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Abstract. We develop a cluster expansion in space-time for an infinite-dimen-
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1. Introduction

Consider a Random Field Ising Model (RFIM) on Zd, i.e. a spin system on
the lattice Zd whose energy Hamiltonian in each finite volume Λ may be written
as

HΛ(s) = −
∑

{i,j}∈Λ∗

sisj −
∑

i∈Λ

hisi, ∀s ∈ {±1}Zd

,

Λ∗ denoting the set of all bonds in Λ (equipped e.g. with its periodic boundary
conditions), and

(

hi
)

i∈Zd being a fixed realisation corresponding to a family of

i.i.d. symmetric random variables hi having variance σ2. Such site disordered
spin systems have been studied in the Mathematical Physics litterature since the
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mid eighties. Using a rigourous renormalisation method, Bricmont and Kupi-
ainen were able to prove in [3] that the low temperature ground states associated
with a 3-dimensional Ising model weakly perturbed through a Bernoulli random
field display ferromagnetic ordering, thus (partially) settling a controversy on
the lower critical dimension d of such RFIMs; Aizenman and Wehr brought this
controversy to its end shortly afterwards, by proving in [1] that in 2 dimensions
an arbitrarily weak disordered external magnetic field leads to a breakdown of
the first order phase transition occuring in the standard Ising model on Z2, so
that dc = 2. Such equilibrium properties were later examined in a ”soft spin”
setting by C. Külske, who considered a 3-dimensional RFIM where the original
discrete spins si = ±1 are being replaced by continuous spin variables xi ∈ R.
The Boltzmann factor corresponding to the inverse temperature parameter β
then becomes

exp
{

−
∑

i∈Λ

U(xi) + β
∑

{i,j}∈Λ∗

xixj + β
∑

i∈Λ

hixi
}

(1.1)

for some “double well” single site potential U : R → R, e.g. U(x) = Cx4−2Cx2,
introduced in order to obtain some resemblance with the original discrete spin
setting. In [12], a new renormalisation method is developped in order to prove
the Bricmont –Kupiainen result in this “unbounded spin” setting.

The present paper is concerned with the dynamics corresponding to such
continuous spin RFIMs. For a fixed realisation of the external field h = (hi)i∈Zd

(Gaussian or Bernoulli), the Langevin dynamics associated with the Boltzmann
factor (1.1) consists in the system of interacting diffusions

(

Sh

Λ

)

given by

(

Sh

Λ

)







dxi
t = dwi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt+ βhidt

(i ∈ Λ, t ≥ 0)

{

(wi
t)t≥0; i ∈ Zd

}

denoting here a family of i.i.d. standard Brownian motions,
and the notation j ∼ i indicating that i and j are nearest neighbours in Λ; as
for the initial condition given to this system, one may for example consider any
probability measure µ0 on the real line having finite second moment, and set:
Law(x|t=0) = µ⊗Λ

0 .
Fixing a bounded (arbitrarily large) time horizon [0, T ], one may then let

Λ ր Zd and observe that such system of interacting diffusions obeys a strong law
of large numbers. Indeed, letting Ph

Λ,T denote the probability law corresponding

to
(

Sh

Λ

)

considered during time [0, T ], one may establish that the law under

dPh

Λ,T (x) of the empirical process associated with x =
{

(xi
t)0≤t≤T ; i ∈ Λ

}

converges towards a Dirac mass concentrated at some asymptotic dynamics
QT ([2] contains a complete proof in the Gaussian case, together with quenched
and annealed large deviations estimates). In the case of a “Bernoulli” random
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field, QT may be characterised as the law of the system







































dxi
t = dwi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt

+ σβ tanh

{

σβ

(

xi
t − xi

0 +

t
∫

0

(

U ′(xi
u) − β

∑

j∼i

xj
u

)

du

)}

dt,

Law(x|t=0) = µ⊗Zd

0 (i ∈ Zd, 0 ≤ t ≤ T ).

As may be seen immediately, the diffusions in the above system have a short
range spatial interaction, whereas this interaction is of a long range nature in
time, due to the presence of the functional

tanh

{

σβ

(

xi
t − xi

0 +

t
∫

0

(

U ′(xi
u) − β

∑

j∼i

xj
u

)

du

)}

in the drift term associated with xi
t. Of course, letting

vi
t = xi

t − xi
0 +

t
∫

0

(

U ′(xi
u) − β

∑

j∼i

xj
u

)

du,

one may also define QT as the x-marginal corresponding to the system























dxi
t = dvi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt

dvi
t = dwi

t + σβ tanh
{

σβvi
t

}

dt

(i ∈ Zd, 0 ≤ t ≤ T )

In the setting of a Gaussian random field, the asymptotic dynamics QT may be
similarly characterised as the x-marginal of























dxi
t = dvi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt

dvi
t = dwi

t + γtv
i
tdt

(i ∈ Zd, 0 ≤ t ≤ T, γt = σ2β2/(1 + σ2β2t))

So in this setting, the white noise
{

(wi
t)t≥0; i ∈ Zd

}

driving the Langevin dy-
namics associated with a standard ferromagnetic spin system has to be replaced
by a family

{

(vi
t)t≥0; i ∈ Zd

}

of Ornstein –Uhlenbeck processes having a time
dependent friction coefficient, γt = σ2β2/(1 + σ2β2t).
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Having performed such thermodynamic limit for the empirical process, one
may then let T → +∞ and wonder about the large time properties of the cor-
responding asymptotic dynamics. At this stage, it should be noted that the
customary methods relying on coercive inequalities for the associated Markov
generator do not seem to be of much help here, since we are dealing with de-

generate Markov processes on
(

R2
)Zd

, moreover the second of these processes
is also time inhomogeneous.

On the other hand, much work has been invested recently in the Statistical
Mechanics litterature in order to implement some cluster expansion methods
both for interacting diffusions systems (starting with [11], further developped
in [6,17,18]) and for some one-dimensional, non-Markovian diffusions viewed as
Gibbs measures on path space (see for example [19] or [15]). [18] considers a
particular system of interacting diffusions representing a quantum crystal and
establishes the validity of a cluster expansion in space-time for this system, in
the “light mass” limit. In [17], space-time cluster expansions are being devel-
opped for certain classes of systems of interacting diffusions considered in a weak
interaction regime. [15] establishes the validity of a cluster expansion method
for some probability measures on path space C

(

R;R
)

which are associated with
some “reasonable” external potentials (corresponding e.g. to a diffusion evolving
in a double well U) and with a 2 body interaction potential W of the type

W
(

u, t;xu, xt

)

= F
(

t− u;xu, xt

)

for some functional F (s;x, y) decaying rapidly when s → +∞. Finally in [6],
Dai Pra and the first author consider a general system of interacting diffusions
given by

{

dxi
t = dwi

t − U ′(xi
t)dt+ bε

(

θi
tx

)

dt

(i ∈ Zd, t ∈ R)

θi
t being a space-time shift on C

(

R;R
)Zd

:

θi
tx = y =

(

yj
u

)j∈Zd

u≤0
, yj

u = xi+j
t+u,

and bε : C
(

]−∞, 0];R
)Zd

→ R being simply a measurable adapted functional on

C
(

]−∞, 0];R
)Zd

that is both local in space and time, and that satisfies further a
uniform boundedness assumption (‖bε‖∞ ≤ ε). Of course, the (eventual) lack of
regularity of bε and its non Markovian nature show that the mere existence of a
weak solution is not at all obvious for such systems. Dai Pra and Rœlly establish
the existence of a weak solution (and some of its asymptotic properties) for such
systems by developping a cluster expansion in space-time and considering the
regime of small interactions (where ε is “small”). Such method may be carried
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out by giving a proper reference measure to the path space C(R;R)Z
d

, e.g.
independent bridges based on the diffusions

{

(xi
t)t∈R; i ∈ Zd

}

given by

dxi
t = dwi

t − U ′(xi
t)dt, (1.2)

and by considering an energy Hamiltonian
{

Hε
Λ×I ; Λ⊂Zd, I⊂R

}

corresponding

to the drift term bε, Λ is a finite subset of Zd, I is an interval. For a fixed space-
time window V = Λ × I, this energy Hamiltonian is actually given by

Hε
V (x) = −

∑

i∈
(

Λ∪∂Λ
)

[
∫

I

bε
(

θi
tx

)

dBi
t(x) − 1

2

∫

I

bε
(

θi
tx

)2
dt

]

,

the notation ∂Λ corresponding to a certain locality in space that was assumed
for bε, and the functionals Bi

t(x) being defined by

Bi
t(x) = xi

t − xi
0 +

t
∫

0

U ′(xi
s)ds.

