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1. Introduction

The main purpose of this paper is to identify a class of stationary states of the following
system of interacting particles as the set of translation invariant canonical Gibbs states with
interaction U . The evolution law is given by an infinite system of stochastic differential
equations,

1
dwy = ~3 Zgrad Ulwp —wj)dt +dwy, wip(0) =0, keS (1.1)
P

where S is a countable index set, w = (wy)res is a family of independent standard d-
dimensional Wiener processes, and each wi = wg(t),t > 0 is assumed to be a continuous
trajectory in R?. The potential U : R? — R is symmetric and superstable with finite range,
that is U(x) = U(—=x), there is an R > 0 such that U(x) = 0 if |2| > R, and we have
constants A > 0, B > 0 such that for any finite sequence ¢1, g2, ..., g, of not necessarily
distinct points from R?

nA—|—zn:ZU(qk —¢;) > BN (1.2)

k=1 j#k

where N is the number of pairs {j, k} such that |¢x — ¢;| < R, see [Rul]. Let Q denote
the set of configurations having no limit points. Although the right hand side of (1.1) is
certainly well defined for such, locally finite configurations w € €2, to develop a satisfactory
existence theory we have to restrict the configuration space in a much more radical way.
On the other hand, the set of allowed configurations should be large enough to support a
possibly wide set probability measures including Gibbs states with various interactions.

The first mathematical results concerning this model go back to R. Lang, see [Lal] and
[La2], where the existence of equilibrium dynamics, and also the canonical Gibbs property
of reversible measures is proven. These dynamics is defined almost surely with respect to
a Gibbs state with interaction U, see also the more sophisticated argument of [Os]. For
a study of stationary measures in general, we need a more direct construction involving
explicit bounds on the rate of convergence of solutions to finite subsystems (partial dynam-
ics) when the number of active particles tends to infinity, see Section 3 below. Indeed, the
problem of stationary measures can not be solved at a formal level of the stationary Kol-
mogorov equation, see [FFL] and [FLO], we really need that that our measure is realized
as a stationary state of a well controlled Markov process.

For a generic, locally finite configuration w = (wg )res let H(w, m,r) denote total energy
in the ball B(m,r) of center m € R? and radius r > 1, and for o > 0 define

_ H e
H,(w):= sup sup (w,zl,rg (m))
mezd reEN ritga(m)
1
H(w,m,r) = 5 Z Z U(u)]‘ — ujk) (13)
wrEB(m,r)  j#k,w; EB(m,r)

go(u) =14 |u|log(1 + |u|) for u € R,R".

where
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The set of allowed configurations is now specified as Q4 := {w € Q : Ho(w) < +o0};
we shall see that for an effective a priori bound we need o < 2 — d/2, thus d < 4. Let
Co(R?) denote the space of continuous ¢ : RY — R of compact support. Spaces of k times
continuously differentiable functions with compact supports are marked by a superseript & ,
while a subscript b in place of 0 refers to bounded functions without any support condition.
For an open and bounded domain A C R? the o-field F is generated by the variables
w() = Y e p(wr) such that the support of ¢ € Co(R?) is contained in A ; the number
of points in A will be denoted by w(A). This means that configurations are interpreted
as nonnegative, integer valued measures, and Q, is equipped with the associated weak
topology and Borel structure. Observe that, due to superstability (1.2), the level sets
Qun := [Ha(w) < h] are compact if h is large enough. The restriction of w € Q, to A is
wy , and A€ denotes the complement of A .

For any bounded domain A C R? and ¢ € Q, n € N let £, (n|o) denote the set of w €
Q., such that w(A) =n and wye = ope . A probability measure A is a canonical Gibbs state
(with unit temperature) for U if its conditional distribution A[dwy |wpe,w(A) =n], given
the configuration outside of A and the number of points in A, admits an nd-dimensional
Lebesgue density fa n ,

exp(—HA,n(wA |wAc)>

nlwp|wpe) i = if w e Yp(njwae),
Fanwnloae) Zan(on) a(nfwe) "
1 .
HA,n(wA|wAc):: 3 Z Z U(wk—wj)—l— Z Z U(wk—wj)
wrpEA w; EA wp €A w; EAC

where X, denotes the summation for such pairs {j, k} that at least one of w; and wy
belongs to A, Z is the canonical partition function (normalization). Gibbs states are the
extremal canonical measures, see e.g. [G]. In view of the superstability estimates of [R2],
there exits at least one translation invariant Gibbs state A such that A(€y) = 1, of course
Q. C ﬁg ifa>f.

The unique strong solution w = w(t,0) to the infinite system (1.1) with initial con-
figuration o € €, is constructed as the a.s limit of partial solutions w? = w¥(t, o) when
a spatial cutoff € is removed. To ensure the convergence of partial dynamics we have to
assume that o <2 —d/2. Like in [F2], partial dynamics also preserve any canonical Gibbs
measure because we keep particles within a bounded domain, while external particles are
frozen. More precisely, for any 6§ € C(R?) such that 0 < § < 1 there is a differential
operator Ly,

d
1 Hy(w —Hp(w

Log = 5 Z Ze i )8k,i<9(wk)e i )8k,iq§(w)> (1.5)

keSS i=1

where 0 ; denotes differentiation with respect to the ¢ coordinate of wy and
Hy(w) =Y Ulw; —ws). (1.6)
i#k

We consider L4 as the (formal) generator of partial dynamics with cutoff 6, the infinite
system (1.1) corresponds to 8 = 1. All generators of this kind are certainly well defined
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on CZ(Q), where CF(Q) is the space of test functions

o(w) = d(wlpr),w(p2), . wlpr)), ¥ € CH(RY), ;€ CG(RY), (€N (1.7)
The stochastic equations for cutoff 8 read as
dwy = %erak (9(wk)e_H’“> dt + \/G(wk) dwy, , (1.8)

they have a unique strong solution w? = w¥(t, o) for each initial configuration o. If A D
supp 6 then the particle number in A is a constant of motion, that is w¥(t,0)(A) = o(A).
Therefore (1.8) defines a fairly regular diffusion in each X5 (n|o), and it is easy to verify
that the realizations of the canonical conditional distribution A[dws |wpe,w(A)=n] are all
reversible measures of the associated (nd-dimensional) diffusion process for every n € N
and external configuration wpye = ope . The associated Markov semigroup will be denoted
as P}, it is strongly continuous in C'(Q,) and also in L?(€Q,, A) whenever \ is a canonical
Gibbs state.

