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Zusammenfassung

Zufallige Punktprozesse beschreiben eine (zufillige) zeitliche Abfolge von Ereignissen
oder eine (zuféllige) raumliche Anordnung von Objekten. Deren wichtigster Vertreter ist
der PoissonprozefS. Der Poissonprozefl zum Intensitatsmafl A, das Lebesgue-Maf} \ ordnet
jedem Gebiet sein Volumen zu, erzeugt lokal, d.h in einem beschrankten Gebiet B, gerade
eine mit dem Volumen von B poissonverteilte Anzahl von Punkten, die identisch und
unabhéngig voneinander in B plaziert werden; im Mittel ist diese Anzahl A\(B). Ersetzt
man \ durch ein Vielfaches a\, so wird diese Anzahl mit dem a-fachen Mittelwert erzeugt.
Poissonprozesse, die im gesamten Raum unendlich viele Punkte realisieren, enthalten
bereits in einer einzigen Stichprobe geniigend Informationen, um Statistik betreiben zu
kénnen: Bedingt man lokal bzgl. der Anzahl der Teilchen einer Stichprobe, so fragt man
nach allen Punktprozessen, die eine solche Beobachtung hétten liefern kénnen. Diese
sind Limespunktprozesse zu dieser Beobachtung. Kommt mehr als einer in Frage, spricht
man von einem Phaseniibergang. Da die Menge dieser Limespunktprozesse konvex ist,
fragt man nach deren Extremalpunkten, dem Rand.

Im ersten Teil wird ein Poissonprozef fiir ein physikalisches Teilchenmodell fiir Boso-
nen konstruiert. Dieses erzeugt sogenannte Loops, das sind geschlossene Polygonziige,
die dadurch charakterisiert sind, daff man an einem Ort mit einem Punkt startet, den mit
einem normalverteilten Schritt lauft und dabei nach einer gegebenen, aber zufilligen An-
zahl von Schritten zum Ausgangspunkt zuriickkehrt. Fiir verschiedene Beobachtungen
von Stichproben werden zugehorige Limespunktprozesse diskutiert. Diese Beobachtun-
gen umfassen etwa das Zahlen der Loops gemafl ihrer Lénge, das Zahlen der Loops
insgesamt, oder das Zahlen der von den Loops gemachten Schritte. Jede Wahl zieht eine
charakteristische Struktur der invarianten Punktprozesse nach sich. In allen hiesigen
Fallen wird ein charakteristischer Phaseniibergang gezeigt und Extremalpunkte werden
als spezielle Poissonprozesse identifiziert. Insbesondere wird gezeigt, wie die Wahl der
Beobachtung die Lange der Loops beeinfluft.

Geometrische Eigenschaften dieser Poissonprozesse sind der Gegenstand des zweiten
Teils der Arbeit. Die Technik der Palmschen Verteilungen eines Punktprozesses er-
laubt es, unter den unendlich vielen Loops einer Realisierung den typischen Loop her-
auszupicken, dessen Geometrie dann untersucht wird. Eigenschaften sind unter anderem
die euklidische Lange eines Schrittes oder, nimmt man mehrere aufeinander folgende
Schritte, das Volumen des von ihnen definierten Simplex. Weiterhin wird gezeigt, daf
der Schwerpunkt eines typischen Loops normalverteilt ist mit einer festen Varianz.

Der dritte und letzte Teil befaf3t sich mit der Konstruktion, den Eigenschaften und der



Statistik eines neuartigen Punktprozesses, der Pélyascher Summenprozefl genannt wird.
Seine Konstruktion verallgemeinert das Prinzip der Pélyaschen Urne: Im Gegensatz zum
Poissonprozef3, der alle Punkte unabhéngig und vor allem identisch verteilt, werden hier
die Punkte nacheinander derart verteilt, daf§ der Ort, an dem ein Punkt plaziert wird,
eine Belohnung auf die Wahrscheinlichkeit bekommt, nach der nachfolgende Punkte
verteilt werden. Auf diese Weise baut der Pélyasche Summenprozef3 ” Tiirmchen”, in-
dem sich verschiedene Punkte am selben Ort stapeln. Es wird gezeigt, dafi dennoch
grundlegende Eigenschaften mit denjenigen des Poissonprozesses iibereinstimmen, dazu
gehoren unendliche Teilbarkeit sowie Unabhangigkeit der Zuwéchse. Zudem werden sein
Laplace-Funktional sowie seine Palmsche Verteilung bestimmt. Letztere zeigt, dafl die
Hohe der Tiirmchen gerade geometrisch verteilt ist. AbschlieBend werden wiederum
Statistiken, nun fiir den Summenprozef}, diskutiert. Je nach Art der Beobachtung von
der Stichprobe, etwa Anzahl, Gesamthohe der Tiirmchen oder beides, gibt es in jedem
der drei Fille charakteristische Limespunktprozesse und es stellt sich heraus, dafl die
zugehorigen Extremalverteilungen wiederum Polyasche Summenprozesse sind.
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0. Introduction

The accidental occurrence of certain events in time, like incoming phone calls in a call
centre, the growth of a queue, impulses of nerve fibres or detection of ionising radiation
by a Geiger-Miiller counter, is a very fundamental problem in probability. At discrete,
but random times specified events occur, which leads to the first idea of counting pro-
cesses; processes which count the number of certain events in some time interval. Such
processes may be easily described by the (random) waiting time between two events.
An important role play exponential waiting times, since this distribution is known to
be memoryless. If these waiting times are in addition assumed to be independently and
identically distributed, the number of events in some given time interval has a Poisson
distribution proportional to the length of the interval. Moreover, the quantities of dif-
ferent periods of time are independent. These are the characterising properties of the
Poisson process.

In focusing the events as points in time, temporal counting processes are extended to
spatial counting processes. Events are now points in space, which may be counted in
any bounded domain. A primer example is given by the positions of physical particles,
or even individuals, animals, plants, stars. In any case a realisation of a point process is
a snapshot of some situation. Moreover, points may be replaced by geometric objects,
such as spheres representing holes in some porous medium or hard-core particles as well
as line segments representing fractures of the earth’s surface. Natural questions refer
for instance to the size of clusters built through overlapping objects. Such percolation
problems were addressed by e.g. Hall [Hal85] and will occur in the second part of this
work. In general point processes can be defined on polish spaces, compact presentations
are Kerstan, Matthes and Mecke [KMM74] and Kallenberg [Kal83], Daley and Vere-
Jones [DVJ08a, DVJ0O8b].

Very often earthquakes cause further earthquakes nearby their epicentre, offsprings of
a tree grow not too far away from their parental tree or settlements are very unlikely to
be isolated. The first of the examples may be considered in time as well, an earthquake
causes further earth tremors. These examples show that naturally dependencies between
points arise: points affiliate to clusters and define some kind of families of a population.
Objects are divided into classes of related objects: the set of points is partitioned.
Considerations about the sizes of families of a population, though without any spatial or
temporal component, can be found in the works of Ewens and Kingman [Kin78a, Kin78b].
Starting from a sample of a population of size N, the different species define a (random)
integer partition of V, and by the demand for a consistent sampling procedure, the latter
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author gave a characterisation of the limiting proportions of these species whenever the
proportions are in descending order. Two interesting aspects of Kingman’s results should
be pointed out, and this work shows comparable results: Firstly, the set of limits is
convex and the limits themselves have a representation as mixtures of extremal points
of the whole set. Therefore the analysis may be restricted to the set of extremal points.
Secondly, the limiting proportions are not necessarily proportions in the sense that they
sum up to 1. In fact there is the possibility that really many small families get lost in
the limiting procedure. If the amount of such families is sufficiently large, then the small
families all together may contribute to the whole population. Chapter 4, in particular
section 4.5 touches related questions.

Permutations on a finite set of N elements define integer partitions by determining
the cycle sizes of the cycle decomposition of a permutation. In this manner random
permutations lead to random integer partitions. It is a highly non-trivial task to find out
about limiting objects and sizes of cycles when expanding the set of permuted elements;
such questions were addressed by Tsilevich [Tsi97], Vershik and Schmidt [VS77, VST78|.
They studied the asymptotic behaviour of functionals on symmetric groups which only
depends of the length on the cycles.

An important application relating random integer partitions and their extremal limits
on the one hand and point processes on the other hand are quantum particle systems.
Consider a finite system in equilibrium described by a Hamiltonian H. A pair (\,v)
satisfying Hy = A, where A is a real number and 1 a square integrable, normalised
function with square integrable second derivative, represents the system at energy A.
Such solutions satisfy the so-called Boltzmann statistics. Combinatorial difficulties enter
as soon as one demands additional symmetry properties, which are invariance of 1) under
any permutation 7 of the particles, 1 o m = 1, for Bose statistics, and invariance under
any permutation with an added minus for odd permutations, ) o # = sgn(w)y, for
Fermi-Dirac statistics.

Feynman [Fey48, Fey90| introduced functional integration, which was treated rigor-
ously by Kac. His method is applied to the object of interest, the statistical operator
exp(—(H), where § > 0 is the inverse temperature. Ginibre [Gin71] carried out this
analysis and obtained an integration on closed trajectories, i.e. Brownian bridges, also
named loops. For Boltzmann statistics these loops are exactly of length 3. The introduc-
tion of the invariance under permutations for the other two statistics is a sophisticated
part, but has an interesting effect; its treatment was Ginibre’s important step. While for
the Boltzmann statistics the end point of each loop is equal to its starting point, in Bose
or Fermi-Dirac statistics starting point and end point are not obliged to be identical.
Indeed, the symmetrisation of N elementary trajectories means to obtain the end points
of these trajectories from a permutation of their starting points. Since every permuta-
tion decomposes into cycles, the set of elementary trajectories decomposes into classes
of connected trajectories, where two trajectories w and w’ are connected if and only if
there exists a sequence of successive trajectories with the first being w and the final




one being w’. These classes are called composite loops. Therefore in a natural way the
equivalence relation on the set of elementary trajectories defines an integer partition of
N. One starting point of this work will be the interpretation of Ginibre’s Feynman-Kac
representation of exp(—BH) as a Poisson process P,_ on the space of composite loops.

A basic question originates in the pioneering work of Bose and Einstein in the 1920’s
about Bosons. They proposed a curious phase transition, nowadays named Bose-Einstein
condensation. They showed that if the particle density exceeds some critical value, a
positive fraction of the whole amount of particles conglomerates or ”condenses” in the
lowest eigenstate. In 1938 London proposed that a phase transition between He I and
He II is related to the Bose-Einstein condensation. But not until 1995 Bose-Einstein
condensation was observed experimentally in a gas of Rubidium and Natrium. The
physicists Cornell, Ketterle and Wieman received the Nobel price for that experiment in
2001. Feynman [Fey53b, Fey53a] again proposed that Bose-Einstein condensation occurs
if and only if infinitely long loops occur with positive probability.

The connection between Bose-Einstein condensation and cycle percolation has been
established by Siit6 [Siit93, Siit02] and Benfatto et al [BCMPO05] in the mean field.
Siité considers a model on random integer partitions and Benfatto et al a mean field
model, both did not take spatial relations into account. Fichtner pointed out the con-
nection between random permutations of countable subsets of R? and its decomposi-
tion into finite clusters in [Fic91b] and moreover gave a characterisation of the position
distribution of the Bose gas in terms of its moment measures of a point process on
R? in [Fic9la]. Later Ueltschi [Uel06a, Uel06b] examined lattice models on the ba-
sis of Siité’s work and thereby introduced so-called spatial permutations. Very recently,
Ueltschi and Betz [BU09, Uel08] generalised the lattice model to models of random point
configurations in a continuous space. By symmetrising initial and terminal conditions
of Brownian bridges of a given length 3, Adams and Konig [AKO7] construct for each
Brownian bridge a successor starting at the terminal point, and a predator ending at
the starting point. In that way connected bridges define loops (as classes of connected
Brownian bridges).

