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This paper is concerned with the asymptotic behaviour of a system of particles with moderate 
interaction. The main result is a propagation of chaos result which generalizes a convergence 
result of Oelschliiger. A trajectorial propagation of chaos result is also given. 

system of particles * moderate interaction * propagation of chaos * martingale problem 

O. Introduction 

In the present paper  we study the asymptotic behaviour of a system of particles 

which interact moderately, i.e. a situation intermediary between weak and strong 

interaction. We consider the following model: let (g2, ~:, ~t, P) be a filtered 
probabili ty space, endowed with n independent  Rd-valued Brownian motions 

• . . ,  n (X0)l~i~n, ,~0-measurable, whose B 1, B , and an Ran-valued random variable 
law u n on R an is symmetric. So the system of particles is given by 

i in in V n n i,n i t ~ .  dXi" =F(X~" , * ~.Lt(X t ) ) d t + d B t ,  0<~ T, l<~i<~n, 
(1) 

i , n  i 
[ Xo = Xo, 

where /z ,  is the empirical random probabili ty measure n-1 ~ ~,=, 8 x',% F has regularity 
properties and V n is a renormalization of a fixed bounded density function V', 

which is an approximation of the Dirac measure: 

v n (  • ) = n l 3 V l ( n  13/d" ), f l  > O. 

The interaction is a nonl inear  function o f /z . ,  and depends on/3, the normalization 
coefficient of V n. In the limit case/3 = 0, V n is equal to V 1, and the system is called, 
as in physics, a weakly interacting system, because the interaction depends only on 
a fixed function o f / z  n. Several asymptotic results have already been obtained, in 
Braun and Hepp [1], McKean  [4], Sznitman [7], for a linear function F, and in 
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Oelschl~iger [5], for a more general function F. The parameter/3 controls the speed 
of the convergence of V" to the Dirac measure 30. In the case 0 </3 < 1, using 
fundamental estimates (V" */z? belongs to the Sobolev Space H a, P-a.s.), we prove 
the convergence of the interaction term F(x, V" * ~'~(x)) to F(x, u~(x)), where u. 
is the density with respect to Lebesgue measure of the law of X., the limit process 
of X 1'". Let us prove that it corresponds to the case when the variance of 
V" * (n -~ Y+7-~ ~Y') (X), where Y+ are some i.i.d, random variables, is uniformly 
bounded in n, and even vanishes as n tends to infinity: 

V a r (  V"* n-1 ,=1 ~ t3Y'(X)) =E((V'*mn(X))2)-E2(V'*m"(X)) 

(m---.-' By,). 
i = 1  

Since yi  are i.i.d., with law u(x 
Var (V" * m"(x))= Var 

- 1  
= ! 1  

dx, 
n-t ,=1 ~ V"(x- Y') )  =n-lVar(V"(x - Y')) 

n 2 t 3 ( V l ( n l 3 / d ( x _ y ) ) ) 2 u ( y ) d y  
m d 

-(fad n~Vt(n~/a(x-y))u(y)dy) 
2] 

I. 
z)u(x- z~ n dz) 

which vanishes if and only if 0 <~/3 < 1. 
The main result of this paper is a propagation of chaos theorem, which generalizes 

a convergence result given by Oelschl~iger [6]. He proves his result on the space of 
probability measure valued processes. More generally we will obtain, with techniques 
of stochastic calculus, convergence results on the space of probability measures on 
C([0, T]; Rd). Then we will prove that the law of the first m particles, m fixed, 

when the number n of interacting particles is growing, tends to the law (pO)®,, of 
m independent particles, where pO belongs to ~ (C( [0 ,  T]; Rd)), and satisfies the 
following martingale problem (*): for each f ~  C~(Ra), 

fo ' f (X,)-f(Xo)- (F(Xs, p~(Xs)). Vf(Xs)+½Af(Xs))ds 

is a P°-martingale, where Xt is the canonical process on C([0, T]; R d) and p0 is 
the density on R d of the probability measure P°oX,. 

