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This paper is concerned with the asymptotic behaviour of a system of particies with moderate
interaction. The main result is a propagation of chaos result which generalizes a convergence
result of Oelschldger. A trajectorial propagation of chaos result is also given.
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0. Introduction

In the present paper we study the asymptotic behaviour of a system of particles
which interact moderately, i.e. a situation intermediary between weak and strong
interaction. We consider the following model: let (2, %, %, P) be a filtered
probability space, endowed with n independent R?-valued Brownian motions
B',...,B", and an R _valued random variable (X{),<i<n, Fo-measurable, whose
law u" on R? is symmetric. So the system of particles is given by

dXi"= F(X{", V"% pl(X{") di+dB], 0<I<T, 1<i<n,
. . (1)
X§" = Xb,
where p" is the empirical random probability measure n~! ZL; 8 i, F has regularity
properties and V" is a renormalization of a fixed bounded density function V',
which is an approximation of the Dirac measure:

v'(-)=nPV(n??), B>0.

The interaction is 2 nonlinear function of u”, and depends on B, the normalization
coefficient of V”. In the limit case 8 =0, V" is equal to V', and the system is called,
as in physics, a weakly interacting system, because the interaction depends only on
a fixed function of u”". Several asymptotic results have already been obtained, in
Braun and Hepp [1], McKean [4], Sznitman [7], for a linear function F, and in
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Oelschlager [5], for a more general function F. The parameter 8 controls the speed
of the convergence of V" to the Dirac measure §,. In the case 0< B <1, using
fundamental estimates (V" * u belongs to the Sobolev Space H*, P-a.s.), we prove
the convergence of the interaction term F(x, V" * u}(x)) to F(x, u,(x)), where u.
is the density with respect to Lebesgue measure of the law of X., the limit process
of X". Let us prove that it corresponds to the case when the variance of
V"% (n"'Y7, 8y) (x), where Y' are some i.i.d. random variables, is uniformly
bounded in n, and even vanishes as n tends to infinity:

Var (Ven™t £ 500 = BV £ m)P) - BV € ()

<m” =n"'Y 8y‘).
i=1

Since Y’ are i.i.d., with law u(x) dx,

n

Var (V" * m"(x)) = Var (n—1 X Vi(x- Yi)) =n"'Var(V'(x-Y")

=

=n"! [Ld n*f(Vi(n®4(x—y))’u(y) dy

—(J ) nfVi(nf4(x—y))u(y) d)’) ]
=nP! J , (V'(2)u(x—-z/nP’'?) dz

-n"! (J , V(z2)u(x—z/nP’?) dz)

which vanishes if and only if 0<8 <1.

The main result of this paper is a propagation of chaos theorem, which generalizes
a convergence result given by Oelschliager [6]. He proves his result on the space of
probability measure valued processes. More generally we will obtain, with techniques
of stochastic calculus, convergence results on the space of probability measures on
C([0, T]; R?). Then we will prove that the law of the first m particles, m fixed,
when the number n of interacting particles is growing, tends to the law (P°)®™ of
m independent particles, where P° belongs to 2(C([0, T1; R?)), and satisfies the
following martingale problem (*): for each fe C3(R?),

S(X) = f(Xo) - L (F(X,, pi(X,)) - Vf(X,) +34f(X,)) ds

is a P°-martingale, where X, is the canonical process on C([0, T]; R?) and pj is
the density on R? of the probability measure P X.

We may notice that in the uniqueness result for the limit process, we could have
considered a more general diffusion than the Brownian motion for the diffusion
associated with each particle.
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In this paper we first prove the uniqueness of the nonlinear process which satisfies
the martingale problem (*). We also give regularity properties of the density of the
law of a semimartingale, whose finite variation process is the integral of a bounded
measurable function.

To prove the main result we will use an equivalent formulation to the propagation
of chaos, given by Sznitman [8, Lemma A-1]: the laws P" of (X"",..., X™") are
P°-chaotic (i.e. there is a propagation of chaos for the processes X ") if and only
if the empirical probability measures u"” converge in law towards the constant
probability measure P°.