In chapters 3 — 5 a related model is considered. Initial point is the already mentioned
Feynman-Kac representation of the Bose gas obtained by Ginibre. The specific model is
constructed in chapter 3, which contains the construction of the space of composite loops
and the Poisson process B, thereon. Furthermore properties of the intensity measure
p. are shown, such as a factorisation and asymptotics.

Chapter 4 is devoted to limit theorems of local specifications derived from B, to
obtain representation theorems for P,  conditioned on different invariant fields. The
first section of this chapter introduces the notion of local specifications and the Martin-
Dynkin boundary technique. Different ways of counting lead to different invariant fields
and they are introduced and studied in the following sections. Firstly by counting loops
for the microcanonical, canonical and grand canonical ensemble, loop representations of
their corresponding Martin-Dynkin boundary is obtained in terms of extremal points by
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direct computations. The most delicate part consists of the determination of the Martin-
Dynkin boundary in the canonical ensemble of elementary components in section 4.5.
The large deviation principle from section 2.2 allows the representation of limits of
random integer partitions in terms of a variational problem with constraints, which is
solved afterwards. This procedures allows the determination of the essential part of the
canonical Martin-Dynkin boundary.

The complex of the limits of integer partitions gives insight into a global property
with no focus on spatial properties of the loops. Chapter 5 faces geometric properties
of configurations weighted by PE,.. The main object is the typical loop under P,_. Since
P, realises configurations of a countably infinite number of loops, and due to the lack
of an uniform distribution on countably infinite sets, there is no natural definition of a
typical loop. This implies a change of the point of view on the point process: from the
number of points in some region to the single point. The modern definition of the typical
point has its origin in the work of Kummer and Matthes [KM70] with the introduction
of the Campbell measure, which is also developed in the monograph of Kerstan, Matthes
and Mecke [KMMT74]. In using this concept of the typical loop, properties such as its
barycentre, its euclidean length and the number of its extremal points are considered.
Furthermore a percolation problem of the configurations is treated.

A fundamental characteristic of the Poisson process is that points are placed indepen-
dently and foremost each one with the same intensity. Papangelou processes, apart from
the Poisson process, contrast this construction. In [MWM79] Papangelou processes were
characterised by a partial integration formula. Recently, Zessin [Zes09] gave a direct con-
struction of these larger class of processes. Particularly the points are placed according
to conditional intensities. Zessin’s construction is reproduced in subsection 1.2.3 and
simplified under an additional assumption. These preparations unfold their relevance in
chapter 6, where the so-called Pdlya sum process, which firstly occurred in [Zes09], is
constructed. Instead of placing the points independently and, most notably, identically,
the mechanism of placing the points makes use of Pélya’s urn dynamics: points are
placed successively and each location, at which a point is placed, gets a reward on the
probability to get another point. That way ”turrets” are built from ”bricks”. Apart from
this building brick construction, the Pélya sum process is shown to share many proper-
ties with the Poisson process, particularly infinite divisibility and complete randomness.
Moreover, its Palm kernels are characterised.

In chapter 7 again limit theorems for local specifications are shown, this time for
the Pélya sum process and different limiting stochastic fields obtained from different
observations: firstly by counting turrets, then by counting bricks and finally by counting
turrets and bricks. Particularly the methods used to obtain the last two ensembles are
related to the methods used in section 4.5.

The fundament for these discussions is laid in chapters 1 and 2. Basic tools are
introduced in required generality and discussed. Section 1.1 deals with the definition
of point processes and Poisson processes on complete, separable metric spaces. Their




basic construction via Laplace functionals is recalled as well as the moment measures
defined. Important properties of the Poisson process, such as complete randomness and
infinite divisibility, and their classification into larger classes of point processes follow.
Further properties which are not shared by all Poisson processes, like orderliness and
stationarity, are reviewed. Particularly stationarity, the invariance under translations,
leads to helpful factorisations. In section 1.2 the concept of the Campbell measure is
introduced, and its disintegrations, which lead to Palm and Papangelou kernels, are
recalled.

Chapter 2 recalls deviation principles, which are used to obtain properties of the
Poisson process B,, constructed in chapter 3 and the limits of converging sequences
of measures as solution of certain minimisation problems. An important role for the
former application play large and small deviations of Brownian bridges. They drive the
asymptotic behaviour of the intensity measure p,. The latter application is prepared in
section 2.2 and applied in chapters 4 and 7.
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An Introduction to Point Processes






1. Point Processes

In this very first part the theoretical background is developed, the framework of point
processes on complete, separable metric spaces (c.s.m.s.). This covers the basic objects
in subsection 1.1.1, particularly random measures and random point measures following
the books of Daley and Vere-Jones [DVJ08a, DVJ08b] as well as Kerstan et al. [KMMT74]
and Kallenberg [Kal83].

Thereafter in subsection 1.1.2 point processes are focused. Besides the introduction of
the intensity measure and higher moment measures, the main question is to characterise
point processes as in von Waldenfels [vW68]. Since random measures are non-negative,
the Laplace functional turns out to be sufficient. Subsection 1.1.3 starts with the def-
inition of the Poisson process on a c.s.m.s. X in terms of its Laplace functional and
classifies its most important basic properties, which will be needed in this work and
underline the nature of the Poisson process. These are complete randomness given by
Kingman [Kin67] and infinite divisibility. Further properties like stationarity and order-
liness do not follow directly from the general definition of the Poisson process, but need
additional assumptions. If X is an Abelian group with corresponding Haar measure £
(in fact an arbitrary, but fixed Haar measure), then a Poisson process is stationary if
and only if its intensity measure is a multiple of £. Even more generally, if 7 is an
Abelian group acting measurably on X, then the factorisation theorem yields that a
T-invariant Poisson process’s intensity measure p disintegrates into a multiple m of £
and a probability measure v on a spce of marks ”located” at s,

p(dz) = mus(dz)l(ds).

Moreover the simplicity of a point process is related to properties of the second order
moment measure. The orderliness of a Poisson process also addresses the multiplicity of
points. For the Poisson process this shows that simplicity is equivalent to the absence
of atoms of its intensity measure.

A fundamental tool in point process theory are Campbell and reduced Campbell mea-
sure recalled in section 1.2, which allows to change the point of view by disintegration.
While the Laplace functional describes the finite-dimensional distributions, the disin-
tegration of the Campbell measure with respect to the intensity measure of the point
process yields the Palm kernel, which is the point process conditioned on the event that
at a certain site a point is present. The result is the point process from the point of view
of a single point which is almost surely present in the realisations. Palm distributions
are the important tool in chapter 5 and occur a second time in chapter 6.
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Under additional assumptions, the reduced Campbell measure is absolutely continuous
with respect to the product of the intensity measure of and the point process itsself. The
disintegration, which yields the Papangelou kernel, allows a further change of the point
of view: the Papangelou kernel is the intensity of a point conditioned on the presence
of a certain configuration. These relations were established in [MWMT79]. Very recently
Zessin [Zes09] started with some kernel and constructed the point process for which
the kernel is a Papangelou kernel. In section 1.2.3 we reproduce his proof, and give
in theorem 31 a simpler construction under an additional measurability assumption.
Moreover we generalise Zessin’s proof and correct an inaccuracy. A primer example, the
Pélya sum process defined in [Zes09], is presented and studied in chapters 6 and 7.

1.1. Point Processes

1.1.1. Basic Notions

Let X be a complete separable metric space (c.s.m.s.) and B(X) the o-field of its
Borel sets, which is the smallest o-field containing the open sets. A continuous function
f : X — R therefore is necessarily measurable. Of great importance is the ring By(X) of
bounded Borel sets allowing us to define locally finite measures on the measurable space

(X,B(X)).

Definition 1 (Locally finite measures). A Borel measure p on the c.s.m.s. X is locally
finite if u(B) < oo for every B € By(X).

These measures may contain an infinite mass, but locally only a finite amount is
allowed. Point configurations, i.e. generalised subsets of X, which are locally finite, play
a central role. They are expressed as measures which only take non-negative integer
values on bounded sets.

Definition 2 (Measure spaces). Define the following spaces of measures:

i) M(X) is the space of locally finite Borel measures on B(X),

i) M (X) = {M e M(X): u(B) e NVB ¢ BU(X)},
iii) M(X) = {u e M*(X): p({z}) <1Vae X},

iv) Mp(X) = {,u e M(X): pn(X) < oo}, analogously M(X).

Hence M (X) is the set of all locally finite point measures on X, M'(X) the set of all
locally finite, simple point measures and likewise M ¢(X) and M;(X) the corresponding
sets of measures of finite total mass. Any locally finite subset of X can be represented
as an element of M"(X). With M~ (X) we thus allow multiple points.
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1.1. Point Processes

For measurable functions f : X — R write

u() = [ rap.

We say that a sequence of finite measures (p,,)n, © M(X) converges weakly if 1, (f) —
wu(f) for any bounded, continuous f : X — R. This concept carries over to locally finite
measures with the additional demand that f has bounded support.

Definition 3 (Vague convergence). A sequence (), of locally finite measure converges
vaguely if for any continuous f with bounded support p,(f) — u(f)

For B € B(X) define the evaluation mapping (5 as
(g : M(X) - R U {+o0}, Cpp o= u(B). (1.1)

Later (p is only considered as a mapping on M"(X), and therefore takes values in
N u {+00}. The next proposition shows their fundamental role, see [DVJ08b, prop.
9.1.1V].

Proposition 4. Let X be a c.s.m.s.
i) M(X) is a c.s.m.s. when endowed with the vague topology.
it) The Borel o-algebra B(M(X)) is the smallest o-algebra on M(X) generated by
the mappings {CB} peso(x)-

iii) M (X) is a c.s.m.s. under the vague topology and its Borel sets agree with the
ones inherited from M(X).

In particular the last statement follows directly from the following lemma, see [DVJO8b,
lemma 9.1.V].

Lemma 5. M (X) is a closed subset of M(X).

Let 0, be the Dirac measure, that is for A € B(X)

5,(A) i 1 ifzeAd
YT )0 ifag¢ Al

The next proposition [DVJ08b, prop. 9.1.III] shows that measures p € M(X) decom-
pose into an atomic and a diffuse part, i.e. the former having non-negative masses on
singletons and the latter not. Point measures are particular examples of purely atomic
measures and permit a representation as a sum of Dirac measures. Simple point mea-
sures relate locally finite sets of points of X and point measures of X; in fact this
correspondence is one-to-one. General point measures p € M (X) allow "multiple”
points.

11



1. Point Processes

Proposition 6 (Decompositions). Let e M (X).

i) p obeys a unique decomposition into p = pg + g with a purely atomic part piq,
which permits a representation
Ha = Z kaéacla
%

where the k;’s are positive real numbers, (x;); € X is an at most countable set and
a8 a diffuse measure.

it) If pe M (X), then p coincides with its atomic part pe with additionally the k;’s
being non-negative integers and (x;); = X has the property that (x;); n B is a finite
set for any bounded B € By(X).

iii) pe M (X) if and only if k; =1 for any i.

Write = € u for some € M (X) and x € X if u({z}) > 0, therefore pu({z}) = 1, and
say that x is contained in pu. Thereby any locally finite point measure can be represented

p= u{a})d,

TEW

with the factors p({z}) = 1 if and only if p is a simple point measure. pu is called a
configuration of elements of X.
The basic terms are defined and point processes may now be defined.

