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0 Introdu
tionWe 
onsider a system of in�nitely many indistingable hard balls with diameter r > 0 ina d-dimensional Eu
lidean spa
e Rd , d>2, undergoing Brownian motions and submittedto the in
uen
e of a smooth in�nite range pair potential �s.In�nite systems of intera
ting Brownian parti
les (i.e. balls with diameter redu
edto 0) have been treated by Lang [Lan77a, Lan77b℄ and Fritz [Fri87℄ in the 
ase of asmooth nonnegative pair potential with �nite range. Tanemura [Tan96℄ studied the
ase of Brownian hard balls without supplementary pair potential. Re
ently, Fradonand Roelly [FR℄ analyzed an in�nite system of hard balls submitted to a smooth �niterange pair potential under the assumption that the density of balls is suÆ
iently small.Here, we present a generalization of the previous works with respe
t to two importantpoints : the spatial mean density of the initial 
on�guration is arbitrary large (whenit is Gibbsian, this means that there is no restri
tion on the a
tivity), and the ballsintera
t even if they are separated by any large distan
e (the potential �s has in�niterange with exponential de
rease). Under these assumptions, we 
onstru
t the gradientdi�usion X(t) = (Xi(t); i 2 N ; t > 0), unique strong solution of the following in�nite-dimensional Skorohod type system of equations :Xi(t) = Xi +Bi(t)� 12Xj2N Z t0 r�s(Xi(s)�Xj(s))ds+Xj2N Z t0 (Xi(s)�Xj(s))dLij(s);where, for any i; j 2 N ; i 6= j; t>0; jXi(t)�Xj(t)j>r, and Lij(t) are lo
al times, thatis nonde
reasing 
ontinuous pro
esses withLij(0) = 0; Lij(:) = Lji(:) and Lij(t) = Z t0 1Ifrg(jXi(s)�Xj(s)j)dLij(s):In a �rst se
tion we de�ne state spa
es and present the main results of the paper. Inthe se
ond se
tion the �nite dimensional Skohorod problem is stated, some geometri
alaspe
t of the 
on�guration spa
e is dis
ussed, and the dynami
s of �nitely many hardballs is solved. The third se
tion is devoted to the 
onvergen
e of �nite-dimensionalapproximations towards X(:), a reversible solution of the above equation. In the lastse
tion, we prove some measurability properties of the di�usion X(:) and the existen
eof solutions with deterministi
 initial 
onditions.1 Statement of the results1.1 Con�guration spa
es and path spa
esIn the whole paper, j:j denotes the eu
lidean norm and h�; �i denotes the 
orrespondings
alar produ
t.LetM be the set of all 
ountable subsets � = f�igi of Rd satisfying N�(�) � ℄(�\�) <+1 for any 
ompa
t set � of Rd . We equivalently 
onsider � 2 M as a non-negativeinteger valued Radon measure on Rd : � =Pi Æ�i : M is endowed with the topology ofvague 
onvergen
e. 2



The parti
les we deal with in the present paper are hard balls of radius r=2 (for a�xed r > 0) evolving in Rd . So the 
on�guration spa
e of the system is the following(
ompa
t) subset of M :X = f� = f�igi2J 2M where J � N and for i 6= j; j�i � �jj>rg;where �i are the positions of the 
enters of the hard balls.Throughout this paper when S is a topologi
al spa
e, we denote by B(S) the topo-logi
al Borel �eld of S, and by W (S) the set of all S-valued 
ontinuous fun
tionsde�ned on [0;1). W (S) is endowed with the lo
al uniform topology.The �-�eld �(NA;A 2 B(Rd)) 
oin
ides with B(X). We will also use the �-�eldB�(X) de�ned for ea
h 
ompa
t subset � of Rd byB�(X) = �(NA;A 2 B(Rd); A � �):We introdu
e the following measurable subsets of W (X).For " > 0, 06s < t <1 and a bounded open subset O of Rd , we denote by C("; [s; t℄; O)the set of all paths x(�) of W (X) su
h that on the time interval [s; t℄ the balls stay atdistan
e greater than "=2 from the boundary of O :if j 2 J(x(s); O); 8u 2 [s; t℄; U r+"2 (xj(u)) � Oif j =2 J(x(s); O); 8u 2 [s; t℄; U r+"2 (xj(u)) � Rd nO:Here J(� = f�igi; O) = fi 2 N : �i 2 Ogand, for � > 0; U�(A) denotes the open �-neighbourhood of a set A � Rd . U�(x) is theabbreviated form of U�(fxg), and, for simpli
ity, we just write U� instead of U�(f0g).So, U� = fx 2 Rd ; jxj < �g:For "; Æ > 0, T;M 2 N and ` 2 N, we denote by C["; Æ; T;M; `℄ the set of all paths x(�)of W (X) su
h that for any k = 0; 1; : : : ; [TÆ ℄, there exists a sequen
e O1k; O2k; : : : OQk ofbounded open disjoint subsets of Rd verifying(1:1) 8q 2 f1; 2; : : : ; Qg x(�) 2 C("; [kÆ; (k + 1)Æ℄; Oqk);(1:2) SQq=1 J(x(kÆ); Oqk) � J(x(kÆ); U`);(1:3) 8q 2 f1; 2; : : : ; Qg 1 6 ℄J(x(kÆ); Oqk) 6 M:We now de�ne a measurable subset C ofW (X) whi
h will be a path spa
e 
ontainingthe pro
esses studied in this paper :(1:4) C = [�2(0; 12 ) 1\p=1 1[M=1 1\T=1 1\m0=1 1[m=m0 C(m��; 1m; T;M;mp):3



1.2 Des
ription of the potential and asso
iated Gibbs statesWe are dealing with a pair potential � = �h + �s, where �h represents a hard 
orerepulsion, i.e.(1:5) �h(�i; �j) = (0 if j�i � �jj>r;+1 otherwise,and �s(�i; �j) = �s(�i � �j) is an R-valued C1-pair potential on Rd satisfying thefollowing assumptions (1.6), (1.7) and (1.8):� Summability on X of the fun
tions �s and r�s :(1:6) 8f�jgj 2 X; 8i; Xj 6=i j�s(�i � �j)j <+1 and Xj 6=i jr�s(�i � �j)j <+1� Lips
hitzianity of r�s on �nite allowed 
on�gurations :There exists K su
h that for ea
h �nite subset J of N , ea
h �; � 2 X and ea
hi 2 N verifying maxj2J; j 6=i j(�i � �j)� (�i � �j)j < r=2, one has :(1:7) Xj2J; j 6=ijr�s(�i � �j)�r�s(�i � �j)j 6 K maxj2J; j 6=i j(�i � �j)� (�i � �j)j� Stret
hed exponential de
rease on X of the sum of r�s :(1:8) 9�0; �1; �2 > 0; su
h that for R large enough, 8� 2 X; 8iXj;j�i��j j>R jr�s(�i � �j)j � g(R) � �0 exp(��1R�2)The range of the smooth pair potential �s may be �nite or in�nite, i.e. the supportof �s may be 
ompa
t or not. If the range of �s is �nite, the fun
tion g appearing in(1.8) vanishes.Remark 1.1 By an elementary 
omparison argument with the summability on thelatti
e rZd, inequalities (1.6) on �s and r�s are equivalent to the following uniformsummability on X :(1:9) �s = sup�2X supi2N Xj 6=i j�s(�i � �j)j < +1 and r�s = sup�2X supi2N Xj 6=i jr�s(�i � �j)j < +1A suÆ
ient 
ondition for (1.6) and (1.7) to hold is that �s has C2-regularity and :(1:10) Xk2Zdj�s(rk)j <+1;Xk2Zdjr�s(rk)j <+1 and Xk2Zd supx2[0;r℄d jD2�s(rk + x)j <+1:
4