In Section 2 we prove the tightness of the laws of u". In fact, we will give a
stronger result which allows us to identify the limit of the interaction term
F(-, V72 u”()).

In the last section, thanks to the uniqueness result proved in the first section, we
show the uniqueness of the limit values of the laws of (u"), which completes the
proof of the propagation of chaos theorem. Moreover, under a regularity assumption
for the initial law, we obtain a “‘trajectorial propagation of chaos result™.

The authors thank A.S. Snitzman for his useful advice.

Notation and hypotheses

— For each function v:[0, T]xR? >R, we will denote by v, the function on R’
defined by v,(x) = v(r, x).

— On the space C([0, T]; R?), X, is the rth coordinate, and for a probability
measure m on C([0, T];R?), m, is the probability measure on R’ defined by
m,=meX,.

- Let 2(C([0, T];RY)) denote the space of probability measures on
C([0, T]; R?). Then #(C([0, T1; R?)) is the space

{Qe ?(C([0, T]; RY)); Vre]0, T], Q, <A (Lebesgue measure on RY),
Q.(dx) = g,(x) dx}
— W, is the Sobolev space defined by (cf. Triebel [9])
W, R ={ve F(R?), v w:=F ' (1+|x])"*Fv|, < + 0}

where % denotes the Fourier transform and || - ||, is the norm in L?(R?).
— Wj will be denoted by H".
— C*” is the space of Holder-continuous functions with exponent a defined by

|v(x)—v(y)|<+oo}
Ix - y|* '

— For t>0, let g, denote the density of the law of the Brownian motion B;; g,
belongs to L? uniformly on [g, T], £ >0, for each g>1. We denote by S, the
semigroup associated to g, by S,f=g, * f.

C*= {ve Co(RY), ||v|lc= = suRglv(x)|+sup
X€ x*y
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d+1

— Let F be a bounded continuous function on R with values in R? which

satisfies
|F(x, 1)~ F(y, )| +|rF(x, r) = sF(y, )| < K(Ix—y|+|r=s]) Vx yeR’ VrseR.
— V" is a probability density defined by
Vi(x)=nfVi(n??x), xeR? 0<pB<]1,

where V! is a bounded continuous probability density on R? with finite moment of
order 1, which satisfies V'= W = W, for some probability density W, where W is
in H', for some r> 0. In particular this implies V'e L*(R?).

This last hypothesis is used in 3.3 to regularize the scalar product of a singular
measure with a function. It is often satisfied, for example if we take the Gaussian
kernel V'=g,.

— K will be a real positive constant varying from place to place.

1. A uniqueness result for the non-linear process

We will call a solution of the following martingale problem (2) an element P of
P(C([0, T]; R?)) such that, if we take almost everywhere in [0, T] a measurable
version of the mapping p, (the density of P,), then

1

Vfe CLR) f(Xt)—f(Xo)—J (VA(X,)- F(X,, p(X,)) +34f(X,)) ds (2)

0

is a P-martingale, and P,= u° fixed in #(R?).

It is clear that this martingale problem is well defined, namely it does not depend
on the choice of the measurable version of p, (-): by Girsanov’s theorem, the law
P, is equivalent to the law of a Brownian motion B,, which is absolutely continuous
with respect to A. Then [, Vf(X,) - F(X,, p,(X,))ds does not depend on the
choice of p;.

To study the solution of the martingale problem (2), we first need to examine the
equation which is satisfied by p,, i.e.:

P1=S¢uO—J S,—sV-(pF(-,ps(-))) ds. (3)

v O

We will first prove that, for each s of ]0, T], the density p, of a solution of (2)
belongs to LY~ C? g in ]1, +oo[ and a <1.
In the two following propositions we show a slightly more general result.

