
0(0, 1),∀Φ ∈ S,

Q(DgΦ) = Q
(
Φ δ(g)

)
+Q

(
Φ

∫ 1

0
g(r)

∫ 1

r
F (t,Xt) dtdr

)
(22)

then Q is a reciprocal process in the class R(P̃ ).

Proof :
The proof of this theorem divides in three steps.
Step 1 : We first prove that (Xt, t ∈ [0, 1]) is a Q-quasi-martingale on [0, 1].
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This amounts to verify that

supQ
( n−1∑

i=0

∣∣Q(Xti+1 −Xti/Fti)
∣∣) < +∞

where the supremum is taken over all the finite partitions 0 = t0 < t1 < . . . < tn = 1 of [0, 1].
Let us fix such a partition, and take

gi = 1[ti,ti+1] +
ti+1 − ti
1− ti

1[ti,1].

The integration by parts formula (22), applied to gi and any ΦFti-measurable, implies that, for
0 ≤ i ≤ n− 1,

Q
(
Xti+1 −Xti/Fti

)
= (ti+1 − ti)Q

(X1 −Xti

1− ti
/Fti

)
−Q

( ∫ ti+1

ti

∫ 1

r
F (t,Xt) dtdr/Fti

)
+

ti+1 − ti
1− ti

Q
( ∫ 1

ti

∫ 1

r
F (t,Xt) dtdr/Fti

)
.

We thus have the following inequality

Q
( n−1∑

i=0

∣∣Q(Xti+1 −Xti/Fti)
∣∣) ≤ n−1∑

i=0

(ti+1 − ti)
Q(|X1 −Xti |)

1− ti
+ 2Q

( ∫ 1

0
|F (t,Xt)| dt

)
.

To prove the boundedness of the r.h.s. on all partitions it is sufficient to control it for partitions
which mesh goes to zero. But then, we identify the sum in the r.h.s. as a Riemann sum associated
to the integral

∫ 1
0

Q(|X1−Xs|)
1−s ds. The convergence of this integral is a direct consequence of the

following

Lemma 4.4 Let Q ∈ P(Ω) satisfying the assumptions

sup
t∈[0,1]

Q(|Xt|2) < +∞ and Q
(
(
∫ 1

0
|F (t,Xt)|dt)2

)
< +∞. (23)

If the integration by parts formula (22) is satisfied under Q for all Φ ∈ S, then it holds also for
the unbounded functional defined by Φ(X) = Xt −Xs, 0 ≤ s < t ≤ 1.
Moreover, there exists a positive constant C such that

∀s ∈ [0, 1], Q
(
(X1 −Xs)2

)
≤ C(1− s).

Proof of Lemma 4.4 : Let χn be the cut-off function defined in the proof of Lemma 4.2. The
integration by parts formula (22) holds true for any step function g ∈ L2

0(0, 1) and Φn(X) =
χn(Xt −Xs). Due to the assumptions (23), the dominated convergence theorem applies to each
term and then, (22) holds also for Φ(X) = Xt −Xs.

For proving the second assertion, let us set g = 1
1−s1[s,1]−1 and Φ(X) = X1−Xs for s ∈ [0, 1].

Taking t = 1 in the first assertion, one deduces the identity :

s =
Q

(
(X1 −Xs)2

)
1− s

−Q
(
(X1 −Xs)(X1 −X0)

)
+ Q

(
(X1 −Xs)(

1
1− s

∫ 1

s

∫ 1

r
F (t,Xt)dtdr −

∫ 1

0

∫ 1

r
F (t,Xt)dtdr)

)
.
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We thus conclude that

Q
(
(X1 −Xs)2

)
1− s

≤ 1 + 4 sup
t∈[0,1]

Q(|Xt|2) + 4
(

sup
t∈[0,1]

Q(|Xt|2)
) 1

2
(
Q

( ∫ 1

0
|F (t,Xt)|dt

)2) 1
2

which is finite by assumption (23). �
Remarking that assumptions (23) are weaker than assumptions (21), this completes the proof

of step 1. By Rao’s theorem (cf. [6] Chapitre VII), since (Xt, t ∈ [0, 1]) is a continuous Q-quasi-
martingale, it is then a continuous Q-semi-martingale.