Definition 7 (Random measure, Point process).

i) A probability measure on (M(X), B(X)) is called a random measure on (M(X), B(X)).
it) A probability measure P on (M"(X),B(X)) is called a point process.
i11) A simple point process P is a point process which is concentrated on M (X),
P(M (X)) = 1.
1.1.2. Moment Measures and Functionals of Point Processes

For Borel sets B € B(X) the evaluation mappings (p are measurable, hence random
variables, and characteristic values of the evaluation mappings are their moments. For
a point process P consider the mapping

p:B(X)—>R", p: B~ P((p) ::/CBdP. (1.2)

p inherits the finite additivity property and monotone convergence property for increas-
ing sequences B,, — B from P and therefore is a measure.

12



1.1. Point Processes

Definition 8 (Intensity measure). Let P be a point process. If p € M(X), then P is of
first order and p is called the intensity measure of P.

Also p is named first moment measure. Since p(B) is the expectation of (g, p(B) is
the expected number of points of P inside B whether finite or not. Suppose that the
intensity measure exists as a locally finite measure. Let f : X — R be a positive and
measurable function, then the random integral

= [ F@utda

can be constructed in the usual way as limit of simple functions, i.e. linear combinations
of (p’s. Their expectation with respect to a point process P then is

P(¢y) = / / f () () P(dps) = / f(@)p(de) (1.3)

Related integrals will appear in section 1.2. The postponed basic discussion of the so-
called Campbell measure will in fact allow the function f to depend on the configuration
Lb.

Instead of integrating (g, products of the form (g, x ... x (B, for not necessarily
disjoint, measurable By, ..., B, may be integrated,

P B(X)" > RY,  p:Byx--x By P(Cp ---(p,) = /cBI---cBndP-

p{™ can be extended in the usual way from rectangles to general sets in B(X™), which
yields

Definition 9 (Higher order moment measures). Let P be a point process and n € N. If
p\™ e M(X™), then P is of n-th order and p(™ is called the n-th order moment measure
of P.

Like moments of random variables extend to moment measures, the characterisation
of non-negative random variables by its Laplace transform carries over to the Laplace
functional of a point process. Let f : X — R be non-negative, measurable and bounded
with bounded support. Then the Laplace functional Lp of P is

Le(f) = P(e7) = [ exp(=a(1)Plan)

The importance of the Laplace functional is due to the one-to-one correspondence be-
tween random measures and functionals which occur as Laplace functionals [DVJO08b,
prop. 9.4.I1].

13



1. Point Processes

Theorem 10. Let the functional L be defined for all non-negative, measurable and
bounded functions f : X — R with bounded support. Then L is the Laplace functional
of a random measure P on X if and only if

i) for fi,..., fr non-negative, measurable and bounded with bounded support the func-
tional

K
Li(fr oo fuist, - o8) = L(Z Smfm>

m=1

is the multivariate Laplace transform of random vector (Y1,...,Yy).

ii) for every sequence f, monotonously converging to f pointwise

L(fn) — L(f)
iii) L(0) = 1

Moreover, if these conditions are satisfied, the functional L uniquely determines P.

1.1.3. The Poisson Process

Definition 11 (Poisson process). Let p € M(X). The Poisson process with intensity
measure p is the uniquely determined point process with Laplace transform

P(e*f) = exp(—p(l — e*f))

for any continuous, non-negative f with bounded support. Write P, for this process.

Putting f = (g with B = By u...u By, for pairwise disjoint and bounded By, ..., B,
we get that the family (g, , ..., (p, is mutually independent with each (p,, having Poisson
distribution with intensity p(B,,). The independence property of P, is known as complete
randomness, in particular Poisson processes are prime examples for completely random
measures. An important representation theorem was given by Kingman [Kin67], also
in [DVJO8b, thm. 10.1.I11].

Theorem 12 (Kingman). The log-Laplace functional of a completely random measure
s of the form

~logLe(f) = B+ Y (@) + [[ 1= @ wdodu), (1)
k=1

where 3 € M(X) is a fivred, non-atomic measure, (x)r enumerates an at most countable,
locally finite set of atoms of P, (Vg)r is a family of log-Laplace transforms of positive
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1.1. Point Processes

random variables and K s the intensity measure of a Poisson process on X x Ry which
satisfies for every e > 0 the integrability conditions for each B € By(X),

k(B, (g,0)) < o

(3
/ u k(B,du) < o0.
0

Conversely, each log-Laplace functional satisfying equation (1.4) defines a completely
random measure.

Thus completely random measures may consist of a fixed, non-atomic part 3, an
atomic part at the sites (zy)r with random weights and a compound Poisson part inde-
pendent of the atomic part. For a completely random measure to be a point process,
0 needs to vanish, each 93 needs to be the log-Laplace transform of an integer-valued
random variable and (B x -) needs to be a measure on the positive integers. Addition-
ally, to be Poisson, ¥x(s) = —ur(l —e %) and k = pg x d;. The intensity measure p of
a Poisson process P, then is p = pg + >, ur0s,, which is exactly the decomposition in
theorem 6 of p into its diffuse and atomic part, respectively.

Sums of independently Poisson distributed random variables again have a Poisson
distribution, and the latter intensity is exactly the sum of the former ones. Vice versa,
each Poisson random variable can be represented as a sum of any given number of inde-
pendently, identically Poisson distributed random variables. This property is known as
infinite divisibility. Consequently, a point process, or more general a random measure,
is infinitely divisible, if it can be represented as a superposition of k£ independent, iden-
tically distributed point processes or random measures for any k. For a Poisson process
with intensity p choose £ for a given non-negative integer k to obtain the representation
of the infinitely divisible Poisson process, see e.g. [DVJ08b, thm. 10.2.IX].

Theorem 13 (Lévy-Khinchin representation). A random measure P is infinitely divis-
ible if and only if its log-Laplace functional permits a representation

~log Li(f) = () + [ [~ exp(-n(1) | Atdn) (15)

where o € M(X) and A is a o-finite measure on M(X)\{} such that for every B €
Bo(X) the integrability condition

/ [1 — e*“] (Ao¢gh)(du) < o
Ry

is satisfied. Conversely, such measures o and A define via equation (1.5) an infinitely
divisible random measure.
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1. Point Processes

In the point process case, necessarily a = 0 and A is concentrated on M'(X). Such
infinitely divisible random measures play an important role in limit theorems.

Now assume that in addition X is an Abelian group with the commutative group
operation +. There exists a measure ¢ € M(X) which is invariant under the group
action, i.e. ¢(A+xz) =((A) for every Ae B(X), z€ X and A+z:={a+z:a€ A}
¢ is called Haar measure and is uniquely determined up to a positive constant, see e.g.
Stroppel [Str06, thm. 12.23]. Every z € X induces an automorphism 7, on M~ (X) by

(Top)(B) = u(B +2).

Because of T4, = T, T, the set of automorphisms 7 = {1, },ex is an Abelian group
itself and in a natural way homeomorphic to X. A point process P is T -invariant, if the
action of 7 conserves the distribution,

P(T,A) = P(A)

for every x € X. In case of 7 being a translation group, P is also called stationary.
Since a point process P is determined by its Laplace functional Lp, Lp must be
stationary itself. Particularly the log-Laplace functional of a Poisson process satisfies

—long<e*f("x)> = p<1 - e’f('*x)> =p(1- e*f)

and since the measure p is uniquely determined by the set of continuous functions and
is stationary, p can only be a multiple of the Haar measure ¢ on (X ,B(X )) Therefore
a Poisson process is stationary if and only if its intensity measure is a multiple of the
Haar measure on X.

More generally, 7 = {Ts}se can be an Abelian group defining transformations on
X, where G is a complete, separable metric group, which is locally compact. At least
partial results carry over to this more general case and a factorisation theorem 14 below
states that a 7-invariant measure p decomposes into a measure which is a multiple of a

Haar measure on G and a second measure on some other space, see e.g. [DVJ08a, prop.
A2.7.111].

Proposition 14 (Factorisation). Let X be a c.s.m.s, T = {Ts}sec a complete, separable,
locally compact metric group of transformations acting measurably on X. Furthermore
suppose that there exists a one-to-one, both ways measurable and bounded sets conserving
mapping ¢ : G x Y — X with some c.s.m.s. Y, which preserves the shifts Ty in the
sense that Tyy(h,y) = ¥(g + h,y). Then any T -invariant measure p € M(X) can be
represented as

p@=LLﬂWwW@M@L

where ¢ is the Haar measure and k is up to a constant a unique measure on Y for
measurable, non-negative functions f.

16



1.1. Point Processes

Such a situation will occur in section 3.1, where a group of translations acts on a space
of functions and a translation invariant measure is decomposed into such two parts. A
further application will be in section 5.1 the disintegration of the so-called Campbell
measure of a stationary point process with respect to its intensity measure.

An important question are criteria for the simplicity of point processes, particularly
of Poisson processes. A first characterisation involves the second order moment measure
p? of a point process P, see e.g. [DVJO08b, prop. 9.5.IT]. Let the diagonal of a set
A€ B(X) be

diag A* == {(z1,...,21) e X¥: 2y = ... =z}, € A}.

Proposition 15. A point process P of second order satisfies p'?(diag B?) = p(B) for
all B € Byo(X) with equality if and only if P is simple.

Since the Poisson process B, is completely random,

pD(By x By) /CBlCB2de = /(C31\32 + (BB (BB, + CBinB,)AE)
p(B1\B2)p(B2\B1) + p(B1 n Bs) [p(B1\Bs) + p(B2\B1)]

+ /[CBmBQ — p(B1 n Bg)]QdB) + p(B1 N 32)2

— p(B1)p(Ba) + / [Couns — p(Br A By)] dP,
= p(B1)p(Ba2) + p(B1 N Bz).

Hence the second order moment measure of P, for a product is the product of the
intensities plus the variance on the common part of these two sets. Particularly on
products of disjoint sets the last term vanishes.

The following concept of orderliness also addresses the multiplicity of points of a
point process and particularly for Poisson processes. A point process P is orderly, if the
probability of finding many points in a sequence of shrinking spheres vanishes sufficiently
fast compared to the probability of finding some point,

P(Cs.zy > 1) = 0<P(C35(z) > 0)) as € — 0 for every z € X,
where S¢(z) is the sphere with centre x and radius €. For a Poisson process P,

B (Cs.m > 1) _ 11— l50) —p(5.(2)) 0 (5

B (Cs.(z) > 0) 1 _ or(s:@)

vanishes as ¢ — 0 if and only if x is not an atom of p, that is p({z}) = 0. Therefore,
see [DVJO8b, thm. 2.4.11],
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1. Point Processes

Theorem 16. A Poisson process B, is orderly if and only if B, is a simple point process.

Even more, orderliness and complete randomness together characterise Poisson pro-
cesses, see [DVJO8b, thm. 2.4.V]:

Theorem 17. A point process P without fixzed atoms is a Poisson process if and only if
P is orderly and completely random.

Directly from the definition of the Poisson process and the subsequent discussion we
get a local representation of a Poisson process B,, i.e. if ¢ is £g-measurable for some
B € By(X), a Poisson process P, can be written as

00
- 1
P(p) =e P n,/ @(0py + ...+ 0g, ) p(dar) ... p(dzn),
n:O . n

hence can be interpreted as first choosing an integer n according to a Poisson distribution
with intensity p and then placing n points independently according to p in A.

