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We consider an infinite system of non-overlapping globules undergoing Brownian motions
in R

3. The term globules means that the objects we are dealing with are spherical, but
with a radius which is random and time-dependent. The dynamics is modelized by
an infinite-dimensional stochastic differential equation with local time. Existence and
uniqueness of a strong solution is proven for such an equation with fixed deterministic
initial condition. We also find a class of reversible measures.
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1. Introduction

The aim of this paper is to construct a random dynamics performed by an infinite
system of globules, where a globule is a sphere in R

3 with variable radius. The
centers of the globules undergo independent Brownian motions, while their radii
perform Brownian oscillations between a minimum and a maximum value. Since
the scale of these oscillations can be different from those of the centers, we intro-
duce a coefficient σ which reflects the elasticity of the surface of each globule. The
globules cannot overlap and when the distance between two globules becomes 0,
they repel each other immediately; that means they interact through a hard core
potential.
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A reversible system of infinitely many Brownian hard spheres (called balls) was
first introduced and analyzed by Tanemura [11]. Then, some natural generalizations
were studied for different types of additional smooth interactions between the balls:
for a gradient type interaction with finite range in [4, 5] and for an interaction with
infinite range in [7]. The specificity one has to deal with in a hard core situation —
hard balls cannot overlap — comes from the additional infinite-dimensional local
time term in the SDE. Notice that in all these works the spheres have a fixed
positive radius.

The originality and new difficulty of the present model — which can find
relevant applications in cell dynamics like molecular motors — lies in the ran-
dom oscillations of the radius of each sphere. We propose here a pathwise approach
for the construction of this infinite-dimensional dynamics, by building a sequence
of finite-dimensional approximating processes. But for finitely many globules,
the existence of such dynamics is already not a simple question. Indeed, one
of the authors constructed recently in [3] a finite system of mutually repelling
Brownian globules. Nevertheless, we need here a nontrivial generalization of these
results: since the scale σ of the radii oscillations is different from the scale of the
center oscillations, the direction of the reflection after a collision between two
globules is no longer normal as in [3]. It is an oblique reflection of Brownian
motions on a complex nonsmooth domain, whose existence problem we solve in
Proposition 3.1.

In Sec. 2 we present the model and its dynamics described by the stochastic
differential equation (E) and we state the results. In Sec. 3, we show the conver-
gence of the approximations and analyze the limit process. Last but not least,
we remark that some kind of hard core Poisson measure is reversible for this
dynamics.

2. The Infinite Model of Mutually Repelling Globules with
Brownian Radii

A globule is a sphere in R
d with a variable radius. For d = 2 the globules modelize

for example the motion of discs on a flat surface or balls floating on a liquid. In this
paper, we fix d = 3 which corresponds to the natural physical case of bubbles in
the Euclidean space. Our techniques and results obviously extend to any dimension
d larger than 1.

A globule is characterized by a pair (x, x̆) ∈ R
3 × R. x is the position of the

center of the globule and x̆ is its radius.
We are dealing here with infinitely many indistinguishable globules, thus the

state space of the system is included in M, the set of point measures on R
3 × R.

A configuration of globules is a locally finite point measure x =
∑

i∈J δ(xi,x̆i) on
R

3 × R, where (xi, x̆i) characterizes the ith globule and J ⊂ N. For simplicity,
we will identify any such point measure x with its support {(xi, x̆i), i ∈ J} ⊂
R

3 × R.
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The globules we deal with in this paper cannot overlap and their radii are
bounded from below (resp. from above) by a constant r− > 0 (resp. r+ > r−).
Thus the exact configuration space Ag of all allowed configurations of globules is
the following set:

Ag = {x = {(xi, x̆i), i ∈ J} for some J ⊂ N, with xi ∈ R
3, x̆i ∈ [r−; r+]

and |xi − xj | ≥ x̆i + x̆j for i �= j}.

Let us notice that this model cannot be reduced to a hard core model in R
3 × R.

Indeed, a hard core condition between globules would mean that there exists ρ such
that ∀ i �= j, |(xi, x̆i)−(xj , x̆j)| ≥ ρ, which is equivalent to |xi−xj |2+|x̆i−x̆j |2 ≥ ρ2.
This last inequality is clearly not comparable with the condition |xi−xj | ≥ x̆i+ x̆j .

We will use the notations:

• B(x, ρ) is the closed ball centered in x ∈ R
3 with radius ρ and by extension, for

any subset A in R
3, we define the ρ-neighborhood of A by

B(A, ρ) := {y ∈ R
3 such that d(y,A) ≤ ρ},

where d(y,A) denotes the Euclidean distance between y and A.
• The symbol |v| denotes the Euclidean norm of the vector v.

We also denote the volume of a subset A of R
3 by |A|.

• For A× I a Borel subset of R
3 × R, NA×I is the counting variable on M:

NA×I(x) = �{i ∈ N : xi ∈ A and x̆i ∈ I}.

• For Λ a Borel subset of R
3 × R,BΛ is the σ-algebra on M generated by the sets

{NΛ′ = n}, n ∈ N,Λ′ ⊂ Λ,Λ′ bounded.
• We write xΛ = x ∩ Λ for the restriction of the configuration x to Λ ⊂ R

3 × R,
and xy for the concatenation of configurations x and y.

• π (resp. πΛ) is the Poisson process on R
3×R (resp. on Λ) with intensity measure

the Lebesgue measure dy (resp. dy|Λ).

We define the set Πg of hard globule Poisson processes via a local density
function:

Definition 2.1. A probability measure µ on M is a hard globule Poisson process
if and only if, for each compact subset Λ ⊂ R

3 × R,

µ(dx|BΛc )(y) =
1

ZΛ,y
1{xΛyΛc∈Ag}πΛ(dx) for µ-a.e. y,

where the so-called partition function ZΛ,y is the renormalizing constant:

ZΛ,y = e−|Λ|
(

1 +
+∞∑
n=1

1
n!

∫
Λn

1{xΛyΛc∈Ag}dx1dx̆1 · · · dxndx̆n
)
.
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At least one hard globule Poisson process exists (generalization of the existence
results for hard core Gibbs measure in [1]). It is conjectured that for r+ small
enough it is unique, while for r− large enough phase transition occurs: Πg should
contain several measures (see e.g. [8]).