Proposition 1.1. On a filtered probability space (2, #, #,, P), let Y, be a R?-valued
semimartingale defined by

t

Y, = Y0+B,+J’ C,ds, 0=t=<T,

0
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where Y, is a random variable independent of the Brownian motion (B,), and C, is a
bounded measurable function with values in R%. Then the law of Y, is absolutely

continuous with respect to A for each t of 10, T] and the density function belongs to
LY, for each q in [1, +0[ uniformly on [&, T], € > 0.

Proof. The existence of a density function u, of the law of Y, is derived from
Girsanov’s theorem. Let Z, be the exponential martingale

Z,=%§(J Csst>=exp(J CsdBS—1/2j Cﬁds).
0 0 0

Then, for each bounded measurable function f

(e, NI = E(S(Y))]

=|E(f(Y,+B,)Z,)|
1 1
<(E(|fI"(Yo+ B))) /" (E(Z%)) "% (—+-=1),
P 4
9 - ("
Elzi=Fk (e"p("‘j € dB.—y J ||C|12dS> exp< g J ||Cs||2dS)
0
-1
sexp——q](q; )KTqul,

Then
I(uts.f)ls Kq,(gt * Uy, Iﬂpl)l/pl

1 1
<K, g * o] L2 f (;+q—=1)

2 2
1/
<K, gl g Al p.p.-

By taking p,p.=p, it is proved that u, belongs to L% 1/p+1/gq =1, and satisfies

sup "“t"q<Kq1 sup ”gt”l/pl

tefe,T] est<T
< +o00,
which completes the proof.

Proposition 1.2. The density function u, defined in Proposition 1.1 is Hélder continuous
with exponent a, for every a <1 and tin 10, T]. In particular, u, is a continuous function.

Proof. We will use the continuous injection from W, on C* for r>a+d/q (cf.
Triebel [9, Theorem 2.8.1]). The precise values of r and q will be chosen later.
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Then we have to prove that u, belongs to W_. Let f belong to W,’, the dual
space of W, (1/p+1/g=1). Then

(u,, )= E(f(Y)) = E(G(1, 1)),

where G satisfies

9
(—+%A) G =0,
at

G(1, x)=f(x).
So G(s, x)=S,_,f(x). By It6’s formula, applied to G(¢, Y,),

t

G(1, Y,) = G(s, Ye)+J V.G(s, Y;) dB,

£

+Jr (V.G(s, Ys)cs+(56;-+%4) G(s, Y;)) ds.

£

Thus
I(u,,f)|<|(us,SJ)|+KJ E(V.G(s, Y,)) ds. (+)

To majorize the term on the right-hand side we need the following lemma of
functional analysis:

Lemma 1.3. For each f of W;’(Rd), r=0,

K K
VSl = i I lwy and S0, <5 1wy

Proof
(1+r)/2 —r/2 K —-r/2
"Vstf“pSHA S.4 f"sz;(r_+T/2"A f”P'
The first inequality of the lemma is derived from the fact that ||A~"/*f]|, is equivalent

to the norm of f in W,”. We prove the second inequality similarly. Let us remark
that in the case p =2 and r=0, we can calculate explicitly:

IVSAl2= g * Vfll= 18- 11

— x A K A
= x|~ 'zf(x)llz<$ 1712

K
<71l
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We can now majorize the first term of the right side of (*):

o) SN
K
<ltlym7s ISy (Lemma 1.3).

Furthermore we have
E(IV.G(s, Y = (us, VG < 1| IV S-S
By Lemma 1.3,
E(7.6(s, Y =< sl ;=073 1wy
<K( sup flufl )|/l wyr(e—s)""2

This last term is an integrable function of s on the interval [¢, t], if r <1. Then, if
r<1and g>d/r, u, belongs to C* for a <r—d/q. This implies that u, belongs to
C* uniformly for ¢t in [¢, T] for each a <1.

Then Propositions 1.1 and 1.2 imply that, if we take C, = F(X|, p,(X,)), a solution
of (2) has a density function which belongs to L>*n C*, for a <1.

Let us now formulate our main result:
Theorem 1.4 There exists at most one solution P° to the martingale problem (2).