In the paper [F2] it is shown that for every initial configuration ¢ € Qy a sequence
of partial solutions w?(t, o) converges almost surely to a strong solution w = w'(t,0) of
(1.1) as # — 1. This limiting solution is distinguished by an a priori bound: Hg(w(t,o)
is bounded on finite intervals of time, and there is no other solution having this property.
Following the lines of the proof we see that the result extends immediately to all o <
2 —d/2, see Proposition 1 in Section 3. The limiting semigroup, P! is less regular than
partial dynamics, the Hille-Yoshida theory is only available in a restricted form.

As a general reference measure we choose a translation invariant Gibbs state A with
interaction U and unit temperature, it is also a reversible measure of each partial dynamics.
Introduce Fi(4) := log A(e?), then entropy of another probability measure y relative to
A is just

T3] = sup{(o) = Fi(9) : 0 € Co(S)} = [ 108 (1.9)

if p < X; I[u]\] = +oo otherwise. It is easy to verify that u(¢) < I[u|\] + log A(e?)
whenever ¢ : 0, — R is measurable and p(¢) < +oo. The entropy of zin A C R%1is

In[plA] == I{pa|Aa] = ITua AN = Sip{u(qﬁ)—log Me?) : ¢ € FaNCo(Om)}  (1.10)

where pp 1s the restriction of p to Fy and pa A is the measure obtained by extending i
to the whole space by means of the conditional distribution of A, that is (uaA)(dw) :=

Aldwpewa)pa(dwy ). If @ is translation invariant and A, denotes the centered cubic box
of side 2n then

- . Ia [plA —

Tl 1= Jim P2 supfu(0) ~ Fa(0) 0 € Colay

(1.11)

Fi(¢):= lim L log/exp< Z smqb) dX,

n—oo |A,] e

denotes the (relative) specific entropy of p, see Section 5 in [OVY]. Here and alos later
on, s™ is the shift by m € R?, ie. s™d(w) = ¢(s™). Observe that I[u|\] < +oo implies
1(21) =1, see e.g. [FLO]. Our main result is the following:
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Theorem 1. Suppose that p* is a translation invariant stationary distribution of the
infinite system (1.1) such that I[p*|\] < +oo, then p* is a canonical Gibbs state of unit
temperature with interaction U .

The starting point of the argument is a nice, general entropy inequality for Markov
processes in such situations when the initial distribution has finite entropy relative to a
stationary reference measure. see [FLO]. This inequality and some of its first consequences
are discussed in the next section. In Section 3 we develop some uniform estimates on the
rate of convergence of partial dynamics to the full (infinite) one. In Section 4 these bounds
are then used when the basic entropy inequality is extended to the infinite system, which
completes the proof.

2. An Entropy Inequality and its Consequences

The idea that relative entropy with respect to a stationary measure is nice and effective tool
of the study of ergodic properties of Markov processes goes back to A. Rényi [Rel,Re2],
where ergodicity of irreducible Markov chains in a finite state space is shown by using
entropy as a Liapunov function to show the convergence of the evolved measure. Let us
first review this argument in a general context of discrete time Markov processes in a
probability space (X, X, ), see e.g. [Fo] for basic notions and results. Let p = p(x, dy)
denote a A-a.s.defined transition function, it is a probability measure on X for almost each
z € X, and that the operator P of conditional expectation, Pp(x) := [ p(x, dy)e(y) maps
L>°()\) into itself. Given an initial distribution p < A, the evolved measure at time t € N
is denoted as pu; = pP', ie. po = p and py = P = pPt. We are assuming that A = AP
is a stationary measure, then I[uP|A] < I[u|A\] by convexity. Moreover, as noticed by I.
Csiszar [Cs], the difference is again a relative entropy:

ITu|A] = Iue A] = I[p o P1Q" 0 pif] (2.1)

where 1o P and Q o p are probability measures on X x X characterized by

(o P)) = [ utde)p(e)Pite) and
(Qoié)= [ ndy)eln)Qely) (22)

for ¢(x,y) = () (y) with measurable and bounded ¢, ¢ : X +— R . Here ¢ = ¢(y, dx) is
the transition probability of the backward process reversed with respect to A ; the associated
transition operator, @, Qu(y) = [ ¢(y,dx)p(x), is defined as the adjoint of P in L*(\),
ie. MePy) = MQp) for p,¢b € L?*(\). Therefore I[u|\] = I[pP|\] < +oo implies
poP =QopuP, thus p is a stationary and reversible measure of the composed, reversible
process R = PQ, see [F1]. The following reformulation of results by Rényi and Csiszar
demostrates an intrisic relationship of the notions of entropy and reversibility.

Theorem 2. Every stationary measure i < X\ is reversible with respect to R. If p < A
then so is uP', and the sequence of densities, f; := duP*/d\ is uniformly integrable with
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respect to A. Moreover, if yP'"(¢) — pu(p) for all ¢ € L>®(\) as t,, — +oo then i is a
reversible measure of R, that is we have a weak convergence to the set of R-reversible
measures.

Proof: Suppose first that I[u|\] < +oo, then I[uP*|A] < I[u|)\] implies the uniform
integrability of f; ,¢ € N, thus the Dunford—Pettis Theorem applies. We have to show that
every weak limit point g satisfies I[u|A] = I[uP|A].

If a(¢) = lim, uP(¢) for all ¢ € L>®(\) and ¢ : X x X — R is measurable and
bounded, then

(10 P)(6) ~log(Qo )(e®) = lim (s, 0 P)(6) — log(Q o s, +1)(e?)
< JE%OU[/«%N — I, +11A]) =0 (2:3)

Taking the supremum on the left hand side we get [ o P|Q o uP] =0, whence ppoP =
Qo P, ie p=puPQ. Replacing P by R in the argument above, we get o R =R o,
the condition of reversibility of p with respect to R = PQ.