In order to modelize the random motion of repelling globules with oscillat-
ing radii, let us consider a probability space (Ω,F , P ) endowed with a com-
plete filtration {Ft}t≥0 and two sequences of Ft-Brownian motions: (Wi(t), t ≥
0)i∈N which are independent R

3-valued Brownian motions and (W̆i(t), t ≥
0)i∈N which are independent R-valued Brownian motions, independent from the
Wi’s too.

We fix a parameter σ > 0 which measures the scale of the radii oscillations, that
is the elasticity of the surface of each globule.

We consider the following system of stochastic differential equations with
(oblique) reflection:

(Eg)



For i ∈ N, t ∈ [0, 1],

Xi(t) = Xi(0) +Wi(t) +
∑
j∈N

∫ t

0

Xi(s) −Xj(s)
X̆i(s) + X̆j(s)

dLij(s),

X̆i(t) = X̆i(0) + σW̆i(t) − σ2
∑
j∈N

Lij(t) − Li+(t) + Li−(t),

where the local times Lij , Li+, Li− satisfy

Lij(t) =
∫ t

0

1{|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s)} dLij(s),

Li+(t) =
∫ t

0

1{X̆i(s)=r+} dLi+(s) and

Li−(t) =
∫ t

0

1{X̆i(s)=r−} dLi−(s).

As usual, the collision local times are nondecreasing R
+-valued continuous pro-

cesses with bounded variations and satisfy Lij ≡ Lji and Lii ≡ 0. The starting
configuration X(0) = {(Xi(0), X̆i(0)), i ∈ N} is a point in Ag.

A solution of the system (Eg) is a family (Xi(t), X̆i(t), Lij(t), Li+(t), Li−(t), 0 ≤
t ≤ 1, i, j ∈ N) of processes satisfying (Eg).

Let us interpret the different terms of (Eg):

• when two globules collide (|Xi(t) − Xj(t)| = X̆i(t) + X̆j(t)), they are deflated
(X̆i(t) decreases by dLij(t)) and move away from each other (Xi(t) is submitted
to the repulsive force Xi(t)−Xj(t)

X̆i(t)+X̆j(t)
);
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• when the radius of a globule reaches the maximal value (X̆i(t) = r+), it is deflated
(X̆i(t) decreases by dL+

i (t));
• when the radius of a globule reaches the minimal value (X̆i(t) = r−), it is inflated

(X̆i(t) increases by dL−
i (t)).

Theorem 2.2. The stochastic equation (Eg) admits a unique solution with values
in Ag for any deterministic initial configuration which belongs to a full measure
subset Ag in Ag.

Proposition 2.3. If the initial distribution µ is a hard globule Poisson process,
then µ(Ag) = 1 and the solution of (Eg) is time-reversible, that is its law is invariant
with respect to the time reversal.

The next section is devoted to the proofs of these results.

3. The Infinite-Dimensional Process, Constructed by
Approximation

3.1. The approximating processes

In this subsection, � ∈ N
∗ and y ∈ Ag are fixed. Using a classical penalization

method with external configuration y, we construct an approximating process which
essentially stays in the ball B(0, �). This is done by introducing in the dynamics (Eg)
an additional drift which vanishes in a subset of B(0, �) and is strongly repulsive
outside of B(0, �); we take as drift the gradient of the C2

b -function (twice differen-
tiable function with bounded derivatives) which is defined on R

3 × R by:

ψ�,y(x, x̆) = ψ1(|x|) + ψ2(x̆) +
∑

j:|yj |>�
ψ3

( |x− yj |
x̆+ y̆j

)
with ψ1, ψ2 and ψ3 non-negative C∞-functions vanishing respectively on ] −∞, �],
[r−, r+] and [1,+∞[, and increasing rapidly on their supports:

ψ1(s) = 2s for s ≥ �+ e−�,
ψ2(s) = �s for s ≥ r+ + e−� and ψ2(s) = �(r+ + r− − s) for s ≤ r− − e−�,
ψ3(s) = � for s ≤ 1 − e−�.

The function ψ�,y satisfies

ψ�,y(x, x̆) = 0 ⇔ x ∈ B(0, �) and (x, x̆)yB(0,�)c ∈ Ag.

By a slight abuse of notation, yB(0,�)c denotes the restricted configuration
∪{j:|yj |>�}{(yj , y̆j)}. Remark that the functions ψ�,y are so repulsive for large �
that they satisfy

sup
y∈Ag

+∞∑
�=1

∫
R3×R

1ψ�,y(x,x̆)>0 exp(−ψ�,y(x, x̆)) dxdx̆ < +∞. (1)
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Let us now define the finite-dimensional dynamics:

(E�,yn )



∀ i ∈ {1, . . . , n}, ∀ t ∈ [0, 1],

Xi(t) = Xi(0) +Wi(t) − 1
2

∫ t

0

∇xψ
�,y(Xi(s), X̆i(s))ds

+
n∑
j=1

∫ t

0

Xi(s) −Xj(s)
X̆i(s) + X̆j(s)

dLij(s),

X̆i(t) = X̆i(0) + σW̆i(t) − σ2

2

∫ t

0

∇x̆ψ
�,y(Xi(s), X̆i(s))ds

− σ2

n∑
j=1

Lij(t) − Li+(t) + Li−(t),

where the local times satisfy

Lij(t) =
∫ t

0

1{|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s)} dLij(s),

Li+(t) =
∫ t

0

1{X̆i(s)=r+} dLi+(s) and

Li−(t) =
∫ t

0

1{X̆i(s)=r−} dLi−(s).

(E�,yn ) is an n-dimensional reflected stochastic differential equation.
If σ = 1, that is if the radii oscillations and the center oscillations are on the same

scale, the above Skorokhod equation contains a normal reflection on the boundary
of the set of allowed configurations of n globules. The problem of existence and
reversibility of this type of dynamics was recently solved by one of the authors in
[3].

For σ �= 1, a new difficulty occurs. The physically evident reflection on the
boundary of the domain of allowed configurations is now oblique since the radii
oscillations have another time scale as the center oscillations: it corresponds to a
normal reflection but in an anisotropic configuration space, where the radii coordi-
nates are rescaled by 1/σ. The existence of solution for general SDEs with oblique
reflections on nonsmooth domains is a hard problem which is solved in the lit-
erature only in some particular cases, like for intersection of smooth bounded
domains or for polyhedral domains (see e.g. [2] and [12]). Since our model is not
covered by these works, we present in the following proposition a suitable existence
result.

Proposition 3.1. Assume that Φ is an R-valued C2
b -function defined on (R3×R)n.