We may notice that in the uniqueness result for the limit process, we could have 
considered a more general diffusion than the Brownian motion for the diffusion 
associated with each particle. 
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In this paper we first prove the uniqueness of the nonlinear process which satisfies 

the martingale problem (.).  We also give regularity properties of the density of the 
law of a semimartingale, whose finite variation process is the integral of a bounded 
measurable function. 

To prove the main result we will use an equivalent formulation to the propagation 
of chaos, given by Sznitman [8, Lemma A-l]: the laws P" of ( X " " , . . . ,  X"'") are 
P°-chaotic (i.e. there is a propagation of chaos for the processes X ~'") if and only 
if the empirical probability measures /z" converge in law towards the constant 
probability measure pO. 

In Section 2 we prove the tightness of the laws of tz". In fact, we will give a 
stronger result which allows us to identify the limit of the interaction term 
F( - ,  V" * ~"( - ) ) .  

In the last section, thanks to the uniqueness result proved in the first section, we 
show the uniqueness of the limit values of the laws of (/z"), which completes the 
proof of the propagation of chaos theorem. Moreover, under a regularity assumption 
for the initial law, we obtain a "trajectorial propagation of chaos result". 

The authors thank A.S. Snitzman for his useful advice. 

Notation and hypotheses 

- For each function v:[0,  T] x Ra-~ R, we will denote by vr the function on R '~ 
defined by vr(x) = v(r, x).  

- On the space C([0, T]; Ra), Xr is the rth coordinate, and for a probability 
measure m on C([0, T]; Rd), mr is the probability measure on R d defined by 

m r - -  m o X r  . 

- L e t  ~ ( C ( [ O , T ] ; R d ) )  denote the space of probability measures on 
C([0, T]; Rd). Then ~ ( C ( [ 0 ,  T]; Ra)) is the space 

{Q e ~(C([0 ,  T]; R d)); Vr e ]0, T], Or ~ A (Lebesgue measure on W ~ ), 

Qr(dx)=qr(x )  dx} 

- W~ is the Sobolev space defined by (cf. Triebel [9]) 

w (a = {vm Ilvll = II + Ixl=)r/2 vll  < +oo  

where ~ denotes the Fourier transform and I1" is the norm in Lp(Rd). 
- W~ will be denoted by H r. 
- C ~ is the space of HSlder-continuous functions with exponent a defined by 

C ~ =  
I x - y ]  < . 

- For  t > 0, let g, denote the density of the law of the Brownian motion BI; g, 
belongs to L q uniformly on [e, T], e >0 ,  for each q >  1. We denote by S, the 
s e m i g r o u p  a s s o c i a t e d  t o  g t  b y  S d "  = g t  * f i  
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- Let F be a bounded continuous function on R d+l with values in R d which 

satisfies 

[F(x,r)-F(y,s)l+lrF(x,r)-sF(y,s)[<-K(lx-yl+lr-sl) Vx, d, Vr, s R. 

- V n is a probability density defined by 

Vn(x)=n~V'(n~/ax),  x ~ R  d, 0 < / 3 < 1 ,  

where V 1 is a bounded continuous probability density on R d with finite moment  of 

order 1, which satisfies V ~= W * W, for some probability density W, where W is 
in H r, for some r > 0. In particular this implies V ~ ~ L2(R a). 

This last hypothesis is used in 3.3 to regularize the scalar product of a singular 

measure with a function. It is often satisfied, for example if  we take the Gaussian 

kernel V ~ = gl- 
- K will be a real positive constant varying from place to place. 

1. A uniqueness  result for the non-l inear process 

We will call a solution of the following martingale problem (2) an element P of 
~ ( C ( [ 0 ,  T]; Rd)) such that, if  we take almost everywhere in [0, T] a measurable  

version of the mapping ps (the density of P~), then 

V f e C ~ ( R  a) f ( X t ) - f ( X o ) -  (Vf(X~).F(Xs,  ps(X~))+½Af(X~))ds (2) 

is a P-martingale,  and Po = u ° fixed in ~(Rd).  