1.2. The Campbell Measure of a Point Process

As mentioned, the integral in equation (1.3) can be extended to functions f depending
on x and additionally on the configuration u. The basic step is to attach to each point x
of a configuration u the configuration itself. This operation is checked to be measurable:
set

O = {(z.1) € X x M(X) : p({x}) > 0},

then according to [KMMT74, prop. 2.5.1], C'is B(X)®B (./\/l (X))—measurable, and [KMM74,
thm. 2.5.2] states

Theorem and Definition 18 (Campbell measure). For any integrable or non-negative
function h : X x M(X) — R the mapping

- / Wz, i) ()

1s measurable and the Campbell measure C'p of a point process P on X is given by

Coh) = [ hann(@)Pldn).

A characterisation of measures which may occur as a Campbell measure of a random
measure is given by Wegmann [Weg77]|. However, such a characterisation is not needed
in this work.
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1.2. The Campbell Measure of a Point Process

A special case of such integrals occurred in section 1.1.2 as the expectation of random
integrals (;, with h only depending on z. Here even the dependence on the whole con-
figuration is allowed. Recall also that in choosing ha(z, ) = 1a(z), Cp(h(.)) reduces
to the intensity measure of the point process P. Hence the Campbell measure is an
extension of the intensity measure.

Closely related is the reduced Campbell measure C}D of a point process P. Instead of
attaching the whole configuration p to x € u, p is reduced beforehand by 6, i.e. u— §,
is attached to x.

Definition 19 (Reduced Campbell measure). The reduced Campbell measure C of a
point process P on X is the measure on X x M"(X) given by

Ch(h) = // h(z, p— 0z )p(dz) P(du), h > 0 measurable.

1.2.1. Disintegration with respect to the Intensity Measure: Palm
Distributions

Campbell measure and reduced Campbell measure gain their importance due to two basic
disintegrations, which are now going to be explored. The next proposition [DVJ08b,
prop. 13.1.1V] demonstrates that for each A € B(M" (X)) the Campbell measure Cp( - x
A) of P is absolutely continuous with respect to the intensity measure p of P. Its Radon-
Nikodym derivative then is the measurable function P* which is uniquely determined
up to sets of p-measure zero.

Proposition 20 (Disintegration). Let P be a point process with finite intensity measure
p. Then there exists a Palm kernel, a regular family of local Palm measures {P*},ex,
which is uniquely defined up to p-null sets and

Cot) = [ [ hia,) P )t

for non-negative or Cp-integrable h.

The disintegration result of the Campbell measure with respect to the intensity mea-
sure leads to the interpretation that P® is the original process P conditioned on the
event that there is at least a point at x, i.e. conditioned on the event {C{x} > O}. In the
special case of the Poisson process these Palm kernels take a simple form and moreover
characterise the Poisson process uniquely. Similar characterisations can be shown for a
larger class of processes.

Theorem 21 (Mecke’s characterisation of the Poisson process). There is exactly one
point process P satisfying for any measurable, non-negative h

Cri) = [ e+ 5P (16)
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1. Point Processes

P =B, is the Poisson process with intensity measure p.

In replacing C'p by the reduced Campbell measure C’}g, equation (1.6) is equivalent to

Ch) = [ [ nepptan B, (17)

i.e. the Poisson process P, is the unique solution of the functional equation

Ch=p®P. (1.8)
A further compact formulation, which is equivalent to equation (1.6), is
P = P x5, . (1.9)

This theorem was firstly given in a general form by Mecke [Mec67], see also [DVJ08b,
prop. 13.1.VII], and leads to the interpretation that the local Palm distribution P* of
the Poisson process P is the Poisson process with an additional point at x. Later this
characterisation was generalised e.g. by Nguyen, Zessin [NZ79] to Gibbs processes.

1.2.2. Disintegration with respect to the Point Process: Papangelou
Kernels

Mecke’s characterisation of the Poisson process in the version of equation (1.7) or (1.8),
respectively, states that the reduced Campbell measure Ci;p is absolutely continuous with
respect to p ® B,, and the Radon-Nikodym derivative is exactly the intensity measure.
In general this absolute continuity does not hold. But by the definition of the reduced
Campbell measure for By, By € By, CI!D(Bl X +) < C};(BQ x +) holds whenever By € Bs.
For the following discussion even the following condition is required:

Definition 22 (Condition (X')). A point process P is said to satisfy the condition (X'),
if
(=" CL(Bx )« P VYBeB

holds.

Condition (X') ensures the absolute continuity C»(B x -) « P for each B € By(X)
and therefore the Radon-Nikodym derivative can be computed [Kal78§].

Theorem and Definition 23 (Papangelou kernel). Let the point process P satisfy (¥'),
then there exists a measurable mapping
n: M(X) > M(X),  p=np,-)
such that ' )
dCp(B x -
PP ) (. B

for B € By(X). Since the paper [MWM79] 1 has been called Papangelou kernel for the
point process P.
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1.2. The Campbell Measure of a Point Process

By the Radon-Nikodym theorem the Papangelou kernel for P is P-a.s. unique. As in
the previous subsection the Palm kernel is interpreted as the point process conditioned
on the occurrence of a point at some site, the Papangelou kernel is interpreted as the
conditional intensity measure (on X) conditioned on a given configuration. The following
theorem from [MWMT79] relates the Papangelou kernel with a partial integration formula
for Cp.

Theorem 24 (Partial Integration). Let P be a point process and n: M (X) - M(X)
measurable. Then the following statements are equivalent:

i) m is a Papangelou kernel for P

i1) P satisfies the partial integration formula for non-negative, measurable h
Cot) = [ [ ha.mn(@o)Pan) = [ [ ne.p+ a2t o) Pan)

By Matthes et al. [MWMT79] the last equivalence leads to a nice characterisation of
simple point processes involving the Papangelou kernel.

Corollary 25 (Simplicity). Let n be a Papangelou kernel for the point process P, then
the mapping p — n(u, supp p) is measurable and P({n(u, supp p) > 0}) = 0 is equivalent
to the simplicity of P.

This can be seen by setting h the indicator on pairs (z, ) for which pu(x) > 1. For
Poisson processes P, this corollary implies the known fact that P, is a simple point process
if and only if the intensity measure p, which is a Papangelou kernel for P,, is a diffuse
measure.

1.2.3. Construction of Point Processes from Papangelou Kernels

In [MWMY79] in general the existence of the point process P, for which the Papangelou
kernel is constructed, is assumed. An problem to be addressed in this section is the
reverse task firstly developed in [Zes09]: Given a kernel 1, construct a point process P,
such that n is a Papangelou kernel for P. Throughout this subsection let

n: M(X) = M(X)

be a measurable mapping. Let us firstly derive some properties of the following iterated
kernels.

Definition 26 (Iterated kernel). For a Papangelou kernel n : M"(X) - M(X) and
m € N let the iterated kernel n'™), m > 1, of 1 be

n(m)(ﬂa Q) = /@(5:01 + oA O, )+ 0y, oo+ Og,_y dEy) X (1.10)

x 77(:“ + 5I17d$2)n(:u’7 dxl)'
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1. Point Processes

Set n(© = 1.

The mapping n(m) is measurable, and moreover is finite on rectangles of bounded sets
and for m > 2 even a symmetric measure [MWM79).

Theorem 27. Letn be a Papangelou kernel for a point process P. Then for everym = 1
P(n™(-,Bi x ... x Bp) <0 VBi,...,Bp € By(X)) =1
and form = 2
P(n(m)(-,Bl X ...X Bp)= n(m>(-,Bg(1) X ... X Byy)) =1
for every permutation o on {1,...,m} and bounded, measurable sets By, ..., By,.

In order to construct a point process P for which the measurable mapping n : M (X) —
M(X) is a Papangelou kernel, the kernels n("™ given by equation (1.10) at least need
to satisfy the properties of the previous theorem P-a.s. Particularly the symmetry of n
is assumed for all p, which is equivalent to the cocyle condition,

Lemma 28 (Cocycle condition). Let 7™ be given by equation (1.10) for some measur-
able mapping n : M (X) — M(X). Then n(™ (u, -) is a symmetric measure for each
meN, ie.

n(m) (,u,Bl X ... X Bm) = n(m) (,u, Bo-(l) X ... X Bo’(m))

for every permutation o on {1,...,m} if and only if the cocycle condition holds

n(p + 0z, dy)n(p, dz) = n(p + oy, dz)n(u, dy).

Proof. Assume firstly that n(m) (i, -) is a symmetric measure for each pu. Then by
choosing m = 2,

/131 (1)1, (z2)n (1t + Oy, dza)n (e, dz1) = 1'? (u, By x By)

= O (4, By x By) = / L, (1) Ly (22)0 (1 + B0y, deo)(ps, da),

for all bounded, measurable B, Bo. Hence the cocycle condition holds.
Secondly assume that the cocyle condition holds for 7, then

ﬁ(m)(% By x -+ % Bm) = /131 (x1)132(1:2) T 1Bm($m)77(ﬂ + 5961 +...+ 5Im—17dx2)
e 77(/" + 59617d$2)77(/'67 dlL‘l)
= [ 100U 2) L e B+t G )

coem(p+ Oay, dzr)n(p, dze)
= U(m)(MaB2 X Bl X e X Bm)
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1.2. The Campbell Measure of a Point Process

due to the cocycle condition. This equation holds for every next neighbor transposition
and hence by iteration for all transpositions. Since every permutation has a decomposi-
tion into transpositions, the equation holds for all permutations, therefore n(m)(,u, -) is
a symmetric measure. O

In the previous subsection the Papangelou kernel n was obtained as the disintegration
of the reduced Campbell measure permitting the interpretation that n(u, - ) is the con-
ditional intensity measure conditioned on the configuration g. Thus in the following u
plays the role of a boundary condition, for which the point process is constructed.

Let e M (X) and Z(™) (1) be the mass of the iterated kernel ("™ as well as Z(u)
the possibly infinite limit of the series,

(m)
2 () = ™ X x L x X), S = Y 2 (1.11)

|
m=0 m:

n is called integrable if Z(u) < oo for each p € M (X), and in this case the point process
P* given by

1

1
“w — (m)
PH(e) =) mio " /Xm ©(0z; + oo 4 0, )™ (1, dy, . . . day) (1.12)

is well-defined. By [Zes09]:

Proposition 29. Letn : M (X) — Mjy be a finite kernel satisfying the cocycle condition
and assume 1 to be integrable. Then for every boundary configuration u € M~ (X), P
is a solution of the partial integration formula

Cp(h) = // Mz, v+ d)n(p + v,dz)P(dv).

Definition 30 (Papangelou process for kernel n). PH is the (finite) Papangelou process
for the symmetric and integrable kernel 7.

Proof of proposition 29. By the definition of the Campbell measure

Cpu(h) = / / h(zx, v)v(dz)P*(dv)

S anﬂ/ Zh(acj,ém+...+5wm)n(m)(u,dx1,...,dxm),
. m]zl

E(w) =
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1. Point Processes

then firstly by the symmetry of (™ and secondly by integration and the definition of
the iterated kernels

1 1 .
= Z m_l)!/xmh(xm,&gl+...+5$m)77( )(u,dxl,...,dxm)

1 1
~ B 4 Z (m—1)!/Xm_l/xh(afmézl Fo . +0,,)

M+5x1 + .4 0g,_y,dey)n (m— 1)(u,dx1,...,dxm)
// (x,v + 0z)n(p + v, dz) PH(dv). O

The aim is to extend the construction of finite Papangelou processes for finite kernels
71 to kernels which are o-finite. The strategy is to construct the process locally and then
to glue these locally defined processes together. For a bounded and measurable B let
the o-algebra of the events inside B be £ = o(Cp : B' € B,B' € By(X)) and define

the restriction to B for &, p-measurable ¢ as

Z / 4 0y, )™ (pe,dz1, ..., dzy). (1.13)

m>0

Note that the mass of p in B is cut. The definitions of the normalisation constants
Zj(gm) (1) and ZEp(p) in equation (1.11) carry over directly. n is called locally integrable
if for each bounded B and u € M*(X), Eg(u) is finite. A construction similar to the
Poisson process can be used in case of additional measurability conditions on 7np, that
is if np cannot see what happens outside B.