Considering the partition functions Zε
V associated with such reference measure

and energy Hamiltonian on Ω, one is then interested in the asymptotic behaviour
of Zε

V for large V . In [6], the validity of a cluster representation in space-time
was established in the regime of small interactions (ε ≤ ε0), together with an
exponential estimate for the cluster coefficients appearing in this expansion.
This means that the partition function Zε

V may be decomposed as

Zε
V = 1 +

∑

V
R=(Γ1,...,Γn)

s
∏

r=1
KΓr

,

∑

V
R

denoting a sum over all “clusters” (compatible collection of “contours”)

contained in the volume V , and KΓr
being a coefficient such that

|KΓ| ≤ λ(ε)|Γ|,

for some λ(ε) = O(ε) and some positive quantity |Γ| measuring the size of each
contour Γ.

Our aim in the present paper is to establish the validity of such a space-
time cluster expansion for the asymptotic dynamics Q∞ arising in the Bernoulli
RFIM (time being now extended to the whole semi-infinite interval [0; +∞[).

The novelty here is that we have to deal with interacting diffusions (xi
t)

i∈Zd

t≥0

which display a local interaction in space as well as a long range memory (in
time); moreover in the present situation, the influence of xi

u over xi
t does not

seem to decay so rapidly for |t − u| −→ +∞. In the case of a Bernoulli ran-
dom field, one may still establish the validity of a high temperature cluster
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expansion in space-time for Q∞, together with an exponential estimation of the
corresponding cluster coefficients; among other consequences, the (space and
time) correlation functions associated with Q∞ may then be shown to decay
exponentially fast in the High Temperature regime (see [16], §3 in Chapter 5).
On the other hand, despite various attempts, there does not seem to be any way
of establishing such a space-time cluster expansion for the asymptotic dynamics
Q∞ arising in the Gaussian setting.

The next section is dedicated to a brief derivation of the large deviations
estimates and strong law of large numbers leading to the consideration of Q∞ in
the Bernoulli setting. Then in section 3 we show that Q∞ may also be presented
as a Gibbs measure in space-time, and establish correspondingly the validity of
a space-time cluster expansion in the high temperature regime, together with
exponential estimates for the cluster coefficients. This implies in particular that
the non-Markovian interacting diffusions system under consideration displays
exponential ergodicity in the high temperature regime.

2. Spatial large deviations and the asymptotic dynamics Q∞

2.1. Gibbsian nature of the annealed dynamics

Recall that for a fixed (Bernoulli) realisation of the random field h =
(

hi, i ∈
Zd

)

, Ph

Λ,T denotes the law of the interacting diffusions system
(

Sh

Λ,T

)

given
through the stochastic differentials

dxi
t = dwi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt+ βhidt,

where i, j ∈ Λ and j ∼ i means that i and j are nearest neighbours, whereas
time t varies in a bounded interval [0, T ]. (For simplicity, we shall always assume
that a finite box Λ is being equipped with its periodic boundary conditions.)
Ph

Λ,T is thus a probability measure on path space C([0, T ];R)Λ, and we then
define the averaged probability measure PΛ,T via the identity

PΛ,T (A) = Eh

(

Ph

Λ,T (A)
)

holding for any Borel set A ⊂ C([0, T ];R)Λ (here and in the sequel, Eh denotes
an average taken with respect to the realisations of the random external mag-
netic field h). It turns out that the averaged probability measure PΛ,T may
also be viewed as the weak solution associated with a new stochastic differential
system.

Proposition 2.1. For fixed Λ ⊂⊂ Zd and T > 0,

PΛ,T = Eh

[

Ph

Λ,T

]
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may be characterised as the law of the interacting diffusions system
(

SΛ,T

)

given

by



































dxi
t = dwi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt

+ σβ tanh

{

σβ

(

xi
t − xi

0 +

t
∫

0

(

U ′(xi
s) − β

∑

j∼i

xj
s

)

ds

)}

dt,

Law(x|t=0) = µ⊗Λ
0 (i ∈ Λ, 0 ≤ t ≤ T ).

Proof. Let pT denote the probability law on C
(

[0, T ];R
)

corresponding to the
diffusion

dxt = dwt − U ′(xt)dt (2.1)

having initial condition µ0. We also consider the restriction of pT to the σ-
algebra Ft associated with the time interval [0, t] ⊂ [0, T ] and denote it by
pt, whilst PΛ,t similarly denotes the restriction of PΛ,T to the σ-algebra FΛ

t in

C
(

[0, T ];R
)Λ

. Then according to the Fubini and Girsanov theorems:

PΛ,T ≪ p⊗Λ
T ,

and

MΛ
t =

dPΛ,t

dp⊗Λ
t

is a positive p⊗Λ
T -martingale with mean 1 such that

MΛ
t (x) = Eh

[

exp

{

β
∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s + hi

)

dwi
s −

β2

2

∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s + hi

)2

ds

}]

= exp

(

β
∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s

)

dwi
s −

β2

2

∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s

)2

ds

)

× Eh

[

exp
{

β
(

hΛ;Aβ,t(x)
)

− β2t

2
(hΛ; hΛ)

}]

,

Aβ,t(x) being the Λ-dimensional vector defined by

Ai
β,t(x) = wi

t(x) − β

t
∫

0

(

∑

j∼i

xj
s

)

ds = xi
t − xi

0 +

t
∫

0

(

U ′(xi
s) − β

∑

j∼i

xj
s

)

ds.
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Observing that

Eh

[

exp
{

β(hΛ;Aβ,t(x)) − β2t

2
(hΛ; hΛ)

}]

=
(

∏

i∈Λ

cosh(σβAi
β,t(x))

)

exp
{

− σ2β2t

2
|Λ|

}

,

and using Ito’s formula, we then obtain:

logMΛ
t (x) =mart

∑

i∈Λ

log cosh
(

σβAi
β,t(x)

)

+ β
∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s

)

dwi
s

=mart

∑

i∈Λ

t
∫

0

σβ tanh
(

σβAi
β,s(x)

)

dAi
β,s(x) + β

∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s

)

dwi
s

=mart

∑

i∈Λ

t
∫

0

σβ tanh
(

σβAi
β,s(x)

)

dwi
s + β

∑

i∈Λ

t
∫

0

(

∑

j∼i

xj
s

)

dwi
s,

the sign =mart meaning here that the two p⊗Λ
T -semimartingales under consid-

eration (on the left-hand side and on the right-hand side of the equality) have
the same martingale part. At this point Girsanov’s theorem may be applied a
second time, which yields the announced characterisation of PΛ,T . 2

Naturally, one may also introduce the auxiliary variables

vi
t(x) = xi

t − xi
0 +

t
∫

0

(

U ′(xi
s) − β

∑

j∼i

xj
s

)

ds

and view PΛ,T as the x-marginal of a Markov system of interacting diffusions

taking values in
(

R2
)Λ

, and the classical results of Shiga and Shimizu [20] may
then be applied to establish that such Markov system of interacting diffusions
also has a unique strong solution when extending the spatial index set to Zd

and letting t vary in [0,+∞[. But let us first extend the spatial index set to
Zd whilst keeping [0, T ] as our time horizon, and call QT the x-marginal of the
unique strong solution associated with

(

ST

)























dxi
t = dvi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt,

dvi
t = dwi

t + σβ tanh
{

σβvi
t

}

dt,

vi
0 ≡ 0, law

(

x|t=0

)

= µ⊗Zd

0 (i ∈ Zd, 0 ≤ t ≤ T ).



Asymptotics of an infinite-dimensional diffusion 661

QT is a probability measure on C
(

[0, T ];R
)Zd

, and just as in [2] we may view QT

as a Gibbs measure corresponding to a certain translation invariant family of
interaction functionals on this infinite-dimensional path space. Indeed, for fixed
Λ ⊂⊂ Zd the Radon– Nykod́ım derivative MΛ

T = dPΛ,T /dp
⊗Λ
T has a Girsanov

exponent which may be decomposed as

logMΛ
T (x) =

∑

i∈Λ

T
∫

0

(

σβ tanh(σβAi
β,s(x)) + β

∑

j∼i

xj
s

)

dwi
s

− 1

2

∑

i∈Λ

T
∫

0

(

σβ tanh(σβAi
β,s(x)) + β

∑

j∼i

xj
s

)2

ds

=
∑

i∈Λ

{

T
∫

0

σβ tanh(σβAi
β,s(x))dAi

β,s(x))

− σ2β2

2

T
∫

0

tanh2(σβAi
β,s(x)) ds− β2

2

T
∫

0

(

∑

j∼i

xj
s

)2

ds

+ β

T
∫

0

(

∑

j∼i

xj
s

)

dxi
s + β

T
∫

0

(

∑

j∼i

xj
s

)

U ′(xi
s)ds

}

=
∑

i∈Λ

{

log cosh
(

σβAi
β,T (x)

)

− σ2β2

2

T
∫

0

(

tanh2
(

σβAi
β,s(x)

)

+
1

1 + σ2β2Ai
β,s(x)2

)

ds+ β

T
∫

0

(

∑

j∼i

xj
s

)

