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Abstract
We study an infinite system of Brownian hard balls, moving in R? and submitted
to a smooth infinite range pair potential. It is represented by a diffusion process, which
is constructed as the unique strong solution of an infinite dimensional Skorohod equa-
tion. We also prove that canonical Gibbs states associated to the sum of the hard core
potential and the pair potential are reversible measures for the dynamics.
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0 Introduction

We consider a system of infinitely many indistingable hard balls with diameter » > 0 in
a d-dimensional Euclidean space R?, d>>2, undergoing Brownian motions and submitted
to the influence of a smooth infinite range pair potential ®;.

Infinite systems of interacting Brownian particles (i.e. balls with diameter reduced
to 0) have been treated by Lang [Lan77a, Lan77b] and Fritz [Fri87] in the case of a
smooth nonnegative pair potential with finite range. Tanemura [Tan96| studied the
case of Brownian hard balls without supplementary pair potential. Recently, Fradon
and Roelly [FR] analyzed an infinite system of hard balls submitted to a smooth finite
range pair potential under the assumption that the density of balls is sufficiently small.
Here, we present a generalization of the previous works with respect to two important
points : the spatial mean density of the initial configuration is arbitrary large (when
it is Gibbsian, this means that there is no restriction on the activity), and the balls
interact even if they are separated by any large distance (the potential ®, has infinite
range with exponential decrease). Under these assumptions, we construct the gradient
diffusion X(t) = (X;(t),i € N,¢ > 0), unique strong solution of the following infinite-
dimensional Skorohod type system of equations :

Xi(t) = X, + Bi(t /vq> ds—i—Z/ i(s))dLi(s),

where, for any 4,5 € N,¢ # 5,20, | X;(t) — X;(¢)|>r, and L;;(t) are local times, that
is nondecreasing continuous processes with

Lij(0) = 0, Lij(.) = Lji(.) and Li;(t) = / Ly (1Xi(s) = Xj(s)])dLij(s)-

In a first section we define state spaces and present the main results of the paper. In
the second section the finite dimensional Skohorod problem is stated, some geometrical
aspect of the configuration space is discussed, and the dynamics of finitely many hard
balls is solved. The third section is devoted to the convergence of finite-dimensional
approximations towards X(.), a reversible solution of the above equation. In the last
section, we prove some measurability properties of the diffusion X(.) and the existence
of solutions with deterministic initial conditions.

1 Statement of the results

1.1 Configuration spaces and path spaces

In the whole paper, |.| denotes the euclidean norm and (-, -) denotes the corresponding
scalar product.

Let 9 be the set of all countable subsets 7 = {n;}; of R? satisfying Ny (n) = #(nNA) <
+00 for any compact set A of R?. We equivalently consider n € 9 as a non-negative
integer valued Radon measure on R : =", 4,.. M is endowed with the topology of
vague convergence.



The particles we deal with in the present paper are hard balls of radius r/2 (for a
fixed r > 0) evolving in R?. So the configuration space of the system is the following
(compact) subset of 90 :

X ={n={ni}ics € M where J C N and for i # j, |n; — n;|>r},

where 7; are the positions of the centers of the hard balls.

Throughout this paper when S is a topological space, we denote by B(S) the topo-
logical Borel field of S, and by W(S) the set of all S-valued continuous functions
defined on [0, 00). W(S) is endowed with the local uniform topology.

The o-field 0(Na; A € B(R?)) coincides with B(X). We will also use the o-field
B, (X) defined for each compact subset A of R? by

Bo(X) = o(Ny; A€ BRY), A CA).

We introduce the following measurable subsets of W (X).

For e > 0, 0<s < t < oc and a bounded open subset O of R¢, we denote by C(z, [s, t], O)
the set of all paths x(-) of W(X) such that on the time interval [s, t] the balls stay at
distance greater than /2 from the boundary of O :

if j € J(x(s),0), Yu € [s,t], Urse (z;(u)) C O
if j ¢ J(x(5),0), Yu € [s,t], Urss (zj(u)) C R\ O.

Here

J(n=1{n};,0)={i€eN:np € O}

and, for o > 0, U,(A) denotes the open a-neighbourhood of a set A C R?. U,(x) is the
abbreviated form of U,({z}), and, for simplicity, we just write U, instead of U, ({0}).
So,

Uy ={z € R, 2| < a}.

Fore,0 >0, T, M € N and ¢ € N, we denote by Cle, d, T, M, (] the set of all paths x(-)
of W(X) such that for any k = 0,1,...,[%], there exists a sequence O}, Of, .. .02 of
bounded open disjoint subsets of R? verifying

(1.1) Vge{L,2,...,Q} x(-) € C(e, [ko, (k + 1)d],Oy),

(12) U2, 3(x(k8),00) > I(x(ko), U,
(13)  Vge{lL2...Q} 1<:d(x(k3),0) <M

We now define a measurable subset C of W (X) which will be a path space containing
the processes studied in this paper :

oo oo 0

(1.4) UﬂUﬂﬂ U clm = 7 0m0).

K )p 1 M=1T=1mo=1 m=mo



1.2 Description of the potential and associated Gibbs states

We are dealing with a pair potential & = &, + ®,, where @, represents a hard core
repulsion, i.e.

0 if |& — &[>,
+00 otherwise,

(1.5)  @u(&i, &) = {

and @,(&,&) = Py(& — &) is an R-valued C'-pair potential on R? satisfying the
following assumptions (1.6), (1.7) and (1.8):

e Summability on X of the functions &, and V, :

(16)  V{&} € X, Vi, ) 18,(&6 — &) <+ocand Y |V,(& — &) <+oo
J#i J#

e Lipschitzianity of V&, on finite allowed configurations :
There exists K such that for each finite subset J of N, each £&,7 € X and each
i € N verifying Jnax (& — &) — (mi — ;)| < r/2, one has :
JEJ, j#i

(L.7) D IVEL(& &) — VO.(n; —my)| < K max (&= &) — (n: — ;)]

i€d, j#i
je, jti Jed 7

e Stretched exponential decrease on X of the sum of V&, :

360, B1, B2 > 0, such that for R large enough, V¢ € X, Vs
(1.8) Z IV®,(& — &)] < g(R) = By exp(—(LR™)

Bl&i—& >R

The range of the smooth pair potential ®; may be finite or infinite, i.e. the support
of &, may be compact or not. If the range of ®, is finite, the function ¢ appearing in
(1.8) vanishes.