It is clear that this martingale problem is well defined, namely it does not depend 

on the choice of the measurable version of ps ( . ) :  by Girsanov's theorem, the law 

Ps is equivalent to the law of a Brownian motion B~, which is absolutely continuous 
with respect to A. Then S'oVf(Xs)'F(X~,p~(X~))ds does not depend on the 

choice of p~. 
To study the solution of the martingale problem (2), we first need to examine the 

equation which is satisfied by p,, i.e.: 

p,=Stu ° -  S,_~V.(p~F(.,ps(.)))ds. (3) 

We will first prove that, for each s of ]0, T], the density p~ of a solution of (2) 

belongs to L q c~ C '~, q in ]1, +00[ and a < 1. 
In the two following propositions we show a slightly more general result. 

Proposi t ion 1.1. On a filtered probability space (£2, ~, 3~t, P), let Y, be a Ra-valued 
semimartingale defined by 

Yt= Yo+B,+ Csds, O<~t<~ T, 
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where Yo is a random variable independent o f  the Brownian motion ( B,), and Cs is a 
bounded measurable function with values in R d. Then the law of Y, is absolutely 
continuous with respect to A for each t of  ]0, T] and the density function belongs to 
L q, for each q in [ 1, +0o[ uniformly on [ e, T], e > O. 

Proof. The existence of a density function u, of the law of II, is derived from 
Girsanov's theorem. Let Z, be the exponential martingale 

fo ) Zr= ~ Cs dBs =exp Cs dB~-  l / 2  C~ds . 

Then, for each bounded measurable function f, 

I(u,, f)l = I E ( f (  Y,))] 

= I E ( f (  Yo + B,)Z,)I 

~ ( E ( l f f ' ( Y o +  Bt)))I/p'(E(Zq')) 1/q' (}+l_=q, 1), 

( ( I O  t q2for ) {q21--q1Io ) E(zq,)<~E exp ql C~ dBs--~- IIC~ll = ds exp~ -~ IIC~ll = ds 

q l (q l -  1) 
<~ exp 2 K T  <~ Kq, . 

Then 

t(u,,f)]  ~ Kq,(g, * Uo, [J]P') l/p1 

< ~ K q ,  l [ g t ,  UOII 1/pt Ifll ( 1 +  1 ) 
q 2 1 d p l P 2  \~2 ~22 =1 

I / P  1 
<~ K~, II gt II ~ IVII,,,,,~. 

By taking PiP2 =P, it is proved that u, belongs to L q, 1/p + 1/q = 1, and satisfies 

sup Ilu, llq ~ Kq, sup IIg, II 1/p'~2 
t~ [~,T] e ~  < t ~  < T 

< +cx3, 

which completes the proof. 

Proposition 1.2. The density function u, defined in Proposition 1.1 is H61der continuous 
with exponent a, for every ot < 1 and t in ]0, T]. In particular, u, is a continuous function. 

Proof. We will use the continuous injection from W~ on C ~ for r > a + d / q  (cf. 
Triebel [9, Theorem 2.8.1]). The precise values of r and q will be chosen later. 
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Then we have to prove that u, belongs to 
r space of  Wq ( I / p +  1/q = 1). Then 

( u t , f ) = E ( f ( Y t ) ) = E ( G ( t ,  Y,)), 

where G satisfies 

G(t , x )=f (x ) .  

So G(s, x)= St-sf(x). By ItS's formula, applied to G(t, Y~), 

G(t, Y,)=G(e,  Y~)+ VxG(s, Ys)dBs 

+ (VxG(s, Y , )C  + -2 - + l A  G(s, Ys)) ds. 

Thus 

t" - - r  Wq. Let f belong to Wp , the dual 

I 
t 

] ( u , , f ) l ~ l ( u ~ , S J ) l + K  E(IXLG(s, Ys)l) ds. (*) 
E 

To majorize the term on the right-hand side we need the following lemma of 

functional analysis: 

Lemma 1.3. For each f of W~'(R a), r >- O, 

K K 
IIvs,f l l ,  ~ t(r+l)/2 Ilfll w:,  and IlS,fll, <~ t -~  Ilfll w : ' .  