Remark 1.2 Let us suppose that the in�nite range pair potential �s(x); x 2 Rd ; is afun
tion of the norm of x, in su
h a way that there exists a fun
tion ' on R+ verify-ing �s(x) = '(jxj). Su
h assumption is physi
ally very natural. Then, the followingregularity of the fun
tion ' is suÆ
ient to imply (1.6) and (1.7) :' is C2; j'j; j'0j and j'00j are non in
reasing fun
tions on some interval [R;+1[ andZ[R;+1[ j'(u)jud�1du < +1:To obtain the exponential bound (1.8), it is enough to suppose the following exponentialde
reasing property of '0 :9R; 
0; 
1; 
2 > 0; 8u > R; j'0(u)j � 
0 exp(�
1u
2):Now, we 
an de�ne the set of Gibbs states asso
iated to the pair potential� = �h + �s. For � = f�1; �2; : : : ; �ng and � 2M we de�ne�(�j�) = expf� X16i<j6n�(�i; �j)� nXi=1 Xj �(�i; �j)g:By assumption (1.6) the se
ond (in�nite) summation on �j is bounded and then, thefun
tion � is well de�ned.Let us �x a real positive number z. For any 
ompa
t subset � � Rd , we denote by ��;zthe Poisson distribution on M(�) with intensity measure zdx on �, where dx denotesthe Lebesgue measure, and M(�) is the set of all �nite subsets of �.De�nition 1.3 A probability measure � on X is 
alled a Gibbs state with respe
t tothe a
tivity z>0 and the potential �, if � satis�es the following DLR equation for any
ompa
t subset � of Rd :�(�jB�
(X))(�) = ��;�;z(�); � �-a.s.;where ��;�;z is the probability measure on M(�) de�ned by(1:11) ��;�;z(d�) = 1Z�;�;z�(�j� \ �
)��;z(d�);and Z�;�;z = ZM(�) �(�j� \ �
)��;z(d�):The set of su
h Gibbs states is denoted by G(z;�).The set G(z;�) is 
onvex and 
ompa
t with respe
t to the topology of weak 
on-vergen
e. Sin
e �s, the smooth part of the potential, satis�es the 
ondition (1.6) andthen the 
ondition (1.9), it is a stable potential in the sense of Ruelle with stability
onstant �s and then � is superstable (See [Rue69℄ x3.2.5). This assures the existen
eof at least one element in G(z;�), i.e.G(z;�) 6= ;: 5



About the 
ardinality of G(z;�), we do the following remarks:- if z is smaller than a 
riti
al value z
, Ruelle proved that uniqueness holds (See[Rue69℄ Theorem 4.2.3). Moreover, he did expli
it a lowerbound for z
 : in our 
ase,z
>� exp(2�s + 1) ZRd j1� exp��(x)jdx��1:- for z large enough, it is a well known 
onje
ture that the set of extremal pointsof G(z;�) has a 
ardinal greater than 2 (See Ruelle [Rue69℄, Georgii [Geo88℄), in otherwords a phase transition should o

ur.1.3 The in�nite dimensional di�usionLet (
;F ; P ) be a probability spa
e with a right 
ontinuous �ltration fFtgt>0 su
hthat ea
h Ft 
ontains all P -negligible sets.Let (Bi(t); i 2 N ; t>0) be a sequen
e of independent d-dimensional Ft�Brownianmotions and X0 = fX1; X2; : : : g be an F0-measurable X-valued random variable on(
;F ; P ).We 
onsider the following system of equations : for ea
h i 2 N; t > 0;(1:12) Xi(t) = Xi +Bi(t)� 12Xj2NZ t0r�s(Xi(s)�Xj(s))ds+Xj2NZ t0(Xi(s)�Xj(s))dLij(s)where(1:13) (X(t); t>0) is an X� valued pro
ess and(1:14) Lij(t); i; j 2 N ; are nonde
reasing 
ontinuous pro
esses withLij(0) = 0; Lij(:) = Lji(:) and Lij(t) = Z t0 1Ifrg(jXi(s)�Xj(s)j)dLij(s):The pair (X(:);L(:)) = f(Xi(:); Lij(:)); i; j 2 Ng� or simply X(:)� is 
alled a solutionof (1.12) provided that (1.13) and (1.14) are satis�ed and that X(!; �) 2 C for P -almostall !, where C is the set of regular paths de�ned by (1.4).We are now ready to state the main results of this paper.Theorem 1.4 (i) There exists a measurable subset Y of X su
h that for ea
h �xedinitial value X0 in Y equation (1.12) admits a unique solution X(:) whi
h is an Y-valued di�usion pro
ess.(ii) If the law of the initial variable X0 is a Gibbs state of G(z;�) for some z 2(0;1), then P (X0 2 Y) = 1 and the X-valued pro
ess X(:) is a reversible di�usionpro
ess. 6



So, 
ompleting the previous remark on the non-uniqueness of Gibbs states withlarge a
tivity, we dedu
e that for large z there may exist several reversible di�usionpro
esses solutions of equation (1.12).Let us mention that using Diri
hlet forms, one 
an 
onstru
t the law of su
h adi�usion (
f [Osa96℄, [Yos96℄). In [Tan97℄, one of the authors (H.T.) used a Skorohodtype de
omposition to prove that, in the 
ase �s � 0, the di�usion asso
iated withthe Diri
hlet form 
oin
ides with the law of the solution of the system of equations(without the smooth intera
tion term r�s). We 
onje
ture that this remains true withthe model presented here, but we are mainly interested to use a pathwise approa
h,more expli
it than the Diri
hlet form method.2 Skorohod type equation for a domain in RndLet us �rst do some general 
onsiderations on re
e
ting boundaries and asso
iatedSkorohod's problems.2.1 Geometri
al estimates on the re
e
ting boundaryIn this subse
tion and in the next one, the dimension of the Eu
lidean spa
e is �xedequal to an integer m.For a domain D � Rm we de�ne the set Nx = Nx(D) of inward normal unit ve
torsat x 2 �D byNx = [̀>0Nx;`; Nx;` = fn 2 Rm : jnj = 1; U`(x� `n) \D = ;g:Let us re
all some usual regularity 
onditions one 
an suppose on the boundary �D ofthe domain D.Condition (A) (uniform exterior sphere 
ondition):There exists a 
onstant �0 > 0 su
h that8x 2 �D Nx = Nx;�0 6= ;:This means that a small enough sphere rolling along the boundary of D rea
hesea
h point of this boundary.Condition (B):There exists 
onstants Æ0 > 0 and �0 2 [1;1) su
h that :for any x 2 �D there exists a unit ve
tor lx verifying8n 2 [y2UÆ0 (x)\�DNy; hlx;ni> 1�0 :For example, Condition (B) is satis�ed when the domain veri�es the uniform interior
one 
ondition (see [Sai87℄). 7