Remark 1.1 By an elementary comparison argument with the summability on the
lattice 77, inequalities (1.6) on ®, and V®, are equivalent to the following uniform
summability on X :

(1.9) @, = sup supz |@s(& — &5)| < +00 and VO, = sup supz VO, (& —&)| < 400
gex ieN gex ieN

A sufficient condition for (1.6) and (1.7) to hold is that ®, has C*-regqularity and :

(1.10) Z|<I>s(rk)| <400, Z|V<I>s(rk)| <400 and Z sup |D*®,(rk + x)| < +oo.

d
kezd kezd keza®€l0]



Remark 1.2 Let us suppose that the infinite range pair potential ®4(x),z € R?, is a
function of the norm of z, in such a way that there exists a function ¢ on RY wverify-
ing ®(x) = p(|z]). Such assumption is physically very natural. Then, the following
reqularity of the function ¢ is sufficient to imply (1.6) and (1.7) :

¢ 18 C2, |, |¢'| and |¢"| are non increasing functions on some interval R, +oo| and

/ lo(u)|u®du < +oo.
[R,+00[

To obtain the exponential bound (1.8), it is enough to suppose the following exponential
decreasing property of ¢’ :

3R, %0, 7,72 > 0,Yu > R, |/ (u)| < o exp(—mu™).

Now, we can define the set of Gibbs states associated to the pair potential
O =P, + D,. For & ={&,&,...,&,} and n € M we define

x(En) =expf= 3 @& &) =YD @G m)}

1<i<j<n

By assumption (1.6) the second (infinite) summation on n; is bounded and then, the
function y is well defined.

Let us fix a real positive number z. For any compact subset A C R?, we denote by Ay ,
the Poisson distribution on 9t(A) with intensity measure zdx on A, where dx denotes
the Lebesgue measure, and 9t(A) is the set of all finite subsets of A.

Definition 1.3 A probability measure pn on X is called a Gibbs state with respect to
the activity 220 and the potential ®, if p satisfies the following DLR equation for any
compact subset A of R? :

p(1Bac(X))(0) = pian,:(),  m peas,

where . is the probability measure on M(A) defined by

(111)  pagp.(dE) = X(Eln N A%)Ax 2 (dE),

A,z

and ZA,n,z = / W X(§|’I’] N AC))\Ayz(df)
e

The set of such Gibbs states is denoted by G(z, D).

The set G(z,®) is convex and compact with respect to the topology of weak con-
vergence. Since @, the smooth part of the potential, satisfies the condition (1.6) and
then the condition (1.9), it is a stable potential in the sense of Ruelle with stability
constant ®, and then ® is superstable (See [Rue69] §3.2.5). This assures the existence
of at least one element in G(z, ®), i.e.

G(z,®) # 0.



About the cardinality of G(z, ®), we do the following remarks:
- if z is smaller than a critical value z., Ruelle proved that uniqueness holds (See
[Rue69] Theorem 4.2.3). Moreover, he did explicit a lowerbound for z, : in our case,

-1

2> (exp(29, + 1)/ 11 — exp —®(z)|dx)
Rd

- for z large enough, it is a well known conjecture that the set of extremal points
of G(z, ®) has a cardinal greater than 2 (See Ruelle [Rue69], Georgii [Geo88]), in other
words a phase transition should occur.

1.3 The infinite dimensional diffusion

Let (2, F,P) be a probability space with a right continuous filtration {F;};>o such
that each F; contains all P-negligible sets.

Let (B;(t),i € N,t>0) be a sequence of independent d-dimensional F;—Brownian
motions and Xy = {Xi, X,...} be an Fy-measurable X-valued random variable on
(Q,F, P).

We consider the following system of equations : for each ¢ € N, > 0,
(1.12) Xi(t) = X+B()—— /vq> X;i(s) ds+Z/ 5))dLi;(s)
JGN jEN

where

(1.13) (X(t),t>0) is an X — valued process and

(1.14) Lij(t),i,j € N, are nondecreasing continuous processes with

Lij(0) = 0, Lij(.) = Lji(.) and Li;(t) = / Ly (1Xi(s) = Xj(s)])dLij(s)-

The pair (X(.),L(.)) = {(Xi(.), Li;(.)), 7,7 € N}— or simply X(.)— is called a solution
of (1.12) provided that (1.13) and (1.14) are satisfied and that X(w, -) € C for P-almost
all w, where C is the set of regular paths defined by (1.4).

We are now ready to state the main results of this paper.

Theorem 1.4 (i) There ezists a measurable subset ) of X such that for each fized
initial value Xo in Q) equation (1.12) admits a unique solution X(.) which is an -
valued diffusion process.

(ii) If the law of the initial variable Xy is a Gibbs state of G(z, @) for some z €
(0,00), then P(Xy € Q) = 1 and the X-valued process X(.) is a reversible diffusion
process.



So, completing the previous remark on the non-uniqueness of Gibbs states with
large activity, we deduce that for large z there may exist several reversible diffusion
processes solutions of equation (1.12).

Let us mention that using Dirichlet forms, one can construct the law of such a
diffusion (cf [Osa96], [Yos96]). In [Tan97], one of the authors (H.T.) used a Skorohod
type decomposition to prove that, in the case &, = 0, the diffusion associated with
the Dirichlet form coincides with the law of the solution of the system of equations
(without the smooth interaction term V®,). We conjecture that this remains true with
the model presented here, but we are mainly interested to use a pathwise approach,
more explicit than the Dirichlet form method.

2 Skorohod type equation for a domain in R™

Let us first do some general considerations on reflecting boundaries and associated
Skorohod’s problems.

2.1 Geometrical estimates on the reflecting boundary

In this subsection and in the next one, the dimension of the Euclidean space is fixed
equal to an integer m.

For a domain D C R™ we define the set N, = N, (D) of inward normal unit vectors
at x € 0D by

N, = UN:C,E, Ney={neR":|n|=1,Uyxz —¢n)ND =D}

£>0

Let us recall some usual regularity conditions one can suppose on the boundary 0D of
the domain D.