Proof 

IlvSJII. 
K 

t(,+,>/~ IIL~-r/2fll~. 

The first inequality of  the lemma is derived from the fact that l[ zl-r/2fll ,, is equivalent 
to the norm o f f  in W~ ~. We prove the second inequality similarly. Let us remark 

that in the case p = 2 and r = 0, we can calculate explicitly: 

IlVSJII2 = Ilg, * Vfll2 = II~," vfll2 

K 
Ilfl12. 
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We can now majorize the first term of the fight side of (*): 

I(u~. s,f)l <- Ilu~llqllsJII, 

<~ Ilu~llqt-~K/~ IlflIw;. (Lemma 1.3). 

Furthermore we have 

E(IvxO(s, Y,)I)= (u. lvG.I)~ Ilu~llqllvs,-sfll,,. 
By Lemma 1.3, 

K 
E(IVxG(s. Y~)l)~ < Ilu~llq (t_s),+,/2 Ilfl[ w;" 

<~ g (sup~ll u~ I1~)Ilfll w;,(t- s)-"+')/2 

This last term is an integrable function of s on the interval [e, t], if r <  1. Then, if 

r <  1 and q >  d/r, ut belongs to C ~ for a < r - d / q .  This implies that u, belongs to 
C ~ uniformly for t in [e, T] for each a < 1. 

Then Propositions 1.1 and 1.2 imply that, i f  we take C, = F(X~, p,(Xs)), a solution 

of (2) has a density function which belongs to L2n  C ~, for a < 1. 

Let us now formulate our main result: 

Theorem 1A There exists at most one solution pO to the martingale problem (2). 

Proof. The uniqueness of the solution of (2) depends on the uniqueness of the 
solution of (3) for the following reason: if  there exists at most one solution to (3), 
then (2) is a classical m~lrtingale problem, for which existence and uniqueness of 

the solutions are well known. 

So it remains to verify the uniqueness of the solution of (3) coming from solutions 
of (2), which is the purpose of the following proposition; due to Proposition 1.1, 
such a solution is in L2(Ra). 

Proposition 1.5. There exists a unique solution to the equation 

Io Vtc]O, T] p, cL2(R a) and p , = S , u  ° -  S,_sV. (p ,F( . ,p~( . ) ) )ds  

when this equality is satisfied in L2(R a). 

(3') 

Proof. Let p. and q. be two solutions of (3'). Then, for t c ]0, T], 

IIp,-q,[[2= II St-sV'(psF(',Ps)-qsF(',qs))dsH2 

Io <~ IIS ,_sV' (p~F( ' ,p , ) -qsF( ' ,  qs)ll2ds. 
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By the remark in Lemma 1.3 and due to the Lipschitz continuity of the map 

r~---~ F(x,  r). r, 

Io [[p,-q,[[z<~ K [[ps-qsl l2/x/ t -s  ds. 

Noting that s~--~l/x/-i-Z-s is integrable in [0, t], we apply Gronwall's lemma to 

complete the proof. 

Remark 1.6. When the initial law u ° has a density function, it follows from 

Veretennikov [10] that the equation 

X , = X o + B t +  F(Xs,  p,(X~))ds 

has a strongly unique solution. 

2. A tightness result 

Let (Xi'")l~i~, be the system of n particles given by the equations (1). The 
propagation of chaos for these particles results from the convergence in distribution 
of the following random measures/z" in ~ (C( [0 ,  T]; Rd)); 

n 

I ~.(to)=--1 ~ Bx:,"(,,,). 
n i = l  

In this section we study the tightness of the sequence (~r ")~ in 
~ ( ~ ( C ( [ 0 ,  T]; Ra))), which are the laws of/z".  In fact we will prove a stronger 
result: the tightness of (~r") is easy to prove because F is bounded, but it does not 
suffice to identify the limit values of (Tr") as Dirac measures. Thus we consider the 

space 

~ = ~ ( C ( [ 0 ,  T];Ra))xL2((e ,  T ) x R  a) 

endowed with the weak topology on ~ (C( [0 ,  T]; R d)) and the topology defined by 
the norm on L2((e, T ) x R d ) ;  e is an arbitrary nonnegative real number, which 
appears in the proof of the Proposition 2.2. Let us denote by m and v the canonical 
projections on ~ .  We consider the laws z~" of the random variables 
(/~."(to), V" */.~."(to)) with values on Y(~. 