Proof. The uniqueness of the solution of (2) depends on the uniqueness of the
solution of (3) for the following reason: if there exists at most one solution to (3),
then (2) is a classical martingale problem, for which existence and uniqueness of
the solutions are well known.

So it remains to verify the uniqueness of the solution of (3) coming from solutions
of (2), which is the purpose of the following proposition; due to Proposition 1.1,
such a solution is in L*(R?).

Proposition 1.5. There exists a unique solution to the equation

vtel0,T1  peL*R?) and P:=S:u°—'[tS.-sV°(PsF(',Ps(')))dS (3"

when this equality is satisfied in L*(R?).

Proof. Let p. and g. be two solutions of (3'). Then, for t€]0, T],

”Pt—qt"2= ” I St—sv'(psF('sps)—qu(', qs)) ds"z
0

t
< J |S:=:V - (pF (-, ps) —q:F(-, g5)|. ds.
0
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By the remark in Lemma 1.3 and due to the Lipschitz continuity of the map
r—>F(x,r)-r,

ip-ala<K J o~ . [/¥7= ds.

Noting that s—1/vt—s is integrable in [0, ], we apply Gronwall’s lemma to
complete the proof.

Remark 1.6. When the initial law u° has a density function, it follows from
Veretennikov [10] that the equation

t

X! = X0+ Bt+J F(XSs ps(Xs)) dS

0

has a strongly unique solution.

2. A tightness result

Let (X""),<;<n be the system of n particles given by the equations (1). The
propagation of chaos for these particles results from the convergence in distribution
of the following random measures p" in 2(C([0, T]; RY));

n 1 -
M- (w)=— X 5x:""(w)-
ni=

In this section we study the tightness of the sequence (#"), in
P(P(C ([0, T]; R?))), which are the laws of u". In fact we will prove a stronger
result: the tightness of (7") is easy to prove because F is bounded, but it does not
suffice to identify the limit values of (7") as Dirac measures. Thus we consider the
space

#° = P(C([0, T]; R))x L*((e, T) xR?)

endowed with the weak topology on ?(C([0, T]; R?)) and the topology defined by
the norm on L*((e, T)xR?); € is an arbitrary nonnegative real number, which
appears in the proof of the Proposition 2.2. Let us denote by m and v the canonical
projections on ¥°. We consider the laws #" of the random variables
(M w), V" * u’(w)) with values on #".

It is well known that (#"), is tight if and only if (7" e m), and (7" ¢ v), are
tight. We prove:

Proposition 2.1. The sequence (7" ° m), is tight.

Proposition 2.2. If (7"), = (7" o m), is tight, then (7" ° v), is also tight.

Proof of Proposition 2.1. It is clear that 7" o m is equal to #". The tightness of (7"),
is derived from the tightness of the “intensities” of (u.),, thanks to the following
lemma (cf. Sznitman [8]).
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Lemma 2.3. Let X be a polish space and (y"), be a sequence of random variables
with values in P(X). The laws of (y") are tight if and only if the probability measures
on X, I(y") defined by (I1(y"), ¢)=E((y", ¢)) are tight. We call I(y™) the intensity
of v".

In our case, for each ¢ in C,(C([0, T]; RY)),
(I(p"), ¢)=E ((% _él dxin,s ¢)) = E('}; 2::1 ¢(Xf’")) = E(¢(X.™))

(because (X>"),<;<. are identically distributed).
So I(u") is the law of the semimartingale X "". Its finite variation process

f F(XM, V7 % w?(X™) ds

0

is unformly bounded and equicontinuous in [0, T] for n €N because F is bounded,
and then the sequence (X '), is tight.

Proof of Proposition 2.2. A key point of this proof is the fundamental following
estimations given by K. Oelschldger [6, Proposition 3.2]. The condition “8 in ]0, 1{
is necessary here.

Lemma 2.4. Let W be a density kernel such that W x W= V', If W belongs to H"
then W" * u" satisfies for a < inf(r,(1—B)d/2B) and any £ >0,

T
(i) sup E (j | W *u?ll%ds)< +0o,

E

T
i) sup E ( J W = 2l ds)

T o~
=sup E (J j d(1+|/\|2)"‘|W” * wr(A)PdA ds)

E

< +00.