Step 2 : We now identify the local characteristics of the continuous Q-semi-martingale
(Xt, t ∈ [0, 1]).

- Let us denote by A the bounded variation part of X.
We first prove that for any t ∈ [0, 1], the (random) measure Q(dA/Ft) on [t, 1] is absolutely

continuous with respect to Lebesgue measure, with density βt(.) satisfying

βt(r) = Q
(Ar −At

r − t
/Ft

)
+

1
r − t

∫ r

t

∫ r

s
Q

(
F (p,Xp)/Ft

)
dpds.

To this aim, let us take u > t and, as test function, a step function g with support in [t, u]. We
first show that

Q
( ∫ u

t
g(r)dAr/Ft

)
=

∫ u

t
g(r)βt(r)dr.

Equation (22) applied to Φ = Φt,Ft-measurable and to g̃ = g − 1
u−t(

∫ u
t g(r)dr)1[t,u] yields

Q
( ∫ u

t
g(r)dAr/Ft

)
=

1
u− t

( ∫ u

t
g(r)dr

)
Q

(
Au −At/Ft

)
−

∫ u

t
g(r)

∫ u

r
Q

(
F (p,Xp)/Ft

)
dpdr

+
1

u− t

( ∫ u

t
g(r)dr

) ∫ u

t

∫ u

s
Q

(
F (p,Xp)/Ft

)
dpds. (24)

Assumption (21) implies that Q(
∫ 1
0 |dAs|) < +∞); so we can apply Fubini’s theorem to the l.h.s.

of the above equality. Taking u = 1 in (24), we obtain that Q(dA/Ft) is absolutely continuous
with respect to Lebesgue measure on [t, 1], and its density is given by

βt(r) = Q(
A1 −At

1− t
/Ft)−

∫ 1

r
Q(F (p,Xp)/Ft)dp+

1
1− t

∫ 1

t

∫ 1

s
Q(F (p,Xp)/Ft)dpds. (25)

From this expression we obtain the continuity and even the a.s. derivability of the function βt

from [t,1[ to L1(Q). Moreover, for all u > r, using the expression given in (24), we also have

βt(r) = Q(
Au −At

u− t
/Ft)−

∫ u

r
Q(F (p,Xp)/Ft)dp+

1
u− t

∫ u

t

∫ u

s
Q(F (p,Xp)/Ft)dpds (26)

For r fixed, letting u tend to r, one obtains from (26) the desired form for βt :

βt(r) = Q(
Ar −At

r − t
/Ft) +

1
r − t

∫ r

t

∫ r

s
Q(F (p,Xp)/Ft)dpds, t < r < 1.

From the expression of Q(A/Ft), we now want to deduce the value of A. First we prove the
following equality as processes in L1(dr ×Q):

βt(.) = Q(β.(.)/Ft). (27)
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Since s 7→ βr(s) is continuous from [r,1[ to L1(Q), then βr(r) = lims↘r Q(As−Ar
s−r /Fr), and we

have

Q(βr(r)/Ft) = Q
(

lim
s↘r

Q(
As −Ar

s− r
/Fr)/Ft

)
= lim

s↘r
Q

(As −Ar

s− r
/Ft

)
But

Q
(As −Ar

s− r
/Ft

)
= Q

(As −At

s− r
− Ar −At

s− r
/Ft

)
=

s− t

s− r

(
βt(s)−

1
s− t

∫ s

t

∫ s

u
Q(F (p,Xp)/Ft)dpdu

)
− r − t

s− r

(
βt(r)−

1
r − t

∫ r

t

∫ r

u
Q(F (p,Xp)/Ft)dpdu

)
= βt(s) + (r − t)

βt(s)− βt(r)
s− r

− 1
s− r

∫ s

r

∫ s

u
Q(F (p,Xp)/Ft)dpdu−

1
s− r

∫ r

t

∫ s

r
Q(F (p,Xp)/Ft)dpdu.

When s tends to r the first term of the r.h.s tends to βt(r) ; the third term of the r.h.s. tends to
0 ; the limits of the second term and the forth are opposite since, from (25), for almost all r, βt

is differentiable and β′t(r) = Q(F (r,Xr)/Ft). This completes the proof of (27).
Now we conclude observing that the process(

Au −At −
∫ u

t
βr(r)dr

)
u∈[t,1]

is both a bounded variation process and a continuous Q-martingale due to (27). It is then equal
to the constant 0, which means that dAr is indeed absolutely continuous with respect to Lebesgue
measure dr and its density is equal to βr(r).