The general case of u < A follows by a direct approximation procedure. For each ¢ > 0
we have some p° such that I[p®|A] < 400 and | — pf|1 < &, where |- |1 denotes the
variational distance. Set ff := du®P?/d)\ and |z|4 := max{0,z}; since P is a contraction

of L'(\),

[1si—aear< [15r —aear+ [1f - gr1ax
< [1f5 —alar+ [ 15 - filar< 2

if a 1s large enough, thus f; is still a uniformly integrable sequence. Consider now a weak
limit point i of uP?, t, — +oo is the subsequence along which yP? converges to i, and
let ii° denote a limit point of u°P!" . Therefore we have a subsequence {t',} C {t,} such
that for any ¢ € L*°(\)

(o) = 15 ()] = lim [P (o) — P ()] < elploc

so that i1 — p°[1 < e implying (eRy) = (Y Ryp) for ¢, € L=(N). O

This result is useful because usually it i1s easier to identify the reversible measures than
the stationary ones. Of course, the set of reversible measures of R = PQ can be much
larger than the set of stationary measures of P, then a next, more specific step is needed.

For example, if X is a countable set then P is given by a stochastic matrix p = p(x,y),
and ¢(y,x) := Ma)p(x,y)/A(y) is the associated backward transition probability; A(x) > 0
for all z € X may be assumed. From (2.3) with P? in place of P we get o P' = Q' o uP?
for any limit distribution u, which reads as

/1(95) t R /jt(y)
oL (z,y) = p'(x,y) o)
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in the present context. Therefore if the chain is aperiodic in the sense that for each © € X
there exists an integer ¢(z) > 0 such that p'(z,z) > 0 whenever ¢t > (), then ju(x) = ()
for t > t(a). Similarly, g1(x) = figg1(x) if t > t(x), consequently u(x) = g1(x) for all
r € X, 1.e. p = pP. Uniqueness of the stationary measure follows immediately from a
condition of irreducibiliy: if for each pair x,y € X we have some t = t(x,y) such that
pi(z,y) > 0 then p(x)/ M) = pu(y)/Ny), whence ji(x) = A(z) for all z € X, consequently
we have p(x) = A(z) for all v € X ast — o0.

In the case of continuous time it is natural to assume that X is a complete and separable
metric space, and both P' and its adjoint in L*(\), Q' form strongly continuous semigroups
in Cy(X); basic notations are the same as above. To obtain a lower bound for I[u|\] —
I[uPt )] consider an auxiliary distribution v < A such that ¢ := dv/d\ > 0; then p < v
and I[u|v] = I[u|\] — v(logs)), while I[uP!vP!] = I[uPH\] — u(log Q¥) as duP!/d\ =
Q' . Since I[uP!vP! < I[u|v] by convexity,

I[N = I[uPYA] > p(logeh) — P! (log Q)
_ 2.4
> p(log 1) — p(log R'4)) / v 24

as logz — logy > (z — y)/x. Observe that A\ o R' is a symmetric measure, thus with
f=du/d\ we get

[ oS

> / / (Ao R')(dr, dy)v/ F@)V/F () (2.6)

This means that the right hand side is maximal if ¢ = \/f .

Consider now the Donsker—Varadhan rate D,
Dip|G] := sup{— / % dp 2 p € Dom G, inf ¢ > 0} (2.7)
P

where G is any semigroup generator, and notice that Dom G in the definition of D can be
replaced by any core of G in Cy(X). Moreover, if G is self-adjoint in L*(\) and f = du/dX,
then D[u|G] < +oo implies v/F € Dom (—G)'/? and

Diuig) = [(V=GV/F)" ix (2.5

see (2.6) and Theorem 5 in [DV]. Observe now that R' is self-adjoint in L*(\), thus so is
its generator, G, too. By a formal calculation we get G = L+ L* ., where L is the generator
of the semigroup P!, while its adjoint £* denotes that of Q. For small ¢ the right hand
side of (2.3) becomes approximately —tu(G /1) + o(t), thus we have
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Proposition 1. Suppose that we have a dense C* C Cy(X) such that it is a common core
of £ and L* with respect to either Cy(X) and L*()\), then

1 1
I[P |\] + 2tDljelG) < Tlul\]5 e s= 7 / P ds.
0

For a more detailed proof see [FLO]. Therefore if I[u|A] < 400, then D[p|G] = 0 in
a stationary regime with I[p|A] < 4oo implying the reversibility of p with respect to
RY, that is pu(pGv) = u(vGyp) for all p,¢b € Dom G. In the case of reversible diffusion
processes the verification of the conditions of Proposition 1 amounts to establishing smooth
dependence of solutions on initial values. Assuming the smoothness of the coefficients of
the underlying stochastic equations, a standard argument shows that twice continuously
differentiable functions with compact supports form a core of the generator. If the diffusion
matrix is positive then D[u|G] = 0 yields g = A, thus peP? — X as t — oo for all py < .

Our next task is to extend these results to infinity volumes, this is done by means of
a familiar argument of Holley [Ho|; in translation invariant situations we can pass to the
thermodynamic limit. This procedure can not be carried out in a general framework, see
e.g. [FFL] and [FLO]; technical requirements are summarized in the next section.

3. On Locality of Dynamics

Results of [F2] are not directly applicable in the present situation, that is why we review
some parts of the argument. A convenient collection O of cutoff functions is defined for
m € Réand ¢ > 1 by 6! = 6 (2) := 6y(||lxr — m| — (]1), where 8y € CZ(R,) satisfies
0 <y(u) <1Vu>0whileby(u)=1if u <1andfy(u) =0if u > 2; thus O is the set
of such functions including also § = 1, that is the case of full (infinite) dynamics. The
limiting solution will be denoted as w = w!(¢, 7). The basic a priori bound of [F2] can be
reformulated as follows, see Proposition 2 and (3.18) there. Let Ni(w) denote the number
of points of w in B(wyg,1), and

— Ni(w?
Ny(t,0) := 1+ supmax M

. (3.1)
kes ISt ga(wi(s))

Exploiting superstability of the interaction, by means of the argument of [F2] we get
Proposition 2. If « <2 —d/2 then for eacht > 0 and h > 0

lim sup sup P[Ng(t,0) > p]=0.
P—=XHeO Ueﬁa,h

First we derive a uniform bound on the localization of particles. From the stochastic
equations

|wk(t o) — ak|<Ix1/ Npta\/gCy wksa))ds

/ \/9 (w(s,0) dwk‘ (3.2)
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Let g.(u) := (1 + [u)*/?, by a direct calculation
69,k(t7 U) = Iglgf |wlz(87 U) - Uk| < ge(tv U)(Q*(Uk) + g*(ée’k(t, U) ’

t
/ \/0(wl(s,0)) dwk‘
0
whence by assuming ég 5 > g«(0k) we get

o0,k(t,0) < mo(t,o)g.(on), (3.4)

where the explicit form n = K35 is not relevant, we only need

(3.3)

t__ K,
t,o):=K / Ny(s,0)ds + supmax
ot o) = B | Nols,o)de 4 mmas o)

lim sup sup Png(t,o) >y]=0 (3.5)
y—X gco Ueﬁa,h

for all £,2 > 0, which is a direct consequence of the definition of .