Condition (A) (uniform exterior sphere condition):
There exists a constant ag > 0 such that

Vo € 0D Ne = Nyap # 0.

This means that a small enough sphere rolling along the boundary of D reaches
each point of this boundary.
Condition (B):
There exists constants dy > 0 and 3 € [1,00) such that :
for any x € 0D there exists a unit vector 1, verifying

vne (J N, (lx,n>>ﬂi.
0

ye U50 (z)NdD

For example, Condition (B) is satisfied when the domain verifies the uniform interior
cone condition (see [Sai87]).



Under Condition (A), each ¢ D such that d(x, D) < ap has a unique projection =
on 9D, satistying d(z, D) = |x —7| an é:;
toxre D byT=ux.

If, for each x and y in the neighbourhood of D, the distance |T — 7| between there
projections is controlled by the distance |x — y| between the points, then the boundary
of D is smooth in a certain sense. Saisho established some useful regularity estimates on
the solutions of Skorohod equations in a domain satisfying such a smoothness condition.
We will use these estimates for a domain satisfying a priori only Condition (A). So we
first have to prove that :

Lemma 2.1 If a domain D satisfies Condition (A), then the projection operator on
D satisfies the following continuity property :

For all x,y € R™ such that d(x, D) < g and d(y, D) <
(2.1) — = 2~ +ly-7
7 -yl < (1+2a0 [2—7|—|y— y|)| —y
Proof.
Let us take z,y € R™ such that d(z, D) < ag and d(y, D) < «p.
If x =7 and y = 7, inequality (2.1) is clearly satisfied. So, in the sequel, we assume
that (| — |, |y — y|) # (0,0). We now define ¢, on the line (z,z) and ¢, on the line
(y,7) in order to have:

T — ¢l =y —¢y| =, @ € [cs,T], y € [cy, Y] and [T — ¢y| >, [ — c2|>.

Such ¢, and ¢, always exist, just choose them as follows:

e ifr AT letT —c, =ap==2% ‘I I‘ Since = ‘I I‘ € N, this choice implies that
Ugo(cz) N D = (Z) thus [y — co|>ay.

o ify#£ylety—c, = ‘_7 - This implies that T — ¢,| >.

o ifr =7 and thus y # 7, let ¢, — T = ayp E_zy‘

With this choice, |c; — ¢,| > + |x cy|>20y thus [7 — c;|>a.

e if y =%, and thus v # 7, let ¢, — ¥ = %:Ez‘. This choice again implies
T — ¢,|>ay.
Let us introduce the notations:
|z — ¢, ly — ¢y T— ¢y 7T — ¢y Co
Vo = SV = 6y = €y = and h =
7)) Qo Qo 7)) &%)

We have:
129, >0, 1>v, >0, |e;| =1, |ey| =1, ey — h|>1 and |e, + h|>1

and inequality (2.1) becomes:

2
ey —h—e,| < ———|v.ep, — h—v,e,l
lex yl %_i_,yyhx T Vyyl



It is sufficient to prove this inequality for 7, # 7, : the continuity of the right hand
side when 7, tends to 7, will then prove that it holds for any (v,,7,) in ]0, 1J%.

From now on, the parameters v,,v, €]0,1], 7, # ,, are fixed. We only have to
prove that the C'-function

_ lex — h — ¢ey|?
[Yoea — h — eyl

F(ey, ey, h)

defined on the C'-manifold

V= {(ereph) € B, Jea] = Lley| = L, les — h>L]e, + hl>1)

admits ( )? as an upper bound.

Yo+ Yy
First remark that since |e,| =1
1
|€x—h|>1 = <€x,h><7

h

Remark also that F' is well-defined on V, since, if (e,, h)g%,

Voo — h — VYy€y = 0
= e, = z—zew - %h and h #0 (because |e,| = |e,| and v, # )
S ey AP = 1% 22 (e, b — 22 (h, ) + [P
<L+ 2|02 = 2pP+ [p) =1 - 222 p)? < 1
Yy Yy Yy

Using the famous theorem about differentiable functions on manifolds, we obtain

sup F' = max(sup F,sup F,sup F)
%

Voo Vo Vo
where

Voo = {(€s,€y,h) €V, |h|=4}
Vo = {(ez,ey,h) €V, leg —h| > 1,|e, +h| > 1, VF € Span(V(|e,|* — 1), V(|ey|? — 1))}
Vo = {(es, ey, h) €V, |e, —h|=1or |e, + h| = 1}.

The computation of an upper bound for F' on V., is very easy. Just use the triangular
inequality twice:

ez — h — €y| < (1= 72)lee| + [1aee — h — 7y€y| + (1 - 'Yy)|ey|
|7x€w —h— 7y€y| > |h| — Yz — 7y>2 if |h|>4

thus

Q—Vr—%>2<(%+ﬁb+2—ﬁb—%>2_ ( 2 )2
=)L = :

sup F' < (1—|—
h 2 Yot Yy Vet W Yo+ Yy

Voo

To compute an upper bound for F' on Vy, we remark that VF = (V. F, V., F, V,F')
and V(e > — 1) = (2e,,0,0), V(|ey|* — 1) = (0, 2¢,,0).

9



If VF € Span(V(|eg]* — 1), V(|ey|* — 1))} then V,F = 0, that is:

—2(e; — h — ey)|vues — b — yyey|* + 2(Vuer — h — vyey) e — h — ey |? _

0.
|7x€x —h— 'ery|4

Vi F =

This implies that
lex —h — ey Vo€ —h — '7y€y|2 = [Ywte — h — yyeyl lex — h — ey|2

which exactly means that F(e,, ey, h) = \/F(ey, ey, h), i.e. F(ez, ey, h) equals 0 or 1.

Thus sup F'<1.
Vv
Finally, we compute a bound for F' on V3. We will compute an upper bound for

F(eg, ey, h) when |e,| = |e,| = 1, |e; — h|>1 and |e, + h| = 1. The computation for
le; —h| =1 and |e, + h|>1 is exactly the same (just exchange e, and ey, 7, and 7,
and replace h by —h).

If le;| = |ey| = |e, + h| =1 and |e, — h|<1:

|ey +hl=1 & 2<€yah> = _|h|2 g 2<€y +h,h) = |h|2
le. — h|>1 & —2(ey, h)> — |h|?

thus

[Yz€e —h —yey)?