It is well known that (~")~ is tight if and only if (~" o m)~ and (~" o v)~ are 

tight. We prove: 

Proposition 2.1. The sequence ( ~r" om) .  is tight. 

Proposition 2.2. I f  (~'"). = (~r" o m).  is tight, then (~r" o v),  is also tight. 

Proof of Proposition 2.1. It is clear that ~" o m is equal to 7r n. The tightness of (Tr"), 
is derived from the tightness of the "intensities" of (/z.")., thanks to the following 

lemma (cf. Sznitman [8]). 
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[,emma 2.3. Let X be a polish space and ( yn)n be a sequence o f  random variables 

with values in ~ ( X ) .  The laws o f  ('y~) are tight i f  and only i f  the probability measures 

on X,  I ( ~  n) defined by ( I (3 / ' ) ,  dp) = E((T" ,  dp)) are tight. We call I (T ~) the intensity 

In our case, for each ~b in Cb(C([0, T]; Rd)), 

(because i,, ( X . ) ~ i < ~ ,  are identically distributed). 
So I( /z")  is the law of the semimartingale X ~'n. Its finite variation process 

f0 ~ */~s(X," )) ds F(Xs'I~, V ~ ,~ 1~ 

is unformly bounded and equicontinuous in [0, T] for n ~ N because F is bounded,  
and then the sequence (X~'n)n is tight. 

Proof of Proposition 2.2. A key point of this proof  is the fundamental following 
estimations given by K. Oelschlhger [6, Proposition 3.2]. The condition "fl in ]0, 1[" 
is necessary here. 

Lemma 2.4. Let W be a density kernel such that W * W = V ~. I f  W belongs to H r 

then W ~ * iz ~ satisfies for  a<~ inf(r, ( 1 - f l ) d / 2 f l )  and any e > 0 ,  

(I ) (i) sup E IIW" *  Tll ds < 

(ii) sup E II W" * I1, ° ds  
/1 

r 2 ds )  
= s u p E ( f ~  Ina ( l+ [h [2 )a 'W * / z ~ ( h ) d h  

< +(x~. 

n 2 We note that the function in s which majorizes E (l[ W" */z ~ [[ 2), s > 0, used in the 
proof  of (i), is not integrable on [0, T]. For this reason we can consider the estimate 
only on [e, T]. In the same way we have (ii) only on [e, T]. Moreover the estimation 
(ii), finer than (i), is important because of the compact  embedding from H ~ on L 2. 
We will prove a stronger result than the tightness of the laws of V" * ~", i.e., we 
exhibit a sequence (~"~) of random variables on a space (g~,/5) which have the 
same distributions as V "~ */a,"~ (denoted by v "~ for convenience) and which converge 
in L2(~ ,L2( (e ,  T) xRa)) .  

Since (~r~)~ is tight there exists a subsequence (~r~)k of (zr~)~ which converges. 
Let us denote nk = n. If (~r")n converges, by Skorokhod's  theorem, we can find a 
probabil i ty space (~ , /5)  and random variables n~ ~ on this space of laws zr n which 
converge /5 a.s. For simplicity we will identify (~,/5,  ~ ,  ~,~) and (~2, P,/z ~, v ~) 
because we are only interested by the distributions of these variables. 
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To prove the convergence of (vn)~ in L2(O, L2((E, T)×Rd))  we use Cauchy's 
criterion: 

E(f /  2 dx ds) 

- - E ( I f I  u~ ]13s"(A)-v~'(A)[ 2dAds )  

- - E ( I / I  Iv=(A)-v ' (A)]  2 d A d s )  

The second term of the fight side is bounded by 

. f/Ilv ,l,,o ds (1+ 4 sup E , 2 • M 2)-a 

which vanishes when M goes to infinity thanks to (ii). 
The first term of the fight-hand side is bounded by 

2 ( T - e )  f [ ~ / " ( A ) - ~ " m ( A ) I 2 d A + 2 E ( f / I  [12~" (A) -/2~'(A)'Z dA ds ) .  