So the semi-martingale decomposition of (Xt, t ∈ [0, 1]) under Q is the following :

dXt = dMt + β(t,X)dt

where M is a Q-martingale and β(r,X) =: βr(r)(X) is given for r < 1 by

β(r,X) = Q(
X1 −Xr

1− r
/Fr)−

∫ 1

r
Q(F (p,Xp)/Fr)dp+

1
1− r

∫ 1

r

∫ 1

s
Q(F (p,Xp)/Fr)dpds. (28)

– Let us show that the martingale M is in fact a Brownian motion. The assumption (21) and
formula (28) imply that supt∈[0,τ ] |Mt| ∈ L2(Ω) , ∀τ ∈ [0; 1[. So, following Meyer’s terminology,
M belongs to the class (D) on [0; τ ] and, in order to verify that M is a Brownian motion, it is
enough to show that

lim
h↘0

∫ τ

0
Q

((Xt+h −Xt)2

h
/Ft

)
dt = τ

in L1(Q) ( cf. [16], Theorems T 28 and T 29 p.156).
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With the same arguments as in the proof of Lemma 4.4 we can verify that (22) holds also
for Φ(X) = Φt(X)(Xt+h − Xt), where t ∈ [0, 1[, h > 0, and Φt is Ft-measurable, and for
g = 1[t,t+h]

h − 1[t,1]

1−t ; we obtain

Q
((Xt+h −Xt)2

h
/Ft

)
= 1− h

1− t
+Q

(
(Xt+h −Xt)

X1 −Xt

1− t
/Ft

)
−Q

(
(Xt+h −Xt)

1
h

∫ t+h

t

∫ 1

r
F (s,Xs)dsdr/Ft

)
+Q

(
(Xt+h −Xt)

1
1− t

∫ 1

t

∫ 1

r
F (s,Xs)dsdr/Ft

)
.

The r.h.s. converges in L1(Q) to 1 when h tends to 0 uniformly in t ∈ [0, τ ] thanks to assumptions
(21) and Lemma 4.4, so Q is a Brownian semi-martingale.

Step 3: In the last step, we show that the coordinate process under Q is reciprocal, and we
identify its reciprocal class.

Since Q is the mixture of its bridges under Q ◦ (X0, X1)−1, it is sufficient to prove that for
Q ◦ (X0, X1)−1-almost all (x, y) the bridge Qx,y belongs to the reciprocal class R(P̃ ).

Following the same argument as in the proof of Proposition 3.3, for Q◦ (X0, X1)−1-almost all
(x, y), the integration by parts formula (22) holds true under Qx,y. Let us fix such an (x, y) ∈ R2

and s ∈]0, 1]. We now show that Qx,y is a Markovian semi-martingale. More precisely, we prove
that the law of (Xr, r ∈ [s, 1]) is the same under Qx,y( ./Fs) and Qx,y( ./Xs). Let us denote
for simplicity Qx,y( ./Fs) by Qx,y

Fs
and Qx,y( ./Xs) by Qx,y

Xs
. These two probabilities satisfy also

equation (22) for test functions g with support in [s, 1]. By the same arguments as in Steps 1
and 2, we deduce that (Xr, r ∈ [s, 1]) is a Brownian semi-martingale under both probabilities
whose drifts at time r < 1, computed as in (28), are respectively given by Qx,y

Fs
(U(r,X)/Fr) and

Qx,y
Xs

(U(r,X)/Fr), where

U(r,X) =
y −Xr

1− r
−

∫ 1

r
F (u,Xu)du+

1
1− r

∫ 1

r

∫ 1

s
F (u,Xu)duds. (29)

But, for r ≥ s,
Qx,y
Fs

( ./Fr) = Qx,y
Xs

( ./Fr) = Qx,y(./Fr).

Then both drifts coincide a.s. which implies that Qx,y is Markovian. In particular its drift process
is the following function βx,y on time and space :

βx,y(r, z) =
y − z

1− r
−

∫ 1

r
Qx,y(F (u,Xu)/Xr = z) du+

1
1− r

∫ 1

r

∫ 1

s
Qx,y(F (u,Xu)/Xr = z) duds.