There exists a unique strong solution to the Skorokhod problem
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(EΦ
n )



∀ i ∈ {1, . . . , n}, ∀ t ∈ [0, 1],

Xi(t) = Xi(0) +Wi(t) − 1
2

∫ t

0

∇xiΦ(X(s))ds

+
n∑
j=1

∫ t

0

Xi −Xj

X̆i + X̆j

(s)dLij(s),

X̆i(t) = X̆i(0) + σW̆i(t) − σ2

2

∫ t

0

∇x̆iΦ(X(s))ds

− σ2

n∑
j=1

Lij(t) − Li+(t) + Li−(t),

where the local times satisfy

Lij(t) =
∫ t

0

1{|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s)} dLij(s),

Li+(t) =
∫ t

0

1{X̆i(s)=r+} dLi+(s) and

Li−(t) =
∫ t

0

1{X̆i(s)=r−} dLi−(s).

For any initial condition in Ag the solution is an Ag-valued process.
Moreover, the solution with initial distribution e−Φ(x)1Ag (x)dx is time-

reversible.

The proof of this proposition is postponed to the end of this section. A key
idea is the transformation (see (2)) of the initial Skorokhod problem into a simpler
one, by stretching the radii coordinates by the factor 1/σ and thus transforming
the oblique reflection in a normal one on a modified domain. Let us underline that
the oblique reflection we consider is the unique one for which the existence of a
reversible dynamics is ensured.

Applying Proposition 3.1 with the potential Φ(x) =
∑n
i=1 ψ

�,y(xi, x̆i), we obtain
the existence of a solution to (E�,yn ).

When the initial condition is the deterministic configuration x, this solution is
denoted by X�,y,n(x, ·). In particular, the Ag-valued finite-dimensional process X�,y

with initial configuration x = yB(0,�) and external configuration yB(0,�)c evolving
under the random dynamics (E�,yn ) is:

X�,y(·) := X�,y,n(yB(0,�), ·) with n = �{i ∈ N : yi ∈ B(0, �)}.

The associated local times are denoted by L�,yi,j , L
�,y
i+ , L

�,y
i− , i, j ∈ N.
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If the initial condition of the system (E�,yn ) is random with distribution given
by the finite measure:

ν�,yn (dx) := exp

(
−

n∑
i=1

ψ�,y(xi, x̆i)

)
1Ag (x) dx1dx̆1 · · · dxndx̆n,

then the solution of (E�,yn ) is reversible. Its law is denoted by Q�,yn .
Consider now the following Poisson mixture in n of the Q�,yn ’s:

Q�,y =
e−|B(0,�)|

Z�,y

+∞∑
n=0

1
n!
Q�,yn ,

where Z�,y is the renormalizing constant which ensures that Q�,y is a probability
measure. As a mixture of Ag-supported time-reversible measures, Q�,y is time-
reversible with support included in Ag. Its projection at time 0 is the probability
measure

µ�,y(dx) :=
e−|B(0,�)|

Z�,y

+∞∑
n=0

1
n!
ν�,yn (dx),

which represents the law of a Poissonian number of globules essentially concentrated
in B(0, �).

We will construct the infinite-dimensional globule process as limit in � of X�,y;
unfortunately, X�,y is not time-reversible. This is why we had to introduce Q�,y,
whose reversibility plays a crucial role in the study of the set of nice paths defined
in the next section. Moreover, we will prove that the law of X�,y and Q�,y are
asymptotically close.

To complete this section, let us prove Proposition 3.1.

Proof. We first introduce an anisotropic linear transformation σ−1 on the space
of globule configurations by

xσ := σ−1x ⇔ ∀ i, xσi = xi and x̆σi =
1
σ
x̆i.

We also transform the process, the potential and the local times as follows:

Xσ = σ−1X, Φσ(·) = Φ(σ·), Lσij =
√

2 + 2σ2Lij ,

Lσi+ =
1
σ
Li+, Lσi− =

1
σ
Li−.

(2)

Moreover, the set of allowed configurations becomes

Aσ
g := {x : σx ∈ Ag}.
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X and its associated local times are solution of the system (EΦ
n ) if and only if Xσ

and its associated transformed local times are solution of the following system:

(EΦ,σ
n )



Xσ
i (t) = Xσ

i (0) +Wi(t) − 1
2

∫ t

0

∇xiΦ
σ(Xσ(s))ds

+
n∑
j=1

∫ t

0

1√
2 + 2σ2

Xσ
i −Xσ

j

σ(X̆σ
i + X̆σ

j )
(s)dLσij(s),

X̆σ
i (t) = X̆σ

i (0) + W̆i(t) − 1
2

∫ t

0

∇x̆iΦ
σ(Xσ(s))ds

− σ√
2 + 2σ2

n∑
j=1

Lσij(t) − Lσi+(t) + Lσi−(t),

where the local times satisfy

Lσij(t) = Lσji(t) =
∫ t

0

1{|Xσ
i (s)−Xσ

j (s)|=σ(X̆σ
i (s)+X̆σ

j (s))} dL
σ
ij(s),

Lσi+(t) =
∫ t

0

1{X̆σ
i (s)=

r+
σ } dL

σ
i+(s) and

Lσi−(t) =
∫ t

0

1{X̆σ
i (s)=

r−
σ } dL

σ
i−(s).

Furthermore, the reversibility of X is equivalent to the reversibility of Xσ; in other
words, the solution of (EΦ

n ) with initial distribution 1
Z e

−Φ(x)1Ag (x)dx is reversible
if and only if the solution of (EΦ,σ

n ) with initial distribution 1
Zσ e

−Φσ(y)1Aσ
g
(y)dy is

reversible.
The new system of globules (EΦ,σ

n ) has now the form of a Skorokhod problem
with normal reflection. Thus it has a unique solution under the assumptions of The-
orem 3.3 (and Corollary 3.6) in [3], that is if the domain Aσ

g on which the equation is
reflected satisfies the geometrical regularity properties listed in [3], Proposition 3.4.
The rest of the proof consists in showing these four properties (see [3] for the rele-
vant definitions).

The domain Aσ
g does not have a smooth boundary but it is the intersection of

smooth domains in the following way:

Aσ
g =

 ⋂
1≤i<j≤n

Dij
 ∩

 ⋂
1≤i≤n

Di+
 ∩

 ⋂
1≤i≤n

Di−
 ,

where Dij = {x, |xi − xj | ≥ σ(x̆i + x̆j)}, Di+ = {x, x̆i ≤ r+
σ } and Di− = {x, x̆i ≥

r−
σ }.
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Fig. 1. A configuration of five globules in ∂D1−∩∂D2+∩∂D3;4∩Aσ
g , and the different directions

of impulsion n1−, n2+ or n3;4(x) to go back into the interior of Aσ
g .