Under Condition (A), ea
h x =2 D su
h that d(x;D) < �0 has a unique proje
tion xon �D, satisfying d(x;D) = jx�xj and x�xjx�xj 2 Nx. We extend this proje
tion operatorto x 2 D by x = x.If, for ea
h x and y in the neighbourhood of D, the distan
e jx� yj between thereproje
tions is 
ontrolled by the distan
e jx� yj between the points, then the boundaryofD is smooth in a 
ertain sense. Saisho established some useful regularity estimates onthe solutions of Skorohod equations in a domain satisfying su
h a smoothness 
ondition.We will use these estimates for a domain satisfying a priori only Condition (A). So we�rst have to prove that :Lemma 2.1 If a domain D satis�es Condition (A), then the proje
tion operator onD satis�es the following 
ontinuity property :(2:1) For all x; y 2 Rm su
h that d(x;D) < �0 and d(y;D) < �0jx� yj 6 �1 + jx�xj+jy�yj2�0�jx�xj�jy�yj�jx� yjProof.Let us take x; y 2 Rm su
h that d(x;D) < �0 and d(y;D) < �0.If x = x and y = y, inequality (2.1) is 
learly satis�ed. So, in the sequel, we assumethat (jx � xj; jy � yj) 6= (0; 0). We now de�ne 
x on the line (x; x) and 
y on the line(y; y) in order to have:jx� 
xj = jy � 
yj = �0; x 2 [
x; x℄; y 2 [
y; y℄ and jx� 
yj>�0; jy � 
xj>�0:Su
h 
x and 
y always exist, just 
hoose them as follows:� if x 6= x let x� 
x = �0 x�xjx�xj . Sin
e x�xjx�xj 2 Nx, this 
hoi
e implies thatU�0(
x) \D = ;, thus jy � 
xj>�0.� if y 6= y let y � 
y = �0 y�yjy�yj . This implies that jx� 
yj>�0.� if x = x, and thus y 6= y, let 
x � x = �0 x�
yjx�
yj .With this 
hoi
e, j
x � 
yj>�0 + jx� 
yj>2�0 thus jy � 
xj>�0.� if y = y, and thus x 6= x, let 
y � y = �0 y�
xjy�
xj . This 
hoi
e again impliesjx� 
yj>�0.Let us introdu
e the notations:
x = jx� 
xj�0 ; 
y = jy � 
yj�0 ; ex = x� 
x�0 ; ey = y � 
y�0 and h = 
y � 
x�0We have:1>
x > 0; 1>
y > 0; jexj = 1; jeyj = 1; jex � hj>1 and jey + hj>1and inequality (2.1) be
omes:jex � h� eyj 6 2
x + 
y j
xex � h� 
yeyj:8



It is suÆ
ient to prove this inequality for 
x 6= 
y : the 
ontinuity of the right handside when 
y tends to 
x will then prove that it holds for any (
x; 
y) in ℄0; 1℄2.From now on, the parameters 
x; 
y 2℄0; 1℄, 
x 6= 
y, are �xed. We only have toprove that the C1-fun
tionF (ex; ey; h) = jex � h� eyj2j
xex � h� 
yeyj2de�ned on the C1-manifoldV = f(ex; ey; h) 2 (Rm)3 ; jexj = 1; jeyj = 1; jex � hj>1; jey + hj>1gadmits ( 2
x + 
y )2 as an upper bound.First remark that sin
e jexj = 1jex � hj>1 , hex; hi6 jhj22Remark also that F is well-de�ned on V, sin
e, if hex; hi6 jhj22 ,
xex � h� 
yey = 0) ey = 
x
y ex � 1
yh and h 6= 0 (be
ause jexj = jeyj and 
x 6= 
y)) jey + hj2 = 1 + 2
x
y hex; hi � 2 1
y hh; hi+ jhj261 + 
x
y jhj2 � 2
y jhj2 + jhj2 = 1� 2�
x�
y
y jhj2 < 1Using the famous theorem about di�erentiable fun
tions on manifolds, we obtainsupV F = max(supV1 F; supVr F; supV� F )whereV1 = f(ex; ey; h) 2 V; jhj>4gVr = f(ex; ey; h) 2 V; jex � hj > 1; jey + hj > 1;rF 2 Span(r(jexj2 � 1);r(jeyj2 � 1))gV� = f(ex; ey; h) 2 V; jex � hj = 1 or jey + hj = 1g:The 
omputation of an upper bound for F on V1 is very easy. Just use the triangularinequality twi
e:jex � h� eyj 6 (1� 
x)jexj+ j
xex � h� 
yeyj+ (1� 
y)jeyjj
xex � h� 
yeyj > jhj � 
x � 
y>2 if jhj>4thus supV1 F 6 �1 + 2� 
x � 
y2 �2 6 �
x + 
y
x + 
y + 2� 
x � 
y
x + 
y �2 = � 2
x + 
y�2:To 
ompute an upper bound for F on Vr, we remark thatrF = (rexF;reyF;rhF )and r(jexj2 � 1) = (2ex; 0; 0), r(jeyj2 � 1) = (0; 2ey; 0).9



If rF 2 Span(r(jexj2 � 1);r(jeyj2 � 1))g then rhF = 0, that is:rhF = �2(ex � h� ey)j
xex � h� 
yeyj2 + 2(
xex � h� 
yey)jex � h� eyj2j
xex � h� 
yeyj4 = 0:This implies thatjex � h� eyj j
xex � h� 
yeyj2 = j
xex � h� 
yeyj jex � h� eyj2whi
h exa
tly means that F (ex; ey; h) = pF (ex; ey; h), i.e. F (ex; ey; h) equals 0 or 1.Thus supVr F61.Finally, we 
ompute a bound for F on V�. We will 
ompute an upper bound forF (ex; ey; h) when jexj = jeyj = 1, jex � hj>1 and jey + hj = 1. The 
omputation forjex � hj = 1 and jey + hj>1 is exa
tly the same (just ex
hange ex and ey, 
x and 
yand repla
e h by �h).If jexj = jeyj = jey + hj = 1 and jex � hj61:jey + hj = 1 , 2hey; hi = �jhj2 , 2hey + h; hi = jhj2jex � hj>1 , �2hex; hi>� jhj2thus j
xex � h� 
yeyj2= j
xex � 
y(ey + h)� (1� 
y)hj2= 
2x + 
2y � 2
x
yhex; ey + hi+ (1� 
y)jhj2 � 2
x(1� 
y)hex; hi> 
2x + 
2y � 2
x
yhex; ey + hiand sin
e jex � h� eyj2 = 2� 2hex; ey + hi, we obtain :F (ex; ey; h)6 2� 2hex; ey + hi
2x + 
2y � 2
x
yhex; ey + hi :An elementary derivative 
omputation prove that, when A>B, the fun
tion u! 2�2uA�Bude
reases on [�1; 1℄, thus sup[�1;1℄ 2�2uA�Bu = 4A+B andsupV� F6 4
2x + 
2y + 2
x
y = ( 2
x + 
y )2:The proof is 
omplete. �2.2 Regularity estimates for the solution ofSkorohod's problemLet D be a domain of Rm . For a given w 2 W0(Rm) = fw 2 W (Rm) : w(0) = 0g andx 2 D, we 
onsider the following Skorohod equation with re
e
ting boundary �D :(2:2) �(t) = x+ w(t) + '(t); t>0: 10