We note that the function in s which majorizes E(|| W" * u7]|3), s> 0, used in the
proof of (i), is not integrable on [0, T]. For this reason we can consider the estimate
only on [¢, T]. In the same way we have (ii) only on [¢, T]. Moreover the estimation
(ii), finer than (i), is important because of the compact embedding from H* on L.
We will prove a stronger result than the tightness of the laws of V" * " i.e., we
exhibit a sequence (»"<) of random variables on a space (.Q, P) which have the
same distributions as V"« * u "« (denoted by v"« for convenience) and which converge
in L2(§3, L*((¢, T) xR?)).

Since ("), is tight there exists a subsequence (7 "), of (#"), which converges.
Let us denote n,=n. If (#"), conVerges by Skorokhod’s theorem, we can find a
probablhty space (.(2 P) and random variables " on this space of laws 7" which
converge P a.s. For simplicity we will identify (2, P, m", 5,") and (2, P, ", v")
because we are only interested by the distributions of these variables.
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To prove the convergence of (v"), in L*(2, L*((e, T) xR?)) we use Cauchy’s
criterion:

E (Jj L (v2(x)—v7(x))* dx ds)

J’ Br(A)— v;"(/\)lzd/\ds)

(J J |62(A) = d7(A))F da ds)

|Al<M

+E<J L [B2(A) =07 (A)P dA ds)
€ Al=M

The second term of the right side is bounded by
T

4sup E J oz ds- (1+M*)~
which vanishes when M goes to infinity thanks to (ii).
The first term of the right-hand side is bounded by

T

2(T—8)J |[V"(A) = V™ (M) dA +2E (I
IAl=M

J ATA)—AT(A)F dA ds)
€ Al=M
The first term of this sum vanishes for any fixed M when n goes to infinity since
(V"), converges to 8, and the inequality ]V"(A)I <1 allows us to apply Lebesgue’s
bounded convergence theorem.
It remains to bound the second term. P-as., (f15(A)), converges for each s and

A. So, since |27(A)|=1,

T

f J [22(A) = AT (M) dA ds

e JAlsM

vanishes P-a.s. as m, n go to infinity and is unformly bounded by T(2M)“ on Q.

We can also apply Lebesgue’s bounded convergence theorem to conclude, and
therefore the proof of the Proposition 2.2 is finished.

3. The propagation of chaos result
In this section we prove the following main theorem:

Theorem3.1. Let (X", ..., X™") be the system of n particles with moderate interaction
given by the equations (1), whose law P" belongs to ?((C([0, T]; RIN)"). Then, if
the initial laws u" (laws of (X3", ..., X®")) are u®-chaotic, u®c P(R?), the chaos
propagates and (P™),, is P°-chaotic, where P° is the unique solution of (2) with initial
condition P3= u°
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Proof. We recall, as in the introduction, that (P"), is P°-chaotic if and only if the
laws 7" of the empirical measures u" converge to 80 in P(P(C([0, T]; R?))). We
proved the compactness of (7#"), in the second section. Our purpose is now to
identify #%, a limit value of (#"),. 7~ is the limit of a subsequence of (7"), which
we will denote by (7"),, too, for simplicity. We will describe the support of 7 and
then derive conclusions for 7 (equal to 7~ o m) thanks to the martingale problem
(2) studied in Section 1.

In this part ¥ will denote the inductive limit of #°, endowed with Frechet’s
topology.

Lemma 3.2. 77-a.s., the probability measure m, has a density with respect to A, which
is equal to v,, a.e. in 10, T].