(i) At each point x of the boundary of the smooth set Dij (resp. Di+,Di−), there
exists a unique unit normal vector nij(x) (resp. ni+,ni−).

Each Dij is a smooth set with unit inward normal vector at point x ∈ ∂Dij
equal to

nij(x) =
w√

2 + 2σ2
where wi =

xi − xj
σ(x̆i + x̆j)

= −wj ,

w̆i = w̆j = −σ and wk = w̆k = 0, k �= i, j.

Each Di+ (resp. Di−) is a half-space of (R3 × R)n with a constant unit inward
normal vector ni+ = (0, . . . , 0,−1, 0, . . . , 0) ((2i − 1)th coordinate equal to −1)
(resp. ni− = −ni+).

(ii) Each set Dij has the uniform exterior sphere property on Aσ
g :

∃αij > 0, ∀x ∈ Aσ
g ∩ ∂Dij B̊(x − αijnij(x), αij) ∩Dij = ∅.

Each x ∈ Aσ
g ∩ ∂Dij satisfies |xi − xj | = σ(x̆i + x̆j) ≥ 2r−.

For xes = x − r−
√

2 + 2σ2nij(x) and for any z:

|(xesi + zi) − (xesj + zj)| − σ(x̆esi + z̆i + x̆esj + z̆j)

≤ |zi| + |zj| − σ(z̆i + z̆j) +
∣∣∣∣xi − xj − 2r−

xi − xj
σ(x̆i + x̆j)

∣∣∣∣− σ(x̆i + x̆j) − 2r−σ2

≤
√

2 + 2σ2|z| − 2r−(1 + σ2).

This is negative as soon as |z| < r−
√

2 + 2σ2. Consequently, property (ii) holds
with αij ≡ r−

√
2 + 2σ2. See Fig. 2.
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(a) (b)

Fig. 2. A configuration x ∈ ∂Dij and the corresponding center xes of the uniform exterior
sphere : xes = x − αijnij(x) = x − r−

√
2 + 2σ2nij(x). (a) a simplified representation in R

2.
(b) a representation as a pair of colliding globules. Remark that xes �∈ Aσ

g .

(iii) Each set Dij has the uniform normal cone property on Aσ
g :

∃βij ∈ [0, 1[ and δij > 0 such that, for each x ∈ Aσ
g ∩ ∂Dij , there is a unit vector

lijx satisfying

y ∈ Aσ
g ∩ ∂Dij ∩B(x, δij) ⇒ nij(y) · lijx ≥

√
1 − β2

ij .

For x,y ∈ Aσ
g ∩ ∂Dij one has nij(y) · nij(x) = 1

1+σ2 ( xi−xj

|xi−xj | ·
yi−yj

|yi−yj| + σ2). The
inequality

xi − xj
|xi − xj | .

yi − yj
|yi − yj | ≥

1 −√
2 |x−y|
|xi−xj|

1 +
√

2 |x−y|
|xi−xj|

≥ 1 − 2
√

2
|x − y|
|xi − xj | ≥ 1 −

√
2

r−
|x − y|

implies that nij(y) · nij(x) ≥ 1 −
√

2
r−(1+σ2) |x − y|. Hence, for lijx = nij(x), (iii) is

satisfied for each βij ∈ [0, 1[ as soon as δij ≤ r−(1+σ2)√
2

(1 −
√

1 − β2
ij).

(iv) Compatibility between the boundaries:

∃β0 >
√

2 max
i,j

βij , ∀x ∈ ∂Aσ
g , ∃v(x) such that

x ∈ ∂Dij ⇒ v(x) · nij(x) ≥ β0|v(x)|,
x ∈ ∂Di+ ⇒ v(x) · ni+(x) ≥ β0|v(x)|,
x ∈ ∂Di− ⇒ v(x) · ni−(x) ≥ β0|v(x)|.

Let us define the following cluster

Ci(x) = {i}
∪ {km, ∃ k1, . . . , km such that x ∈ ∂Dik1 ∩ ∂Dk1k2 ∩ · · · ∩ ∂Dkm−1km}
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and define the vector v(x) = (v1(x), v̆1(x), . . . , vn(x), v̆n(x)) by

∀ i ∈ {1, . . . , n} vi(x) = xi − 1
�Ci(x)

∑
k∈Ci(x)

xk and

v̆i(x) =
r++r−

2 − σx̆i

(r+ − r−)(σ ∨ 1)
r−.

See Fig. 3.
Since |vi(x)| ≤ (n − 1)(2r+) and |v̆i(x)| ≤ r−

2(σ∨1) , then |v(x)| ≤ 2r+n3/2.
Moreover,

• if x ∈ ∂Dij , then Ci(x) = Cj(x) and√
2 + 2σ2v(x) · nij(x) = σ(x̆i + x̆j) − σr−

r+ + r− − σx̆i − σx̆j
(r+ − r−)(σ ∨ 1)

≥ 2r− − σr−
σ ∨ 1

≥ r−

• if x ∈ ∂Di+, i.e. σx̆i = r+, then v(x) · ni+(x) = r−
2(σ∨1)

• if x ∈ ∂Di−, i.e. σx̆i = r−, then v(x) · ni−(x) = r−
2(σ∨1) .

So, with β0 = r−
4r+(σ∨1)n3/2 , (iv) is satisfied.

3.2. A full set of nice paths

From now on, the techniques we use to study the globule model present some
similarities with the methods developed for the model of hard balls treated in [5].
So, in the rest of the paper, we will only detail the proofs which contain new
technical difficulties.

Fig. 3. A cluster with three globules and the associated impulsion v(x) constructed to push
x ∈ ∂D back into the interior of the set of allowed globule configurations.



November 23, 2010 16:17 WSPC/S0219-4937 168-SD S021949371000311X

Infinitely Many Brownian Globules with Brownian Radii 603

We first bound from below the probability of globule paths which do not move
too fast under the (E�,yn )-dynamics.

For every ε > 0 and δ ∈ ]0, 1], let Ñ (δ, ε) denote the paths for which all globules
have a δ-modulus of continuity w smaller than ε, i.e.