Theorem 31 (Papangelou processes with independent increments). Let the measurable
mapping n : M (X) - M(X) be locally integrable and satisfy the cocycle condition.
If in addition np defined in equation (1.13) is éA'B—measumble, then there exists a point
process P on X which is independent of the boundary configuration € M (X) and for
which n is a Papangelou kernel, i.e. P satisfies the partial integration formula,

= // h(z,v + 65)n(v,dz)P(dv).

Proof. Two main steps have to be done: Firstly P has to be constructed and secondly
the partial integration formula for P has to be shown. For the first part let (B),)n>0 be
a locally finite partition of X of bounded sets, i.e. for each bounded set B € By(X),
Bn B, # ¢ only for finitely many n. Then on each B,, a point process P} is constructed
according to equation (1.13),

1
Eg, (1)

Pl (p) = nB, (1 ¢)-
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1.2. The Campbell Measure of a Point Process

Due to the measurability condition on 75,

/ O(0gy + ...+ 5xm)77(m) (uBﬁ,dm, e ,dxm)

n

= / (8, + .. + 0, )™ (0,dz1, ..., dzy)

n

is independent of p and the superscript of P} may be dropped.

Thus for each n a point process P, on M (B,,) is constructed. Let

N = ® M (By)

n=0

the product space. By the Daniell-Kolmogorov extension theorem, there exists a proba-
bility measure P on the product space N with finite-dimensional distributions given by
the corresponding product of the P,’s. Finally map P via

N MX), st Y v

nz=0
to obtain a probability measure on M (X), which also will be denoted by P with abuse

of notation. It remains to show that 7 is the Papangelou kernel for P.

First of all, let h be of the form h(x, 1) = g(x)¢(n) with supp g € B; for some j > 1
and ¢ being €, ..U B,,-measurable for some m > j. Then

ce = [ | h(ar,kz_ouk> () P(dp)

n=0

_ / / g(fv)SO(ZMk>uj(dx)P(du)
B k=0

since supp g © Bj; and furthermore because of ¢ being 3 B, u...uB,,-measurable,

= // 9(«’6)90(2 uk> pj(dz) P(dp),
B; k=0
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1. Point Processes

for which P can now be replaced by P ® --- ® P,,. Finally the application of partial
integration for P; yields

-/ / (Z uk) 15(0) Poldpio) -+ Pra(djim)

-1/ g(x)so(Zuk+5x>n<uj,dx>Po<duo>---Pm<dum>
J k=0
-/ _g(:c)ga(Zuk+5z>n<2uk,dx>%<duo>---Pm<dum>

k=0

= [ st@retntu.az) .

This result extends to general non-negative and measurable h. O

Particularly in the step of the application of the partial integration formula the mea-
surability condition on 7p, and hence the independence simplified a lot. For general
71, that is np not necessarily £p-measurable, finer instruments are necessary. In fact,
proposition 31 is a special case of proposition 33. In [Zes09] the theorem is only given
for the boundary configuration 4 = 0, here we drop this restriction. Furthermore an
additional assumption on the normalisation constants seems to be required in contrast

o [Zes09]. The main schedule, firstly to construct the global process and secondly to
show the partial integration formula, stays the same. The means of theorem 31 have to
be refined: a Markov construction together with the theorem of Ionescu Tulcea [Kal02,
thm. 6.17] yields the first part, for the second further assumptions are necessary.

Theorem 32 (Ionescu Tulcea). For any measurable spaces (Sn, Sy) and probability ker-
nels pn, from S1 x --- x S,_1 to S,, n € N, there exist some random elements &, in S,

n € N, such that (&1,...,&,) gm@---@un for all n.

A kernel 7 is said to satisfy the Feller condition if for every increasing sequence (B, ),
of bounded sets which exhausts X,

n(kB,, ) = 1y, +)

vaguely as n — 0.
A further condition needs to be discussed: If n(u+ 6y, - ) is absolutely continuous with
respect to n{u, - ) outside {y} for every boundary configuration p e M (X),

Ligye(@)n(p + 6y, dx) = Lpe (o) fy(y, ©)n(p, dz), (1.14)
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1.2. The Campbell Measure of a Point Process

then for bounded, measurable B and z ¢ B,

1
ne(p + oz, ) = Zm‘/B OOz, + ...+ 0z, + e + 0z)

mz=0

X n(m) (,uBc + 0y, dx, ... ,dxm)

1
Z ol /Bm W0z + o+ gy + e +02) fr(T,2m) -+ - (2, 21)

mz=0

X n(m)(uBc,dxl,...,dxm)
=ng(p, (- +6z) - folz, ),

where f, (2, 0z, 4. . .+0z,,) = fo(x,21) - fy(x, 2). Therefore, if Pk = Zg(p) " ns(u, -),

PE(0) = P P 4 80y ) (1.15)
Theorem 33 (General Papangelou processes). Assume that the measurable mapping 7 :
M (X) - M(X) satisfies the cocycle condition and the Feller condition, and is locally
integrable. Let p e M (X) be a given boundary configuration. If furthermore n(p+ 6y, )
is absolutely continuous with respect to n(w, -) outside {y} as in equation (1.14), and
for each B € By(X), © € B¢ the normalisation constants satisfy Zp(pn) = Ep(p + 0z),
then there exists a point process P* on X for which n is a Papangelou kernel, i.e. P*
satisfies the partial integration formula

Cp(h) = / / Wz, v + 6,)n(v, dz) P(dv).

Proof. As in the proof of proposition 31 let (By),=0 be a locally finite partition of X of
bounded sets. Then the following finite point processes exist by equation (1.12)

1 1
PP () = — Sor 4 oo+ S0 I (upe, dze, . .., dam). 1.1
n((p) En(ﬂ)ﬂ;)m' /B:{l 90( .+ + m)77 (MBn’ X1, , AT ) ( 6)

Successively on each B, a finite point process will be constructed with the boundary
condition g in the regions By, ..., B,_1 replaced by a realisation of the corresponding,
already constructed, finite point processes on By, ..., B, 1. Let

Qo(dwy) = Pé‘(dl/g),

the dependence on p suppressed for the moment. Furthermore denote by v the sum
Vg + ...+ vy and by u(m) the restriction of u to the complement of By u ... u B,,. For
(1/07 Ce l/mfl) € M(Bo) X +re X M(Bmfl) let

Qun (10, + ++ s 1 dvm) == PR (), (1.17)

27



1. Point Processes

i.e. @ is a probability kernel M (By) x -+ x M (By_1) = M (By). Since by
equation (1.16) any contribution of y inside B,, is cut, in the definition (1.17) p(™—1
may be replaced by p("™). The choice u{™=1) is consistent with the definition of Q.

By the theorem of Ionescu Tulcea there exists a probability measure P on N such
that its finite-dimensional distributions P(%,...,n) are given by

(n=1) 4 yn— ©
Pl (@, duy) = P (dwy) - PP (do ) P ().

For simplicity P* again is identified with its image under the mapping
N - M (X), (Vn)nz=0 — Z Up.
nz0

Therefore the point process P* exists, considered either as a point process on N or
M (X)), respectively. The partial integration formula remains to be shown.

In choosing again h to be of the form h(x, ) = g(z)p(n) with supp g < B; for some
j = 1 and ¢ being Ep,....uB,,-Mmeasurable for some m > j, the first lines of the proof of
the partial integration in the proof of proposition 31 can be followed, and then continued
by

/ / v™) () PV () -+ PR () Pl (du),

for which the partial integration formula for finite Papangelou processes can be applied
for the j-th kernel

= [ [ sl 5 P ) P )
J
< (), da) PPV (yg) - P (don) P dw).

Because of x ¢ Bj,1, by equation (1.15) and the equality of the normalisation constants,
and the integrations can be exchanged such that firstly with respect to x is integrated,

= //B'g(x)go(um-i—&p) H ol vi)n(V7, dx)

k=j+1

P#(m 1) 4, m—1 (dvp) - - .Pl"(o) (dl/1)P(lf(dV0>

- / / (v, dz) P(dv).

For the last line observe that by assumption
fn(x,ljj+1)17(l/j’dx) = U(Vjﬂadx)- O

Indeed, the 3 p-measurability in proposition 31 implies Feller and absolute continuity
condition, and therefore proposition 31 is a special case of proposition 33.
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2. Deviation Principles

One of the main techniques used in the later parts is the principle of large deviations. Ba-
sically, the situation is the following: given a sequence (Yj)r>1 of identically distributed,
uncorrelated random variables with finite second moment, the weak law of large numbers
states that the average of the first n variables %Sn tends to the expectation EY] weakly
as n — o0. Clearly the probability that the average %Sn stays away from EY7, tends
to 0. Such events {|25, — EY;| > §} are called rare events, untypical events or large
deviations. The basic question is: What is the probability of a rare event and at which
speed does it vanish?

Cramér’s theorem (see e.g. Dembo and Zeitouni [DZ98, thm. 2.2.3] or Deuschel and
Stroock [DS00, thm. 1.2.6]) states that this probability behaves like exp(—ninf{I(z) :
|z — EY;1| > 6}), where I is a non-negative function called rate function. Several ob-
servations can be made: Firstly, the probability of this rare event decays exponen-
tially fast, i.e. %Sn may deviate with only exponentially small probability. Secondly,
inf{I(x) : z € R} = 0 and moreover, the infimum is in fact a minimum. The limit of the
%Sn’s occurs as the minimum of I, which is at the same time a zero of I. Finally the
theorem is not restricted to only random variables; for random vectors Cramér’s theorem
is also valid and allows extensions to projective limits (which are not trivial indeed).

Particularly the second observation, the determination of a weak limit as the minimiser
of an optimisation problem, will be important: the weak limit is exactly the minimiser of
1. Conversely, determining the minimiser of I means to find a weak limit. Moreover, if
a condition on the %Sn is present, the large deviation principle leads to an optimisation
problem with constraints.

In sections 4.5, 7.2 and 7.3, large deviation principles are a basic tool for the deriva-
tion of limit theorems. The large deviations for Poisson processes at high intensity,
see [GW95], and required adaptations are discussed in section 2.2. For the discussion
of the asymptotic behaviour of the model to be introduced in chapter 3 large and small
deviations for Brownian bridges are given in subsection 2.3.

2.1. General Large Deviation Principles
In the situation of the uncorrelated, identically distributed random variables, the rate

function I can be shown to satisfy two important properties: convexity and the com-
pactness of the level sets {I < u}. This ensures the existence of a minimiser, which is, in
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2. Deviation Principles

the situation above, unique and at the same time the (unique) zero of I. To obtain suit-
able optimisation problems and for I to encode the behaviour of a family of probability
measures, the following properties are required:

Definition 34 (Rate function). A rate function I is a lower semicontinuous mapping
I:Y — [0,00], i.e. the level sets {y € Y : I(y) < a} are closed for every non-negative
a. I is furthermore a good rate function, if the level sets are compact.

Over closed sets good rate functions achieve its minimum, which implies that a weak
law of large numbers holds. Assume (P,), being a sequence of probability measures on
(Y,B(Y)) with B(Y)) complete. The precise definition of the large deviation principle is
the following

Definition 35 (Large Deviation Principle). The sequence (P,), of probability measures
satisfies a large deviation principle with good rate function I and speed a,, if the following
two bounds hold for every G < B(Y') open and every F' < B(Y') closed:

1
liminf —log P,(G) = —inf I 2.1
iminf - log I2(G) > — inf I(y) (2.1)
1
limsup — log P, (F') < — inf I(y). 2.2
msup 108 Py (F) < = inf I(0) 2:2)

By the lower semicontinuity, see e.g. Deuschel and Stroock [DS00, lemma 2.1.1], the
rate function can be shown to be unique in case of existence once the speed is fixed.
Therefore I is said to govern the large deviations of (P,),.