(30)
By the same arguments as above, Qy =: Q(./X1 = y) is a Markovian semi-martingale. Therefore,

Qx,y(F (u,Xu)/Xr = z) = Qy(F (u,Xu)/X0 = x,Xr = z)
= Qy(F (u,Xu)/Xr = z)

=
∫

R
F (u,w)q(r, z, u, w, 1, y)dw.

Thanks to hypotheses (A),(r, z) 7→ βx,y(r, z) belongs to C1,2([0, 1[×R ; R) and the reciprocal
characteristics associated to Qx,y are (1, F x,y), where F x,y is derived from βx,y as was F from b
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in (16). Let us now prove that F x,y = F for all x, y ∈ R. From (30) and assumptions (21), the
process βx,y(r,Xr) admits a forward derivative defined by

lim
h→0

Qx,y
(βx,y(r + h,Xr+h)− βx,y(r,Xr)

h
/Fr

)
.

Moreover this derivative is equal to F (r,Xr). Indeed,

lim
h→0

Qx,y
(βx,y(r + h,Xr+h)− βx,y(r,Xr)

h
/Fr

)
= lim

h→0
Qx,y

(Qx,y(U(r + h,X)/Fr+h)−Qx,y(U(r,X)/Fr)
h

/Fr

)
= lim

h→0
Qx,y

(U(r + h,X)− U(r,X)
h

/Fr

)
=

y

(1− r)2
− Xr

(1− r)2
− lim

h→0
Qx,y

(Xr+h −Xr

h(1− r)
+

1
h

∫ r

r+h
F (p,Xp)dp/Fr

)
+Qx,y

(
− 1

1− r

∫ 1

r
F (p,Xp)dp+

1
(1− r)2

∫ 1

r

∫ 1

s
F (p,Xp)dpds/Fr

)
= F (r,Xr)

since all the terms of the r.h.s. vanish except − limh→0Q
x,y( 1

h

∫ r
r+h F (p,Xp)dp/Fr) which tends

to the desired expression. Since Q(|βx,y(r,Xr)|) < +∞ and Q(
∫ 1
0 |F

x,y(r,Xr)|dr) < +∞, the
martingale part of the semi-martingale βx,y(r,Xr) is a true martingale. This property enables
us to identify the forward derivative of βx,y(r,Xr) with the finite variation part of βx,y(r,Xr)
computed by using Ito’s formula, that is

F (r,Xr) = F x,y(r,Xr).

The strict positivity of q(0, x, r, z, 1, y) assumed in (A) implies F = F x,y. This completes the
proof of Theorem 4.3. �

Remark 4.5 : Let us make some comments about the results of section 4.

• If Q ∈ P(Ω) belongs to the class R(P̃ ) and satisfies the assumptions of Proposition 4.1, we
can see that, as in step 2 of the proof of Theorem 4.3,

Q(
Xt+h −Xt

h
/Ft) =

1
h

∫ t+h

t
βt(r)dr

where βt is given by (25). Thanks to a result of Föllmer (cf [9], Proposition 2.5), we
conclude that for almost every t ∈ [0, 1[, the forward Nelson derivative defined as d+Xt :=
L1(Ω)− limh→0

1
hE(Xt+h −Xt/Ft) exists and is equal to βt. By symmetry we also obtain

the existence of d−Xt := L1(Ω)− limh→0
1
hE(Xt −Xt−h/F̂t).

• Our integration by parts formula enables us to recover a particular case of Theorem 8.1
in [25]: if Q ∈ P(Ω) is a reciprocal process in the class R(P̃ ), satisfies the assumptions of
Proposition 4.1 and is also such that for all t ∈]0, 1[, the first and second order derivatives
d+Xt, d−Xt, d+d+Xt, d−d−Xt exist then, for allmost all t ∈]0, 1[,

Q(d+d+Xt/Xt) = Q(d−d−Xt/Xt) = F (t,Xt). (31)
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This implies thatQ
(

1
2(d+d+Xt+d−d−Xt)/Xt

)
= F (t,Xt). The term 1

2(d+d+Xt+d−d−Xt)
can be interpreted as an acceleration in Stochastic mechanics. This is why such an equation
may be called Newton equation (cf. [27]).