Ñ (δ, ε) = {X ∈ C([0, 1],Ag) : ∀ i, w((Xi, X̆i), δ) ≤ ε},
where the δ-modulus of continuity of a globule path (X, X̆) on [0, 1] is defined as

w((X, X̆), δ) := sup
0≤s,t≤1
|t−s|≤δ

√
|X(t) −X(s)|2 + (X̆(t) − X̆(s))2. (3)

Proposition 3.2. There exist c > 0 and c1 > 0 such that the following lower bound
holds: ∀ ε > 0, ∀ δ ∈ ]0, 1], ∀ � ∈ N

∗,

inf
y∈Ag

Q�,y(Ñ (δ, ε)) ≥ 1 − c1
�3

δ
exp

(
−cε

2

δ

)
.

Proof of Proposition 3.2. By construction, the processes

Wi(t) = X�,y,n
i (t) −X�,y,n

i (0) +
1
2

∫ t

0

∇xψ
�,y(X�,y,n

i (s), X̆�,y,n
i (s))ds

−
n∑
j=1

∫ t

0

X�,y,n
i (s) −X�,y,n

j (s)

X̆�,y,n
i (s) + X̆�,y,n

j (s)
dLij(s)

and

W̆i(t) =
1
σ

(X̆�,y,n
i (t) − X̆�,y,n

i (0)) +
σ

2

∫ t

0

∇x̆ψ
�,y(X�,y,n

i (s), X̆�,y,n
i (s))ds

+ σ

n∑
j=1

Lij(t) +
1
σ
Li+(t) − 1

σ
Li−(t)

are three-dimensional (resp. one-dimensional) Brownian motions starting from 0.
When the initial distribution is ν�,yn the law Q�,yn of X�,y,n is reversible, and the

backward processes

Ŵi(t) = X�,y,n
i (1 − t) −X�,y,n

i (1) +
1
2

∫ 1

1−t
∇xψ

�,y(X�,y,n
i (s), X̆�,y,n

i (s))ds

−
n∑
j=1

∫ 1

1−t

X�,y,n
i (s) −X�,y,n

j (s)

X̆�,y,n
i (s) + X̆�,y,n

j (s)
dLij(s)

and ̂̆
W i(t) =

1
σ

(X̆�,y,n
i (1 − t) − X̆�,y,n

i (1))

+
σ

2

∫ 1

1−t
∇x̆ψ

�,y(X�,y,n
i (s), X̆�,y,n

i (s))ds
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+ σ
n∑
j=1

(Lij(1) − Lij(1 − t)) − 1
σ

(Li+(1) − Li+(1 − t))

+
1
σ

(Li−(1) − Li−(1 − t))

are Brownian motions too.
As in [9], the above equations provide the identities

X�,y,n
i (t) −X�,y,n

i (0) =
1
2
(Wi(t) + Ŵi(1 − t) − Ŵi(1)),

X̆�,y,n
i (t) − X̆�,y,n

i (0) =
σ

2
(W̆i(t) + ̂̆W i(1 − t) − ̂̆W i(1)).

Therefore, the control of the modulus of continuity of a globule path (X�,y,n
i , X̆�,y,n

i )
reduces to the estimate of the modulus of continuity of Brownian paths, as follows:

Q�,yn (Ñ (δ, ε)c)

≤ 2nP (w((W1, σW̆1), δ) > ε) ν�,yn ((R3 × R)n)

≤ 2nP (w((W1, σW̆1), δ) > ε)

×
∫

R3×[r−,r+]

exp(−ψ�,y(x1, x̆1))dx1dx̆1ν
�,y
n−1((R

3 × R)n−1).

Now, we can use the following estimate obtained as corollary of Doob inequality
(for a proof in the one-dimensional case, see the Appendix of [5]):

Lemma 3.3. Let us consider two independent Brownian motions B ∈ R
3 and

B̆ ∈ R. There exist two constants c > 0 and c2 > 0 (depending only on σ) such that
for every ε > 0 and every δ ∈ ]0, 1]

P (w((B, σB̆), δ) ≥ ε) ≤ c2
δ

exp
(
−cε

2

δ

)
.

This leads by summation in n to:

Q�,y(Ñ (δ, ε)c) =
e−|B(0,�)|

Z�,y

+∞∑
n=1

1
n!
Q�,yn (Ñ (δ, ε)c)

≤ e−|B(0,�)|

Z�,y

(
+∞∑
n=1

1
(n− 1)!

ν�,yn−1((R
3 × R)n−1)

)
2c2
δ

exp
(
−cε

2

δ

)

×
∫

R3×[r−,r+]

exp(−ψ�,y(x1, x̆1))dx1dx̆1

≤ 2c2
δ

exp
(
−cε

2

δ

)∫
R3×[r−,r+]

exp(−ψ�,y(x1, x̆1))dx1dx̆1.
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Recalling that ψ�,y only vanishes into the ball B(0, �), we get:∫
R3×[r−,r+]

exp(−ψ�,y(x1, x̆1))dx1dx̆1 ≤
∫
B(0,�)×[r−,r+]

exp(−ψ�,y(x1, x̆1)) dx1dx̆1

+
∫

1ψ�,y>0 exp(−ψ�,y(x1, x̆1))dx1dx̆1.

The first term on the right is smaller than �3(r+ − r−)|B(0, 1)| and, thanks to
(1), the last term is uniformly bounded in � and y. This completes the proof of
Proposition 3.2.

In order to control the convergence of the finite-dimensional systems, we have
to estimate how many globules collide with a fixed globule i during a short time
interval. If the paths have a small oscillation, this set will be finite because globule
i cannot reach globules which are too far away. But we also have to avoid the bump
to propagate along a large chain of neighbouring globules. We first define patterns
called chains of globules, and then prove that they are rare enough, in the sense that
their probability decreases exponentially fast as a function of the length of the chain.

Definition 3.4. Let ε > 0. The set of configurations containing an ε-chain of M
globules is defined by:

�
M (ε) = {x ∈ Ag, ∃ i1, . . . , iM distinct, |xi2 − xi1 | < x̆i2 + x̆i1 + ε, . . . ,

|xiM − xiM−1 | < x̆iM + x̆iM−1 + ε}.
We now define a set of paths which are smooth in the sense that, at regular time
intervals, there is no chain of globules: for δ ∈ 1/N∗,M ∈ N

∗, ε > 0

˜̃N (δ,M, ε) :=
{
X ∈ C([0, 1],Ag) : ∀ k ∈

{
0, . . . ,

1
δ
− 1
}
,X(δk) �∈ �

M (ε)
}
.