The main job is to determine the rate function I. Consider P, to be the law of S, as
in the example at the beginning, then by the Markov inequality

P(S, > nz) = P(e“S" > ') Lo U E et = exp[—n(uz — log A(u))],

where A(u) = log Ee® is the logarithmic moment generating function. Optimising
the exponent on the rhs. with respect to u yields a candidate for the rate function [
governing the large deviations of (S),),. Indeed, basically Cramér’s theorem states that
the convex conjugate A* of A is the rate function,

I(z) = A*(x) := sup{uz — log A(u) : u € R}.

and the speed can be chosen to be a,, = n. Furthermore I can be shown to have exactly
one minimiser given by EY7, which is simultaneously the unique zero. Roughly speaking,
Sy, satisfying a large deviation principle with rate function I means

P(Sn € A) ~ e "infoea I(z)
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2.2. Large Deviations for Poisson Processes at increasing Intensity

Such a statement remains true in greater generality for measures on a space Y. Let
Y™ be the dual of Y, then for a probability measure P let Ap be its logarithmic moment
generating function

Ap:Y* >R Ap(u) = log/yexp(<u,y>)P(dy),

where (u,y) = u(y).

Definition 36 (Fenchel-Legendre transform). For a sequence (P,),, of probability mea-
sures and an increasing sequence (ay,), of positive real numbers let

A(u) == lim iApn(u/an)

n—m Ay,

The Fenchel-Legendre transform A* of A is the convex conjugate of A,
A*(y) = sup{(u,y) —A(u) :ueY"*}.

In the following we need to assume that A is well-defined and finite in an open set
containing 0, Gateaux-differentiable and lower semicontinuous. The rate function then
is exactly A*, see e.g. [DZ98, thm. 4.5.27].

Theorem 37 (Gértner-Ellis). Let (Py,), be an exponentially tight sequence of proba-
bility measures. If A exists in a neighborhood of 0, is Gateaux-differentiable and lower

semicontinuous, then (P,)y satisfies a large deviation principle with good rate function
A*.

2.2. Large Deviations for Poisson Processes at increasing
Intensity

In the particular situations in sections 4.5, 7.2 and 7.3 Poisson processes with increasing
intensity are given. Assume B.; being a Poisson process with intensity measure r7, r > 0.
As r — o0, the expected number of particles (g in a bounded region B grows by the
same factor r and %B — 7(B) by the law of large numbers. Therefore

()

is a candidate for a large deviation principle. The result of Guo and Wu [GW95] even
states

31



2. Deviation Principles

Theorem 38 (Large deviation principle for Poisson processes at high intensity). As
r — o0, BT<{% € }) satisfies a large deviation principle on M(X) with speed r and
rate function I(-;7) : M(X) — [0, 0],

o0 otherwise

I(KZ'T) _ {P(flogf —f+ 1) ifk<p, f:= %,f}ogf_f_i_ le Ll(T)
The function I(-;p) is called relative entropy with respect to p and agrees with A*.

Because of some necessary comments on that result, the main points of the proof are
demonstrated

Sketch of Proof. The moment generating function for the Poisson process was given in
section 1.1.3, and therefore passing to the limit yields

A(f) = —/X[1 ~of]ar (2.3)

for any continuous f with bounded support. Moreover, A is Gateaux-differentiable in a
neighborhood of f with

ANl = AU +tl-o = [ gelar

Therefore B.- ({% € - }) satisfies a large deviation principle with rate function A*, which

can be identified as the relative entropy with respect to 7 by solving the variational
principle. O

Remark 39. Instead of the intensity measure r7 for an increasing factor r a sequence
(7n)n of intensity measures with 7 — 7 is sufficient for the limit in equation (2.3) to
exist, which is exactly the situation in section 4.5.

Particularly the case X = N is important for sections 4.5, 7.2 and 7.3, where the
intensity measure 7 is a finite measure of the form

T=Y ij(sj (2.4)

j=1

for certain parameters z € (0,1] and o > 0. There even stronger results hold and are
required: In section 4.5, z = 1 and o > 2, the test functions are allowed to have an
unbounded support, but stay bounded; and in chapter 7, « = 1 and z < 1, the test
functions are allowed to grow linearly. These stronger results have to be justified.
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2.3. Deviations for Brownian Motions and Brownian Bridges

In the first case, 7(j) = j~¢ for some o > 2, for f and g bounded the following two
estimates hold

for constants ¢; > |f| and ¢z = |g|. The first estimate ensures that the domain of A
contains an open neighborhood of 0, the second ensures the differentiability.

Corollary 40 (Large Deviations for weak topology). The large deviation principle of
the family of Poisson processes B, v > 0, on N with T given by equation (2.4) for
a > 2 and z < 1 in theorem 38 holds true on M(N) equipped with the topology of weak

convergence.

For the second case, 7(j) = ZT.j, let |f(j)] < c1(1+7) and |g(j)] < c2(1 + j), then

A=) & (ef(j) —1) <3 CapTees)

=17 =17
dA(f)[g] = Z ig(j) ef0) < ey Zzﬂ ec1(147)
=17 =1

For sufficiently small ¢q, the rhs. of the first equation converges, hence the domain of A
contains an open neighborhood of 0, and the second estimate yields the differentiability
of A in the domain of its convergence. Let the »*-topology be the topology on M(N)
generated by these at most linearly growning functions.

Corollary 41 (Large Deviations for *-topology). The large deviation principle of the
family of Poisson processes B.r, r > 0, on N with 7 given by equation (2.4) for o =1 and
z < 1 in theorem 38 holds true on M(N) equipped with the topology of *-convergence.

2.3. Deviations for Brownian Motions and Brownian Bridges

The model to be introduced in section 3.1 deals with measures on Brownian loop spaces.
Particular large deviation principles for Brownian motion can serve information about
the asymptotic behaviour of these measures for increasing and decreasing loop lengths,
respectively. The behaviour for long loops relies on theorem 44, which is a generalisation
of Schilder’s theorem, see e.g. Dembo and Zeitouni [DZ98, thm. 5.2.3].
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2. Deviation Principles

Theorem 42 (Large deviations of Brownian motion, Schilder). Let (Wi)e[o1] be a
Brownian motion. Then for Borel measurable A,

liminfe?log P(eW € B) = — inf I(y),
e—0 y€int A

limsupe?logP(eW € B) < — inf I(y),
e—0 yecl A

where I(y) = Hsz s a good rate function.

Schilder’s theorem is a particular case of a large deviation principle for general centered
Gaussian measures on separable, real Banach spaces [DS00, thm. 3.4.12]

Definition 43 (Wiener quadruple). (E, H, S, P) is a Wiener quadruple if
i) E is a separable, real Banach space,
ii) H is a separable, real Hilbert space,
iii) S : H — FE is continuous, linear and injective,

iv) P is a Gaussian measure on R, i.e.

[ explitai] Pan) = exp [ 31574l

for all A € E*, where S* : E* — H is the adjoint map of S.

Theorem 44 (Large Deviations of centered Gaussian processes). If P is a centered
Gaussian measure on the separable, real Banach space E, then there exist a separable,
real Hilbert space H and a continuous, linear injection S : H — E such that (E, H, S, P)
is a Wiener quadruple. Moreover, if (E,H,S, P) is any Wiener quadruple, then S is a

compact map, satisfies
1/2
2
I8 < ([ elutan))

and the family (pu())n>1 satisfies a large deviation principle with rate function

(@) = {;Hslxuif if v € S(H)
+00 if € E\S(H)

For the the Wiener measure W7 on [0,T], E = {z € C([0,T],R?) : 2(0) = 0}, H is
the space of absolutely continuous functions whose derivatives L?-norm is bounded and
S is given by

(Sh)(t)z/0 h(s)ds.
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2.3. Deviations for Brownian Motions and Brownian Bridges

S* is computed to be
T
(S*N) (1) = / Ads),
t

from which the covariance follows as
T T
QN = (S*A, S*X) — / / s At N (ds)A(dD). (2.5)
o Jo

In case of the Brownian bridge on [0,7], E gets the additional condition z(T") = 0, H
gets the condition that the integral over [0, 7’| vanishes, and the kernel for the covariance
in equation (2.5) is replaced by s A t — 8% Particularly S—! is still the derivative.

Therefore, if B = (Bt)[o1] is a Brownian bridge, then the probability of the event
{supteo,1] [ Bt| = L} vanishes exponentially fast as L — oo. More precisely

1
lim — logP| sup |Bi| > L | = -2,
Lo L2 <t€[0,1]

and Brownian motions and bridges are very unlikely to leave a large region at least once.
On the other hand both processes are very likely to leave very small regions. The precise
statements about the small ball probabilities are given by Li and Shao [LS01, thm. 6.3].

Theorem 45 (Small deviations of Brownian bridges; Shao, Li). Let (Bt)o,1] be a
Brownian bridge. Then

ii_r)r(l)az log P(|| Be||, <) = 5

The deviation results are going to be used in the section 3.1 to get further insight into
the behaviour of the Brownian loop measure, which is going to be constructed there.
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3. Construction of the ideal Bose Gas

This chapter is devoted to the construction of the ideal Bose gas. The initial point is
the already mentioned work of Ginibre [Gin71], where inter alia a Feynman-Kac repre-
sentation of a Bose gas is derived. His results restricted to the non-interacting case are
interpreted in terms of point processes, which leads to a Poisson process on a space of
loops.

For the construction of the Poisson process the construction of the measurable space
of composite loops (X ,B(X )) together with a ring of bounded sets By(X) and a locally
finite measure p is sufficient. The space of loops is constructed in definition 46, followed
by the Borel-o-algebra and the ring of bounded Borel sets in definition 48. Subsequently
the intensity measure p is constructed. p is shown to be invariant under a group of
translations isomorphic to R% and therefore permits a disintegration with respect to the
Lebesque measure. Two important consequences are its local boundedness, lemma 51,
and the absence of atoms, lemma 52. The section concludes with an application of the
deviations for Brownian bridges of section 2.3 giving a deeper insight into the behaviour
of p. Particularly the weight of p for long loops in a fixed region drops exponentially
fast, lemma 54, and the weight for short loops is exponentially close to the volume of
that region, lemma 55.

3.1. The Loop Space and the Brownian Loop Measure

Ginibre [Gin71] studied quantum particle systems in thermal equilibrium by means of
their reduced density matrices. He deduced an integral representation for the reduced
density matrices, in which, due to Feynman-Kac formula, an integration over closed loops
occurred. For Boltzmann Statistics it turned out that these closed loops are trajectories
on the short time interval [0, ] which return to their starting point.

The Quantum statistics, in particular the interesting Bose statistic, needs a sym-
metrisation procedure to be introduced. This procedure has some peculiar effect on
these closed loops: A particle does not need to return to its starting point, instead it
may move to a different particle’s starting point. Hence he gets composite closed loops.
Next we construct the basic objects following the requirements of Ginibre’s results.

Fix the inverse temperature 8 > 0.

Definition 46 (Loops, Space of loops).
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3. Construction of the ideal Bose Gas

i) For an arbitrary integer j > 1 a j-loop is a continuous function z : [0, j3] > R?
with z(0) = z(j5).

ii) The set X; of these j-loops is called the space of j-loops.

i11) The space of loops is

x=Jx

j=1

The image of a j-loop z in R? represents j simultaneously moving particles starting
at z(kB), k =0,...,7 — 1 and changing its positions during a time interval of length f.
:L‘([kﬂ, (k — l)ﬁ]) is the trace of a single particle or elementary component.