U ′(xi
s) ds

− β2

2

T
∫

0

(

∑

j∼i

xj
s

)2

ds

}

+ β
∑

j∼i

[

xi
Tx

j
T − xi

0x
j
0

]

,

which suggests that the projections of QT onto a space C
(

[0, T ];R
)Λ

of finite-
volume configurations satisfy the DLR equations associated with a transla-
tion invariant family Ψ =

(

ψA

)

A⊂⊂Zd of interaction functionals defined on

C
(

[0, T ];R
)Zd

. More precisely, letting

∆i =
{

j ∈ Zd : |j − i| = 0 or 1
}

,



662 S. Rœlly and M. Sortais

one may successively define the translation invariant functionals ψA for each
finite subset A ⊂ Zd through

ψ{i}(x) = β2d

T
∫

0

(xi
s)

2ds,

ψ{i,j}(x) = −β
{

[

xi
Tx

j
T − xi

0x
j
0

]

+

T
∫

0

(

U ′(xi
s)x

j
s + U ′(xj

s)x
i
s

)

ds

}

, |j − i| = 1,

ψ{i,j}(x) = 2β2

T
∫

0

xi
sx

j
sds when |j − i| =

√
2, (2.2)

ψ{i,j}(x) = β2

T
∫

0

xi
sx

j
sds when |j − i| = 2,

ψ∆i(x) = − log cosh
(

σβAi
β,T (x)

)

+
σ2β2

2

T
∫

0

(

tanh2
(

σβAi
β,s(x)

)

+
1

1 + σ2β2Ai
β,s(x)2

)

ds,

letting further ψA ≡ 0 whenever A is not of the preceding type, and the Radon-
Nykod́ım derivative MΛ

T may then be expressed as the exponential of the sum

−
∑

A⊂Λ

ψA(x),

Λ still being equipped with its periodic boundary conditions.
One may check that the infinite volume dynamics QT satisfies the DLR

equations relative to the interaction
(

ψA

)

A⊂⊂Zd , and it then remains to show

there are no other Gibbs measures corresponding to
(

ψA

)

A⊂⊂Zd and to the

reference measure p⊗Zd

T .

Proposition 2.2. Let Q be a probability measure on C
(

[0, T ];R
)Zd

, and as-

sume that Q is a Gibbs measure corresponding to the interaction Ψ and to the

reference measure p⊗Zd

T . Then Q is the x-marginal of an infinite dimensional

diffusion
(

xt,vt

)

0≤t≤T
solving

(

ST

)

, consequently: Q = QT .

Proof. The identification of any Gibbs measure as a weak solution for an infinite
dimensional system of interacting diffusions follows from an integration by parts
formula that was developped and used in this context by Cattiaux, Rœlly and
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Zessin, see in particular Théorème 2.11 in [5]. As for the fact that Q then has
to coincide with QT , it follows from unicity in Shiga and Shimizu’s classical
results (see Theorem 4.1 in [20]); note that we have equipped our interacting
diffusions system with a product initial condition, therefore there can be no such
phenomena as a phase transition occuring at time t = 0. 2

Since QT is a Gibbs measure corresponding to a translation invariant inter-
action Ψ, it should be expected to satisfy some spatial large deviations estimates
for Λ ր Zd; there are indeed several reference papers establishing large devia-
tions estimates for the empirical process of a spin system evolving under a Gibbs

measure on the configuration space XZd

(X being a Polish space), see e.g. [4]
or [10]. The next subsection is devoted to a precise statement of such a spatial
Large Deviations Principle (LDP) for the Gibbs measure QT .

2.2. Large deviations of the empirical process

For each cubic box Λ ⊂⊂ Zd and for each configuration x ∈ C
(

[0, T ];R
)Λ

,

one may define a probability measure on C
(

[0, T ];R
)Zd

, the empirical process
associated with x, in the following way:

π̂(Λ)
x

=
1

|Λ|
∑

i∈Λ

δ(
per .x

)(i) ,

where y = per .x ∈ C
(

[0, T ];R
)Zd

is a Λ-periodic configuration on Zd whose

restriction to Λ coincides with x, and where
(

y(i)
)j

= yj+i, for all j ∈ Zd.

The empirical process π̂
(Λ)
x thus defines a shift invariant probability measure

on C
(

[0, T ];R
)Zd

, whose 1-site marginal coincides with the empirical measure
associated with x. Now in the case where x is distributed according to a product

measure p⊗Λ on C
(

[0, T ];R
)Λ

, the law of the empirical process obeys a Large
Deviation Principle (LDP) on the scale |Λ| and according to a good rate function

H : Ms

(

C
(

[0, T ];R
)Zd

)

−→ [0; +∞]

known as the specific entropy relative to p⊗Zd

and defined on the set Ms

(

C
(

[0, T ];

R
)Zd

)

consisting of all shift invariant probability measures on C
(

[0, T ];R
)Zd

as
the following limit:

H(π) = lim
ΛրZd

1

|Λ|H
(

πΛ | p⊗Λ
)

,

πΛ denoting here the Λ-marginal of π, and H
(

· | p⊗Λ
)

: M
(

C
(

[0, T ];R
)Λ)

→
[0; +∞] being the relative entropy corresponding to p⊗Λ.
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As a convenient generalisation of the preceding LDP, one may then con-
sider the case where x is being distributed according to the projection onto

C
(

[0, T ];R
)Λ

(say with periodic boundary conditions) of a Gibbs measure on

C
(

[0, T ];R
)Zd

corresponding to the reference measure p⊗Zd

and to a translation

invariant interaction Ψ =
(

ψA

)

A⊂⊂Zd . As was shown in several papers (see for

example [4] or [10]), the law of the empirical process then also obeys a LDP,
at least when the interaction Ψ satisfies an additional boundedness assumption
such as

∑

A∋O

‖ψA‖∞ < +∞, (2.3)

and the new rate functional IΨ : Ms

(

C
(

[0, T ];R
)Zd

)

→ [0; +∞] may then be
defined by

IΨ(π) = H(π) −
∫

C
(

[0,T ];R
)Zd

UΨ(x)dπ(x),

where UΨ(x) =
∑

A∋O

ψA(x)/|A|.
We are in the situation where p = pT and where Ψ coincides with the

interaction (2.2) defined in the preceding subsection; in such a situation, (2.3)
does not hold true: our translation invariant interaction Ψ has a finite range,
but the individual functionals ψA fail to be uniformly bounded. Nevertheless,
one may still prove in such a context that the law of the empirical process
satisfies a LDP on the scale |Λ| and according to the good rate functional IΨ.
Of course some verifications are needed in order to make sure that such LDP
still holds true, and some further verifications are needed in order to prove that
the following variational principle is indeed valid for Ψ.

Proposition 2.3. Let Q ∈ Ms

(

C
(

[0, T ];R
)Zd

)

. Then Q is a minimiser associ-

ated with the good rate functional IΨ if and only if Q is a Gibbs measure on

C
(

[0, T ];R
)Zd

corresponding to the interaction Ψ and to the reference measure

p⊗Zd

T .

Sketch of proof. The validity of such a variational principle is established
in [9, Chapter 15] for Gibbs measures satisfying the summability condition (2.3).
As for the present situation, one may decompose the proof into the following
three steps:

1◦). Any Q ∈ Ms

(

C
(

[0, T ];R
)Zd

)

for which the integral

∫

C
(

[0,T ];R
)Zd

UΨ(x)dQ(x)
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is finite satisfies

H(Q) ≥
∫

C
(

[0,T ];R
)Zd

UΨ(x) dQ(x).

Indeed, using the L1 version of the multidimensional ergodic theorem enables
us to view the integral in the right-hand side above as

lim
Λ

1

|Λ|
∑

i∈Λ

∫

UΨ(x(i)) dQ(x),

and the limit above may then be seen to coincide with

lim
Λ

1

|Λ|
∑

i∈Λ

∫

UΨ((per .xΛ)(i)) dQΛ(xΛ),

where QΛ stands for the Λ-marginal of Q. Hence

H(Q) −
∫

UΨ(x)dQ(x)

= lim
Λ

1

|Λ|

∫

dQΛ(xΛ)
{

∑

i∈Λ

UΨ((per .xΛ)(i)) − ln
( dQΛ

dp⊗Λ
T

(xΛ)
)}

,

and Jensen’s inequality applied to ln then yields
∫

dQΛ

{

∑

i∈Λ

UΨ((per .xΛ)(i)) − ln
( dQΛ

dp⊗Λ
T

(xΛ)
)}

≤ ln

{
∫

dQΛ

exp
(
∑

i∈Λ UΨ((per .xΛ)(i))
)

dQΛ/dp
⊗Λ
T (xΛ)

}

= 0

for each fixed Λ.

2◦). QT is such that

H(QT ) =

∫

UΨ(x)dQT (x).