= |vwes —Yyley +h) — (1 —,)h)?

= 72+ ’Y; — 27 Yylex ey + h) + (1 — ’Yy)|h|2 = 27(1 = vy ){ex, I)
> 75+ 7y — 2% y(es €y + h)

and since |e, — h — e, = 2 — 2(e,, e, + h), we obtain :

2—2(eg, e+ h)
’Y% + ’V; - 2’Yx'7y<€:va €y + h’>'

F(eg, ey, h)<

An elementary derivative computation prove that, when A> B, the function u — %
decreases on [—1; 1], thus sup_y j:é}; = ﬁ and

4 2
sup F'< 5 5 =
Vo YotV T2%Y Vet

)%

The proof is complete. B

2.2 Regularity estimates for the solution of
Skorohod’s problem

Let D be a domain of R™. For a given w € W(R™) = {w € W(R™) : w(0) = 0} and
x € D, we consider the following Skorohod equation with reflecting boundary 0D :

(2.2) C(t) =z +w(t)+¢(t), t=0.

10



A solution is a pair (¢, ¢) satisfying (2.2) and the following two conditions (2.3) and
(2.4) (we also call ¢ a solution of (2.2)) :

(2.3) e WwW(D).

(2.4) ¢ is an R™-valued continuous function with bounded variation on each finite
time interval satisfying ¢(0) = 0 and

olt) = / n(s)dlgll el = / Top(C())dl| o]l

where n(s) € N, if ((s) € 0D, and ||¢||; denotes the total variation of ¢ on [0,1].

The existence and uniqueness of solutions of Skorohod type equations were studied
by many authors (Tanaka [Tan79], Lions and Sznitman [L.S84], Saisho [Sai87]). Saisho
(see [Sai87] theorem 4.1) proved that, under Conditions (A) and (B), Skorohod equa-
tion (2.2) admits a unique solution. Furthermore, this solution satisfies the following
Lipschitz continuity property as a function of w(-) and x :

Lemma 2.2 Suppose that the domain D satisfies Conditions (A) and (B) and let
C(.) (respectively C'(.)) be the unique solution of Skorohod equation (2.2) (resp. for

w' € Wo(R™), 2" € D, ('(t) =" +w'(t) + ¢ (t), t=0).
Then there exists a constant C4, depending only on D, such that for each t=0,

25) 16 = (OIS (lw = w'll+ o = 2'1) exp (Calllgll + 1#/]1))-

Proof.

In Proposition 4.1 of [Sai87], Saisho proved this Lipschitz continuity property under
Condition (A), Condition (B), and the following additional condition on the projection
operator £ — T (called Condition (D) in [Sai87]) :

there exists C120 and Cy €]0, ap| such that for all x,y € R™ :

max(|z — 7,y — 7)<C; = 7~ 7 < (1+ Crmax(fe = 7, [y~ 7)) )| yl.

Thanks to Lemma 2.1, the projection always have this property (for any Cy €]0, ay|
and C; = 1/(ap — C3)) when D satisfies Condition (A). B

Remark that the constant C in the above Lemma a priori depends on the space
dimension m.

The following lemma gives an estimate of the total variation ||¢||; of the process
¢(t) (See Theorem 4.2 in [Sai87]).

Lemma 2.3 Suppose that the domain D satisfies Conditions (A) and (B). Then, for
any finite T' > 0, we have

lolle<f(Aor, (w),sup |w(s)|)  for all 0<tLT,

s<t

11



where f is a function defined on Wo(RT) xR depending only on the constants o, By, o
in Conditions (A) and (B), and Ay, (w) denotes the modulus of continuity of w in
[0,T] defined as usually by

(2.6) Agrs(w) = sup |w(t) —w(s)|.

Moreover, the functional w — f(Aor, (w),supyg, [w(s)|) is bounded on each set of
paths W satisfying lims_,o sup,,eyy Aors(w) = 0.

2.3 Application to a system of finitely many hard balls

Now the dimension of the state space is m = nd. Let us define a system of n hard balls
moving in R and reflected on the boundary of a domain D,, C R :

Dy, ={x, = (x1,...,2,) € R" : |v; — | > r,i # j}.

Saisho and Tanaka [ST86] checked that for each n € N, the domain D,, satisfies Con-
ditions (A) and (B).

Let b = (by,...,b,) be a Lipschitz continuous R"-valued function defined on R™.
Let also take w = (wy, wy,...) € Wp(RY)".

Saisho and Tanaka [ST86] proved that the following system of n equations in R?
(2.7),(2.8),(2.9) has a unique solution ¢ = ((;)i=1,2,...n, since it can be considered as a
Skorohod equation in R" with 0D, as reflecting boundary :

Vie{l,2,...,n}
BD G0 =)+ [ ncenas+ Y [ 6 = 6ol

0

(2.8) (Ci)i=12,..n are continuous functions with |¢;(t) — ;(¢)|>r, t € [0,00), i # j.
(2.9) (pij)ij=1.2,..n are continuous nondecreasing functions with p;;(0) = 0, p;; = pjs

i (1) = / Ly (1Gi(5) — ()]s (s).

From now on, the number n of interacting hard balls we study becomes random
but remains a.s. finite. To study such systems, we introduce the new configuration
space D :

where Dy = {0}, D; = R?, and for n>2,

D—n: {XTL = (‘/L‘laxZJ' . 'an) S Rnd : |xl - :Uj|>7", ]‘<Z < ]gn}

12



Let W be a function on {0} U (>, R") satisfying ¥(0) = 0 and the following
conditions:

(.1) WisaC' — function, invariant by permutation on (R?)" for each n>1,

with VW Lipschitz continuous.

(\II2) ElK‘I’ S RJ Vn € NJ inf _ (\Il(xla U anay) - \Ij(xb e an))>KlII

(x]-:"' axnzy)eDn+1

(0.3) Z%/R T (50) exp(— U (x,) ), < +00,

nd
where x4 (xn) = exp(— X1 cicjcn Pal@i, 25)) = Ligy 0 zntex-
1

We define a probability measure py on D by p} ({#}) = 5% and

1 2" S
(2.10) py(A) = : Xn(xn) exp(—¥(x,))dx,, for any Borel set A C D,

= 75 J,
where dx,, = d1dzy ... dx, and Z) =1+ 307 20 [0 (%) exp(—V(x,))dx,.