Each of the spaces of j-loops is endowed with the Borel topology B(Xj;), and X is
endowed with the corresponding disjoint union topology, that is the finest topology such
that the canonical injections X; — X are continuous. Let B(X) denote this topology
on X.

Lemma 47. B(X) consists of sets of the form Uj21 Bj, where Bj € B(X;) for every j.

The pre-image of an open set of any canonical injection X; — X is always open and
further sets cannot be added to X keeping the injections continuous. B(X) is much finer
than the product topology, which is generated by the canonical projections X — Xj.
The latter only admits sets of the form of lemma 47, where all but a finite number of
Bj’s is allowed to differ from X;. However, the o-algebras generated by both topologies
agree due to the countability of the index set.

Let By(R%) be the ring of bounded Borel sets of RY, which is a partially ordered set
when endowed with the inclusion (By(R%),<).

Definition 48 (Bounded sets). For A € By(R?) define the set of bounded sets of X to
be
Bo = Bo(X) = {B e B(X): B € X, for some A € Bo(Rd)}

where Xy is the set of all the loops contained in A:
XA ={ze X :rangex € A}.

Therefore a loop x is contained in some region A, whenever the image of the loop is
fully contained in A, for which 2 < A is written; a set of loops is bounded, whenever there
exists some bounded region A, which contains these loops. Clearly, if Ai, Ay € By(R%)
are two disjoint bounded regions, then X, U X, S X\, A, Without equality in general,
since loops may start in one region and cross the other one.

For s € R? let

T, : X — X, Tex =x+ s
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3.1. The Loop Space and the Brownian Loop Measure

be the shift of a loop x by s and 7 = {Ts},ga. 7 is a translation group acting on the
space of loops X, each T shifting loops as a whole by s € R

Thus the space of loops and a ring of bounded sets B(X) is constructed. A Poisson
process on (M(X), B(X), Bo(X)) is defined by its intensity measure, whose construction
is the next aim. Let g be the density of the centered normal distribution on R? with
covariance matrix 31 and consider on (R%)7 the measure

ﬁj(da) = ’(ﬁg(al — (I()) .t @bg(aj,l — ajfz)d)ﬁ(ao — ajfl)dao e daj,l.

With abuse of notation let 7 be the corresponding translation group on (R%)7 with
each T shifting each of the j components by s € R?. Then p; is T-invariant and the
factorisation proposition 14 applies.

Lemma 49 (Disintegration of p). p; permits a disintegration

pi(f) = (2nB5) 4> // flag;ay ..., aj,l)\I’;?f)ﬂ(dal, ...,daj_1)dag, (3.1)

where ‘ii?oﬂ is the distribution of a random walk bridge of length j starting at ag and
having normally distributed steps.

Proof.
ﬁj(f) = /f(ao, ey aj_l)wg(al — ao) . 1/}g(aj_1 — aj_g)’(/Jﬁ(ao — aj_l)dao ce daj_l

—ap)? Zas 1)2
(QWB)_d // f(ao;al...,aj_l)exp _(al Qﬁa()) o (ao 20’/8J—1)

X wﬁ(@ — al) e Ibg(aj_l — aj_g)dal e daj_ldao
(271'5‘]’)_”[/2 // flag;ay ... ,aj,l)@?,oﬁ(dal, ...,da;_1)dag

with \I/’]loﬁ the probability measure of a random walk starting at ag with normally dis-
tributed steps conditioned on returning at the j-th step to the starting point.

In choosing f only depending on ag, one gets the prefactor due to j convolutions of
normal distributions. O

Therefore p; acts in the following way: The first component is weighted according
to a multiple, which depends on j, of the Lebesgue measure on R%, and the remaining
ones are weighted according to a random walk bridge of j steps given by the probability
measure @?"ﬁ Figure 3.1(a) shows such an arrangement of some points. In the next step
these points are connected in the corresponding order in a way such that the resulting
measure is translation invariant. Hence pj;, which acts on (Rd)j , is lifted to a measure
p; on the space of j-loops X; such that the translation invariance remains true for p;.
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3. Construction of the ideal Bose Gas

az s

ag as ag as

aq aq

(a) points in R? (b) corresponding random walk loop

Figure 3.1.: Construction of a 6-loop

More precisely, let p : X; — (R?)7 be the projection z — (z(0),z(8),...,2((j — 1)3))
and p; be a T-invariant measure on X; such that p; o p~t = p;.

Figure 3.1(b) shows the projection of the linear interpolation of the points of fig-
ure 3.1(a) in R% A further possibility is to choose Brownian bridges instead of the
linear interpolation. Any 7-invariant choice of p; satisfies automatically a representa-
tion analogue to equation (3.1), therefore to each p; corresponds a probability measure
\Ifaoﬂ. We denote by p; the measure on X; obtained by choosing Brownian bridge in-
terpolation for which \Ilao is the probablhty measure of a Brownian bridge of length j3
starting at ag. Furthermore with abuse of notation, by p; we denote the measure on X
constructed with the linear interpolation, then consequently \I/ao denotes the probabrhty
measure of a random walk bridge of j steps starting at ag. Note that neither p; nor p;
is a probability measure.

Definition 50 (Loop measures).

i) pj is called the Brownian loop measure on X; and \II?O the distribution of a Brow-
nian bridge of length jG starting at ag obtarned from the disintegration of p;,

pi(f) = (2m37)~Y? //f YW (d)dag.

ii) p; is called the random walk loop measure on X; and \I/‘IO the distribution of a
random walk bridge of j steps starting at ag obtalned from the disintegration of
pj:

pi(f) = (2737) d/2/ flx \Ilao (dz)day.
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3.1. The Loop Space and the Brownian Loop Measure

In the sequel the constructions can be carried out with p; as well as with its bared
version. However, most of the results do not depend on the choice, particularly the
ones of chapter 4. Whenever differences occur or only one of these measures is used, an
explicit hint will be given.

Each of these measures p; will be, up to a constant, the intensity measure of a Poisson
process on X, and the superposition of these will lead to a Poisson process on X with
intensity A

I
Pz = = Pjs (3.2)
=Y
where the parameter z € (0,1] is the fugacity. The latter Poisson process is well-defined,
if the intensity measure p, is o-finite.

Lemma 51. For any z € (0,1] and any d > 1, p, is a o-finite but infinite measure on
X.

Proof. Basically the o-finiteness is directly concluded from the disintegration lemma 49,

that is for every j € N
osTl = _ A
& (2n37) 7

holds with s : X — R? being the projection on the initial point of a loop, s : x > z(0)
and A denoting the Lebesgue measure on R?. Hence

pros™h = (2m8) Vg, a(2)), (3.3)

where gq : [0,1] = Ry U {0} is for any o > 0 defined as

2J
9a(2) = D - (3.4)
j=1 J
The claim follows from the finiteness of g, on [0, 1] for every o > 1. O

Observe that for 0 < a < 1 the series g, is only finite on [0,1) without the right
boundary. Furthermore g, is strictly increasing and continuous whenever it is finite.

A further property of p, which follows directly from 7 -invariance or from the disin-
tegration is the absence of atoms. Since any locally finite measure on R? with atoms
cannot be translation invariant.

Lemma 52. p, has no fixed atoms.

Lemma 51 gives a bound from above for p,(X4) for bounded A, which in fact is really
crude since for every bounded region, loops z € X; for very large j hardly stay in A
and hence do not contribute significantly. The next lemma shows that nevertheless the
bound of lemma 51 asymptotically is the best one for sequences of cubes.
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3. Construction of the ideal Bose Gas

Lemma 53 (Large cube asymptotics). For the sequence of cubes given by Ay, = [—k, k]?,

. pi(Xay) N —dj2
dm R @A

Proof. Because of Lemma 51
[ 1 @py(da) < n) R,

and therefore the limit is bounded from above by the correct value. If A} = [-% %] and
b: X — {ze X :x(0) =0} shifts a loop to the origin, b : z — x — sz, then clearly

X, D{xeX:smeAz,bxeX%}
and
[, @yt > [ 1y s, Gr)pytan),
which tends to the desired quantity. O

In lemma 53 loops are fixed to a certain length and a statement about increasing
regions the loops live in was derived. The next aim is to fix a cube with given side
length and to get results on the behaviour when varying j3. This includes varying j at
fixed inverse temperature (8 as well as varying [ at fixed length j.

Lemma 54 (Long loop asymptotics). Fiz A, = [—k,k]?. Then the contribution of
p;i(Xa,) as j — oo can be estimated by

1 2% \ ¢ n2d
li 1 v (Xp )| € —=5 3.5
hmsup 75 g[(w) Pil Ak)] 2 (35)
o1 27k \ ¢ 72d
i e (25) 0| > 0

for evey v € (0, 1).

Lemma 54 gives estimates on the contribution of p;(Xy,) as j — o0. Two effects can
be seen: firstly long loops hardly stay in small regions, which yields the decay on the
exponential scale, and secondly the disintegration, from which followed that the mass of
loops which start in Ay, is (2773)~%?2 times the volume of Ay. In both cases j may be
replaced by [, i.e. the estimates also hold as the inverse temperature increases.
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3.1. The Loop Space and the Brownian Loop Measure

Figure 3.2.: Loops in A, with
their starting points
marked. The black
loops start inside the
small cube and stay
completely inside the

¥ large one. The grey

loops either do not
start inside the small

2 cube or leave the large
one.
2k
Proof. By theorem 45,
1 .
lim — log \Ifg-)ﬁ({x :osup |2'(t)| < k,i=1,... ,d}) = —C, (3.7)
j— j B ’ 0<t<j3
m2d

where C' = £-7. Because of the disintegration of p; we have to estimate the behaviour
of \I!;’“% if the starting point ag is allowed to be any point of the cube.
Clearly for any ag € Ay

1’?%({37 cx(t) e Ay, te [O,jﬁ]}) < \I/?ﬁ({x cx(t) € Ag, t e [0,]’6]}),

and therefore p;(X,,) can be estimated from above by

pi(Xa,) < (2k)d‘1’?,ﬁ<{x rx(t) € Ay, te [O’jﬁ]})

and the estimate (3.5) holds.

For the lower bound divide Ay into two parts: a centered inner cube A’ of side length
2¢ < 2k, where c is chosen later, and an outer part, see figure 3.2. On the outer part we
forget about the contribution of the loops and only estimate the contribution in A’. Let
s: X - RY sz = 2(0) be the projection of a loop on its starting point.

pi(Xn,) Z pj(Xp, n{ze X :sxe AI})

> (2c)d\115{6({a: s )| <k—ci=1,..., d})

Finally choose v € (0,1) and ¢ = vk to obtain the estimate (3.6). O

Instead of ¢ = ~k the choice ¢ = k7 for appropriate v is also possible with the
corresponding consequences on the lemma.
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3. Construction of the ideal Bose Gas

(a) random walk loop configuration (b) Brownian loop configuration

Figure 3.3.: Configuration of loops

Lemma 55 (Short loop asymptotics). Fiz Ay, = [k, k]?.
2k
V2my 0

. . 2k - 27.2
lim sup j 5 log ( : ) pi(Xa )| < —=2d(1 —~)%k
550 \/W J( k) ( )

—d
lignigfjﬂlog [1 — ( ) pj(XAk)] > —2dk?,

for each v € (0,1).

Proof. Since

W ({a: s i) > ki=1,....d})
0<t<jp

=1- \IJ?”@<{:C : sup |z (t)| < k,i = 1,...,d}),
0<t<jp

the arguments agree with the ones of the proof of lemma 54 with the small deviations

replaced by the large deviations of Brownian bridges.