A solution is a pair (�; ') satisfying (2.2) and the following two 
onditions (2.3) and(2.4) (we also 
all � a solution of (2.2)) :(2:3) � 2 W (D):(2.4) ' is an Rm -valued 
ontinuous fun
tion with bounded variation on ea
h �nitetime interval satisfying '(0) = 0 and'(t) = Z t0 n(s)dk'ks; k'kt = Z t0 1I�D(�(s))dk'ks;where n(s) 2 N�(s) if �(s) 2 �D, and k'kt denotes the total variation of ' on [0; t℄.The existen
e and uniqueness of solutions of Skorohod type equations were studiedby many authors (Tanaka [Tan79℄, Lions and Sznitman [LS84℄, Saisho [Sai87℄). Saisho(see [Sai87℄ theorem 4.1) proved that, under Conditions (A) and (B), Skorohod equa-tion (2.2) admits a unique solution. Furthermore, this solution satis�es the followingLips
hitz 
ontinuity property as a fun
tion of w(�) and x :Lemma 2.2 Suppose that the domain D satis�es Conditions (A) and (B) and let�(:) (respe
tively � 0(:)) be the unique solution of Skorohod equation (2.2) (resp. forw0 2 W0(Rm); x0 2 D; � 0(t) = x0 + w0(t) + '0(t); t>0).Then there exists a 
onstant C1, depending only on D, su
h that for ea
h t>0,(2:5) j�(t)� � 0(t)j6�kw � w0kt + jx� x0j� exp �C1(k'kt + k'0kt)�:Proof.In Proposition 4.1 of [Sai87℄, Saisho proved this Lips
hitz 
ontinuity property underCondition (A), Condition (B), and the following additional 
ondition on the proje
tionoperator x �! x (
alled Condition (D) in [Sai87℄) :there exists C1>0 and C2 2℄0; �0[ su
h that for all x; y 2 Rm :max(jx� xj; jy � yj)6C2 =) jx� yj 6 �1 + C1max(jx� xj; jy � yj)�jx� yj:Thanks to Lemma 2.1, the proje
tion always have this property (for any C2 2℄0; �0[and C1 = 1=(�0 � C2)) when D satis�es Condition (A). �Remark that the 
onstant C1 in the above Lemma a priori depends on the spa
edimension m.The following lemma gives an estimate of the total variation k'kt of the pro
ess'(t) (See Theorem 4.2 in [Sai87℄).Lemma 2.3 Suppose that the domain D satis�es Conditions (A) and (B). Then, forany �nite T > 0, we havek'kt6f(�0;T;:(w); sups6t jw(s)j) for all 06t6T;11



where f is a fun
tion de�ned onW0(R+)�R+ depending only on the 
onstants �0; �0; Æ0in Conditions (A) and (B), and �0;T;:(w) denotes the modulus of 
ontinuity of w in[0; T ℄ de�ned as usually by(2:6) �0;T;Æ(w) = sup0<s<t<Tjt�sj6Æ jw(t)� w(s)j:Moreover, the fun
tional w �! f(�0;T;:(w); sups6t jw(s)j) is bounded on ea
h set ofpaths W satisfying limÆ!0 supw2W �0;T;Æ(w) = 0:2.3 Appli
ation to a system of �nitely many hard ballsNow the dimension of the state spa
e is m = nd. Let us de�ne a system of n hard ballsmoving in Rd and re
e
ted on the boundary of a domain Dn � Rnd :Dn = fxn = (x1; : : : ; xn) 2 Rnd : jxi � xjj > r; i 6= jg:Saisho and Tanaka [ST86℄ 
he
ked that for ea
h n 2 N , the domain Dn satis�es Con-ditions (A) and (B).Let b = (b1; : : : ; bn) be a Lips
hitz 
ontinuous Rnd -valued fun
tion de�ned on Rnd .Let also take w = (w1; w2; : : : ) 2 W0(Rd)n.Saisho and Tanaka [ST86℄ proved that the following system of n equations in Rd(2.7),(2.8),(2.9) has a unique solution � = (�i)i=1;2;:::;n, sin
e it 
an be 
onsidered as aSkorohod equation in Rnd with �Dn as re
e
ting boundary :(2:7) 8i 2 f1; 2; : : : ; ng�i(t) = xi + wi(t) + Z t0 bi(�(s))ds+ nXj=1 Z t0 (�i(s)� �j(s))d�ij(s):(2.8) (�i)i=1;2;:::;n are 
ontinuous fun
tions with j�i(t)� �j(t)j>r, t 2 [0;1), i 6= j.(2.9) (�ij)i;j=1;2;:::;n are 
ontinuous nonde
reasing fun
tions with �ij(0) = 0, �ij � �jiand �ij(t) = Z t0 1Ifrg(j�i(s)� �j(s)j)d�ij(s):From now on, the number n of intera
ting hard balls we study be
omes randombut remains a.s. �nite. To study su
h systems, we introdu
e the new 
on�gurationspa
e D :D = 1[n=0Dnwhere D0 = f;g, D1 = Rd , and for n>2,Dn = fxn = (x1; x2; : : : ; xn) 2 Rnd : jxi � xjj>r; 16i < j6ng:12



Let 	 be a fun
tion on f;g [ (S1n=1 Rnd) satisfying 	(;) = 0 and the following
onditions:(	:1) 	 is a C1 � fun
tion, invariant by permutation on (Rd)n for ea
h n>1;with r	 Lips
hitz 
ontinuous.(	:2) 9K	 2 R; 8n 2 N ; inf(x1;��� ;xn;y)2Dn+1 �	(x1; � � � ; xn; y)� 	(x1; � � � ; xn)�>K	(	:3) 1Xn=1 znn! ZRnd �h(xn) exp(�	(xn))dxn < +1;where �h(xn) = exp(�P16i<j6n�h(xi; xj)) = 1Ifx1;x2;��� ;xng2X.We de�ne a probability measure �	z on D by �	z (f;g) = 1Z	z and(2:10) �	z (A) = 1Z	z znn! ZA �h(xn) exp(�	(xn))dxn; for any Borel set A � Dnwhere dxn = dx1dx2 : : : dxn and Z	z = 1 +P1n=1 znn! RRnd �h(xn) exp(�	(xn))dxn:By the symmetry property of 	, it is 
lear that �	z 
an be 
onsidered as a Probabilitymeasure on X.For x 2 D and w = (w1; w2; : : : ) 2 W0(Rd)N, we put(2:11) �	(t;x;w) = (�	(t;xn;wn); if x = xn; n 2 N ,0; if x = ;,where wn = (w1; w2; : : : ; wn), and �	(t;xn;wn) is the unique solution of the equation(2.7) where the drift b is given by(2:12) b(xn) = �r	(xn); n 2 N :We denote by PW the Wiener measure on W0(Rd). As in [Tan96℄ Lemma 2.4, we
ompute a bound for the probability that �	 os
illate too mu
h when w is a Brownianmotion and the initial law is Gibbsian :Lemma 2.4 The pro
ess �	(t; :; :) is a reversible di�usion pro
ess under the probability�	z 
 P
NW . Moreover, for any �nite time T > 0, there exists positive 
onstants C3 andC4 depending only on T and 	 su
h that8` 2 N ; 8"; Æ > 0�	z 
 P
NW �9i 2 N s.t. �0;T;Æ(�	i )>" and �	i (0) 2 U`�6C3zjU`j exp(�C4 "2Æ )
13