In order to prove this equality, one uses the fact that QT is a Gibbs measure
corresponding to Ψ, so that for each finite box Λ ⊂ Zd :

dQT (xΛ) =

∫

dQT (xΛc)
exp

{

− β
∑

Γ∩Λ6=∅ ψΓ(xΛ ∨ xΛc)
}

ZΨ
Λ (xΛc)

,

where

ZΨ
Λ (xΛc) =

∫

dp⊗Λ
T (xΛ) exp

{

− β
∑

Γ∩Λ6=∅

ψΓ(xΛ ∨ xΛc)
}

,
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xΛ ∨ xΛc denoting a combination of configurations xΛ (in the volume Λ) and
xΛc (in Λc).

Using again the L1 multidimensional ergodic theorem enables us to view
both H(Q) and

∫

UΨdQ as the following limit:

H(QT ) −
∫

Ω

UΨ(x)dQT (x) = lim
Λ

1

|Λ|

∫

dQT (xΛc) − ln
(

ZΨ
Λ (xΛc)

)

,

and using Jensen’s inequality applied to (− ln) and to the probability measure

exp
{

− β
∑

Γ∩Λ6=∅

ψΓ(x
(Λ)
Λ )

}

· dp⊗Λ
T (xΛ)

finishes the proof of the fact that

H(QT ) −
∫

UΨ(x)dQT (x) ≤ 0.

3◦). Any Q ∈ Ms

(

C
(

[0, T ];R
)Zd

)

satisfying

∫

Ω

UΨdQ = H(Q) < +∞

is also such that

lim
Λ

1

|Λ|

∫

ln
( dQΛ

dQT,Λ
(xΛ)

)

dQΛ(xΛ) = 0

(where QT,Λ and QΛ denote the Λ-marginals ofQT and Q respectively). Indeed,
for each finite box Λ one has

1

|Λ|

∫

ln
( dQΛ

dQT,Λ
(xΛ)

)

dQΛ(xΛ)

=
1

|Λ|

∫

ln
( dQΛ

dp⊗Λ
T

(xΛ)
)

dQΛ(xΛ) − 1

|Λ|

∫

ln
(dQT,Λ

dp⊗Λ
T

(xΛ)
)

dQΛ(xΛ)

=
1

|Λ|

∫

ln
( dQΛ

dp⊗Λ
T

(xΛ)
)

dQΛ(xΛ) − 1

|Λ|

∫

dQΛ(xΛ)

× ln

{
∫

dQT,Λc(xΛc)
exp{−β∑

Γ∩Λ6=∅ ψΓ(xΛ ∨ xΛc)}
ZΨ

Λ (xΛc)

}

≤ 1

|Λ|

∫

ln
( dQΛ

dp⊗Λ
T

(xΛ)
)

dQΛ(xΛ) − 1

|Λ|

∫

dQΛ(xΛ)

∫

dQT,Λc(xΛc)

×
{(

− β
∑

Γ∩Λ6=∅

ψΓ(xΛ ∨ xΛc)
)

− ln
(

ZΨ
Λ (xΛc)

)

}

,
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and in the right-hand side of the preceding inequality the first term converges
to H(Q), while the second term has a limit that may easily be seen to coincide
with

∫

Ω
UΨdQ, using once again the multidimensional ergodic theorem.

In view of 1◦), 2◦) and 3◦), any Q ∈ Ms

(

C
(

[0, T ];R
)Zd

)

minimising the
good rate functional IΨ has to coincide with QT . 2

Using the unicity ofQT as a minimiser for the good rate function IΨ, we may
now state the following Strong Law of Large Numbers (SLLN) as a corollary to
the annealed large deviation estimates already available.

Corollary 2.1. P-a.s. (h), the law of the empirical process p⊗Zd

T under dPh

Λ,T (x)

converges to a Dirac mass concentrated at QT as Λ ր Zd, Ms

(

C
(

[0, T ];R
)Zd

)

being equipped with the topology of weak convergence.

Proof. Consider a metric D on Ms

(

C
(

[0, T ];R
)Zd

)

compatible with the topol-
ogy of weak convergence, and for fixed ε > 0, let

Aε =
{

Q ∈ Ms

(

C
(

[0, T ];R
)Zd

)

| D
(

Q;QT

)

≥ ε
}

.

IΨ defines a good rate function on Ms

(

C
(

[0, T ];R
)Zd

)

, so that it certainly
attains its minimum mε on Aε, and mε is positive since QT /∈ Aε. Applying
the large deviations upper bound to Aε enables one to choose a finite cubic box
Λ0 ⊂⊂ Zd such that

PΛ

{

x | π̂(Λ)
x

∈ Aε

}

≤ exp
{

− m

2
|Λ|

}

(2.4)

whenever Λ ⊃ Λ0.
On the other hand, according to Chebyshev’s inequality, for any δ > 0,

P
{

h | Ph

Λ

{

x | π̂(Λ)
x

∈ Aε

}

> δ
}

≤ PΛ

{

x | π̂(Λ)
x ∈ Aε

}

δ
.

As a consequence of (2.3), one has

∑

Λ

PΛ

{

x | π̂(Λ)
x ∈ Aε

}

δ
< +∞,

and making use of the Borel – Cantelli lemma then finishes the proof. 2

The preceding SLLN for the empirical process π̂
(Λ)
x justifies our interest in the

dynamics QT , which may now be viewed as an asymptotic dynamics obtained
by letting Λ ր Zd and performing spatial averages. As a second step, one may
then extend the time horizon to [0; +∞[ and wonder about the (space and time)
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decorrelation properties of the infinite-dimensional dynamics Q∞, given as the
x-marginal of the stochastic differential system

(

S∞

)























dxi
t = dvi

t − U ′(xi
t)dt+ β

∑

j∼i

xj
tdt

dvi
t = dwi

t + σβ tanh
{

σβvi
t

}

dt

Law
(

x|t=0

)

= µ⊗Zd

0 (i ∈ Zd, t ≥ 0)

We are going to consider Q∞ in the high temperature regime (where β is
“small”) and prove, among other facts, that the corresponding spin system
decorrelates exponentially fast in space and time, using a cluster expansion on

the path space Ω = Ms

(

C
(

[0,+∞[;R
)Zd

)

. To this end, we first need to present
Q∞ as a Gibbs measure on Ω in a space-time sense, the reference measure being
now made of independent bridges based on the diffusion (2.1).

3. Cluster expansion in space-time

3.1. Presentation of Q∞ as a space-time Gibbs measure

For each finite Λ ⊂ Zd, let

Λ+ =
{

i ∈ Zd | (i ∈ Λ) or (i ∼ j for some j ∈ Λ)
}

and ∂Λ =
(

Λ+
)+ \ Λ. For any open interval I =]a1; a2[⊂ R+, define the

enlargement of I by I+ = [0; a2], and let V denote the set consisting of all
space-time windows V of the form V = Λ × I, where Λ is a finite subset in
Zd and I an open interval in R+. Following [6], we define a forward (resp.

backward) σ-field FV (resp. F̂V ) on path space Ω = C
(

R+;R
)Zd

by

FV = σ
{

ωi
t; i ∈ Λ++, t ∈ I+

}

,

F̂V = σ
{

ωi
t; (i; t) /∈ V

}

,

and the boundary σ-field ∂FV is then given by

∂FV = FV ∩ F̂V .

We now need to equip Ω with a reference specification
(

Π0
V

)

V ∈V
, i.e. a Markov

kernel on
(

Ω; {FV }V ∈V ; {F̂V }V ∈V

)

corresponding to a “free” situation (where the diffusions
{

(xi
t)t≥0; i ∈ Zd

}

do
not interact with each other). In the present setting, Ω may be conveniently
equipped with the reference specification

(

Π0
V

)

V ∈V
defined by

∀V ∈ V , ∀A ∈ FV , Π0
V (A) = P

(

A | F̂V

)

,
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where P = p⊗Zd

and p is the stationary weak solution of the S.D.E. (2.1) with
initial condition dν0(x) proportional to exp{−2U(x)}dx. In order to come to
the Gibbsian specification corresponding to the asymptotic dynamics Q∞, we
then let

Λ0 =
{

i ∈ Zd | i = O or i ∼ O
}

and define the potential Φ =
(

φV

)

V ∈V
on Ω by φΛ×I ≡ 0 whenever Λ is not a

translate of Λ0 and

φ(i+Λ0)×I(x) = −
∫

I

(

β
∑

j∼i

xj
t + σβ tanhσβB̃i

t(x)
)

dBi
t(x)

+
1

2

∫

I

(

β
∑

j∼i

xj
t + σβ tanhσβB̃i

t(x)
)2

dt,

with

Bi
t(x) = xi

t − xi
0 +

t
∫

0

U ′(xi
u)du

and

B̃i
t(x) = xi

t − xi
0 +

t
∫

0

(

U ′(xi
u) − β

∑

j∼i

xj
u

)

du = Bi
t(x) − β

t
∫

0

(

∑

j∼i

xj
u

)

du,

otherwise. At this stage, one should remark that φ(i+Λ0)×I ∈ L2(P ), so that
φ(i+Λ0)×I(x) is finite P -a.s. (x), say, on Ω′ ⊂ Ω. We then define the Hamiltonian

H =
(

HV

)

V ∈V
on Ω′ by

HV (x) =
∑

Λ′∩Λ6=∅

φΛ′×I(x) = −
∑

i∈Λ+

[
∫

I

bit(x)dBi
t(x) − 1

2

∫

I

bit(x)2dt

]

,

where
bit(x) = β

∑

j∼i

xj
t + σβ tanhσβB̃i

t(x).