Note that this set decreases as a function of ε.
We now prove a lower bound for the Q�,y-probability of ˜̃N (δ,M, ε).

Proposition 3.5. For any M ∈ N
∗, there exists c3 > 0 such that, for any δ ∈ 1/N∗

and 0 < ε < 1:

inf
y∈Ag

Q�,y( ˜̃N (δ,M, ε)) ≥ 1 − c3
δ
�3εM−1.

Proof of Proposition 3.5. Let us estimate the ν�,yn - and the µ�,y-probability that
a chain exists. For n ≥M :

ν�,yn (�M (ε)) ≤ n!
(n−M)!

∫
(R3×R)n

M∏
i=2

1x̆i+x̆i−1≤|xi−xi−1|≤x̆i+x̆i−1+ε

M∏
i=1

1r−≤x̆i≤r+

· exp

(
−

M∑
i=1

ψ�,y(xi, x̆i)

)
exp

(
−

n∑
i=M+1

ψ�,y(xi, x̆i)

)

·
n∏

i=M+1

1r−≤x̆i≤r+
∏

M+1≤i,j≤n
1x̆i+x̆j≤|xi−xj|dx1dx̆1 · · ·dxndx̆n
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≤ n!
(n−M)!

ν�,yn−M ((R3 × R)n−M )

·
∫

R3×RM

|B(0, x̆1 + x̆2 + ε)\B(0, x̆1 + x̆2)| · · ·

|B(0, x̆M−1 + x̆M + ε)\B(0, x̆M−1 + x̆M )|

·
M∏
i=1

1r−≤x̆i≤r+ exp(−ψ�,y(x1, x̆1))dx1dx̆1 · · · dx̆M

≤ n!
(n−M)!

ν�,yn−M ((R3 × R)n−M )|B(0, 2r+ + ε)\B(0, 2r+)|M−1

· (r+ − r−)M−1

∫
R3×[r−,r+]

exp(−ψ�,y(x1, x̆1))dx1dx̆1

≤ n!
(n−M)!

ν�,yn−M ((R3 × R)n−M )c3�3εM−1

for a certain constant c3 > 0. Therefore

µ�,y(�M (ε)) ≤ e−|B(0,�)|

Z�,y

+∞∑
n=M

1
(n−M)!

ν�,yn−M ((R3 × R)n−M )c3�3εM−1

≤ c3�
3εM−1

and the stationarity of Q�,y implies

Q�,y( ˜̃N (δ,M, ε)c) ≤
1
δ −1∑
k=0

Q�,y
(
X
(
k

m

)
∈ �

M (ε)
)

=
1
δ
µ�,y(�M (ε))

≤ c3
δ
�3εM−1.

To prove the convergence of the approximations, we have to connect in a right
way the different parameters δ, ε,M, �, in order to introduce a set of nice paths
Ωy ⊂ Ω on which the convergence holds. Since the Brownian motion has a.s. a
δ-modulus of continuity bounded by δκ for any κ < 1/2, we choose κ = 1/4 and
take ε proportional to δ1/4.

The maximal length M of the chains is fixed, large enough so that M > 1+ 4
κ =

17 (see (8)). Taking a unique scale parameter m ∈ N we thus choose

�(m) = (1 + 3r+)M24m, δ(m) =
1

24m
. (4)

It will be clear in (11) why this, with a suitable ε(m) = cst
2m , is a right choice.
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We now define

Ωy = lim inf
m→+∞

{
ω ∈ Ω : X�(m),y(ω) ∈ Ñ

(
1

24m
,

1
2m

)
∩ ˜̃N

(
1

24m
,M,

27

2m

)}
. (5)

We show in the next proposition that the set Ωy is of full measure with respect to
any hard globule Poisson process.

Proposition 3.6. For any hard globule Poisson process µ ∈ Πg, one has∫
M
P (Ωy)µ(dy) = 1.

As a corollary, for µ a.e. y, P (Ωy) = 1.

Proof. We have to prove that
∫
Ag
P (Ωcy)µ(dy) = 0.

Thanks to Borel–Cantelli lemma,
∫
Ag
P (Ωcy)µ(dy) vanishes as soon as the series∑

m

∫
Ag

P

(
∃ i : w

(
(X�(m),y

i , X̆
�(m),y
i ),

1
24m

)
>

1
2m

)
µ(dy)

and ∑
m

∫
Ag

P

(
∃ k ≤ 24m : X�(m),y

(
k

24m

)
∈ �

M

(
27

2m

))
µ(dy)

converges. Since for large �,Q�,y and the law of X�,y with initial distribution
µ(·|yB(0,�)c) are close, a similar argument as in [5] Proof of Proposition 3.2 and
the condition (1) yield that these series converge as soon as∑

m

∫
Ag

Q�(m),y

(
∃ i : w

(
Xi, X̆i,

1
24m

)
>

1
2m

)
µ(dy) < +∞ (6)

and ∑
m

∫
Ag

Q�(m),y

(
∃ k ≤ 24m : X

(
k

24m

)
∈ �

M

(
27

2m

))
µ(dy) < +∞. (7)

Following Proposition 3.2

Q�(m),y

(
∃ i : w

(
Xi, X̆i,

1
24m

)
>

1
2m

)
≤ c1�(m)324m exp(−c22m)

≤ c4216m exp(−c22m)

for a certain constant c4 > 0 independent of y. The above right side is the general
term of a summable series in m. Therefore (6) holds.

Following Proposition 3.5

Q�(m),y

(
∃ k ≤ 24m : X

(
k

24m

)
∈ �

M

(
27

2m

))
≤ c324m�(m)32(7−m)(M−1)

≤ c52−m(M−17), (8)

for a certain constant c5 > 0 independent of y. We chose M large enough to ensure
the summability in m of the right, so (7) holds and the proof is complete.
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3.3. The convergence

In this section, y ∈ Ag is still fixed and we study the convergence of the approxi-
mating processes as �→ +∞.

Proposition 3.7. For every ω in Ωy and every i ∈ N, the sequence ((X�(m),y
i ,

X̆
�(m),y
i )(ω, t), L�(m),y

i,j (ω, t), L�(m),y
i+ (ω, t), L�(m),y

i− (ω, t), j ∈ N, t ∈ [0, 1])m∈N∗ is sta-
tionary as an element of C([0, 1],R3 × R × R

N
+ × R

2
+). The limit will be denoted by

((X∞,y
i , X̆∞,y

i )(ω, t), L∞,y
i,j (ω, t), L∞,y

i+ (ω, t), L∞,y
i− (ω, t), j ∈ N, t ∈ [0, 1]). Therefore,

lim
m→+∞X�(m),y(ω, ·) = X∞,y(ω, ·)

in C([0, 1],Ag).