By the symmetry property of ¥, it is clear that 4 can be considered as a Probability
measure on X.
For x € D and w = (wy,ws, ...) € Wo(RH)N, we put

C‘I’(t,xn,wn), ifX:Xn,TLE N,

v —
(211)  ¢Y(t,x,w) = {07 if x = 0,

where w,, = (wy,ws, ..., w,), and ¢¥(t,x,,w,) is the unique solution of the equation
(2.7) where the drift b is given by

(2.12) b(x,) = -VV¥(x,),n € N.

We denote by Py the Wiener measure on Wy(R?). As in [Tan96] Lemma 2.4, we
compute a bound for the probability that (¥ oscillate too much when w is a Brownian
motion and the initial law is Gibbsian :

Lemma 2.4 The process (Y (t, .,.) is a reversible diffusion process under the probability
Y ® P;?}N, Moreover, for any finite time 1" > 0, there exists positive constants C3 and
Cy depending only on T and ¥ such that

Vi e N Ve, o >0
pd @ PRMN(3i € N st Ngs(Q¥)>e and (¥ (0) € Up) <Csz|Uy| exp(—Cy5)
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We now need to control the geometrical repartition of the particles in R?. To this
aim, we introduce the concept of cluster.

For n € X,7’" > r and two points z, y in R?, we say that a continuous curve v is a
r'-connection between = and y with respect to (n,r') if 2,y € v and v C U%, (n). Then

the occupied cluster C(r', z,n) of x is defined by
C(r',z,n) = {y € n: 3 an occupied connection between = and y }.

The set U, (C(r',x,n)) is the connected component of U, (1) containing x.
2 2
First we show the following estimate on the cardinal of the set C(r/, z, 7).

Lemma 2.5 Let Y be the probability measure on D introduced in (2.10). Then, for
any M € R, there exists a constant Cs = Cs(r,d, z) such that, for any { € N* and
0<e<l,

nYy (Elx e Uy, tC(r+e¢,x,.) > Md> <Cyticlsl exp(—| d + 1] Ky).
r

Proof. A set of diameter £ cannot contain more than (¢/r)? hard balls of diameter r.
Therefore if $C(r+¢,x,1) > M? then the diameter of Uge (C(r+e,x,n)) is larger than

rM, and this in turn implies the existence of {y1,- -+ ,yar} C 7 such that |y,|<0+ ==,
lyr — ya|<r+ 2, ... Jypr—1 — yar |<r + € for some M’ = [2(:«]\4:[5)] + 1.

uy ({77 such that Jv € Uy, 8C(r +¢,2,n) > Md}>

<t ({17 such that 3{yy, - ,ym} C 1,

r+e¢
|y1|<£+T, =yl <r+e, ..., lymr— —ny|<r+6}>
1 <= 2" [ n
< eXp(—M'pr)ﬁ > ﬁ(M’) (M')!
Z p=M' "
X/ Xn(Xn- ) exp(—=Y (X, ) )dXp - arr

(n—M")d
Xf dyl/ dy2"'/ Xn (Y )dyar
U+r_—‘,2§ Urte(y1) Urte(Ynr 1)

¢
eXp(_M’K\P)|UZ+ﬂ2’—E U?“+€ \ UT|M,_IZM’

CstdeM 1M exp(—M'Ky)

<
<

: l rM
for some integer M'>5"5

completes the proof. B

We now define a set of regular paths, in the sense that their modulus of continuity
is small enough and, at each step of a time partition, the size of the clusters is bounded.
Let g > e; >0, >0 and 7,¢ € N. We denote by A(ey,e9,0,T, M, ) the set of all
elements & = {&;(+)}; € W(X) satisfying

(2.13) Vi€ Uy I(E(10), Vo), Aors(&i(+)) <en,
(2.14)  VzxelU, Vk=0,1,...,[T/d], 8C(r + &9, x, £(k6))< M.

and with C5 a constant depending only on 7, d and z. This
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Remark that if £(-) € A(ey,e9,d,T, M, ) and 5 > 2¢q, then
Ve e Uy, Vtel0,T], 1C(r + 29 — 261, x,£(t)) <M.
We then obtain the following lemma :

Lemma 2.6 Let 0 < ky < k1 < %, z2>0and T,p € N. Then for any 3 > 0 we can

choose M = M (ky, ka, T,p) € N and Cs = Cy(k1, ke, 2, T, p) > 0 such that

1
vmeN, uplePNCY e Am ™, m 2 — T, M, mP)*)<Csm".
m

Proof. It is a consequence of Lemmas 2.4 and 2.5. B

3 Approximation of the solution and convergence

Let J be any nonempty finite subset of N. 'We now consider an infinite system of
particles in which only a finite number (those indexed by J) move following the
dynamics defined in (2.7). Let b = (b;)icg be an (R?)?-valued Lipschitz contin-
uous function defined on (R¢)?, x = (x1,29,...) such that {x,29,...} € X and
w = (wy,wy,...) € Wo(RY)N, We then obtain the following system of equations (3.1)
under the conditions (3.2) and (3.3):

(3.2) (&)ica are continuous functions with |&;(¢) — &(t)|>r, t € [0,00), ¢ # j.
(3.3)  (pij,i,J € J) are continuous nondecreasing functions with p;;(0) = 0, p;; = pj
and

(31) &) =

%w=émam@—@@w%@.

Fori¢ Jorj¢J, p;=0.
Existence and uniqueness of the solution of (3.1) were discussed in the previous
section.

Let &, be the smooth pair potential with infinite range defined in section 1.2, and
let 1“7 ¢ € N,n € X be nonnegative smooth functions defined on R¢ with the following
properties :

(3.4) V%" is bounded Lipschitz continuous
(35) YY" =0o0n U] =U\ U(nNUf)

(3.6) Zsup /Rd\U" exp (—¢"(x))de < +oo.

ten €X
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Such functions obviously exist: take for example ¢%"(z) = 1%*16,(x) with &, a C*-
function with bounded derivatives which is equivalent to d(.,U;) on R? (see [Ste70]
p.171).