We now need to 
ontrol the geometri
al repartition of the parti
les in Rd . To thisaim, we introdu
e the 
on
ept of 
luster.For � 2 X; r0 > r and two points x, y in Rd , we say that a 
ontinuous 
urve 
 is ar0-
onne
tion between x and y with respe
t to (�; r0) if x; y 2 
 and 
 � U r02 (�). Thenthe o

upied 
luster C(r0; x; �) of x is de�ned byC(r0; x; �) = fy 2 � : 9 an o

upied 
onne
tion between x and y g:The set U r02 (C(r0; x; �)) is the 
onne
ted 
omponent of U r02 (�) 
ontaining x.First we show the following estimate on the 
ardinal of the set C(r0; x; �).Lemma 2.5 Let �	z be the probability measure on D introdu
ed in (2.10). Then, forany M 2 R+ , there exists a 
onstant C5 = C5(r; d; z) su
h that, for any ` 2 N� and0 < " < 1,�	z �9x 2 U`; ℄C(r + "; x; :) > Md�6C5`d"[ rM2r+2 ℄ exp(�[ rM2r + 2 + 1℄K	):Proof. A set of diameter ` 
annot 
ontain more than (`=r)d hard balls of diameter r.Therefore if ℄C(r+"; x; �) > Md then the diameter of U r+"2 (C(r+"; x; �)) is larger thanrM , and this in turn implies the existen
e of fy1; � � � ; yM 0g � � su
h that jy1j6`+ r+"2 ,jy1 � y2j6r + ", : : : jyM 0�1 � yM 0j6r + " for some M 0 = [ rM2(r+") ℄ + 1.�	z �f� su
h that 9x 2 U`; ℄C(r + "; x; �) > Mdg�6 �	z �f� su
h that 9fy1; � � � ; yM 0g � �;jy1j6`+ r + "2 ; jy1 � y2j6r + "; : : : ; jyM 0�1 � yM 0j6r + "g�6 exp(�M 0K	) 1Z	z 1Xn=M 0 znn!� nM 0�(M 0)!� ZR(n�M0)d �h(xn�M 0) exp(�	(xn�M 0))dxn�M 0� ZU`+ r+"2 dy1 ZUr+"(y1) dy2� � �ZUr+"(yM0�1) �h(yM 0)dyM 06 exp(�M 0K	)jU`+ r+"2 jjUr+" n UrjM 0�1zM 06 C5`d"M 0�1zM 0 exp(�M 0K	)for some integer M 0> rM2r+2 and with C5 a 
onstant depending only on r; d and z. This
ompletes the proof. �We now de�ne a set of regular paths, in the sense that their modulus of 
ontinuityis small enough and, at ea
h step of a time partition, the size of the 
lusters is bounded.Let "2 > "1 > 0, Æ > 0 and T; ` 2 N . We denote by �("1; "2; Æ; T;M; `) the set of allelements � = f�i(�)gi 2 W (X) satisfying(2:13) 8i 2 St2[0;T ℄ J(�(t); U`); �0;T;Æ(�i(�))6"1;(2:14) 8x 2 U`; 8k = 0; 1; : : : ; [T=Æ℄; ℄C(r + "2; x; �(kÆ))6M:14



Remark that if �(�) 2 �("1; "2; Æ; T;M; `) and "2 > 2"1, then8x 2 U`; 8t 2 [0; T ℄; ℄C(r + "2 � 2"1; x; �(t))6M:We then obtain the following lemma :Lemma 2.6 Let 0 < �2 < �1 < 12 , z > 0 and T; p 2 N . Then for any � > 0 we 
an
hoose M =M(�1; �2; T; p) 2 N and C6 = C6(�1; �2; z; T; p) > 0 su
h that8m 2 N ; �	z 
 P
NW (�	 2 �(m��1 ; m��2; 1m; T;M;mp)
)6C6m��:Proof. It is a 
onsequen
e of Lemmas 2.4 and 2.5. �3 Approximation of the solution and 
onvergen
eLet J be any nonempty �nite subset of N . We now 
onsider an in�nite system ofparti
les in whi
h only a �nite number (those indexed by J) move following thedynami
s de�ned in (2.7). Let b = (bi)i2J be an (Rd)J-valued Lips
hitz 
ontin-uous fun
tion de�ned on (Rd)J, x = (x1; x2; : : : ) su
h that fx1; x2; : : : g 2 X andw = (w1; w2; : : : ) 2 W0(Rd)N. We then obtain the following system of equations (3.1)under the 
onditions (3.2) and (3.3):(3:1) �i(t) = 8><>:xi + wi(t) + Z t0 bi(�(s))ds+Xj2J Z t0 (�i(s)� �j(s))d�ij(s) if i 2 J;xi if i =2 J:(3.2) (�i)i2J are 
ontinuous fun
tions with j�i(t)� �j(t)j>r, t 2 [0;1), i 6= j.(3.3) (�ij; i; j 2 J) are 
ontinuous nonde
reasing fun
tions with �ij(0) = 0, �ij � �jiand �ij(t) = Z t0 1Ifrg(j�i(s)� �j(s)j)d�ij(s):For i =2 J or j =2 J , �ij � 0.Existen
e and uniqueness of the solution of (3.1) were dis
ussed in the previousse
tion.Let �s be the smooth pair potential with in�nite range de�ned in se
tion 1.2, andlet  `;�; ` 2 N ; � 2 X be nonnegative smooth fun
tions de�ned on Rd with the followingproperties :(3.4) r `;� is bounded Lips
hitz 
ontinuous(3.5)  `;� = 0 on U �̀ = U` n Ur(� \ U 
̀)(3:6) X̀2N sup�2X ZRdnU �̀ exp ��  `;�(x)�dx < +1:15