Observe that Φ and H are both spatially translation invariant, and that HV is
FV -measurable. We finally let

(

ΠH
V

)

V ∈V
denote the new specification given by

ΠH
V

(

ω; dω′
)

= (ZH
V (ω))−11Ω′(ω′) exp{−HV (ω′)}Π0

V (ω; dω′)

if 0 < ZH
V (ω) <+∞ and zero otherwise, ZH

V (ω)=
∫

Ω′ exp(−HV (ω′))Π0
V (ω; dω′)

being the (∂FV -measurable) normalisation factor corresponding to the space-
time window V and to the boundary condition ω. So for each ω∈ Ω, ΠH

V

(

ω; dω′
)
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is a probability measure on Ω whose support is included in Ω′; one then says
that a probability measure Q on Ω is a space-time Gibbs state corresponding
to the specification ΠH

V (ω; dω′) whenever the identity

Q(A | F̂V ) = ΠH
V

(

A
)

, Q-a.s., (3.1)

holds true for each V ∈ V and all A ∈ FV .
The asymptotic dynamics Q∞ may now be presented as a limit correspond-

ing to the finite-dimensional dynamics Q̃n given by

Q̃n

(

dxn

)

= exp
{

−HVn
(x)

}

⊗
i∈Λ++

n

p |FIn
(dxi),

Vn = Λn × In being here a sequence of bounded space-time windows increasing
up to Zd × R+ (so that Λn ր Zd, In =]0;Tn[, Tn → +∞), and xn denoting
the restriction of a configuration x to Λ++

n × I+
n . To be more precise, one may

extend each of the probability measures Q̃n to Ω by letting

Qn(dx) = exp
(

−HVn
(x)

)

P (dx),

and observe that Qn converges weakly to Q∞. On the other hand, each of
the probability measures Qn is actually a mixture of the local specifications
ΠH

Vn
, which shows that the weak limit Q∞ is a Gibbs measure corresponding to

ΠH =
(

ΠH
V

)

V ∈V
(see Lemma 2 and Proposition 1 in [17]). Moreover we may now

derive a cluster expansion in space-time for some finite-volume approximation
Qn, with n arbitrarily large, and look for some exponential bounds for the
corresponding contour coefficients: as long as these bounds depend only on
the small parameter β, such cluster expansion will also be valid for Q∞ itself.
The main consequence of interest to us is that one may then establish that the
interacting diffusions

{

(xi
t)t≥0; i ∈ Zd

}

driven by Q∞ decorrelate exponentially
fast in space and time.

Theorem 3.1. There exists β0 > 0 such that for each 0 < β ≤ β0, one may

find positive constants c, C for which

∣

∣

∣

∣

∫

Ω

F (x)G(x)dQ∞(x) −
∫

Ω

FdQ∞ ·
∫

Ω

GdQ∞

∣

∣

∣

∣

≤ C exp{−cD(V1;V2)}

whenever F,G : Ω → R are measurable with respect to FV1 , FV2 respectively

and such that ‖F‖∞, ‖G‖∞ ≤ 1, D(V1;V2) standing for a measure of the

distance separating the bounded space-time windows V1 = Λ1 × I1 and V2 =
Λ2 × I2.

Considering bounded functionals F (x) which depend on x only through xΛ
t =

{

(xi
t); i ∈ Λ

}

yields the following exponential ergodicity statement:
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Corollary 3.1. For each 0 < β < β0, there exist positive constants c, C such

that

∣

∣

∣

∫

F
(

xΛ
t

)

F
(

xΛ
t+T

)

dQ∞ −
∫

F
(

xΛ
t

)

dQ∞ ·
∫

F
(

xΛ
t+T

)

dQ∞

∣

∣

∣
≤ C · e−cT

whenever F : Ω → [0; 1] is a bounded measurable functional of x depending on

x only through xΛ
t =

{

(xi
t); i ∈ Λ

}

, for some t and some finite box Λ ⊂ Zd (c
and C do not depend on Λ).

In the next subsection, we establish the validity of a cluster expansion in space-
time for Q∞ considered in the high temperature regime, and give exponential
estimates for the corresponding contour coefficients in Proposition 3.2. The
above theorem may then be seen to follow from the validity of such exponential
estimates, as was established in a general setting in [16] (§3 in Chapter 3).

3.2. Construction of a cluster expansion for Q∞

For simplicity, we first consider the Markovian case where σ2 = 0 and derive a
space-time cluster expansion for some finite-volume approximationQn following
the method developped by Dai Pra and the second author in [6]. In our case
some extra care has to be taken in the exponential estimation of the contour
coefficients, since the interaction term β

(
∑

j∼i x
j
t

)

dt appearing in the drift of
our stochastic differential is not a uniformly bounded one. We then consider
the non-Markovian setting where σ2 > 0; in this case the notion of contour
has to be modified, but in the end one may again derive a satisfactory cluster
expansion in space-time, where the validity of some exponential estimates for
the contour coefficients may be seen to follow from the uniform boundedness of
the original random field variables hi ∈ (±σ).

3.2.1. Markovian case (σ2 = 0)

We recall that ν0 denotes the probability measure on R yielding a reversible
equilibrium measure for the diffusion (2.1) and equip the stochastic differential

system S∞ with the initial condition ν⊗Zd

0 . For fixed y, z ∈ R, we further let
Wy,z

I (dω) denote a stochastic bridge associated with the diffusion (2.1) consid-
ered on the interval I. Fixing a > 0, we then let In = [0;na], whereas

(

Λn

)

n≥1

is defined recursively through the relations

Λ0 =
{

i ∈ Zd | |i| = 0 or |i| = 1
}

, Λn+1 = Λ+
n , ∀n ∈ N.

In this Markovian context, the partition function Zn associated with Qn,

Zn =

∫

Ω

exp{−HVn
(x)}P (dx),
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may be decomposed as the following integral over yn ∈ R(n+1)|Λn+2|:

Zn =

∫

R(n+1)|Λn+2|

Zn(yn)
∏

k∈Λn+2,0≤j≤n−1

qa(yk
j+1; y

k
j ) ⊗

k∈Λn+2,0≤j≤n
ν0(dy

k
j ),

(3.2)
qa(yk

j+1; y
k
j )dν0(y

k
j ) denoting a transition probability density on any time inter-

val of length a for the diffusion (2.1) considered in its stationary regime, and
Zn(yn) being defined by

Zn(yn) =

∫

Ω

exp
{

−HVn
(x)

}

⊗
k∈Λn+2,0≤j≤n−1

Wyk
j ,yk

j+1

Ij
(dxk)

=
∏

0≤j≤n−1

∫

Ω

exp
{

−HΛn×Ij
(x)

}

⊗
k∈Λn+2

Wyk
j ,yk

j+1

Ij
(dxk) (3.3)

=
∏

0≤j≤n−1

∫

Ω

∏

k∈Λn+1

exp
{

− φ(k+Λ0)×Ij
(x)

}

⊗
k∈Λn+2

Wyk
j ,yk

j+1

Ij
(dxk).

Analysing the spatial product
∏

k∈Λn+1
exp

{

−φ(k+Λ0)×Ij
(x)

}

first, and letting
φk;j = φ(k+Λ0)×Ij

, one obtains

∏

k∈Λn+1

exp{−φk;j(x)} =
∏

k∈Λn+1

{1 + (exp{−φk;j(x)} − 1)}

= 1 +
∑

L

∑

k∈L

(exp{−φk;j(x)} − 1)

= 1 +
∑

s≥1

∑

γj
1,...,γj

s

s
∏

m=1

∏

k∈γj
m

(exp{−φk;j(x)} − 1),

where
∑

L denotes a sum over all nonempty subsets of Λn+1, and where
∑

γj
1 ,...,γj

s

stands for a summation over all maximal “Λ0-connected” components of L× Ij ,
so that L× Ij =

(

γj
1 × Ij

)

∪ . . . ∪
(

γj
s × Ij

)

, the latter decomposition being the

finest one for which (γj
r +Λ0)∩(γj

r′ +Λ0) = ∅, for all 1 ≤ r 6= r′ ≤ s. Integrating
back (and still using the Markov property) we have:

Zn(yn) =
n−1
∏

j=0

∫

Ω

{

1 +
∑

s≥1

∑

γj
1,...,γj

s

s
∏

m=1

∏

k∈γj
m

(

exp{−φk;j(x)} − 1
)

}

⊗
k∈Λn+2

Wyk
j ,yk

j+1

Ij
(dxk).