Now we are in a position to estimate the rate of convergence of partial dynamics w? to
its limit w as # — 1. For any initial configuration o € Q, let S(m,r, o) denote the set of
k € S such that |op —m| <r, and consider

Aoty o) = keg{lg}i " max wi(s,0) —wi(s, o) with § =6°, . (3.6)

For any fixed T' > 0 and rg,¢ > 1 define ry, .k = 0,1, ..., x, ... by
Tret1 = e + 294(|m| + ) N (T, 0) + R+ 1, where
(T, 0) = max{ng(T,0),m(T,0)}, 6=6,.

In view of (3.4) this means that before time T the particles starting from B(m,r,) can
not interact with those starting from outside of B(m,rq4+1), therefore

(3.7)

t
Aot re,0) < Lg(|m| + () Nm,g(t,a)/ A e(8,7e41,0)ds, where
0

(3.8)
N e(t,0) := max{Ny (t,0),Ni(t,0)},
provided that r,41 + R < (.
Suppose that (3.8) can y times be iterated, then for t < T
L)X .
Amelt70,0) < 2004+ DEL (g () + 0 Ko (8, 0)) (3.9)

x!

where y = O(((|m| + €)7*/5) is a random number. Of course, this inequality implies the
a.s. convergence of partial solutions; this was shown in [F2] when m = 0 and { — 4.

m {

Here we need a more delicate result: w”™* converges even if |m| increases together with ¢.

More precisely, for any rg,t, h,e > 0 we have
lim sup{P[ﬁm,g(t,U)Am,g(t,ro,a) >clio€Qan,ml€E Mn}: 0, (3.10)
where M, := {m,(: |m|+(+ R < n, (> n®/%}. Indeed, in this situation y of (3.9) goes
a.s. to +ooasn — .
In the next section the following consequence of (3.10) will be needed. Suppose that
we are given a translation invariant probability measure p such that u(0,) = 1, and set
fin, := pa, A. The above calculations are summarized in
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Lemma 1. For any ¢ € Cj(Q) and t > 0 we have

lim sup{|inP°s™¢ — uP°¢|:s <t, |m|<n— n5/6} =0.

Proof: Since ji,(s™¢) = pu(p) if ¢,s™p € Fy, , it is natural to set ¢, = Py, ¢, then
0
s™we =Pg, ¢. Since ¢ is Lipschitz continuous by assumption, we can compare s™ ¢ and
P3s™ ¢ via (3.10), at least if [m| < n — n®/% . The missing part of the bound,
lim sup,ﬂn(ﬁa,h) =0 (3.11)

h—oo nEN

follows from the basic superstability estimate of Ruelle [Ru2]. Indeed, for any box A of
given shape and size we have A\|w(A) > v|Fpc] < Ceev” , where ¢ and C' do not depend on
wpe . In view of (1.2) this yields /\(ﬁa) = 1 by the Borel-Cantelli lemma. Since /,L(ﬁa) =1
by assumption, estimating the contribution of particles from A¢ to H, via superstability,
we get (3.11) by a similar computation. O

Remark: Since the level sets of H are compact, the Stone-Weierstrass theorem allows us
to extend Lemma 1 to continuous and bounded local functions.

4. Passage to the Thermodynamic Limit

Now we are in a position to prove Theorem 1 by extending Proposition 1 to infinite volumes.
Using the notation [}, = 3} A of Lemma 1, we have

I{i, Pl + 2tDlpiy, g | Lo] < T[fiy|A] = In, [1|A] (4.1)

for any smooth cutoff 6, where i} ,, is the time average of the evolved measures )P,

from s = 0 through s = t. In view of (2.6) D is subadditive in the following sense. Suppose
that Jf(n) C Z? satisfies # > 0%, and 6%,0% =0 for m,k € Jf(n), k # m then

- - ;CQZS
Dlitoilel > S Dlit g e ]> 3 / ity (42)
meJi(n) meJi(n)

for smooth ¢ > 0. Similarly, for all ¢ € Cy(2)

I[P > / Su(PY(e)) it — F(Su(y)),  with

Salp) = > 8Ty (4.3)

meEA,, NZ3

Now we can remove the cutoff of dynamics, keeping Jj(n) = JYn) C A, _,s/6 fixed
during this procedure we get

3 / s / ﬁ”s Y gz Pt < TN + F(Sule) - / Su(Plo)dit  (44)

meJ (n)
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As far as ( is fixed, we may assume that Card J%(n) > ¢¢|A,| with some ¢, > 0; thus
dividing both sides by |A,| we can pass to a thermodynamic limit. Indeed, in view of
Lemma 1 all terms of /fLiP%Sn(cp)) become asymptotically identical when n — oo . Since
Lo = smﬁeé , the same holds true on the left hand side, thus for all # € © with compact

support we have some ¢g > 0 such that
—,CQLZ) * TT, * n *
cot [ STt < I+ Bao) = ), (£6)

where ¢ € Cy(Q) is arbitrary, thus from (1.11) p*(Lgtp/10) > 0 for all smooth ¢ > 0. Since
Lolog > L /1 by convexity, and ¢ = log ¢ is still quite general, the resulting stationary
Kolmogorov equation p*(Lg¢) = 0 implies that p* is a stationary and reversible measure
of every partial evolution Py, which completes the proof of Theorem 1.
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solvable at a formal level of the stationary Kolmogorov equation. We can only study stationary
states of a well controlled Markov process. In space dimensions four or less, for smooth
and superstable pair potentials of finite range the non-equilibrium dynamics of interacting
Brownian particles can be constructed in an explicitely defined deterministic set of locally
finite configurations, see [F3]. This set is of full measure with respect to any canonical
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1. Introduction