We can now define on [ J 7, R™ the following potential, as perturbation by the self
potential 1" of the smooth pair potential ®,, with 1 as fixed external configuration :
for any J finite subset of N,

(3.7) Th(x5) Zz/)én ;) + Z@ T — Tj) Z @y (x; — ny).

1ed i,j€J ieJ
i<j Jrlmjl =t
Note that W% satisfies the assumptions made on the function ¥ in the section 2.3 :
(P.1) is obvious, (¥.2) is true with Ky = —2®, and (¥.3) comes from (3.6).

From now on, and for the rest of this section, let Xy = {X7, X5,...} be a fixed

X-valued random variable with Gibbsian law p € G(z,®). Let (B;(t),i € N) be a
family of independent R¢-valued Brownian motions.
We now consider, for each ¢ € N, a particular case of equation (3.1) with z; = X;, w; =
Bi(.),bi = —3V; 9% and J = J(X,,U;) = {i € N : |X;| < ¢} random. The unique
solution of this equation is denoted by (X(t), L‘(t)) = (X{(t),L{;(t),7,j € N) and
satisfies :

X+ Bi(t 2f0 Vi whXo (X5 (s))ds

(3.8)  X(t) = +Zj€J(XO,U[) [ (XE(s) — XE(s))dLg(s)  if i € J(Xo, Up)
X if i ¢ J(Xo, Up).

(3.9) (X/(.))ieaxov,) are continuous processes with | X[ (t) — X{(t)|>r, Vt=0,

i # J.

(3.10) (Li;,i,j € N) are continuous nondecreasing processes with Lf;(0) = 0,

ij = Lfi and

Lt ) = {0 Mo (X0 = XJ )DLl i, € 3K, L)
0 otherwise.

Then we have the following convergence result :

Proposition 3.1 The sequence of processes (X%)gen- converges a.s. in W(X) to a
reversible process X*° with values in C N O, where

ﬂﬂﬂu ﬂ@ —Tmp] and

0<n< p=1T=1 mop=1 m=mo

Ole,0,T,0) = {{&} € W(X) : Aors(&) < € for any i with tg[loi% 1&i(t)] < £}

Moreover, the process X°°(.) is the unique solution of the infinite dimensional system
of stochastic equations (1.12) when the initial condition is equal to Xo = {X1, Xs, ... }.
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The rest of this section is devoted to the proof of Proposition 3.1. We first construct
a set of probability one on which (X) is a Cauchy sequence and then we prove that
the limit point is the unique solution of (1.12).

Lemma 3.2 Let 0 < Ky < k1 < % and T,p € N. Then we can choose M € N such

that
oo (m+1)P 1
Z Z P(X'(-) € A(m ™™, m ", — T, M, mP)%) < +oo0.
m
m=1 {=mpP

Proof. Let %" be the Gibbs measure defined by (2.10) where the function ¥ is
taken equal to the potential W% defined in (3.7). By comparing p%" and the local

specification iy, , . (defined by (1.11)) as detailed in the Proposition 6.1 (steps 1 and
2) in [FR], we obtain

B Ngre 2 0% [ Nupe@utd)<zep (~28) [ exp (= 6'(a))ds
X R

d\Ulﬂ

the same upper-bound holds for |7 — 10, m,2|(Nwmye = 0), which leads to the estimate

115" = pu, .|| <22 exp (— 28,) / exp (— ¢ (x))dx

RAU
where ||v|| denotes the total variation of a signed measure v. Then,
P(X*(-) € A(m =", m ", LT M mp))

'm?

< [ PO € At T M IX0) =€) ()
b [ = )

By Lemma 2.6, assumption (3.6) and the above inequalities the series in Lemma
3.2 converges.

We fix the parameters 0 < Ky < K1 < %, T eNandpeN
By the scaling property of the Brownian motion B and Doob’s inequality, we control
the modulus of continuity of B as follows :

oo (m+1)P
> ) P(Aora/m(Bi) > m " for some i with min, | X/ ()] < mP) < 4oo0.
telo,
m=1 {=mpP
Combining this and Lemma 3.2, by Borel Cantelli’s Lemma, for almost all w, there
exists M € N and my = my(w) € N such that
for m>mg and m?<t < (m + 1)?, X4(-), X*L() € A(m=",m="2, L T M, mP)

Y 'm?

and Vi € Uyc o J(XA(E), Uns),  Vh €]0, T, Aqn(By)<2hr.
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We are now looking for an upper bound for |X{ — X/™| when i belongs to some
subset of indices.

To this aim we need a comparison lemma formulated under the following generality :
for a = 1,2, let x® € X, and J(a) be finite subsets of N. We also define two drift
functions on (]Rd) (@) by :

=5 Z Vo, ( + ¥ (x), i € I(a),

where c(®) = (cgo‘))i@(a) is an (R?)?(@)_valued Lipschitz continuous function. We denote
by (£@)(¢), p'®(t)) the unique solution of (3.1) with J = J(a), x = x(® b; = bﬁ.”‘) and
w € Wy(RHYN fixed not depending on .

Lemma 3.3 Suppose that there exists R, Ry, Ry > 0, M € N*, £0>0, €,e9 > 0,
0 < 0<T such that

(311) V@), [ (x)|<g(R) if 75 € Un,—r
(3.12) v@ e J(x >, Ug,) UJ(x?, Upg,),¥h €)0,T), |2V — 217 |<ey and Aggp(w;)<20™
(313) ()75(2 ( ) S A(€17€2767T7 MJRO)'
If 2(eg+e1) < €2 < 17 and k satisfies k(Mr+ R)<Ry< Ry, then, there exists a constant
C; such that for all indices a satisfying |x&1)|<R0 — k(Mr 4+ R) and for all t € [0, 4],
(KC0)*
k!
(Recall that K is the Lipschitz constant of V® defined in (1.7)).

E0(1) = €2 (9] < CreRrozy + (60 4 220) + 3Crg (R)e .