Su
h fun
tions obviously exist: take for example  `;�(x) = ld+1Æ�(x) with Æ� a C2-fun
tion with bounded derivatives whi
h is equivalent to d(:; U �̀) on Rd (see [Ste70℄p.171).We 
an now de�ne on S1n=1 Rnd the following potential, as perturbation by the selfpotential  `;� of the smooth pair potential �s, with � as �xed external 
on�guration :for any J �nite subset of N ,(3:7) 	`;�(xJ) =Xi2J  `;�(xi) + Xi;j2Ji<j �s(xi � xj) + Xi2Jj;j�j j>`�s(xi � �j):Note that 	`;� satis�es the assumptions made on the fun
tion 	 in the se
tion 2.3 :(	.1) is obvious, (	.2) is true with K	 = �2�s and (	.3) 
omes from (3.6).From now on, and for the rest of this se
tion, let X0 = fX1; X2; : : : g be a �xedX-valued random variable with Gibbsian law � 2 G(z;�). Let (Bi(t); i 2 N) be afamily of independent Rd -valued Brownian motions.We now 
onsider, for ea
h ` 2 N , a parti
ular 
ase of equation (3.1) with xi = Xi; wi =Bi(:); bi = �12ri	`;X0 and J = J(X0; U`) = fi 2 N : jXij < `g random. The uniquesolution of this equation is denoted by (X`(t);L`(t)) = (Xì (t); Lìj(t); i; j 2 N) andsatis�es :(3:8) Xì (t) = 8><>:Xi +Bi(t)� 12R t0ri	`;X0(XJ̀(s))ds+Pj2J(X0;U`) R t0 (Xì (s)�Xj̀(s))dLìj(s) if i 2 J(X0; U`)Xi if i =2 J(X0; U`):(3.9) (Xì (:))i2J(X0;U`) are 
ontinuous pro
esses with jXì (t) � Xj̀(t)j>r, 8t>0,i 6= j:(3.10) (Lìj; i; j 2 N) are 
ontinuous nonde
reasing pro
esses with Lìj(0) = 0,Lìj � Lj̀i andLìj(t) = (R t0 1Ifrg(jXì (s)�Xj̀ (s)j)dLìj(s) if i; j 2 J(X0; U`)0 otherwise.Then we have the following 
onvergen
e result :Proposition 3.1 The sequen
e of pro
esses (X`)`2N� 
onverges a.s. in W (X) to areversible pro
ess X1 with values in C \ �, where� = \0<�< 12 1\p=1 1\T=1 1[m0=1 1\m=m0 �[m��; 1m; T;mp℄; and�["; Æ; T; `℄ = ff�ig 2 W (X) : �0;T;Æ(�i) < " for any i with mint2[0;T ℄ j�i(t)j < `g:Moreover, the pro
ess X1(:) is the unique solution of the in�nite dimensional systemof sto
hasti
 equations (1.12) when the initial 
ondition is equal to X0 = fX1; X2; : : : g.16



The rest of this se
tion is devoted to the proof of Proposition 3.1. We �rst 
onstru
ta set of probability one on whi
h (X`) is a Cau
hy sequen
e and then we prove thatthe limit point is the unique solution of (1.12).Lemma 3.2 Let 0 < �2 < �1 < 12 and T; p 2 N . Then we 
an 
hoose M 2 N su
hthat 1Xm=1 (m+1)pX`=mp P (X`(�) 2 �(m��1; m��2; 1m; T;M;mp)
) < +1:Proof. Let �`;�z be the Gibbs measure de�ned by (2.10) where the fun
tion 	 istaken equal to the potential 	`;� de�ned in (3.7). By 
omparing �`;�z and the lo
alspe
i�
ation �U`;�;z (de�ned by (1.11)) as detailed in the Proposition 6.1 (steps 1 and2) in [FR℄, we obtain�`;�z (N(U �̀)
 6= 0)6 ZXN(U �̀)
(�)�`;�z (d�)6z exp �� 2�s� ZRdnU �̀ exp ��  `;�(x)�dx;the same upper-bound holds for j�`;�z ��U`;�;zj(N(U �̀)
 = 0), whi
h leads to the estimatek�`;�z � �U`;�;zk62z exp �� 2�s� ZRdnU �̀ exp ��  `;�(x)�dxwhere k�k denotes the total variation of a signed measure �. Then,P �X`(�) 2 �(m��1 ; m��2; 1m ; T;M;mp)
�6 Z P �X`(�) 2 �(m��1; m��2; 1m; T;M;mp)
jX`(0) = ��d�`;�z (�)d�(�)+ Z k�`;�z � �U`;�;zkd�(�):By Lemma 2.6, assumption (3.6) and the above inequalities the series in Lemma3.2 
onverges. �We �x the parameters 0 < �2 < �1 < 12 , T 2 N and p 2 N .By the s
aling property of the Brownian motion B and Doob's inequality, we 
ontrolthe modulus of 
ontinuity of B as follows :1Xm=1 (m+1)pX`=mp P (�0;T;1=m(Bi) > m��1 for some i with mint2[0;T ℄ jXì (t)j < mp) < +1:Combining this and Lemma 3.2, by Borel Cantelli's Lemma, for almost all !, thereexists M 2 N and m0 = m0(!) 2 N su
h thatfor m>m0 and mp6` < (m+ 1)p;X`(�); X`+1(�) 2 �(m��1; m��2 ; 1m ; T;M;mp)and 8i 2 St2[O;T ℄ J(X`(t); Ump); 8h 2℄0; T ℄; �0;T;h(Bi)62h�1:17



We are now looking for an upper bound for jXì � X`+1i j when i belongs to somesubset of indi
es.To this aim we need a 
omparison lemma formulated under the following generality :for � = 1; 2, let x(�) 2 X, and J(�) be �nite subsets of N . We also de�ne two driftfun
tions on (Rd)J(�) by :b(�)i (x) = �12 Xj2J(�)r�s(xi � xj) + 
(�)i (x); i 2 J(�);where 
(�) = (
(�)i )i2J(�) is an (Rd)J(�)-valued Lips
hitz 
ontinuous fun
tion. We denoteby (�(�)(t); �(�)(t)) the unique solution of (3.1) with J = J(�), x = x(�), bi = b(�)i andw 2 W0(Rd)N �xed not depending on �.Lemma 3.3 Suppose that there exists R;R0; R1 > 0, M 2 N� , "0>0, "1; "2 > 0,0 < Æ6T su
h that(3:11) j
(1)i (x)j; j
(2)i (x)j6g(R) if xi 2 UR1�R(3:12) 8i 2 J(x(1); UR0) [ J(x(2); UR0); 8h 2℄0; T ℄; jx(1)i � x(2)i j6"0 and �0;T;h(wi)62h�1(3:13) �(1)(�); �(2)(�) 2 �("1; "2; Æ; T;M;R0):If 2("0+"1) < "2 < rM and k satis�es k(Mr+R)6R06R1, then, there exists a 
onstantC7 su
h that for all indi
es a satisfying jx(1)a j6R0 � k(Mr +R) and for all t 2 [0; Æ℄,j�(1)a (t)� �(2)a (t)j 6 C7eKC7Æ"0 + (KC7Æ)kk! ("0 + 2"1) + 3C7Æg(R)eKC7Æ:(Re
all that K is the Lips
hitz 
onstant of r�s de�ned in (1.7)).Proof. Put R0 =Mr +R. By (3.13) for any a 2 J(x(�); UR0�R0),�0;T;Æ(�(�)a (�))6"1; ℄C(r + "2; x(�)a ;x(�))6M; � = 1; 2:Sin
e "2 < r=M , we see thatC(r + "2; x(�)a ;x(�)) � UR0�R�"2 ; � = 1; 2:We putJ(a) = J(x(1);C(r + "2; x(1)a ;x(1)));JR(a) = J(x(1); UR+"2(C(r + "2; x(1)a ;x(1)))):Then, sin
e (M � 1)(r + "2) +R + "26R0, we have(3:14) a 2 J(a) � JR(a) � J(x(1); UR0(x(1)a )) and ℄J(a)6M:By (3.12) and (3.13), for t 2 [0; Æ℄j�(1)i (t)� �(1)j (t)j>"2 � 2"1 > 0; if i 2 J(a); j =2 J(a);j�(2)i (t)� �(2)j (t)j>"2 � 2"1 � 2"0 > 0; if i 2 J(a); j =2 J(a):18