Proof. The main idea is that if a fixed globule moves along a nice path, it will
only collide into a finite number of other globules. Thus dynamics (Eg) reduces to
an infinite number of SDE involving only a finite random number of particles up
to time 1.

Take ω ∈ Ωy and ρ > 0. Then, for m large enough, X�(m),y(ω) and X�(m+1),y(ω)

both belong to the same set of regular paths Ñ ( 1
24m ,

23

2m ) ∩ ˜̃N ( 1
24m ,M, 26

2m ).
For X in this set and k = 0, . . . , 24m − 1, we define the finite set of indices

Jk,m(X) as:

Jk,m(X) :=
{
i ∈ N,

∣∣∣∣Xi

(
k

24m

)∣∣∣∣ ≤ vk,m or Xi

(
k

24m

)
belongs to some

26

2m
chain of globules which intersects B(0, vk,m)

}
,

where vk,m := ρ+ (1 + 3r+M)24m − 3r+Mk.
One can show (similarly as in Lemma 3.3 [5]) that, for m large enough:

{i : |Xi(0)| ≤ ρ} ⊂ J24m−1,m(X) ⊂ · · · ⊂ J0,m(X). (9)

Moreover, a globule with index in Jk,m(X) does not bump into globules outside
this set:

i ∈ Jk,m(X), j �∈ Jk,m(X) ⇒ ∀ t ∈
[
k

24m
,
k + 1
24m

]
|Xi(t) −Xj(t)| > X̆i(t) + X̆j(t) +

25

24m

(10)

and it stays in a large ball around the origin:

i ∈ Jk,m(X) ⇒ ∀ t ∈
[
k

24m
,
k + 1
24m

]
|Xi(t)| ≤ vk−1,m ≤ �(m) − 2r+. (11)

Thus the penalization functions ψ�(m),y and ψ�(m+1),y vanish on globule
(Xi(t), X̆i(t)) if i ∈ Jk,m(X) and t ∈ [ k

24m ,
k+1
24m ]. Consequently, the paths X�(m),y(ω)
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and X�(m+1),y(ω) satisfy the following simplified version of equation (E�,yn ):

∀ k ∈ {0, . . . , 24m − 1} ∀ i ∈ Jk,m(X) ∀ t ∈
[
k

24m
,
k + 1
24m

]
,

Xi(t) = Xi

(
k

24m

)
+Wi(ω, t) −Wi

(
ω,

k

24m

)
+

∑
j∈Jk,m(X)

∫ t

k
24m

Xi(s) −Xj(s)
X̆i(s) + X̆j(s)

dLij(s),

X̆i(t) = X̆i

(
k

24m

)
+ σW̆i(ω, t) − σW̆i

(
ω,

k

24m

)
− σ2

∑
j∈Jk,m(X)

(
Lij(t) − Lij

(
k

24m

))
−
(
Li+(t) − Li+

(
k

24m

))

+
(
Li−(t) − Li−

(
k

24m

))
.

The initial configurations X�(m),y(ω, 0) and X�(m+1),y(ω, 0) are equal to the same
configuration y. Hence the set of indices J0,m(X�(m),y(ω)) and J0,m(X�(m+1),y(ω))
are equal and (X�(m),y

i (ω), X̆�(m),y
i (ω), i ∈ J0,m(X�(m),y(ω)) satisfy the same

equation as (X�(m+1),y
i (ω), X̆�(m+1),y

i (ω), i ∈ J0,m(X�(m+1),y(ω)) during the time
interval [0; 1

24m ]. The strong uniqueness in Proposition 3.1 implies the equal-
ity of the final values X�(m),y

i (ω, 1
24m ) and X�(m+1),y

i (ω, 1
24m ) for the indices

i in the set J0,m(X�(m),y(ω)), which contains both sets J1,m(X�(m),y(ω)) and
J1,m(X�(m+1),y(ω)). Thus these two sets of indices are equal, which in turn implies
that the paths (X�(m),y

i (ω), X̆�(m),y
i (ω)) and (X�(m+1),y

i (ω), X̆�(m+1),y
i (ω)) coincide

up to time 2
24m for indices i ∈ J1,m(X�(m),y(ω)). Using inclusions (9) and the strong

uniqueness again, we obtain the equality of both paths on J2,m(X�(m),y(ω)) =
J2,m(X�(m+1),y(ω)) up to time 3

24m , and so on.
Strong uniqueness of the solution of (E�,yn ) holds for the path X and the reflec-

tion term (linear combination of local times), but a priori not for each local time
separately. However, as shown in the proof of Corollary 3.6 in [3], the local times
Lij , Li+, Li can be chosen in a unique way. With this choice, the same argu-
ment as above prove that local times L�(m),y

i,j (ω, t), L�(m),y
i+ (ω, t), L�(m),y

i− (ω, t) and

L
�(m+1),y
i,j (ω, t), L�(m+1),y

i+ (ω, t), L�(m+1),y
i− (ω, t) coincide for i, j in J0,m(X�(m),y(ω))

and t ∈ [0; 1
24m ], and then again for i, j in J1,m(X�(m),y(ω)) and t ≤ 2

24m , and so on.
In particular, if |yi| ≤ ρ, then for m large enough depending on ρ, X�(m),y

i (ω) =
X
�(m+1),y
i (ω) and X̆

�(m),y
i (ω) = X̆

�(m+1),y
i (ω) on the whole time interval [0; 1].

The associated local times can be chosen in such a way that they also coin-
cide, which implies the equality of the reflection terms up to time 1. This
completes the proof of the stationarity of the sequence of continuous functions
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((X�(m),y
i , X̆

�(m),y
i , L

�(m),y
i,j , L

�(m),y
i+ , L

�(m),y
i− )(ω, ·))m∈N∗ and therefore its conver-

gence to some path denoted by (X∞,y
i , X̆∞,y

i , L∞,y
i,j , L∞,y

i+ , L∞,y
i− )(ω, ·).