Proof. Put R = Mr + R. By (3.13) for any a € J(x%, Ug,_r'),
Aors(ED())<er, tCr + 9,2 xNKM, o =1,2.
Since g9 < r/M, we see that
C(r +e2,2@ x) CUpy ey, @ =1,2.
We put
Ja) = I, C(r + 25, 280, xV)),

a )

Jr(a) = I(xW, Uty (Cr + 2,2V, x1))).
Then, since (M — 1)(r +&2) + R+ e,<R', we have
(3.14) a € J(a) C Jr(a) € J(xW, Up (2V)) and I (a)<M
By (3.12) and (3.13), for t € [0, ]

€D(t) - (t>|>52 — 26, >0, if i € J(a),j ¢ I(a),
€2 (8) — €2 (1) |=e0 — 261 — 26 > 0, if i € J(a), 5 ¢ I(a).
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Then we have, for a = 1,2,¢ € [0, 4], and i € J(a),

g9 =2 + 9 (s))dpi(s),
g/ ¢
where
W) = wit ——Z / Vb, (£9)(s) — £9(s))ds + / A9 (5, £ (5)) ds

For x = (21, ,...) such that x = {x},2y,...} € X and for any nonempty finite
subset J of N, we denote by x5 = (2,1 € J) € (R?)? the projection of x on (R?)? and
by |x|3 = max;ey |;| its supremum norm.

Since each process fj(]?‘i)(.) is solution of a Skorohod equation, we can apply Lemma 2.2

for a state space dimension m = £J(a)d bounded by Md and for w = Wi
Remark that

Vh€l0,T), Aorn(W<K2h™ +VB,h/2 + g(R)h,

which tends uniformly to 0 for R > 0 and ¢ € J(a) when A tends to 0. So by Lemma 2.3
there exists a constant C' > 0 such that

vt € [0,0],Vi € J(a ||Z/ ) (5))dp) ()| <C.

jed(a

This implies

€08 — €2(0)] <IER () — €0 ()
<exp (2\/ MC.C )(|x§]1) — (2) | + ||WJ((13) — WJ((ZZ)Ht)
|

Cr
<7 (I = xS0+ I = Wit ).
where C7 = M exp(2vV MC,C).

By (3.12) and (3.13) we have | (¢) — &) ()] 5t U oDy S0 261, Thus assump-
tion (1.8) holds, and together with assumption (1.7) on V&, we have

||w 2
Z Z / 90, (0(s) — £0(s)) — V(€2 (s) — £2(s))]ds

zeJ( )i€Ir(a) ”°

Yy / (IV@,(E0(s) — €1 (s)] + V(€2 (5) — €2 (s))) s
’LGJ ]éJR
4 DD ()] 4 2 (€ (s)])ds
Z§/ )
>k [ mas 606) - €(5) - 6705) + €0l + 3Mg(R)Y
zGJ 0 J<ila

< MK / €0 (5) — €O (5)) s yayds + 3Mg(R)E:
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Then we have, for ¢ € [0, ],

£ (@) — €2 (1))
(3.15) 1) (2 e (2)
< Crlx"Y = x5+ KCr | [€7(5) — £ (5) |5 ayds + 3C7g(R)t.
0

From (3.14) we see that if a € J(x", Ug,_op) and i € Jg(a), then i € J(xI), Ug,_r')
and so we can apply the above computation to the i coordinate : for ¢ € [0, d],

€M (8) — €2 (1)

(3.16) !
< C7|X(1) - X(Z)L]](i) + KC7/ |f(1)(5) - 6(2)(S)|JR(¢)dS + 3C’7g(R)t
0

Since Jr(i) C J(xY, Uppr (x,(ll))), from (3.14), (3.15) we have for each ¢ € [0, ]

&) - &2 1))

< C7|X(1) - X(2)|J(x(1),U2RI(It(11)))

t
+ KC7/0 (C7|X(1) - X(2)|J(x<1>,Um(xé“))

+ KC7/ |§(1)(u) — @ (u) |J(X(1)7U2R, (x((ll)))du + 307g(R)s> ds
0

+ 3Crg(R)t
< Cr(14 KCq7t)|xY —

t ps

+ (KCy)? / / €D (u) — €D (u)|, 0 17, (@l A0
0J0
+ 3Cg(R)(t + KC7t%/2).

2)
x |J x() U2R’($Ezl)))

Repeating this procedure, we obtain for a € J(x), Ug,_xr)

€0 (1) — €2 (1)
SO eXp KC?t |X |J xW U o (@ ¢ )))
t1
+ (KCy) / / / |€ (tk)|J(x(1),UkR/(x£1))) dty, - - - dty dt,

+ 3C7g(R)texp(KCt).

Once more, by (3.12) and (3.13) we have [¢(1)(¢) — @) (D]5x0,07, 0 (2 SE0 +261. Then
) R/ \(Za
we obtain the desired estimate. H

For m>m, large enough such that 4m™* < m™2 < 17, and for £ in the following
interval mP</ < (m + 1)?, we put J(1) = J(Xo(w), Up), J(2) = J(Xo(w), Urs1),

1 1
D=3 3 V- X)) - SR ),
1
2

1
Vq)s(ﬂiz — X](W)) - §V@/)Z+1’X0(w) (:L’z),
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61:m*"‘1,62:m*"‘2,5:%,R:m”*3,R1:€—R.

For t € [0,2] we put xXV = x® = Xy(w), g = 0, Ry = 2T'm?~" and apply
Lemma 3.3 with £ = m. Then, there exists m; such that, for m>m.,

1
X (w,t) — X (w, t)|<a(m), i € J(Xo(w), Uorm—myr), t € [0, E]’

where

3C
)m —K1 + 7
m

—Lg(mP3) exp(KC7/m).

Fort € [, 2] weput x(V) = X¥(w, L), x® = X (w, L), gy = a(m), Ry = (2I'm* — m)R

and apply Lemma 3.3 with £ = m. Then, we have

| X[ (w,t) — X (w, 8)|< (14 Co)a(m), i € J(Xo(w), Unrm2—amr) t € [ ],

L2
m’m
where Cy = Sup,,s,, (C7exp(£52) + L (EEym) < 400,

Repeating this procedure, we have for all i € J(Xo(w), Uppp-1), € € [m?, (m + 1)]
and t € [0,T7,

m1l—1
ot~ 1
XHw,t) — X w, t)|<alm Ck =a(m)2——.
|z()z()|();9()09_1

Hence, we can choose ms>m; such that for any m>ms and i € J(Xo(w), Uppme-1),

00 oo (n+1)P

CnT
sup | X (w,t) — X (w,t)| < a(n
Pt tqm' 1) ( ; Z: Cy—1
e CnT
<Xt Lralng
=1
<010 Z (E —+ CS'T exp(—ﬂlnﬂ2(”_3)))

This series converges if we choose the parameter p>py > 1/6, + 3 (we recall that 3, is
the exponent appearing in the exponential decreasing of V&, (1.8)).
So there exists X*°(-) such that, for all i € J(X(w), Upyp-1) and £ > m?,

C
(3.17) sup | X[ (w,t) = X°(w, )] < —
te[o,1] m.