Then we have, for � = 1; 2; t 2 [0; Æ℄; and i 2 J(a);�(�)i (t) = x(�)i +W (�)i (t) + Xj2J(a)Z t0 (�(�)i (s)� �(�)j (s))d�(�)ij (s);whereW (�)i (t) = wi(t)� 12 Xj2J(�) Z t0 r�s(�(�)i (s)� �(�)j (s))ds+ Z t0 
(�)i (s; �(�)(s))ds:For x = (x1; x2; : : : ) su
h that x = fx1; x2; : : : g 2 X and for any nonempty �nitesubset J of N, we denote by xJ = (xi; i 2 J) 2 (Rd)J the proje
tion of x on (Rd)J andby jxjJ = maxi2J jxij its supremum norm.Sin
e ea
h pro
ess �(�)J(a)(:) is solution of a Skorohod equation, we 
an apply Lemma 2.2for a state spa
e dimension m = ℄J(a)d bounded by Md and for w = W (�)J(a).Remark that8h 2℄0; T ℄; �0;T;h(W (�)i )62h��1 +r�sh=2 + g(R)h;whi
h tends uniformly to 0 for R > 0 and i 2 J(a) when h tends to 0. So by Lemma 2.3there exists a 
onstant C > 0 su
h that8t 2 [0; Æ℄; 8i 2 J(a); kXj2J(a)Z t0 (�(�)i (s)� �(�)j (s))d�(�)ij (s)kt6C:This impliesj�(1)i (t)� �(2)i (t)j 6j�(1)J(a)(t)� �(2)J(a)(t)j6 exp �2pMC1C��jx(1)J(a)� x(2)J(a)j+ kW (1)J(a)�W (2)J(a)kt�6C7M �jx(1)J(a)� x(2)J(a)j+ kW (1)J(a)�W (2)J(a)kt�;where C7 =M exp(2pMC1C).By (3.12) and (3.13) we have j�(1)(t)��(2)(t)jJ(x(1);UkR0(x(1)a ))6"0+2"1: Thus assump-tion (1.8) holds, and together with assumption (1.7) on r�s, we havekW (1)J(a)�W (2)J(a)kt6 12 Xi2J(a) Xj2JR(a) Z t0 jr�s(�(1)i (s)� �(1)j (s))�r�s(�(2)i (s)� �(2)j (s))jds+ 12 Xi2J(a) Xj =2JR(a) Z t0 �jr�s(�(1)i (s)� �(1)j (s))j+ jr�s(�(2)i (s)� �(2)j (s))j�ds+Xi2J(a)Z t0 �j
(1)i (�(1)(s))j+ j
(2)i (�(2)(s))j�ds6 12 Xi2J(a)K Z t0 maxj2JR(a) j�(1)i (s)� �(1)j (s)� �(2)i (s) + �(2)j (s)jds+ 3Mg(R)t6 MK Z t0 j�(1)(s)� �(2)(s))jJR(a)ds+ 3Mg(R)t:19



Then we have, for t 2 [0; Æ℄,(3:15) j�(1)a (t)� �(2)a (t)j6 C7jx(1) � x(2)jJ(a)+KC7 Z t0 j�(1)(s)� �(2)(s)jJR(a)ds+ 3C7g(R)t:From (3.14) we see that if a 2 J(x(1); UR0�2R0) and i 2 JR(a), then i 2 J(x(1); UR0�R0)and so we 
an apply the above 
omputation to the ith 
oordinate : for t 2 [0; Æ℄,(3:16) j�(1)i (t)� �(2)i (t)j6 C7jx(1) � x(2)jJ(i)+KC7 Z t0 j�(1)(s)� �(2)(s)jJR(i)ds+ 3C7g(R)t:Sin
e JR(i) � J(x(1); U2R0(x(1)a )), from (3.14), (3.15) we have for ea
h t 2 [0; Æ℄j�(1)a (t)� �(2)a (t)j6 C7jx(1) � x(2)jJ(x(1);U2R0(x(1)a ))+ KC7 Z t0 �C7jx(1) � x(2)jJ(x(1);U2R0 (x(1)a ))+KC7 Z s0 j�(1)(u)� �(2)(u)jJ(x(1);U2R0(x(1)a ))du+ 3C7g(R)s�ds+ 3C7g(R)t6 C7(1 +KC7t)jx(1) � x(2)jJ(x(1);U2R0(x(1)a ))+ (KC7)2 Z t0 Z s0 j�(1)(u)� �(2)(u)jJ(x(1);U2R0(x(1)a )) du ds+ 3C7g(R)(t+KC7t2=2):Repeating this pro
edure, we obtain for a 2 J(x(1); UR0�kR0)j�(1)a (t)� �(2)a (t)j6 C7 exp(KC7t)jx(1) � x(2)jJ(x(1);UkR0(x(1)a ))+ (KC7)k Z t0 Z t10 � � �Z tk�10 j�(1)(tk)� �(2)(tk)jJ(x(1);UkR0(x(1)a )) dtk � � �dt2 dt1+ 3C7g(R)t exp(KC7t):On
e more, by (3.12) and (3.13) we have j�(1)(t)� �(2)(t)jJ(x(1);UkR0(x(1)a ))6"0+2"1: Thenwe obtain the desired estimate. �For m>m0 large enough su
h that 4m��1 < m��2 < rM , and for ` in the followinginterval mp6` < (m+ 1)p, we put J(1) = J(X0(!); U`), J(2) = J(X0(!); U`+1),
(1)i (x) = �12 Xj;jXj(!)j>`r�s(xi �Xj(!))� 12r `;X0(!)(xi);
(2)i (x) = �12 Xj;jXj(!)j>`+1r�s(xi �Xj(!))� 12r `+1;X0(!)(xi);20



"1 = m��1 , "2 = m��2, Æ = 1m , R = mp�3, R1 = `� R.For t 2 [0; 1m ℄ we put x(1) = x(2) = X0(!), "0 = 0, R0 = 2Tmp�1 and applyLemma 3.3 with k = m. Then, there exists m1 su
h that, for m>m1,jXì (!; t)�X`+1i (!; t)j6a(m); i 2 J(X0(!); U(2Tm2�m)R); t 2 [0; 1m ℄;wherea(m) = 2m! (KC7m )mm��1 + 3C7m g(mp�3) exp(KC7=m):For t 2 [ 1m ; 2m ℄ we put x(1) = X`(!; 1m), x(2) = X`+1(!; 1m), "0 = a(m), R0 = (2Tm2 �m)Rand apply Lemma 3.3 with k = m. Then, we havejXì (!; t)�X`+1i (!; t)j6(1 + C9)a(m); i 2 J(X0(!); U(2Tm2�2m)R); t 2 [ 1m; 2m ℄;where C9 = supm>m1(C7 exp(KC7m ) + 1m!(KC7m )m) < +1.Repeating this pro
edure, we have for all i 2 J(X0(!); UTmp�1), ` 2 [mp; (m + 1)p℄and t 2 [0; T ℄,jXì (!; t)�X`+1i (!; t)j6a(m)mT�1Xk=0 Ck9 = a(m)CmT9 � 1C9 � 1 :Hen
e, we 
an 
hoose m2>m1 su
h that for any m>m2 and i 2 J(X0(!); UTmp�1),1X`=mp supt2[0;T ℄ jXì (!; t)�X`+1i (!; t)j 6 1Xn=m (n+1)pX`=np a(n)CnT9 � 1C9 � 16 1Xn=m(n+ 1)pa(n) CnT9C9 � 16C10 1Xn=m � 1n! + CnT9 exp(��1n�2(p�3))�This series 
onverges if we 
hoose the parameter p>p0 > 1=�2 + 3 (we re
all that �2 isthe exponent appearing in the exponential de
reasing of r�s (1.8)).So there exists X1(�) su
h that, for all i 2 J(X(!); UTmp�1) and ` > mp,(3:17) supt2[0;T ℄ jXì (!; t)�X1i (!; t)j < C11m! :Thus we obtainP ( lim`!1 supt2[0;T ℄ jXì (t)�X1i (t)j = 0; T > 0; i 2 N) = 1;whi
h is exa
tly the 
ondition for X` to 
onverge a.s. in W (X) to X1.21