The first term of this sum vanishes for any fixed M when n goes to infinity since 
(V"),  converges to 8o and the inequality ]V~(A)I <~ 1 aliows us to apply Lebesgue's 
bounded convergence theorem. 

It remains to bound the second term. P-a.s., (/2~(A))~ converges for each s and 
A. So, since I/2~'(A)[~< 1, 

I T I  I t2~(x)-~7(A)] 2 d x d s  
I~N<M 

vanishes P-a.s. as m, n go to infinity and is unformly bounded by T(2M) d on O. 
We can also apply Lebesgue's bounded convergence theorem to conclude, and 
therefore the proof of the Proposition 2.2 is finished. 

3. The propagation of chaos result 

In this section we prove the following main theorem: 

Theorem 3.1. Let ( X 1, , , . . . ,  X ' n  ) be the system of n particles with moderate in teraction 
given by the equations (1), whose law Pn belongs to ~((C([0,  T]; ~d)) , ) .  Then, if 
the initial laws u" (laws of (X~'" , . . . ,  X~'")) are u°-chaotic, u°e ~(Rd), the chaos 
propagates and (P"),, is P°-chaotic, where pO is the unique solution of (2) with initial 
condition pO = u o. 
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Proof. We recall, as in the introduction, that ( P " ) ,  is P°-chaotic  if and only if the 
laws 7r n of the empirical measures/~" converge to 8pO in ~ ( ~ ( C ( [ 0 ,  T]; Rd))). We 
proved the compactness of (~n) ,  in the second section. Our purpose is now to 
identify ~oo, a limit value of (~") . .  ~oo is the limit of a subsequence of ( ~ " ) ,  which 
we will denote by (~")~ too, for simplicity. We will describe the support of ~'~ and 
then derive conclusions for 7r °° (equal to ~ °°o m) thanks to the martingale problem 
(2) studied in Section 1. 

In this part ~ will denote the inductive limit of gg', endowed with Frechet's 
topology. 

Lemma 3.2. ~r°°-a.s., the probability measure mt has a density with respect to A, which 

is equal to vt, a.e. in ]0, T]. 

Proof. Let q~ be a function of C~,([0, T] x R d) n L2((0, T ) x  ~d) whose support is 
included in ]0, T] xR  a and ~b be the function of C([0, T] x C([0,  T]; Rd)) defined 

by 

qb( t, x )  = ~p( t, x , ) .  

Let us consider G on ~ defined by 

G(m, v) = (v, ~ ) -  (dt®m, 6). 

We will prove that E~=(G 2) = 0. G is continuous on ~,  thus 

E ' ~ ( G  2) = lim E~n(G2). 
TI 

But 

E;n(G2) = E'~n(((v, ¢ ) -  (d t®m,  ~b)) 2) 

= E~n( ( (V"  * p.", ~ ) -  (dt®/zT, tp)) 2) 

71" n I1 V n  - -  ri E ( ( (d t®/z t ,  * ¢)  ( d t®/z , ,  ~,))2) 

(since (V" */z n, ~) = (/~", f , n ,  ~) where I7(x) = V ( - x ) )  

<~ T sup su~ IV" * q(t ,  x ) - q ~ ( t , x ) [  
t ~  T x ~ R  

~< T sup IIv ,lloon 
I ~ T  

and so 

E'~°(G 2) = 0. 

If  we choose ~o from a countable sequence of C~,([0, T ] x R  a) which is dense in 
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L2((0, T )xRd) ,  we obtain that 

Vt6]O, T] v ( t , x )  d t d x = d t ® m t ( d x )  ~°~-a.s. 

and also, ~ - a . s . ,  A-a.e., 

v(t, x) dx = mt(dx). 