• Krener in [14] has also proved two results of second order nature concerning reciprocal
processes. In the first he establishes what he calls “second order Feller postulates”, which
provide a moment estimate of infinitesimal second order increments of the form Q((Xt+h +
Xt−h − 2Xt)k/Xt−h, Xt+h). The estimates only depend on the reciprocal characteristics.
In his second result he gives a meaning to a second order s.d.e. whose coefficients are the
reciprocal characteristics. For details and rigourous statements, we refer the reader to [14].

• As corollary of Steps 1 and 2 of the above proof, we obtain the fact that any reciprocal pro-
cess with reciprocal characteristics (1, F ) satisfying assumptions (21) is a semi-martingale.

5 Application to the periodic Ornstein-Uhlenbeck process.

Let us denote by P the law of the real-valued stationary Ornstein-Uhlenbeck process, which, for
λ > 0 fixed, is the solution of the stochastic differential equation :{

dXt = dBt − λXt dt
X0 ∼ N (0; 1

λ).
(32)

This is a particular case of the Brownian diffusion P̃ defined in the last section, taking b indepen-
dent of time and linear with respect to space. This process is Markovian, Gaussian, and admits
as reciprocal characteristics the function

F (t, x) = λ2 x.

In the present section we are interested in the solution of the following s.d.e. with periodic
boundary conditions : {

dXt = dBt − λXt dt
X0 = X1.

(33)

This process is called periodic Ornstein-Uhlenbeck process, and we denote its law by P per.
This type of processes has been already studied by several authors with various motivations.

First, Kwakernaak [12] studied the moments of such Gaussian processes and related filtering
problems. Then, the fact that the solution of (33) is a reciprocal process has been proved from
the analysis of the covariance kernel in [2]. Nevertheless, we propose here an alternative proof
of the reciprocal property of the periodic Ornstein-Uhlenbeck process based on the integration
by parts formula (22). Our method enables us to prove that the periodic Ornstein-Uhlenbeck
process is reciprocal, and simultaneously, to identify its reciprocal class. In this sense, it makes
complete, in this very particular case, the result of Ocone and Pardoux [19], who study the
Markov field property of solutions of general linear s.d.e. with boundary conditions, but without
any identification of their reciprocal classes. We conjecture that our method, which essentially
relies on Girsanov theorem, will extend to more general s.d.e. with boundary conditions than
(33) (see [18] for a description of such a general class).
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The method of variation of constants yields the following form for the unique solution of (33):

Xt = e−λtX0 +
∫ t

0
e−λ(t−s)dBs

=
∫ t

0

e−λ(t−s)

1− e−λ
dBs +

∫ 1

t

e−λ(1+t−s)

1− e−λ
dBs

= Ψ(B)t (34)

where Ψ is the map on Ω defined by :

Ψ(ω)t =
∫ t

0

e−λ(t−s)

1− e−λ
dωs +

∫ 1

t

e−λ(1+t−s)

1− e−λ
dωs.

It is then straighforward to verify that X is also the well known hyperbolic cosine process, i.e.
a zero mean Gaussian process with covariance function given by

Cov(Xs, Xt) =
cosh

(
λ(|t− s| − 1

2)
)

2λ sinh(λ
2 )

=: R(t, s)

which implies, in particular, that X is stationary.
From the explicit expression of R it is easy to verify that it solves in a weak sense the

second order partial differential equation −∂2R
∂t2

(t, s) + λ2R(t, s) = δ(t − s). Carmichael, Masse
and Theodorescu characterize in [2] the covariance of stationary gaussian reciprocal processes as
solutions of such partial differential equations and in [15], a generalisation to the non stationary
case is proved.

Theorem 5.1 The law P
per of the solution of (33) is a reciprocal process associated to the

stationary Ornstein-Uhlenbeck process, that is in the reciprocal class R(P ).

Proof : To prove the theorem we now show that P per satisfies the integration by parts formula
(22) with F (t, x) = λ2x. Let g ∈ L2

0(0, 1) and Φ ∈ S. By definition,

P
per(DgΦ) = P

per
(

lim
ε→0

1
ε
(Φ(X + ε

∫ .