The main purpose of this paper is to identify a class of stationary states of the following
system of interacting particles as the set of translation invariant canonical Gibbs states with
interaction U . The evolution law is given by an infinite system of stochastic differential
equations,

1
dwy = ~3 Zgrad Ulwp —wj)dt +dwy, wip(0) =0, keS (1.1)
P

where S is a countable index set, w = (wy)res is a family of independent standard d-
dimensional Wiener processes, and each wi = wg(t),t > 0 is assumed to be a continuous
trajectory in R?. The potential U : R? — R is symmetric and superstable with finite range,
that is U(x) = U(—=x), there is an R > 0 such that U(x) = 0 if |2| > R, and we have
constants A > 0, B > 0 such that for any finite sequence ¢1, g2, ..., g, of not necessarily
distinct points from R?

nA—|—zn:ZU(qk —¢;) > BN (1.2)

k=1 j#k

where N is the number of pairs {j, k} such that |¢x — ¢;| < R, see [Rul]. Let Q denote
the set of configurations having no limit points. Although the right hand side of (1.1) is
certainly well defined for such, locally finite configurations w € €2, to develop a satisfactory
existence theory we have to restrict the configuration space in a much more radical way.
On the other hand, the set of allowed configurations should be large enough to support a
possibly wide set probability measures including Gibbs states with various interactions.

The first mathematical results concerning this model go back to R. Lang, see [Lal] and
[La2], where the existence of equilibrium dynamics, and also the canonical Gibbs property
of reversible measures is proven. These dynamics is defined almost surely with respect to
a Gibbs state with interaction U, see also the more sophisticated argument of [Os]. For
a study of stationary measures in general, we need a more direct construction involving
explicit bounds on the rate of convergence of solutions to finite subsystems (partial dynam-
ics) when the number of active particles tends to infinity, see Section 3 below. Indeed, the
problem of stationary measures can not be solved at a formal level of the stationary Kol-
mogorov equation, see [FFL] and [FLO], we really need that that our measure is realized
as a stationary state of a well controlled Markov process.

For a generic, locally finite configuration w = (wg )res let H(w, m,r) denote total energy
in the ball B(m,r) of center m € R? and radius r > 1, and for o > 0 define

_ H e
H,(w):= sup sup (w,zl,rg (m))
mezd reEN ritga(m)
1
H(w,m,r) = 5 Z Z U(u)]‘ — ujk) (13)
wrEB(m,r)  j#k,w; EB(m,r)

go(u) =14 |u|log(1 + |u|) for u € R,R".

where
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The set of allowed configurations is now specified as Q4 := {w € Q : Ho(w) < +o0};
we shall see that for an effective a priori bound we need o < 2 — d/2, thus d < 4. Let
Co(R?) denote the space of continuous ¢ : RY — R of compact support. Spaces of k times
continuously differentiable functions with compact supports are marked by a superseript & ,
while a subscript b in place of 0 refers to bounded functions without any support condition.
For an open and bounded domain A C R? the o-field F is generated by the variables
w() = Y e p(wr) such that the support of ¢ € Co(R?) is contained in A ; the number
of points in A will be denoted by w(A). This means that configurations are interpreted
as nonnegative, integer valued measures, and Q, is equipped with the associated weak
topology and Borel structure. Observe that, due to superstability (1.2), the level sets
Qun := [Ha(w) < h] are compact if h is large enough. The restriction of w € Q, to A is
wy , and A€ denotes the complement of A .

For any bounded domain A C R? and ¢ € Q, n € N let £, (n|o) denote the set of w €
Q., such that w(A) =n and wye = ope . A probability measure A is a canonical Gibbs state
(with unit temperature) for U if its conditional distribution A[dwy |wpe,w(A) =n], given
the configuration outside of A and the number of points in A, admits an nd-dimensional
Lebesgue density fa n ,

exp(—HA,n(wA |wAc)>

nlwp|wpe) i = if w e Yp(njwae),
Fanwnloae) Zan(on) a(nfwe) "
1 .
HA,n(wA|wAc):: 3 Z Z U(wk—wj)—l— Z Z U(wk—wj)
wrpEA w; EA wp €A w; EAC

where X, denotes the summation for such pairs {j, k} that at least one of w; and wy
belongs to A, Z is the canonical partition function (normalization). Gibbs states are the
extremal canonical measures, see e.g. [G]. In view of the superstability estimates of [R2],
there exits at least one translation invariant Gibbs state A such that A(€y) = 1, of course
Q. C ﬁg ifa>f.

The unique strong solution w = w(t,0) to the infinite system (1.1) with initial con-
figuration o € €, is constructed as the a.s limit of partial solutions w? = w¥(t, o) when
a spatial cutoff € is removed. To ensure the convergence of partial dynamics we have to
assume that o <2 —d/2. Like in [F2], partial dynamics also preserve any canonical Gibbs
measure because we keep particles within a bounded domain, while external particles are
frozen. More precisely, for any 6§ € C(R?) such that 0 < § < 1 there is a differential
operator Ly,

d
1 Hy(w —Hp(w

Log = 5 Z Ze i )8k,i<9(wk)e i )8k,iq§(w)> (1.5)

keSS i=1

where 0 ; denotes differentiation with respect to the ¢ coordinate of wy and
Hy(w) =Y Ulw; —ws). (1.6)
i#k

We consider L4 as the (formal) generator of partial dynamics with cutoff 6, the infinite
system (1.1) corresponds to 8 = 1. All generators of this kind are certainly well defined
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on CZ(Q), where CF(Q) is the space of test functions

o(w) = d(wlpr),w(p2), . wlpr)), ¥ € CH(RY), ;€ CG(RY), (€N (1.7)
The stochastic equations for cutoff 8 read as
dwy = %erak (9(wk)e_H’“> dt + \/G(wk) dwy, , (1.8)

they have a unique strong solution w? = w¥(t, o) for each initial configuration o. If A D
supp 6 then the particle number in A is a constant of motion, that is w¥(t,0)(A) = o(A).
Therefore (1.8) defines a fairly regular diffusion in each X5 (n|o), and it is easy to verify
that the realizations of the canonical conditional distribution A[dws |wpe,w(A)=n] are all
reversible measures of the associated (nd-dimensional) diffusion process for every n € N
and external configuration wpye = ope . The associated Markov semigroup will be denoted
as P}, it is strongly continuous in C'(Q,) and also in L?(€Q,, A) whenever \ is a canonical
Gibbs state.