Proposition 3.3. Let H be the function on ~ defined by 

H(m,  v) = ( m, ( f ( X t ) -  f (X~)  

Is I - ( F ( X , v ~ ( X r ) ) ' V f ( X ~ ) + l / 2 A f ( X ~ ) ) d r ) g ( X s , , . . . , X s p )  

where f s C~(R d), g e Cb(N dp) and e ~ s <~ s~ <.  • • < sp < t ~ T, for some e > O. Then 

E ~ ( H  2) = O. 

Supposing for a moment  that the proposition above mentioned is already proved, 
we verify that the Theorem 3.1 follows simply from it. H is equal to zero, -~-a .s . .  

For zr°°-a.e, m, m is a solution of the following martingale problem: for each 
f ~ C~(Rd), 

I' 
f ( X , ) - f ( X ~ ) -  (F(Xr,  Vr (Xr ) ) 'V f (X~)+I /2Af (X~) )dr  

$ 

is an m-martingale, for 0 < s < t ~ T, with vr density of mr (Lemma 3.2). Moreover, 
the projection mo from ~ to ~ (R  d) is continuous and thus 

- o o  q . / n  • r o mo= lim o Xo = 6u o, 
?1 

since (u") ,  is u°-chaotic. So m is a solution of the martingale problem (2), with 
initial value u °, zr°°-a.s. The uniqueness result, proved in Theorem 1.4, allows us to 
conclude that there is only one limit value to the sequence (~r"),, i.e. that (zr"), 
converges to 6po. 

Proof of Proposition 3.3. The particular difficulty consists here on the fact that H 

is not necessarily continuous on (m, v), when (m, v) belongs to ~. Then we have 
to introduce a sequence (Ok)k of regularizing functions on R d, which tends to the 
Dirac measure 6o when k tends to infinity. For each k, Ok will be a function of 
C ° (R d) and a density of  a probabili ty measure. 

Let us denote 

Hk(m, V)= H(m,  Ok * V) where (Ok * v ) ( t , x )=(Ok * V,)(X). 
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So H k is continuous on ~,  and we have 

E ~° ( H E) <~ 2E ~ (( H - Hk) 2) + 2E z~ ( (Hk) 2 ) 

<~ 2E ~ ( ( H  - Hk)2) + 2 lim E~'((Hk)2). (,) 
n 

We bound the first term of the right-hand side by something which vanishes when 
k goes to infinity: 

E~°~((H-Hk) 2) ~< KE~(IH-Hk[) (H k is uniformly bounded in k) 

I (F(Xr, Vr(Xr))-F(Xr, ~k * l)r(Xr))) 

• Vf(Xr) dr'g(Xs,,...,X~,)) 

(rn. lF(Xr, vr(XA) 

-- F ( X r ,  ffl k , 1)r(X r))l) dr). / 

Since F is Lipschitz continuous, we have 

E ~ r ~ ( ( H - H k ) 2 ) ~ K E ~ ( f ;  (mr, ]~bk * Vr-Vr[)dr); 

~°~-a.s. mr has the density function Vr, thus 

E~( (  H -  Hk)2) ~ K E ~  ( I i  [lvrll2l, Ok * Vr- Vrll2 dr ) 

)1/2 
11¢'~ * Vr--Vrl[ 2dr  ; 

since supn E '~n (J's IlVrll= = dr)  is finite (Lemma 2.4), E'~(~'s [[Vr[[~ dr) is finite in the 
same way. If Vr belongs to L2(R a) then 

limll~bk * Vr--Vrll2=0 ~ - a . s .  and a.e. on [0, T]. 
k 

Since II~k * Vr--Vrll2 is bounded by 211Vrl12 uniformly in k (Ok is, ~°°-a.s., a density 
function of measure) we can apply Lebesgue's dominated convergence theorem: 

limE~((H-Hk)2)<~K lim E ~ 1[4'k * vr-vrll~dr 
k k 

= 0 .  