Asymptotics of an infinite-dimensional diffusion 673

The time product
∏n−1

j=0 qa(yk
j+1; y

k
j ) may also be expanded as

1 +
∑

τ

∑

Ij∈τ

(

qa(yk
j+1; y

k
j ) − 1

)

= 1 +
∑

p≥1

∑

τk
1 ,...,τk

p

p
∏

u=1

∏

Ij∈τk
u

(

qa(yk
j+1; y

k
j ) − 1

)

,

where
∑

τ runs over all non-ordered collections of intervals of the type Ij =
[

ja; (j+1)a
]

, 0 ≤ j ≤ n−1, and where the summation
∑

τk
1 ,...,τk

s
is taken over all

pairwise non-intersecting collections of consecutive time intervals τk
u = {(k; Ij),

(k; Ij+1), . . . , (k; Ij+r)}.
Inserting both of these expansions in the expression (3.2) obtained for Zn,

one obtains

Zn =

∫

R(n+1)|Λn+2|

n−1
∏

j=0

∫

Ω

(

1 +
∑

s≥1

∑

γj
1 ,...,γj

s

s
∏

m=1

∏

k∈γj
m

(

exp{−φk;j(x)} − 1
)

)

⊗
k∈Λn+2

Wyk
j , yk

j+1

Ij
(dxk)

×
∏

k∈Λn+2

(

1 +
∑

p≥1

∑

τk
1 ,...,τk

p

p
∏

u=1

∏

Ij∈τk
u

(

qa(yk
j+1; y

k
j ) − 1

)

)

(3.4)

⊗
k∈Λn+2,0≤j≤n

ν0(dy
k
j )

so that

Zn = 1 +
∑

v≥1

∑

Γ1,...,Γv

v
∏

l=1

KΓl , (3.5)

where
Γl =

{

γj1
1 , . . . , γ

js
s ; τk1

1 , . . . , τkp
p

}

is a nonempty collection of contours γ and temporal series τ satisfying

(

γjm
m + Λ0

)

∩
(

γ
jm′

m′ + Λ0

)

= ∅, τku
u ∩ τku′

u′ = ∅, ∀m 6= m′, u 6= u′.

The coefficient KΓ attached to each aggregate Γ is given by

KΓ =

∫

R(n+1)|Λn+2|

s
∏

m=1

∫

Ω

∏

k∈γj
m

(

exp{−φk;j(x)} − 1
)

⊗
k∈Λn+2

Wyk
j , yk

j+1

Ij
(dxk)

×
p

∏

u=1

∏

Ij∈τk
u

(

qa(yku

j+1; y
ku

j ) − 1
)

⊗
(k;j)∈

[

Γ
]

ν0(dy
k
j ), (3.6)
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time

Γ

Γ

1

2

Figure 1. Two non-intersecting aggregates Γ1 and Γ2.

so that

Zn = 1 +
∑

v≥1

∑

Γ1,...,Γv

v
∏

l=1

KΓl , (3.7)

the sum
∑

Γ1,...,Γv running over arbitrary finite collections of 2 by 2 non inter-

secting aggregates, and [ Γ ] denoting the set of all vertices (k; j) appearing in
Γ. Letting further Γ denote the set consisting of all temporal edges appearing
in Γ, one may then establish the validity of an exponential upper bound of the
type

|KΓ| ≤ λ(β)|Γ|,

for some λ(β) = O(β).
Indeed, using a generalised Hölder inequality (stated and proved in [18],

Lemma 5.5), one may first show that

|KΓ| ≤
s

∏

m=1

∏

k∈γjm
m

(
∫

F k
jm

(yn)ρ1 ⊗
l∈(k+Λ0)

ν0(dy
l
jm

)ν0(dy
l
jm+1)

)1/ρ1

×
p

∏

u=1

∏

Ij∈τku
u

(
∫

∣

∣qa(yku

j+1; y
ku

j ) − 1
∣

∣

ρ2
ν0(dy

ku

j ) ν0(dy
ku

j+1)

)1/ρ2

,

the function F k
j (yn) being defined on R(n+1)|Λn+2| by

F k
j (yn) =

(
∫

Ω

| exp{−φk;j(x)} − 1|ρ1 ⊗
l∈(k+Λ0)

Wyk
j , yk

j+1

Ij
(dxk)

)1/ρ1
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and the exponents ρ1, ρ2 satisfying 2(1 + 2d)/ρ1 +2/ρ2 ≤ 1. This enables one to
control the spatial interactions and the time interactions separately; more pre-
cisely, one may then prove the existence of upper bounds M1 = M1(a, β), M2 =
M2(a, β) > 0 depending both on the time scale a and on the inverse temperature
parameter β, and for which for any k ∈ Zd, for any j ∈ N

(
∫

F k
j (yn)ρ1 ⊗

l∈(k+Λ0)
ν0(dy

l
j)ν0(dy

l
j+1)

)1/ρ1

≤M1, (3.8)

(
∫

∣

∣qa(yk
j+1; y

k
j ) − 1

∣

∣

ρ2
ν0(dy

k
j ) ν0(dy

k
j+1)

)1/ρ2

≤M2, (3.9)

whereas
lim
βց0

M1(a(β), β) = lim
βց0

M2(a(β), β) = 0 (3.10)

when the time scale a is chosen properly as a function of the inverse temperature
parameter β.

More precisely, using ultracontractivity of the reference diffusion (2.1) en-
ables one to establish the existence of positive constants a0 and C for which

(
∫

|qa(y;x) − 1| ν0(dy) ν0(dx)
)1/4

≤ Ca−1/2

as soon as a ≥ a0 (see the end of the proof of Proposition 5 in [6]); as we shall
see, the choice of a time scale a(β) = β−1/2 turns out to be a convenient one
(cf. proof of Proposition 3.1), and in this case one obtains an upper bound M2

of the type C · β−1/4 in (3.9). As for (3.8), it may be seen to follow from the
basic estimate derived below.

Lemma 3.1. Fix U(x) = Cx4 − 2Cx2 for some C > 0, and recall that Ij =
[ja; (j + 1)a] ⊂ R+. There exists a constant K > 0 depending only on C and

on the dimension d of the lattice for which
∫

Ω

exp

{

α

∫

Ij

(

∑

l∼k

xl
t

)2

dt

}

P (dx) ≤ K exp{Kα2a2},

for any α > 0, j ∈ N, k ∈ Zd.

Proof. Let us first observe that
∫

Ω

exp

{

α

∫

Ij

(

∑

l∼k

xl
t

)2

dt

}

P (dx) ≤
∫

Ω

exp

{

2αd
∑

l∼k

∫

Ij

(xl
t)

2dt

}

P (dx)

=

(
∫

Ω

exp

{

2αd

∫

Ij

(xk
t )2dt

}

P (dx)

)2d

,
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so that
∫

Ω

exp

{

α

∫

Ij

(

∑

l∼k

xl
t

)2

dt

}

P (dx) ≤
(

f(2αd)
)2d

for f defined through

f(z) =

∫

exp

{

z

∫

I

ω2
t dt

}

p(dω),

p being the probability distribution associated with the reference stationary
diffusion (2.1), and I ⊂ R+ being any interval of length a. Observing that

f(z) =

+∞
∑

n=0

zn

n!

∫
(

∫

I

ω2
t dt

)n

p(dω),

we then obtain

|f(z)| ≤
+∞
∑

n=0

|z|n
n!

∫
(

∫

I

ω2
t dt

)n

p(dω)

≤
+∞
∑

n=0

|z|n
n!

an−1

∫ ∫

I

ω2n
t dt p(dω)

=

+∞
∑

n=0

(a|z|)n

a · n!

(

∫

ω2n
0 p(dω)

)

× a

=

+∞
∑

n=0

(a|z|)n

n!

∫

R

x2n exp{−2U(x)}dx,

having used Hölder’s inequality for the first inequality and then the stationarity
of our reference diffusion process (2.1). Hence,

|f(z)| ≤
∫

R

∑

n

(ax2|z|)n

n!
exp{−2U(x)}dx

=

∫

R

exp{ax2|z| − 2U(x)}dx

= exp
{

2C
(

1 +
a|z|
4C

)2}
∫

R

exp
{

− 2C
(

x2 − a|z|+ 4C

4C

)2}

dx.

Setting A = (a|z| + 4C)/(4C) and taking into account the fact that the two-
parameter integral

I(A,C) =

∫

R

exp{−2C(x2 −A)2}dx
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satisfies
sup
A≥1

I(A,C) = K1(C) < +∞,

we then have:
∫

Ω

exp
{

α

∫

Ij

(

∑

l∼k

xl
t

)2

dt
}

P (dx)

≤ |f(2αd)|2d ≤ K1(C)
(

exp
{

2C
(

1 +
aαd

2C

)2})2d

= K1(C) exp
{

4Cd
(

1 +
aαd

2C

)2}

,

which finishes the proof. 2

The proof of inequality (3.9) may now be seen to follow from the estimate
given in the preceding lemma, and we give the full details of such a derivation
in the non-Markovian case where σ2 > 0 (see Proposition 3.1 and its proof).