In the paper [F2] it is shown that for every initial configuration ¢ € Qy a sequence
of partial solutions w?(t, o) converges almost surely to a strong solution w = w'(t,0) of
(1.1) as # — 1. This limiting solution is distinguished by an a priori bound: Hg(w(t,o)
is bounded on finite intervals of time, and there is no other solution having this property.
Following the lines of the proof we see that the result extends immediately to all o <
2 —d/2, see Proposition 1 in Section 3. The limiting semigroup, P! is less regular than
partial dynamics, the Hille-Yoshida theory is only available in a restricted form.

As a general reference measure we choose a translation invariant Gibbs state A with
interaction U and unit temperature, it is also a reversible measure of each partial dynamics.
Introduce Fi(4) := log A(e?), then entropy of another probability measure y relative to
A is just

T3] = sup{(o) = Fi(9) : 0 € Co(S)} = [ 108 (1.9)

if p < X; I[u]\] = +oo otherwise. It is easy to verify that u(¢) < I[u|\] + log A(e?)
whenever ¢ : 0, — R is measurable and p(¢) < +oo. The entropy of zin A C R%1is

In[plA] == I{pa|Aa] = ITua AN = Sip{u(qﬁ)—log Me?) : ¢ € FaNCo(Om)}  (1.10)

where pp 1s the restriction of p to Fy and pa A is the measure obtained by extending i
to the whole space by means of the conditional distribution of A, that is (uaA)(dw) :=

Aldwpewa)pa(dwy ). If @ is translation invariant and A, denotes the centered cubic box
of side 2n then

- . Ia [plA —

Tl 1= Jim P2 supfu(0) ~ Fa(0) 0 € Colay

(1.11)

Fi(¢):= lim L log/exp< Z smqb) dX,

n—oo |A,] e

denotes the (relative) specific entropy of p, see Section 5 in [OVY]. Here and alos later
on, s™ is the shift by m € R?, ie. s™d(w) = ¢(s™). Observe that I[u|\] < +oo implies
1(21) =1, see e.g. [FLO]. Our main result is the following:
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Theorem 1. Suppose that p* is a translation invariant stationary distribution of the
infinite system (1.1) such that I[p*|\] < +oo, then p* is a canonical Gibbs state of unit
temperature with interaction U .

The starting point of the argument is a nice, general entropy inequality for Markov
processes in such situations when the initial distribution has finite entropy relative to a
stationary reference measure. see [FLO]. This inequality and some of its first consequences
are discussed in the next section. In Section 3 we develop some uniform estimates on the
rate of convergence of partial dynamics to the full (infinite) one. In Section 4 these bounds
are then used when the basic entropy inequality is extended to the infinite system, which
completes the proof.

2. An Entropy Inequality and its Consequences

The idea that relative entropy with respect to a stationary measure is nice and effective tool
of the study of ergodic properties of Markov processes goes back to A. Rényi [Rel,Re2],
where ergodicity of irreducible Markov chains in a finite state space is shown by using
entropy as a Liapunov function to show the convergence of the evolved measure. Let us
first review this argument in a general context of discrete time Markov processes in a
probability space (X, X, ), see e.g. [Fo] for basic notions and results. Let p = p(x, dy)
denote a A-a.s.defined transition function, it is a probability measure on X for almost each
z € X, and that the operator P of conditional expectation, Pp(x) := [ p(x, dy)e(y) maps
L>°()\) into itself. Given an initial distribution p < A, the evolved measure at time t € N
is denoted as pu; = pP', ie. po = p and py = P = pPt. We are assuming that A = AP
is a stationary measure, then I[uP|A] < I[u|A\] by convexity. Moreover, as noticed by I.
Csiszar [Cs], the difference is again a relative entropy:

ITu|A] = Iue A] = I[p o P1Q" 0 pif] (2.1)

where 1o P and Q o p are probability measures on X x X characterized by

(o P)) = [ utde)p(e)Pite) and
(Qoié)= [ ndy)eln)Qely) (22)

for ¢(x,y) = () (y) with measurable and bounded ¢, ¢ : X +— R . Here ¢ = ¢(y, dx) is
the transition probability of the backward process reversed with respect to A ; the associated
transition operator, @, Qu(y) = [ ¢(y,dx)p(x), is defined as the adjoint of P in L*(\),
ie. MePy) = MQp) for p,¢b € L?*(\). Therefore I[u|\] = I[pP|\] < +oo implies
poP =QopuP, thus p is a stationary and reversible measure of the composed, reversible
process R = PQ, see [F1]. The following reformulation of results by Rényi and Csiszar
demostrates an intrisic relationship of the notions of entropy and reversibility.

Theorem 2. Every stationary measure i < X\ is reversible with respect to R. If p < A
then so is uP', and the sequence of densities, f; := duP*/d\ is uniformly integrable with
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respect to A. Moreover, if yP'"(¢) — pu(p) for all ¢ € L>®(\) as t,, — +oo then i is a
reversible measure of R, that is we have a weak convergence to the set of R-reversible
measures.

Proof: Suppose first that I[u|\] < +oo, then I[uP*|A] < I[u|)\] implies the uniform
integrability of f; ,¢ € N, thus the Dunford—Pettis Theorem applies. We have to show that
every weak limit point g satisfies I[u|A] = I[uP|A].

If a(¢) = lim, uP(¢) for all ¢ € L>®(\) and ¢ : X x X — R is measurable and
bounded, then

(10 P)(6) ~log(Qo )(e®) = lim (s, 0 P)(6) — log(Q o s, +1)(e?)
< JE%OU[/«%N — I, +11A]) =0 (2:3)

Taking the supremum on the left hand side we get [ o P|Q o uP] =0, whence ppoP =
Qo P, ie p=puPQ. Replacing P by R in the argument above, we get o R =R o,
the condition of reversibility of p with respect to R = PQ.