To bound the second term of the right side of (*) we separate it into two parts: 

~ ( ( H ~ )  2 ) ~< 2[ E ~ ' ( H  ~ ) + E ~ (( n - W )  ~) ]. 
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By equation (1), 

" n i E~"(H2) = E n -~ ~ ( f ( X ~ ) - f ( X ~ ) -  dr(F(X~r, V" * . r ( X r ) )  i=1 
/ / 

(( 1) - E n -I Vf(X~r) dB~r X '  ' - • . g (  ~ , , . . . ,  X ~ )  i=1 
<~ Kn- '  E ( ( .  7, Ivfl =) ) dr 

K n  -1, 

and so 

lim E~'"(H 2) = O. 
I I  

On the other hand, 

E'~" ( (H-Hk)2 )<~KE~"( f [  
\ 

(mr, II]lk * ~)r- l)rl) dr),  

thanks to the same majorization as under ~o~. But we cannot complete the proof 
in the same way because mr is singular under ~-", and we have to know explicitly 

vr under 9" to majorize uniformly on n II0k * v r -~ r l l : .  So we use Lemma 2.4 and 
the decomposition V ' =  W" * W" to regularize mr under 9": 

E or" (mr, lt~k*l)r--13rl)dr =E ("7,1Ok*"']* V ' - . 7 *  V"[)dr 

- " " W "  - " W "  ~ E  ( . 7 "  W ,  k * . r *  . r *  dr 

(using the inequality ( . 7 ,  Iq' * W " I ) ~ ( . 7  * W", I~,1), W~(x) = W"(-x) )  
( (~t ))1/2 

~<sup E 11.7" w" II@dr 

((I, )) x E 114,~ * . 7  * W " - . 7  * W"llNdr 

~ K  E II0~ * . 7  * w ' - . 7  * W"llNdr 

By the Fourier isomorphism, the square of the last term is bounded by 

E I [  I, xl~M I~k(A) -- 112]~7 *~~--'~W~I2(A) dA dr 

NI~M 

(using that !"r  * W (~)1 and t~k(x)l are bounded by 1). 
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Therefore, for each e > 0, M can be taken large enough to yield 

lim sup E~" ( I  / (mr ,  l~bk*V,--Vrl) dr)<"-e, 
k:--~ oo n 

and thus 

lim lim E ~" ( (Hk)  2) = 0, 
k--~oo n 

and, finally, 

E ~ ° ( H  2) = O. 

Remark 3.4. The following result is derived from Theorem 3.1 • Let (X~F",.. . ,  XT"") 
n ,  n 

be the system of particles satisfying (1) whose initial value (X~ '" , . . . ,  Xo ) has the 
law u". If the sequence (u"),  is u°-chaotic then the empirical measures 

n 

n _--= n - 1  

i = l  

converge in distribution to p°(x) dx, where pO is the density solution to the martingale 
problem (2). Furthermore, since the trajectorial uniqueness holds for the non-linear 
process (cf Remark 1.6), we obtain a "trajectorial propagation of chaos result", 
namely 

Y )i~N be the processes defined by Proposition 3.5. L e t  ( i 

I i i 0 i i 
d Y , =  F ( Y ,  pt (Y, ) )  dt +dB,,  (4) 

i i,n [ Y o = X o  , 

1 , n  tl, rl where (Xo , . . . ,  Xo ) has the distribution law (u°(x) dx) ®". Then, for each T> 0 
and i fixed, supt_<r]X~'" - Y~[ converges in distribution to zero when n goes to infinity. 

Proof. The method used for the proof of Theorem 3.1 remains valid. We first verify 
that the laws ~-" of the random variables 

n - '  v ° * 
i = l  

with values in 

~"  = ~(C([0,  T]; Re) 2) x L2((e, T) xR a) 

are tight. Then let ~oo be a limit value of (~") , .  For ~ almost every rfi, X and Y 
are trajectorial solutions of (4), where X and Y are respectively the first and the 
second coordinate mappings on C([0, T]; Ra) 2. So, X is equal to Y for .~oo almost 
all rfi-a.s, and (~'"), converges to the Dirac measure on the product of the law of 
( Y, Y) and pO. To conclude, it remains to apply this convergence in distribution to 
the following continuous bounded function on ~e: 

(r~, v)~--> (r~, sup IX, -  Y,[^ 1). 
t ~ T  
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