Thus we obtain

P(lim sup |X (t) — X>(t)|=0,T>0,i€cN) =1,

=00 4¢0,7]

which is exactly the condition for X* to converge a.s. in W (X) to X.
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Since the process X*°(-) is the limit of X‘(-), the reversibility of X*°(-) is a conse-
quence of the reversibility property for X(+) (see the proof of Theorem 2 in [Tan96]).

Remark that any canonical Gibbs state associated to the potential ® is also a
reversible state for the process X, since it is a mixture of Gibbs states (with respect
to the activity parameter z).

From Lemma 3.2 and (3.17) we easily have

- 1
Z P(X>(:) € A(m™, m™ — T, M, mP)°) < oo,
m

m=1
and so P(X>®(-) e CNO) =
The proof of Proposition 3.1 will be complete by proving the following lemma.

Lemma 3.4 The process X (t) is the unique solution of (1.12) with initial condition
equal to Xo = {X1, Xo, ... }.

Proof. By the same argument as in the proof of Lemma 3.3 for any ¢ € N and
sufficiently large ¢ we have finite subsets Jl(ﬁ, a)da, k=0,1,...,mT such that

14 S 24 —K1 g 14 ﬁ - 14 ﬁ v
|Xz(t) X](t)|>m ,ZEJ(m,a),]¢J(m,a),t€[ ’ ]

By virtue of the estimate (3.17) for sufficiently large ¢ we can chose JY(£ a), k =
0,1,...,mT to be independent of ¢ and denote them by J(£,a), & = 0,1,...,mT.
Then we have

X{(O) =X + Bil) - Bil) — 3 [ VXl - X(s))ds

ok
m m

+ > A(Xf(s)—xf(s))dej(s), ieJ(%,a) te !

JET(Eya) " m

m’

By Lemma 2.2 we obtain

XP() = XP(5) + B —Bi(%) =52 [ e - Xp(sds

(3.18) I

v Z / — X2(s))dL (), iEJ(%,G) te [% —,

jEI(Ea) " m

which implies that X*°(-) is a solution of (1.12).

Suppose that Y (-) is also a solution of (1.12). Let X*°(-,w) € © and Y (-,w) € C.
For any 7" € N, m3 € N and p>py, we can choose 0 < k < k' < % and m>ms with
m~* > 4m " such that

1 1
Y(-,w)elm™ —,T,M,m"], X*(,w)eO[m™"™, — T m].
m m

22



Then we can take a sequence J(T’%, a) 3 a for which (3.18) holds foreach £ = 0,1, ..., mT
and

V() =i+ Bilt) - Bi) — 5 3 [ Ve.3its) - Yi(s)ds
£ 3 [ (i)~ Yi(s)aL(s), ieq]](%,a),te[%,%].

jEI(Ea) " ™

Then by the same argument to get (3.17) we have

C
sup |Vi(w, t) = X*(w, )] < —, i € I(Xo(w), Uppr-1).
te[0,77] m!

Since we can take m as large as we want, we have X(t,w) = Y (¢,w),t € [0,T], for any
T > 0 and w in a set of full probability. This completes the proof of Proposition 3.1.
|

4 Solution with deterministic initial condition and
measurability properties

For x = {z1,2,...} € X and w = (wy, wo,...) € Wo(RY)N, we consider the following
system of equations (4.1) under the conditions (4.2) and (4.3):

Vi e N,
A0 ) = ar ) = 530 [ V060 - s+ X [ 60— €)dni)

(4.2) £0) =1{&(),&(),---}ieCnO

(4.3) pij, 1, J € N are continuous nondecreasing functions with p;;(0) =0, p;; = pj
and

pig(t) = / Ly (6:() — &(5))dpis(s).

We denote by Z the set of all elements (x, w) of X x W, (R?)N for each of which there
exists a solution £(¢,x,w) of (4.1). By the same argument as in the proof of Lemma
3.4, we see that &(t,x, w) is the unique solution of (4.1). Remark that if x(-) € CN O,
then x(s ++) € CNO. So, for (x,w) € =,

(4.4) (&(s,x,w),0,w) € =, =0,
and

(4.5) E(s+t,x,w) =&, &(s,x, W), 0,w), s,t=0,
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by virtue of the uniqueness, where O, w(t) = w(s +t) — w(s). Put

t) X7 W)= M
3 ) X otherwise ,

~ {g(t,x,w) if (x,w) € =

for t>0. Similarly as in lemma 6.1 in [Tan96], we can prove that :
(4.6) 2 is B(X x Wy (R?)YN)—measurable
(4.7) (-, %, w) — &(-,x, w) is measurable from X x Wy(R%)Y to W (R?)" endowed
with their Borel fields.
End of the proof of Theorem 1.4 (i).
By Fubini’s theorem

@:{XGX:PI?}N(EX) =1}

is a measurable subset of X where =, = {w € Wy(R*)" : (x,w) € =}. By Proposition
3.1, if the distribution of X is u € G(z, @), for some z > 0, then P((X,B) € Z) = 1,
and so P(X € 9) =1. We put

P(t,x,\) = P%N(f(t,x, ) €N,

for t>0, x € P and A € B(). Suppose that x € 9. Then (x,B) € =, a.s. and so by
(4.4) and (4.5)

(&(1,x%,B),0,B) € 2, as. and {(T +t,x,B) =&(t,&(7,%,B),0,B), as.

for any JF;—stopping time 7. From the strong Markov property of B we see that
&(r,x,B) €Y a.s. and

P(&(T+t,x,B) € A|F,) = PEN(E(t, &(r,x,B),-) € A)
= P(t,{(7,x,B),A), as.

for t>0 and A € B(9). This means that £(¢,x, w) is a strong Markov process. H
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