3.2.2. Non-Markovian case (σ2 > 0)

In order to obtain a satisfactory cluster expansion in the non-Markovian
setting where σ2 > 0, we shall now take into account the fact that the SLLN
characterising Q∞ as an asymptotic dynamics is of a self-averaging nature.

Lemma 3.2. For any space-time window V ∈ V and for x ∈ Ω′, the (space-

time) Boltzmann weight

exp{−HV (x)} = exp
{

∑

i∈Λ+

[

∫

I

bit(x)dBi
t(x) − 1

2

∫

I

bit(x)2dt
]}

may also be presented as

exp{−HV (x)} = Eh

[

exp
{

∑

i∈Λ+

[

∫

I

cit(x; h)dBi
t(x) − 1

2

∫

I

cit(x; h)2dt
]}]

,

where cit(x; h) is given by

cit(x; h) = β
(

∑

j∼i

xj
t + hi

)

.

Proof. The proof is similar to that of Proposition 2.1. Indeed, considering first
the particular case where V =

{

i
}

× [0, t], one may introduce

M i
t (x) = exp

{

t
∫

0

biu(x)dBi
u(x) − 1

2

t
∫

0

biu(x)2du
}
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and observe that
(

M i
t (x)

)

t≥0
is a positive martingale with mean 1 under dP (x)

such that

logM i
t (x) =mart

t
∫

0

biu(x)dBi
u(x)

(using here again the notation introduced in the proof of Proposition 2.1). Re-
membering the expressions given for the functionals bit(x), Bi

t(x) and B̃i
t(x), we

then have

logM i
t (x) =mart

t
∫

0

(

β
∑

j∼i

xj
u

)

dBi
u(x) + σβ

t
∫

0

tanh
(

σβB̃i
u(x)

)

dBi
u(x)

=mart

t
∫

0

(

β
∑

j∼i

xj
u

)

dBi
u(x) + σβ

t
∫

0

tanh
(

σβB̃i
u(x)

)

dB̃i
u(x)

=mart

t
∫

0

(

β
∑

j∼i

xj
u

)

dBi
u(x) + log cosh

(

σβB̃i
t(x)

)

,

the last equality following from Itô’s formula. Now the second summand in the
latter term may also be presented as

log Eh

[

exp{βhiB̃i
t(x)}

]

,

which establishes Lemma 3.2 in the particular case where V =
{

i
}

× [0, t]. The
general case may be proved along the same lines. 2

This representation of the Boltzmann weights turns out to be very convenient
for our purposes, at least in the Bernoulli setting; one may indeed replace the
identity (3.2) obtained for Zn by an expected value

Zn = Eh

[
∫

Rn|Λn+2|

Zh

n (yn)
∏

k∈Λn+2,
0≤j≤n−1

qa(yk
j+1; y

k
j ) ⊗

k∈Λn+2,
0≤j≤n

ν0(dy
k
j )

]

(3.11)

where, correspondingly to (3.3), Zh
n (yn) is now given by

Zh

n (yn) =
∏

0≤j≤n−1

∫

Ω

∏

k∈Λn+1

exp
{

− φh

(k+Λ0)×Ij
(x)

}

⊗
k∈Λn+2

Wyk
j ,yk

j+1

Ij
(dxk

. ),

(3.12)
and where

φh

(k+Λ0)×Ij
(x) = −

∫

I

(

β
∑

l∼k

xl
t + βhk

)

dBk
t (x) +

1

2

∫

I

(

β
∑

l∼k

xl
t + βhk

)2

dt.
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Following step by step the development given precedingly in the Markovian case,
one then obtains

Zn = 1 +
∑

v≥1

∑

Γ1,...,Γv

Eh

[

v
∏

l=1

Kh

Γl

]

, (3.13)

the coefficient Kh

Γl being now given by

Kh

Γ =

∫

R(n+1)|Λn+2|

s
∏

m=1

∫

Ω

∏

k∈γj
m

(

exp{−φh

k;j(x)} − 1
)

⊗
k∈Λn+2

Wyk
j , yk

j+1

Ij
(dxk

. )

×
p

∏

u=1

∏

Ij∈τk
u

(

qa(yku

j+1; y
ku

j ) − 1
)

⊗
(k;j)∈[Γ]

ν0(dy
k
j ), (3.14)

for each aggregate Γ =
{

γj1
1 , . . . , γ

js
s ; τk1

1 , . . . , τ
kp
p

}

.

In order to view the average Eh

[
∏v

l=1K
h

Γl

]

as a product running over some
new aggregates, one should then partition the collection Γ1, . . . ,Γv into a con-
venient collection of (two by two disjoint) subsets

Θ1 =
{

Γe1,1, . . . ,Γen1 ,1
}

, . . . ,Θṽ =
{

Γe1,ṽ, . . . ,Γenṽ
,ṽ

}

(ṽ ≤ v).

To be more precise, one may define the “spatial support” associated with

Γ =
{

γj1
1 , . . . , γ

js
s ; τk1

1 , . . . , τkp
p

}

as
suppZd(Γ) = {k ∈ Zd : ∃1 ≤ m ≤ s, (k; jm) ∈ γjm

m }
and then decompose {Γ1, . . . ,Γv} into a union {Γ1, . . . ,Γv}=∪ṽ

l=1Θl, each of the
classes Θl = {Γe1,l, . . . ,Γen,l} being maximal among all subsets of {Γ1, . . . ,Γv}
satisfying

∀1 ≤ n′ ≤ n, ∃n′′ 6= n′, suppZd

(

Γen′
)

∩ suppZd

(

Γen′′
)

6= ∅.

One thus obtains:

Eh

[

v
∏

l=1

s
∏

m=1

∏

k∈γjm
m

(

exp{−φh

k,jm
(x)} − 1

)

]

=

ṽ
∏

l=1

Eh

[

n
∏

n′=1

s
∏

m=1

∏

k∈supp(γjm
m )

(

exp{−φh

k,jm
(x)} − 1

)

]

,

so that

Zn = 1 +
∑

ṽ≥1

∑

Θ1,...,Θṽ

ṽ
∏

l=1

K̃Θl , (3.15)



680 S. Rœlly and M. Sortais

Γ 2

Γ 1

time

Z 2

Figure 2. Two aggregates, Γ1 and Γ2, having disjoint supports.

the new cluster coefficients K̃Θ being now given by

K̃Θ =

∫

R(n+1)|Λn+2|

∏

(k;Ij)∈Θ

(

qa(yk
j+1; y

k
j ) − 1

)

⊗
(k;j)∈[Θ]

ν0(dy
k
j )

×
{

∫

Ω

Eh

[

∏

(k;j)∈[Θ]

(

exp{−φh

k,j(x)} − 1
)

]

⊗
(k;Ij)∈Θ

Wyk
j , yk

j+1

Ij
(dxk

. )

}

= Eh

[
∫

R(n+1)|Λn+2|

∏

(k;Ij)∈Θ

(

qa(yk
j+1; y

k
j ) − 1

)

⊗
(k;j)∈[Θ]

ν0(dy
k
j ) (3.16)

×
{

∫

Ω

∏

(k;j)∈[Θ]

(

exp{−φh

k,j(x)} − 1
)

⊗
(k;Ij)∈Θ

Wyk
j , yk

j+1

Ij
(dxk

. )

}]

.

For a fixed realisation of h, one may then apply the generalised Hölder inequality
stated as Lemma 5.5 in [18], first to the integral

∫

Ω

∏

(k;j)∈[Θ]

(

exp{−φh

k,j(x)} − 1
)

⊗
(k;Ij)∈Θ

Wyk
j , yk

j+1

Ij
(dxk

. ),

whose absolute value is bounded from above by the product

n
∏

n′=1

s
∏

m=1

∏

k∈supp(γjm
m )

(
∫

Ω

(

exp{−φh

k,jm
(x)} − 1

)ρ ⊗
l∈(k+Λ0)

Wyl
jm

, yl
jm+1

Ijm
(dxl

.)