The general case of u < A follows by a direct approximation procedure. For each ¢ > 0
we have some p° such that I[p®|A] < 400 and | — pf|1 < &, where |- |1 denotes the
variational distance. Set ff := du®P?/d)\ and |z|4 := max{0,z}; since P is a contraction

of L'(\),

[1si—aear< [15r —aear+ [1f - gr1ax
< [1f5 —alar+ [ 15 - filar< 2

if a 1s large enough, thus f; is still a uniformly integrable sequence. Consider now a weak
limit point i of uP?, t, — +oo is the subsequence along which yP? converges to i, and
let ii° denote a limit point of u°P!" . Therefore we have a subsequence {t',} C {t,} such
that for any ¢ € L*°(\)

(o) = 15 ()] = lim [P (o) — P ()] < elploc

so that i1 — p°[1 < e implying (eRy) = (Y Ryp) for ¢, € L=(N). O

This result is useful because usually it i1s easier to identify the reversible measures than
the stationary ones. Of course, the set of reversible measures of R = PQ can be much
larger than the set of stationary measures of P, then a next, more specific step is needed.

For example, if X is a countable set then P is given by a stochastic matrix p = p(x,y),
and ¢(y,x) := Ma)p(x,y)/A(y) is the associated backward transition probability; A(x) > 0
for all z € X may be assumed. From (2.3) with P? in place of P we get o P' = Q' o uP?
for any limit distribution u, which reads as

/1(95) t R /jt(y)
oL (z,y) = p'(x,y) o)
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in the present context. Therefore if the chain is aperiodic in the sense that for each © € X
there exists an integer ¢(z) > 0 such that p'(z,z) > 0 whenever ¢t > (), then ju(x) = ()
for t > t(a). Similarly, g1(x) = figg1(x) if t > t(x), consequently u(x) = g1(x) for all
r € X, 1.e. p = pP. Uniqueness of the stationary measure follows immediately from a
condition of irreducibiliy: if for each pair x,y € X we have some t = t(x,y) such that
pi(z,y) > 0 then p(x)/ M) = pu(y)/Ny), whence ji(x) = A(z) for all z € X, consequently
we have p(x) = A(z) for all v € X ast — o0.

In the case of continuous time it is natural to assume that X is a complete and separable
metric space, and both P' and its adjoint in L*(\), Q' form strongly continuous semigroups
in Cy(X); basic notations are the same as above. To obtain a lower bound for I[u|\] —
I[uPt )] consider an auxiliary distribution v < A such that ¢ := dv/d\ > 0; then p < v
and I[u|v] = I[u|\] — v(logs)), while I[uP!vP!] = I[uPH\] — u(log Q¥) as duP!/d\ =
Q' . Since I[uP!vP! < I[u|v] by convexity,

I[N = I[uPYA] > p(logeh) — P! (log Q)
_ 2.4
> p(log 1) — p(log R'4)) / v 24

as logz — logy > (z — y)/x. Observe that A\ o R' is a symmetric measure, thus with
f=du/d\ we get

[ oS

> / / (Ao R')(dr, dy)v/ F@)V/F () (2.6)

This means that the right hand side is maximal if ¢ = \/f .

Consider now the Donsker—Varadhan rate D,
Dip|G] := sup{— / % dp 2 p € Dom G, inf ¢ > 0} (2.7)
P

where G is any semigroup generator, and notice that Dom G in the definition of D can be
replaced by any core of G in Cy(X). Moreover, if G is self-adjoint in L*(\) and f = du/dX,
then D[u|G] < +oo implies v/F € Dom (—G)'/? and

Diuig) = [(V=GV/F)" ix (2.5

see (2.6) and Theorem 5 in [DV]. Observe now that R' is self-adjoint in L*(\), thus so is
its generator, G, too. By a formal calculation we get G = L+ L* ., where L is the generator
of the semigroup P!, while its adjoint £* denotes that of Q. For small ¢ the right hand
side of (2.3) becomes approximately —tu(G /1) + o(t), thus we have
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Proposition 1. Suppose that we have a dense C* C Cy(X) such that it is a common core
of £ and L* with respect to either Cy(X) and L*()\), then

1 1
I[P |\] + 2tDljelG) < Tlul\]5 e s= 7 / P ds.
0

For a more detailed proof see [FLO]. Therefore if I[u|A] < 400, then D[p|G] = 0 in
a stationary regime with I[p|A] < 4oo implying the reversibility of p with respect to
RY, that is pu(pGv) = u(vGyp) for all p,¢b € Dom G. In the case of reversible diffusion
processes the verification of the conditions of Proposition 1 amounts to establishing smooth
dependence of solutions on initial values. Assuming the smoothness of the coefficients of
the underlying stochastic equations, a standard argument shows that twice continuously
differentiable functions with compact supports form a core of the generator. If the diffusion
matrix is positive then D[u|G] = 0 yields g = A, thus peP? — X as t — oo for all py < .

Our next task is to extend these results to infinity volumes, this is done by means of
a familiar argument of Holley [Ho|; in translation invariant situations we can pass to the
thermodynamic limit. This procedure can not be carried out in a general framework, see
e.g. [FFL] and [FLO]; technical requirements are summarized in the next section.

3. On Locality of Dynamics

Results of [F2] are not directly applicable in the present situation, that is why we review
some parts of the argument. A convenient collection O of cutoff functions is defined for
m € Réand ¢ > 1 by 6! = 6 (2) := 6y(||lxr — m| — (]1), where 8y € CZ(R,) satisfies
0 <y(u) <1Vu>0whileby(u)=1if u <1andfy(u) =0if u > 2; thus O is the set
of such functions including also § = 1, that is the case of full (infinite) dynamics. The
limiting solution will be denoted as w = w!(¢, 7). The basic a priori bound of [F2] can be
reformulated as follows, see Proposition 2 and (3.18) there. Let Ni(w) denote the number
of points of w in B(wyg,1), and

— Ni(w?
Ny(t,0) := 1+ supmax M

. (3.1)
kes ISt ga(wi(s))

Exploiting superstability of the interaction, by means of the argument of [F2] we get
Proposition 2. If « <2 —d/2 then for eacht > 0 and h > 0

lim sup sup P[Ng(t,0) > p]=0.
P—=XHeO Ueﬁa,h

First we derive a uniform bound on the localization of particles. From the stochastic
equations

|wk(t o) — ak|<Ix1/ Npta\/gCy wksa))ds

/ \/9 (w(s,0) dwk‘ (3.2)
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Let g.(u) := (1 + [u)*/?, by a direct calculation
69,k(t7 U) = Iglgf |wlz(87 U) - Uk| < ge(tv U)(Q*(Uk) + g*(ée’k(t, U) ’

t
/ \/0(wl(s,0)) dwk‘
0
whence by assuming ég 5 > g«(0k) we get

o0,k(t,0) < mo(t,o)g.(on), (3.4)

where the explicit form n = K35 is not relevant, we only need

(3.3)

t__ K,
t,o):=K / Ny(s,0)ds + supmax
ot o) = B | Nols,o)de 4 mmas o)

lim sup sup Png(t,o) >y]=0 (3.5)
y—X gco Ueﬁa,h

for all £,2 > 0, which is a direct consequence of the definition of .