Proof. Let ¢ be a function of C5([0, T]xR?) n L*((0, T) xR?) whose support is
included in 0, T]xR? and ¢ be the function of C([0, T1x C([0, TT; R?)) defined
by

o(1, x»)=¢(t, X,).
Let us consider G on # defined by
G(m,v)= (v, ¢)—(dt@®Om, ¢).
We will prove that E™ (G*)=0. G is continuous on ¥, thus
E™(G*=lim E7'(G?).
But
E™(G)=E™ (((v, ¢)—(dt@m, ¢))?)
=ET (V" *u", ¢)—(dt1®ur, ¢)))
=E™ ((dt®u], V" * )~ (dt®@ur, ¢))%)
(since (V" * u", @)= (u", V" * ¢) where V(x)= V(—x))
< T sup sup V" * o(1, x)— @(1, x)|

=T xeR

<Tsup Vo lon?",

=T

and so
E™(G*) =0.

If we choose ¢ from a countable sequence of C([0, T] xR%) which is dense in
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L*((0, T) xR?), we obtain that
Vielo, T] o(t,x)dtdx=dt®@m,(dx) #%-as.
and also, 7#7-a.s., A-a.e.,

v(t, x) dx = m,(dx).

Proposition 3.3. Let H be the function on ¥ defined by

H(m, v)= (m, (f(X)—f(X,)

- J (F(X,, v.(X,)) - Vf(X,)+1/24f(X,)) dr)g(X,,, . .., X; ))

P

where fe Ci(R%), g€ Co(R¥) and e<s<s,<- - -<s,<t=<T, for some ¢ >0. Then

E™(H?*»=0.

Supposing for a moment that the proposition above mentioned is already proved,
we verify that the Theorem 3.1 follows simply from it. H is equal to zero, 7™ -a.s..

For m*-a.e. m, m is a solution of the following martingale problem: for each
feCiRY),

t

f(Xt)—f(Xs)—J (F(X,, v(X,))-Vf(X,)+1/24f(X,)) dr

s

is an m-martingale, for 0 <s <t = T, with v, density of m, (Lemma 3.2). Moreover,
the projection m, from ¥ to ?(R?) is continuous and thus

7 ome=lim 7" o Xy= 8,9,
n

since (u"), is u°-chaotic. So m is a solution of the martingale problem (2), with
initial value u°, 7*-a.s. The uniqueness result, proved in Theorem 1.4, allows us to
conclude that there is only one limit value to the sequence (#"),, i.e. that (7"),
converges to 6p°.

Proof of Propesition 3.3. The particular difficulty consists here on the fact that H
is not necessarily continuous on (m, v), when (m, v) belongs to #. Then we have
to introduce a sequence (Y, ); of regularizing functions on Rd, which tends to the
Dirac measure 8, when k tends to infinity. For each k, ¢, will be a function of
C*® (R?%) and a density of a probability measure.

Let us denote

H*(m, v)=H(m, Y * v) where (¢ * v)(1, x) = (¢ * v,)(x).
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So H* is continuous on %, and we have
E™(H?)<2E7"((H - H*)*)+2E™((H*)?)
<2E7((H-H"))+21im E¥((H*)). (*)
We bound the first term of the right-hand side by something which vanishes when
k goes to infinity:
E™(H-H")Y?)<KE™(H-H") (H* is uniformly bounded in k)

<KE™

(ma J (F(Xr, Ur(Xr))—F(Xra ‘llk * vr(Xr)))

VAX,) drg(X,,, ..., Xsp)>
<KE™ (“” (m,, |F(X,, v,(X,))

_F(Xr, ll’k * vr(Xr))l) dr)°

Since F is Lipschitz continuous, we have

t

E*™((H-H"Y)<KE™ (j (m,, |¢ * v, —v,]) dr);

s

7*-a.s. m, has the density function v,, thus

E*“((H—H"ﬁsKE’*“(I el =~ dr)

3 1 1/2 ) t 1/2
SK(E“OO<J’ ||v,||§dr)) (E"w<J- H([;k*v,—v,||§dr>> ;

since sup, E™ ([, ||v,|3dr) is finite (Lemma 2.4), E™ ([ ||v,)|5 dr) is finite in the
same way. If v, belongs to L*(R?) then

1i£n|| Y *v,—v,|,=0 7 -as. and a.e. on [0, T].