)1/ρ
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=

n
∏

n′=1

s
∏

m=1

∏

k∈supp(γjm
m )

Fh

k, jm

(

{

yl
j

}l∈k+Λ0

j=jm,jm+1

)

for ρ = 4(2d + 1) (since each of the edges
(

k; Ij
)

cannot appear in more than
2d+ 1 of the contours γ or τ pertaining to the collection Θ); one may secondly
apply this generalised Hölder inequality to

∫

R(n+1)|Λn+2|

n
∏

n′=1

{ p
∏

u=1

(

qa(yku

j+1; y
ku

j ) − 1
)

×
s

∏

m=1

∏

k∈supp(γjm
m )

Fh

k, jm

(

{

yl
j

}l∈k+Λ0

j=jm ,jm+1

)

}

⊗
(k;j)∈[Θ]

ν0(dy
k
j ),

whose absolute value is bounded from above by

n
∏

n′=1

{ s
∏

m=1

∏

k∈supp(γjm
m )

(
∫

R2

|qa(yku

j+1; y
ku

j ) − 1|4dν0(yku

j ) dν0(y
ku

j+1)

)1/4}

×
{ s

∏

m=1

∏

k∈supp(γjm
m )

(
∫

Fh

k, jm

(

{

yl
j

}l∈(k+Λ0)

j=jm,jm+1

)ρ

⊗
l∈(k+Λ0)

dν0(y
l
jm

) dν0(y
l
jm+1)

)1/ρ}

(since each of the space-time vertices (k; j) appears at most 2(1 + 2d) times as
an extremity of an edge pertaining to Θ).

Controlling the term

(
∫

R2

∣

∣qa(yku

j+1; y
ku

j ) − 1
∣

∣

4
dν0(y

ku

j ) dν0(y
ku

j+1)

)1/4

(3.17)

requires of course no new ingredient, and we are left with the control of the
expected value

Eh

[ n
∏

n′=1

s
∏

m=1

∏

k∈supp(γjm
m )

(
∫

Fh

k, jm

(

{

yl
j

}l∈(k+Λ0)

j=jm ,jm+1

)ρ

⊗
l∈(k+Λ0)

dν0(y
l
jm

)dν0(y
l
jm+1)

)1/ρ
]

,

where

Fh

k,jm

(

{

yl
j

}l∈(k+Λ0)

j=jm, jm+1

)ρ

=

∫

Ω

(

exp{−φh

k,jm
(x)}−1

)ρ ⊗
l∈(k+Λ0)

Wyl
jm

, yl
jm+1

Ijm
(dxl).
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Using the uniform boundedness of the variables hi, one may actually give a
satisfactory upper bound that is valid almost surely in h (having assumed β is
small enough).

Proposition 3.1. There exists a positive constant β0 for which the following

holds true: whenever 0 < β ≤ β0, one may choose a time scale a = a(β) > 0 so

that for ρ = 4(2d+ 1)

(
∫

Ω

Fh

k, jm

(

{

yl
j

}l∈k+Λ0

j=jm,jm+1

)ρ

⊗
l∈k+Λ0

dν0(y
l
jm

)dν0(y
l
jm+1)

)1/ρ

= O(β)

uniformly in k, jm and h.

Proof. Let us recall that qt(y2; y1) denotes the transition density of the reference
diffusion (2.1),

dxt = dwt − U ′(xt) dt,

with respect to its invariant reversible measure ν0; qt may be defined through
the equalities

p
{

xt ∈ dy2 | xt=0 = y1
}

= qt(y2; y1)ν0(dy2),

and since the single-site potential U has been defined as U(x) = Cx4 − 2Cx2,
we know that the diffusion (2.1) is ultracontractive (cf. [13]). Hence, qt(y2; y1)
converges to 1 uniformly in y1, y2 ∈ R, and a fortiori

∀A > 1, ∃ a0 ∈ R+, ∀a > a0, ∀y1, y2 ∈ R, qa(y2; y1) ≥
1

A
.

Choosing a time-scale a > 0 that is large enough, we may thus replace the
integral

(
∫

(
∫

Ω

(

exp{−φh

k,jm
(x)} − 1

)ρ ⊗
l∈(k+Λ0)

Wyl
jm

, yl
jm+1

Ijm
(dxl

.)

)

⊗
l∈(k+Λ0)

dν0(y
l
jm

)dν0(y
l
jm+1)

)1/ρ

by

(
∫

(
∫

Ω

(

exp{−φh

k,jm
(x)} − 1

)ρ ⊗
l∈(k+Λ0)

Wyl
jm

, yl
jm+1

Ijm
(dxl

.)

)

⊗
l∈(k+Λ0)

dν0(y
l
jm

)dν0(y
l
jm+1)

qa(yl
jm
, yl

jm+1)

)1/ρ

,
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thereby loosing only a constant factor A(2d+1)/ρ. But the latter integral coin-
cides with

(
∫

Ω

(

exp{−φh

k,j(x)} − 1
)ρ
P (dx)

)1/ρ

,

and we then have:
∫

Ω

(

exp{−φh

k,j(x)} − 1
)ρ
P (dx)

=

∫

Ω

(

1
∫

0

φh

k,j(x) exp{−τφh

k,j(x)}dτ
)ρ

P (dx)

=

∫

[0,1]ρ

∫

Ω

(φh

k,j(x))ρ exp{−(τ1 + . . .+ τρ)φ
h

k,j(x)}P (dx) dτ1 . . . dτρ

=

∫

[0,1]ρ

dρ

dzρ
T h(z)

∣

∣

∣

∣

z=τ1+...+τρ

dτ1 . . . dτρ,

where for any z ∈ C,

T h(z) =

∫

Ω

exp{−zφh

k,j(x)}P (dx).

According to Cauchy’s formula:
∣

∣

∣

dρ

dzρ
T h(z)

∣

∣

∣
≤ ρ!

rρ
sup

|ζ−z|=r

|T h(ζ)|,

whenever T h is holomorphic on an open domain containing B(z; r), and we also
know that for ζ = ξ1 + ιξ2, ξ1, ξ2 ∈ R,

|T h(ζ)| ≤
∫

Ω

∣

∣ exp{−ζφh

k,j(x)}
∣

∣P (dx) =

∫

Ω

exp{−ξ1φh

k,j(x)}P (dx).

Factorising exp{−ξ1φh

k,j(x)} into

exp

(

ξ1

∫

Ijm

ckt (x; h)dBk
t (x)−ξ21

∫

Ijm

ckt (x; h)2dt

)

·exp

(

(

ξ21−
ξ1
2

)

∫

Ijm

ckt (x; h)2dt

)

and using the Cauchy– Schwarz inequality together with the P -martingale prop-
erty of the square of the first factor then yields:

∫

Ω

(

exp{−φh

k,j(x)}−1
)ρ
P (dx) ≤ ρ!

rρ

(
∫

Ω

exp
{

(2ξ2−ξ)
∫

Ijm

ckt (x; h)2dt
}

P (dx)

)1/2

,
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ξ > 0 being chosen so that (ξ2 − ξ/2) is larger than any of the (ξ21 − ξ1/2)’s
appearing when using an auxiliary parameter ζ such that |ζ − (τ1 + . . .+ τρ)| =
r.

At this stage the integrand

exp
{

(2ξ2 − ξ)

∫

Ijm

ckt (x; h)2dt
}

may be estimated from above by

exp{(4ξ2 − 2ξ)aσ2β2} exp
{

(4ξ2 − 2ξ)β2

∫

Ijm

(

∑

l∼k

xl
t

)2

dt
}

,

and replacing further (4ξ2 − 2ξ) by 4(ρ+ r)2, it thus remains to control

ρ!

rρ
exp{4(ρ+ r)2aσ2β2}

(
∫

Ω

exp
{

4(ρ+ r)2β2

∫

Ijm

(

∑

l∼k

xl
t

)2

dt
}

dP (x)

)1/2

.

Taking a(β) = β−1/2 and using Lemma 3.1 enables us to replace the above term
by

fβ(r) =
ρ!

rρ
exp{4(ρ+ r)2σ2β3/2} ·K · exp{16Kβ(ρ+ r)4},

and min
r>0

fβ(r) may be seen to decrease to 0 as β ց 0 by setting e.g. rβ = β−1/ρ =

β−1/4(2d+1), for which one obtains the existence of K̃ such that fβ(rβ) ≤ K̃β
for all β small enough. This finishes the proof. 2

We are now in a position to give exponential estimates for the cluster coef-
ficients K̃Θ appearing in the decomposition (3.15).

Proposition 3.2. There exists an β0 > 0 for which the following holds true:

whenever 0 < β ≤ β0, one may choose a time scale a = a(β) > 0 so that

each of the cluster coefficients K̃Θ appearing in the decomposition (3.15) of the

partition function Zn satisfies

|K̃Θ| ≤ C ·
(

λ(β)
)|Θ|

,

|Θ| denoting the number of temporal edges (k; Ij) appearing in the cluster Θ,

and λ being such that

lim
βց0

λ(β) = 0.

Proof. This is a simple consequence of inequality (3.9) and of Proposition 3.1,
yielding an exponential control of the contributions associated with “time con-
tours” and “spatial contours” respectively. 2
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As a consequence of such exponential control of K̃Θ, we may further assert
that the asymptotic dynamics Q∞ is exponentially ergodic in a space-time sense
(Theorem 3.1). The link between such exponential control of the cluster coef-
ficients K̃Θ and an exponential decay of correlations under the Gibbs measure
Q∞ may be found in [16] (see Lemma 1 in §2 of Chapter 3).
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