Sin
e the pro
ess X1(�) is the limit of X`(�), the reversibility of X1(�) is a 
onse-quen
e of the reversibility property for X`(�) (see the proof of Theorem 2 in [Tan96℄).Remark that any 
anoni
al Gibbs state asso
iated to the potential � is also areversible state for the pro
ess X1, sin
e it is a mixture of Gibbs states (with respe
tto the a
tivity parameter z).From Lemma 3.2 and (3.17) we easily have1Xm=1P (X1(�) 2 �(m��1; m��2 ; 1m; T;M;mp)
) <1;and so P (X1(�) 2 C \�) = 1.The proof of Proposition 3.1 will be 
omplete by proving the following lemma.Lemma 3.4 The pro
ess X1(t) is the unique solution of (1.12) with initial 
onditionequal to X0 = fX1; X2; : : : g.Proof. By the same argument as in the proof of Lemma 3.3 for any a 2 N andsuÆ
iently large ` we have �nite subsets J`( km ; a) 3 a, k = 0; 1; : : : ; mT su
h thatjXì (t)�Xj̀ (t)j > m��1 ; i 2 J`( km; a); j =2 J`( km; a); t 2 [ km; k + 1m ℄:By virtue of the estimate (3.17) for suÆ
iently large ` we 
an 
hose J`( km ; a), k =0; 1; : : : ; mT to be independent of ` and denote them by J( km; a), k = 0; 1; : : : ; mT .Then we haveXì (t) = Xì ( km) +Bi(t)� Bi( km)� 12Xj Z tkmr�s(Xì (s)�Xj̀ (s))ds+ Xj2J( km ;a) Z tkm (Xì (s)�Xj̀ (s))dLìj(s); i 2 J( km; a); t 2 [ km; k + 1m ℄:By Lemma 2.2 we obtain(3:18) X1i (t) = X1i ( km) +Bi(t)� Bi( km)� 12Xj Z tkmr�s(X1i (s)�X1j (s))ds+ Xj2J( km ;a) Z tkm (X1i (s)�X1j (s))dL1ij (s); i 2 J( km; a); t 2 [ km; k + 1m ℄;whi
h implies that X1(�) is a solution of (1.12).Suppose that Y(�) is also a solution of (1.12). Let X1(�; !) 2 � and Y(�; !) 2 C.For any T 2 N , m3 2 N and p>p0, we 
an 
hoose 0 < � < �0 < 12 and m>m3 withm�� > 4m��0 su
h thatY(�; !) 2 C[m��; 1m; T;M;mp℄; X1(�; !) 2 �[m��0; 1m; T;mp℄:22



Then we 
an take a sequen
e J( km; a) 3 a for whi
h (3.18) holds for ea
h k = 0; 1; : : : ; mTand Yi(t) = Yi( km) +Bi(t)� Bi( km)� 12Xj Z tkmr�s(Yi(s)� Yj(s))ds+ Xj2J( km ;a) Z tkm (Yi(s)� Yj(s))dLYij(s); i 2 J( km; a); t 2 [ km; k + 1m ℄:Then by the same argument to get (3.17) we havesupt2[0;T ℄ jYi(!; t)�X1i (!; t)j < C12m! ; i 2 J(X0(!); UTmp�1):Sin
e we 
an take m as large as we want, we have X(t; !) = Y(t; !); t 2 [0; T ℄, for anyT > 0 and ! in a set of full probability. This 
ompletes the proof of Proposition 3.1.�4 Solution with deterministi
 initial 
ondition andmeasurability propertiesFor x = fx1; x2; : : : g 2 X and w = (w1; w2; : : : ) 2 W0(Rd)N, we 
onsider the followingsystem of equations (4.1) under the 
onditions (4.2) and (4.3):(4:1) 8i 2 N ;�i(t) = xi + wi(t)� 12Xj2N Z t0 r�s(�i(s)� �j(s))ds+Xj2N Z t0 (�i(s)� �j(s))d�ij(s)(4:2) �(�) = f�1(�); �2(�); � � � gi 2 C \�(4.3) �ij; i; j 2 N are 
ontinuous nonde
reasing fun
tions with �ij(0) = 0, �ij = �jiand �ij(t) = Z t0 1Ifrg(j�i(s)� �j(s)j)d�ij(s):We denote by � the set of all elements (x;w) of X�W0(Rd)N for ea
h of whi
h thereexists a solution �(t;x;w) of (4.1). By the same argument as in the proof of Lemma3.4, we see that �(t;x;w) is the unique solution of (4.1). Remark that if x(�) 2 C \�,then x(s+ �) 2 C \ �. So, for (x;w) 2 �,(4:4) (�(s;x;w); �sw) 2 �; s>0;and(4:5) �(s+ t;x;w) = �(t; �(s;x;w); �sw); s; t>0;23



by virtue of the uniqueness, where �sw(t) = w(s+ t)�w(s). Putb�(t;x;w) = (�(t;x;w) if (x;w) 2 �x otherwise ;for t>0. Similarly as in lemma 6.1 in [Tan96℄, we 
an prove that :(4.6) � is B(X�W0(Rd)N)�measurable(4.7) (�;x;w) 7�! b�(�;x;w) is measurable from X�W0(Rd)N to W (Rd)N endowedwith their Borel �elds.End of the proof of Theorem 1.4 (i).By Fubini's theoremY = fx 2 X : P
NW (�x) = 1gis a measurable subset of X where �x = fw 2 W0(Rd)N : (x;w) 2 �g. By Proposition3.1, if the distribution of X is � 2 G(z;�), for some z > 0, then P ((X;B) 2 �) = 1,and so P (X 2 Y) = 1. We putP (t;x;�) = P
NW (�(t;x; �) 2 �);for t>0, x 2 Y and � 2 B(Y). Suppose that x 2 Y. Then (x;B) 2 �, a.s. and so by(4.4) and (4.5)(�(�;x;B); ��B) 2 �; a.s. and �(� + t;x;B) = �(t; �(�;x;B); ��B); a.s.for any Ft�stopping time � . From the strong Markov property of B we see that�(�;x;B) 2 Y a.s. andP (�(� + t;x;B) 2 �jF�) = P
NW (�(t; �(�;x;B); �) 2 �)= P (t; �(�;x;B);�); a.s.for t>0 and � 2 B(Y). This means that �(t;x;w) is a strong Markov pro
ess. �A
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