Since || * v, — .|, is bounded by 2| v, |, uniformly in k (¢ is, 7> -a.s., a density
function of measure) we can apply Lebesgue’s dominated convergence theorem:

t 1/2
lim E7"((H - H*)*) <K lim (E’*w (j ¢ * v, — 0,3 dr))

=0.
To bound the second term of the right side of (*) we separate it into two parts:

E7F((H*Y)<2[E"(H)+E™ ((H-H")%].
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By equation (1),

1

E¥(H)=E ((n T (f(Xi)—f(Xi)—j dr(F(X5, V" s u2(X1)

s

VFX)+1/28f(XE) dr)g(X,,, .. .)) )
_E ((n 5 J”Vf(Xi)-dBi-g(Xil,...,X‘ )> )

Sp

i I E((ur, IVfP) dr

<Kn7',
and so
lim E7"(H?) =0.

On the other hand,
E™((H-H")<KE™ <J

s

(mra I(Ijk * U, — Ur|) dr)’

thanks to the same majorization as under 7. But we cannot complete the proof
in the same way because m, is singular under 7", and we have to know explicitly

v, under #" to majorize uniformly on n ||¢, * v, —v,|,. So we use Lemma 2.4 and
the decomposition V"= W" *x W" to regularize m, under 7":

t t
E(j (m,, 0 * v,—v,l)-dr) _E (j (o7 | % % V"= s V"l>dr)

<E (J (ur* W2 g * ) s W=7 = W"|)dr>

(using the inequality (), |l * W) < () * W |o|), W"(x)= W"(—x))

t 1/2
<sup (£ (| Iure wo iz er))
(B ([ 1wz e wropze wrizar)

t 1/2
<K (E (J i * oy * W™=y * W"H%dr))

By the Fourier isomorphism, the square of the last term is bounded by

EJ J [6(A) — 1P« WP(A) dA dr
s JiafsM

s

tE (f L o OO TS WO+ AP/ 1+ M) dr dr)

SKI sup | (A) —1*+sup E (J lpe? = W73 dr) (1+ M?)~°

Al=M s

(using that !m()t)l and |, (A)| are bounded by 1).
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Therefore, for each € >0, M can be taken large enough to yield

’lcim sup E™ (I

and thus

lim Iim E7"(H** =0,

t

(mr’ ldjk * 0, _vr|) dr) = g,

and, finally,
E™(H*»)=0.

Remark 3.4. The following result is derived from Theorem 3.1.: Let (X Lo LX)
be the system of particles satisfying (1) whose initial value (X", ..., Xg") has the
law u™. If the sequence (u"), is u’-chaotic then the empirical measures

n__ -1 .
MK:=n ) 8 xin
i=1

converge in distribution to p?(x) dx, where p?! is the density solution to the martingale
problem (2). Furthermore, since the trajectorial uniqueness holds for the non-linear

process (cf Remark 1.6), we obtain a “‘trajectorial propagation of chaos result”,
namely

Proposition 3.5. Let (Y")icn be the processes defined by
dYi=F(Y; pi(Y})dt+dB;,
. . (4)
Yi= X4,

where (XL", ..., X™") has the distribution law (u°(x) dx)®". Then, for each T>0
and i fixed, sup < | X" — Y| converges in distribution to zero when n goes to infinity.

Proof. The method used for the proof of Theorem 3.1 remains valid. We first verify
that the laws 7" of the random variables

("_1 él 8 xin yi(w), V7 * M"(w))

with values in
#° = P(C([0, T); R*)?) x L*((e, T) xR?)

are tight. Then let #° be a limit value of (#"),. For # almost every m, X and Y
are trajectorial solutions of (4), where X and Y are respectively the first and the
second coordinate mappings on C([0, T]; R?)°. So, X is equal to Y for 7> almost
all mi-a.s. and (#"), converges to the Dirac measure on the product of the law of
(Y, Y) and p°. To conclude, it remains to apply this convergence in distribution to
the following continuous bounded function on 72

(1#, ©) > (7, sup | X, = Y| 1).

1=<T
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