0
g(s)ds)− Φ(X))

)
= lim

ε→0

1
ε
P

per
(
Φ(X + ε

∫ .

0
g(s)ds)− Φ(X)

)
= lim

ε→0

1
ε

(
P

per
ε (Φ)− P

per(Φ)
)

where P per
ε is the image of P per under the shift on Ω by the deterministic path ε

∫ .
0 g(s)ds. It is

also the law of the solution of the periodic s.d.e.{
dXt = dBε

t − λXt dt
X0 = X1

(35)

where Bε
t = Bt+ε

∫ t
0 g̃(s)ds and g̃(s) = g(s)+λ

∫ s
0 g(r)dr. By the method of variation of constants

we deduce that the solution of (35) is equal to Ψ(Bε) in the same way as the solution of (33) was
equal to Ψ(B). We thus have

P
per(DgΦ) = lim

ε→0

1
ε
P

(
(E(εg̃)− 1)Φ ◦Ψ

)
18



where P is the Wiener measure and E(εg̃) denotes the Girsanov density :

E(εg̃) = exp
( ∫ 1

0
εg̃(s)dBs −

ε2

2

∫ 1

0
g̃2(s)ds

)
.

Therefore

P
per(DgΦ) = P

( ∫ 1

0
g̃(s)dBs Φ ◦Ψ

)
.

We can now go back to an expectation under P per for the right-hand side using again the
fact that Ψ(B) = X solves P per-a.s. equation (33). This yields

P
per(DgΦ) = P

per
(
Φ(X)

( ∫ 1

0
g̃(s)dXs +

∫ 1

0
g̃(s)λXsds

))
.

It remains to substitute for g̃(s) into its expression g(s) + λ
∫ s
0 g(r)dr and to show that∫ 1

0

∫ s
0 g(r)dr dXs +

∫ 1
0 g(s)Xs ds vanishes. Fubini’s theorem applies to the double integral since

P
per ∫ 1

0 |Xs|ds <∞. We thus obtain that∫ 1

0

∫ s

0
g(r)dr dXs +

∫ 1

0
g(s)Xs ds = X1

∫ 1

0
g(r)dr = 0.

This completes the proof. �
The law P

per of the periodic Ornstein-Uhlenbeck process being inR(P ) it admits the following
decomposition P

per =
∫
P

x,y
µ(dx, dy) where µ is the law of (X0, X1) under P per. Here µ is

supported by the diagonal. Thus

P
per =

∫
P

x,x
m(dx)

where m is the law of X0 under P per, equal to N (0; 1
2λ coth(λ

2 )). In this simple case, it is possible
to explicit the semi-martingale decomposition of the bridge P x,x, since it solves the following
s.d.e. {

dXt = dBt − λXt dt+ λ
sinh(λ(1−t))(x− e−λ(1−t)Xt)dt

X0 = x.
(36)

Indeed the additional term in the drift of P x,x with respect to the drift of P is equal to
∂
∂z log p(t,Xt, 1, x) where p(t, z, 1, .) is the density of the Gaussian law P (X1 ∈ ./Xt = z). To
compute this density it is sufficient to compute E(X1/Xt = z) and E(X2

1/Xt = z), which come
directly from the equality :

X1 = e−λ(1−t)Xt +
∫ 1

t
e−λ(1−s)dBs.

This completes the description of the desintegration of P per into bridges.
Let us also mention the work of Recoules who proved in [20] that P per is the law of the process

solution of {
dXt = dBt − λ

(
X0

sinh(λ(1−t)) −
Xt

tanh(λ(1−t))

)
dt

X0 ∼ N (0; 1
2λ coth(λ

2 )).
(37)
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Let us notice that equation (37) is a randomized version, for X0 no longer deterministic, of
equation (36), which exactly reflects at the level of the semi-martingale property the above
desintegration

P
per =

∫
P

x,xN (0;
1
2λ

coth(
λ

2
))(dx).

Under P per
, F0 is not degenerated and the drift of X at time t in (37) is a function of (X0, Xt).

So P per is not Markovian while clearly P x,x is Markovian.
From the point of view of entropy, Recoules remarked also that P per is, among Gaussian

stationary periodic processes, the unique one which minimizes the Kullback information with
respect to the Brownian bridge with initial law N (0; 1

λ2 ).
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