Now we are in a position to estimate the rate of convergence of partial dynamics w? to
its limit w as # — 1. For any initial configuration o € Q, let S(m,r, o) denote the set of
k € S such that |op —m| <r, and consider

Aoty o) = keg{lg}i " max wi(s,0) —wi(s, o) with § =6°, . (3.6)

For any fixed T' > 0 and rg,¢ > 1 define ry, .k = 0,1, ..., x, ... by
Tret1 = e + 294(|m| + ) N (T, 0) + R+ 1, where
(T, 0) = max{ng(T,0),m(T,0)}, 6=6,.

In view of (3.4) this means that before time T the particles starting from B(m,r,) can
not interact with those starting from outside of B(m,rq4+1), therefore

(3.7)

t
Aot re,0) < Lg(|m| + () Nm,g(t,a)/ A e(8,7e41,0)ds, where
0

(3.8)
N e(t,0) := max{Ny (t,0),Ni(t,0)},
provided that r,41 + R < (.
Suppose that (3.8) can y times be iterated, then for t < T
L)X .
Amelt70,0) < 2004+ DEL (g () + 0 Ko (8, 0)) (3.9)

x!

where y = O(((|m| + €)7*/5) is a random number. Of course, this inequality implies the
a.s. convergence of partial solutions; this was shown in [F2] when m = 0 and { — 4.

m {

Here we need a more delicate result: w”™* converges even if |m| increases together with ¢.

More precisely, for any rg,t, h,e > 0 we have
lim sup{P[ﬁm,g(t,U)Am,g(t,ro,a) >clio€Qan,ml€E Mn}: 0, (3.10)
where M, := {m,(: |m|+(+ R < n, (> n®/%}. Indeed, in this situation y of (3.9) goes
a.s. to +ooasn — .
In the next section the following consequence of (3.10) will be needed. Suppose that
we are given a translation invariant probability measure p such that u(0,) = 1, and set
fin, := pa, A. The above calculations are summarized in



10 J. FRITZ AND S. ROELLY AND H. ZESSIN

Lemma 1. For any ¢ € Cj(Q) and t > 0 we have

lim sup{|inP°s™¢ — uP°¢|:s <t, |m|<n— n5/6} =0.

Proof: Since ji,(s™¢) = pu(p) if ¢,s™p € Fy, , it is natural to set ¢, = Py, ¢, then
0
s™we =Pg, ¢. Since ¢ is Lipschitz continuous by assumption, we can compare s™ ¢ and
P3s™ ¢ via (3.10), at least if [m| < n — n®/% . The missing part of the bound,
lim sup,ﬂn(ﬁa,h) =0 (3.11)

h—oo nEN

follows from the basic superstability estimate of Ruelle [Ru2]. Indeed, for any box A of
given shape and size we have A\|w(A) > v|Fpc] < Ceev” , where ¢ and C' do not depend on
wpe . In view of (1.2) this yields /\(ﬁa) = 1 by the Borel-Cantelli lemma. Since /,L(ﬁa) =1
by assumption, estimating the contribution of particles from A¢ to H, via superstability,
we get (3.11) by a similar computation. O

Remark: Since the level sets of H are compact, the Stone-Weierstrass theorem allows us
to extend Lemma 1 to continuous and bounded local functions.

4. Passage to the Thermodynamic Limit

Now we are in a position to prove Theorem 1 by extending Proposition 1 to infinite volumes.
Using the notation [}, = 3} A of Lemma 1, we have

I{i, Pl + 2tDlpiy, g | Lo] < T[fiy|A] = In, [1|A] (4.1)

for any smooth cutoff 6, where i} ,, is the time average of the evolved measures )P,

from s = 0 through s = t. In view of (2.6) D is subadditive in the following sense. Suppose
that Jf(n) C Z? satisfies # > 0%, and 6%,0% =0 for m,k € Jf(n), k # m then

- - ;CQZS
Dlitoilel > S Dlit g e ]> 3 / ity (42)
meJi(n) meJi(n)

for smooth ¢ > 0. Similarly, for all ¢ € Cy(2)

I[P > / Su(PY(e)) it — F(Su(y)),  with

Salp) = > 8Ty (4.3)

meEA,, NZ3

Now we can remove the cutoff of dynamics, keeping Jj(n) = JYn) C A, _,s/6 fixed
during this procedure we get

3 / s / ﬁ”s Y gz Pt < TN + F(Sule) - / Su(Plo)dit  (44)

meJ (n)
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As far as ( is fixed, we may assume that Card J%(n) > ¢¢|A,| with some ¢, > 0; thus
dividing both sides by |A,| we can pass to a thermodynamic limit. Indeed, in view of
Lemma 1 all terms of /fLiP%Sn(cp)) become asymptotically identical when n — oo . Since
Lo = smﬁeé , the same holds true on the left hand side, thus for all # € © with compact

support we have some ¢g > 0 such that
—,CQLZ) * TT, * n *
cot [ STt < I+ Bao) = ), (£6)

where ¢ € Cy(Q) is arbitrary, thus from (1.11) p*(Lgtp/10) > 0 for all smooth ¢ > 0. Since
Lolog > L /1 by convexity, and ¢ = log ¢ is still quite general, the resulting stationary
Kolmogorov equation p*(Lg¢) = 0 implies that p* is a stationary and reversible measure
of every partial evolution Py, which completes the proof of Theorem 1.
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