To check the convergence of X�(m),y(ω, ·) in C([0, 1],Ag), we remark that for
each continuous function f on R

3 × R with compact support,

〈X�(m),y(ω, ·), f〉 =
∑
i

f(X�(m),y
i (ω, ·), X̆�(m),y

i (ω, ·)),

where the sum is indeed finite due to the minimal distance 2r− between any pair
of points X�(m),y

i (ω, t) and X
�(m),y
j (ω, t) and the local boundedness of path oscil-

lations. Therefore the stationary convergence of each term insures the stationary
convergence of the sum.

3.4. Properties of the limit process

To complete the proof of Theorem 2.2 it suffices to show the following proposition.

Proposition 3.8. For every y ∈ Ag := {x ∈ Ag : P (Ωx) = 1} the family of pro-

cesses (X∞,y
i (t), X̆∞,y

i (t), L∞,y
i,j (t), L∞,y

i+ (t), L∞,y
i− (t), i, j ∈ N, t ∈ [0, 1]) with initial

configuration y solves uniquely the stochastic equation (Eg).

Proof. The equation satisfied by eachX∞,y
i (resp. X̆∞,y

i ) includes by construction
a finite sum of local time terms. It is straightforward to prove, using a similar
argumentation as in Proposition 4.1 of [5], that in fact this finite sum is already
equal to the infinite sum present in (Eg).

The stationary convergence in Proposition 3.7 implies that:

∀ I ⊂ N finite, ∃m0, ∀m ≥ m0

(X∞,y
i , X̆∞,y

i )i∈I ∈ Ñ
(

1
24m

,
1

2m

)
∩ ˜̃N

(
1

24m
,M,

27

2m

)
.

Consequently, using the strong uniqueness in Proposition 3.1 as in the proof of
Proposition 3.7, uniqueness of the solution of (Eg) can be proved in the path space{

X ∈ C([0, 1],Ag) : ∀ I ⊂ N finite, ∀m0, ∃m ≥ m0

(Xi, X̆i)i∈I ∈ Ñ
(

1
24m

,
1

2m

)
∩ ˜̃N

(
1

24m
,M,

27

2m

)}
.

Let us conclude with the proof of Proposition 2.3, that is with the reversibility of
the solution of (Eg) when the initial distribution is a hard globule Poisson process.

Proof of Proposition 2.3. Using similar estimates as in the proof of Proposi-
tion 3.6, the solution of (Eg) starting with a hard globule Poisson process is the
limit of processes whose distribution are close to Q�,y, which is a time-reversible
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measure. More precisely, we have to prove that, if µ ∈ Πg, for any f1, . . . , fk bounded
continuous functions on Ag with compact support and for t1, . . . , tk ∈ [0, 1]∫

Ag

∫
Ω

k∏
i=1

fi(X∞,y(ω, ti))P (dω)µ(dy)

=
∫
Ag

∫
Ω

k∏
i=1

fi(X∞,y(ω, 1 − ti))P (dω)µ(dy) (12)

which is equivalent to

lim
m→+∞

∫
Ag

∫
Ω

(
k∏
i=1

fi(X�(m),y(ti)) −
k∏
i=1

fi(X�(m),y(1 − ti))

)
dP µ(dy) = 0.

By computations similar to those done in [5] to obtain inequality (17), we have∣∣∣∣∣
∫
Ag

∫
Ω

(
k∏
i=1

fi(X�,y(ti)) −
k∏
i=1

fi(X�,y(1 − ti))

)
dP µ(dy)

∣∣∣∣∣
≤
∣∣∣∣∣
∫
Ag

∫
Ω

(
k∏
i=1

fi(X(ti)) −
k∏
i=1

fi(X(1 − ti))

)
Q�,y(dX)µ(dy)

∣∣∣∣∣
+ 2

k∏
i=1

sup
x∈Ag

|fi(x)|
∫
Ag

(
1 − ZB(0,�),y

Z�,y

)
µ(dy).

The first term on the right-hand side is equal to 0. The second term tends to zero
as � tends to infinity, thanks to assumption (1).

Acknowledgments

For the completion of this work the first author benefited partly from the financial
support of the international research training group “Stochastic Models of Complex
Processes” funded by the German Research Council (DFG). This institution is here
gratefully acknowledged.

References

1. R. L. Dobrushin, Gibbsian random fields: The general case, Funct. Anal. Appl. 3
(1969) 22–28.

2. P. Dupuis and H. Ishii, SDEs with oblique reflections on nonsmooth domains, Ann.
Probab. 21 (1993) 554–580.

3. M. Fradon, Brownian dynamics of globules, Electronic J. Probab. 15 (2010) 142–161.
4. M. Fradon and S. Rœlly, Infinite dimensional diffusion processes with singular inter-

action, Bull. Sci. Math. 124-4 (2000) 287–318.
5. M. Fradon and S. Rœlly, Infinite system of Brownian balls with interaction: The

non-reversible case, ESAIM Probab. Stat. 11 (2007) 55–79.
6. M. Fradon and S. Rœlly, Infinite system of Brownian balls: Equilibrium measures are

canonical Gibbs, Stoch. Dynam. 6 (2006) 97–122.



November 23, 2010 16:17 WSPC/S0219-4937 168-SD S021949371000311X

612 M. Fradon & S. Rœlly

7. M. Fradon, S. Rœlly and H. Tanemura, An infinite system of Brownian balls with
infinite range interaction, Stoch. Proc. Appl. 90 (2000) 43–66.

8. H.-O. Georgii, Canonical Gibbs Measures, Lecture Notes in Mathematics, Vol. 760
(Springer-Verlag, 1979).

9. P. L. Lions and A. S. Sznitman, Stochastic differential equations with reflecting bound-
ary conditions, Comm. Pure Appl. Math. 37 (1984) 511–537.

10. Y. Saisho and H. Tanaka, On the symmetry of a reflecting Brownian motion defined
by Skorohod’s equation for a multi-dimensional domain, Tokyo J. Math. 10 (1987)
419–435

11. H. Tanemura, A system of infinitely many mutually reflecting Brownian balls, Probab.
Th. Relat. Fields 104 (1996) 399–426.

12. R. J. Williams, Reflected Brownian motion with skew symmetric data in a polyhedral
domain, Probab. Th. Relat. Fields 75 (1987) 459–485.


	1 Introduction
	2 The Infinite Model of Mutually Repelling Globules with Brownian Radii
	3 The Infinite-Dimensional Process, Constructed by Approximation
	3.1 The approximating processes
	3.2 A full set of nice paths
	3.3 The convergence
	3.4 Properties of the limit process