Finally we collect the results of this section and define the Bose gas.

O]

Definition 56 (Ideal Bose Gas). The ideal Bose gas with fugacity z € (0,1] is the

Poisson process P,, on M'(X) for X given in definition 46.

Figure 3.3(a) shows a realisation of P;, and figure 3.3(b) a realisation of P, . Since p, is
T-invariant, P, inherits this invariance with each T now shifting complete configurations
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3.1. The Loop Space and the Brownian Loop Measure

of loops ;1 € M'(X). B, is indeed a simple Poisson process since by lemma 52 its intensity
measure p, does not have fixed atoms, loops in a configuration g occur at most once
P -as. _

On fixed cubes Ay = [k, k]¢, P, realises j-loops with intensity Zj—.ﬂpj, which is close

to (273;)~%2 by lemma 55 for small j and close to 0 for large j by lemma 54.
J
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4. Limit theorems and Extremal Measures

This chapter is devoted to statistics of the particle system described by F,_. The Poisson
process B, describes the grand canonical ensemble of a non-interacting particle system,
from which by conditioning on certain observations further ensembles can be deduced.
Locally, for each A € By(R?), these observations are given by a o-algebra £, such that
the family E = {€A}pep,(ray 18 decreasing. The local characteristics are then given by

T = B (- [En). (4.1)

m = {ma}a describes a particle system locally, therefore one is interested in the set
C = C(r) of all stochastic fields P which locally look like 7:

P(plEr) = ma(-, ) P-ass. (4.2)

Once C' is identified, its structure needs to be clearified. Clearly C' is a convex set.
If C' contains exactly one element, the local characteristic m determines this element
uniquely. Otherwise a phase transition is said to occur. Due to the convexity, whenever
a subset of C' is given, further elements can be obtained by convex combinations, hence
are the barycentre of that combination. The basic question which follows is if there
exists a subset C, such that every P € C can be represented uniquely as the barycentre
of this subset of extremal points under a certain probability measure.

Let (Ap)r © Bo(R?) be an increasing sequence of bounded sets which exhausts R,
such as an increasing sequence of centered cubes. Furthermore let

En=[) &

AEBO (Rd)

be the tail-o-algebra of E. Since By(R?) is directed from above, i.e. for any two bounded
sets there exists another bounded set which contains the former two, the intersection
over the o-algebras for all bounded sets A may be restricted to the countable family
(Ag)r while keeping equality. Due to this fact and monotonicity of (€a, ), for every
P e C(m) the limit

P(p|€x) = lim mp, (-, ) (4.3)

exists P-a.s. As outlined in Dynkin [Dyn78], a o-algebra £y is sufficient for a class M of
probability measures, if there exists a probability kernel @, such that for every P € M,
P conditioned on &y is given by @,

P(plEn) = Q.(p)  P-as. (4.4)
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4. Limit theorems and Extremal Measures

If even Q,, € M, then &y, following Dynkin [Dyn78], is called H-sufficient. Furthermore,
if @ is the weak limit of a sequence (Qy)x, then the latter sequence is called asymptot-
ically H-sufficient. In the given situation for an increasing sequence (Ay); of bounded
regions, (ma,)r is indeed an asymptotically H-sufficient statistics for the set C(m) of
stochastic fields. Furthermore there exists a subset A of extremal points of C, such that
every point process P can be written as the barycentre of this set of extremal points
under a probability measure, and the extremal point are exactly those, for which the
probability measure is just a Dirac measure.

Hence the programme is the following: the first major step is to determine the limiting
kernel ). Set Cy () the set of limits

lim TAL (/Lkv ')7
k—ao0

which is, as a measurable space, called the Martin-Dynkin boundary of w. The essential
part A of the Martin-Dynkin boundary will be the set of those P € Cy n C, for which
the limits ) are P-a.s. constant,

Q[A(A) = P(A) P—a.s.(u).

The Martin-Dynkin boundary technique has its origin in the works of Dynkin [DynT71a,
Dyn71b] about general Markov processes. The extension to specifications was studied
intensely by Preston [Pre79] and Follmer [F6175] and finally the statistical interpretation
with various applications, including Follmer’s work, is outlined in Dynkin [Dyn78]. As
a consequence, a characterisation of Poisson processes by their local specifications was
given by Nguyen and Zessin [NZ77].

The aim is to examine the role of E, its tail-o-algebra £ and its effect on the corre-
sponding set C of stochastic fields. They are precisely defined in the first section 4.1.
The specifications associated to B,, and hence the corresponding ensembles are obtained
through different ways of counting the loops inside a bounded region: in particular
{Fa}a associated to the microcanonical loop ensemble counting loops according to each
type, {Ga }a associated to the canonical ensemble counting loops without discrimination
and {€) }a yielding the grand canonical loop ensemble. Of special interest will be {H }o
associated to the canonical ensemle of elementary components counting the elementary
components. This is a biased version of the canonical loop ensemble in which every loop
gets an additional weight according to its length, but, as will be seen, the behaviour is
fundamentally different. Its importance is due to the fact that it describes the canonical
ensemble of an ideal Bose gas.

Starting with P, for a fixed z in equation (4.1), the main task is to determine the
possible limits @ in equation (4.4), which is done for various loop ensembles in sec-
tions 4.2 — 4.4. By identifying their Laplace functionals, these limits are identified in
propositions 61 and 64 for the microcanonical and the canonical loop ensemble as mixed
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4.1. The Construction of Martin-Dynkin Boundaries

Poisson processes Py,, and Py, respectively, and in proposition 66 as the Poisson pro-
cess P, for the grand canonical ensemble. Therefore only in the latter ensemble no phase
transition occurs, and the extremal points are the corresponding Poisson processes, re-
spectively.

In section 4.5 the canonical ensemble is the main subject. Proposition 72 identifies
the limits ) as mixed Poisson processes P,, by means of a principle of large deviations.
Consequently, theorem 73 shows that the essential part of the Martin-Dynkin boundary
of the canonical ensemle consists of the Poisson processes P, with z € [0,1] for d > 3
and z € [0,1) for d = 1,2. A major observation is the fact, that the particle density
of B,, is always bounded from above by a critical density, which is given explicitly and
agrees with the one given in physics literature, see e.g. [Hua87].

4.1. The Construction of Martin-Dynkin Boundaries

4.1.1. Local Specifications and Martin-Dynkin Boundary

Consider the measurable space (M'(X), £) of simple point measures on X and fix a with
respect to (Bo(R%),Z) decreasing family of sub-o-fields E = {£x}a of £. A probability
kernel 7’ is a mapping M'(X) x &€ — R with the properties

i) Vpe M (X) : 7'(u, -) is a measure,
ii) VE € £ : 7'(-, F) is E-measurable.

An E-specification m = {ma} is a collection of probability kernels on M'(X) x € such
that

i) VA€ & :mp(-,A) is Ep-measurable,
i) VA€ Ep :mp(-,A) = 14,
iii) Yue M (X) : mp(pu, M (X)) € {0,1},
i) VA S ANy = mama.

A stochastic field with respect to the E-specification is a probability measure P on
M (X)) such that its conditional expectations given the o-algebras in the family E are
given by the corresponding kernel,

P(-[EA) (1) = ma(p, +) P-a.s.

Let C = C(w) denote the set of those stochastic fields. If C' contains more than one
element, then P is not uniquely defined by the specification and one says that a phase
transition occurs.
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4. Limit theorems and Extremal Measures

Fix an increasing sequence (A), in Bo(R?) exhausting R? and satisfying Ay, < int Ay,
for any k. Furthermore denote by Cy = Cy () be the set of all limits

lim 7, (pk, -) (4.5)
k—0

for sequences (ug)r € M (X). Cy does not depend on the choice of the family (Ag)g.
Since X is polish, so M'(X) and the set of probability measures on M"(X) are, and
since Cy is complete, it is polish when endowed with the induced Borel field Cy,. The
Martin-Dynkin boundary associated to 7 is the measurable space (Cy,Coo).

Finally, let @, for any € M*(X) be the limit

Qu = lim 7w, (1, ). (4.6)
k—a0
Definition 57 (Essential part of the Martin-Dynkin boundary). The essential part A

of the Martin-Dynkin boundary is the set of those P € Cy n C, for which the limit Q.
is P-almost surely constant, i.e.

Qu(A) =P(A) for P-a.a. p. (4.7)

4.1.2. Counting Loops

The crucial point is the choice of the decreasing family [E, since any stochastic field
conditioned on the g-algebra £, is given by the corresponding kernel 7. In this point
process case sub-g-algebras may be obtained from different ways of counting the loops.
The basic properties that have to be fulfilled are monotonicity and measurability prop-
erties. At first define a collection of counting variables {na}xep,(ra), €ach ny counting
the number of loops of each kind in some region A

na s MI(X) > MHN),  nape= > pu(Xa,)d;, (4.8)
=1

where X ; := X; n X} is the set of j-loops which are fully contained in A. nu is indeed
an almost surely finite measure under B, since F,_ is locally finite and hence (x, ; < o
almost surely for any bounded region A. From the definition immediately follows that
nap < narp for each configuration p and bounded regions A € A’. Therefore spatial
increments can be defined, that is for A, A’ € By(R?) with A < A’

NATA - M(X) - Mf(N), NAT A 1= A7 — NA.

The family of increments defines the outside events and the family of outside events
E = {&x}a,

Er = U({nA@A =n}:ANe Bo(RY),Ac N, ne /\/lf(N)), (4.9)
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4.2. The Microcanonical Loop Ensemble

which is the smallest o-algebra, such that the increments of the region A are measurable.
In keeping the terminology of Preston, the stochastic fields corresponding to E form the
grand canonical loop ensemble.

Adding more detailed information about the interior leads to the family F = {Fa}a,

Fr=EpvV U({”A =n}:ne M}(N)), (4.10)

which is associated to the microcanonical loop ensemble.
For a configuration € M (X) let cape = nap(N) be the total number of loops inside
A and

gAngvo({cAzk} :k:eN), (4.11)

then G = {Gp}a defines the canonical loop ensemble. ny passes its monotonicity and
measurability properties on to cy.

Finally, much interest lies in what happens if we give different weights to loops of
different lengths, in particular we consider the counting variable

Ny M(X) >N, Nap=>_ jnap(i), (4.12)

j=1

which counts the number of elementary components of the loops inside A. It is clear
that N, fulfills the same monotonicity and measurablility properties of the increments
as cp. Let

Hy =& va<{NA :k}:k:eN) (4.13)

and call the corresponding ensemble H = {H } o canonical ensemble.

In the following sections specifications with respect to these decreasing families and
their limit points are going to be discussed: In section 4.2 the microcanonical loop
ensemble F, in section 4.3 the canonical loop ensemble G, in section 4.4 the grand
canonical loop ensemble E and finally in section 4.5 the canonical ensemble H.

4.2. The Microcanonical Loop Ensemble

In this section the specification for the family of sub-c-algebras F = {Fj } is discussed.
As an intermediate step, the Poisson process B, , obtained from F, via the mapping
np to deduce an appropriate representation of P,_ is introduced. The first step to com-
pute the Martin-Dynkin boundary will be done in proposition 61, where the stochastic
fields conditioned on the tail field Fo, of F are identified as mixed Poisson processes.
Theorem 62 states the main result that the extremal microcanonical stochastic fields are
Poisson processes with different weights on loops of different lengths.
Fix a fugacity z € (0,1].
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4. Limit theorems and Extremal Measures

Lemma 58. For each A € By(R?), ny maps the simple Poisson process B, on M'(X)
into a Poisson process B, | on ./\/lf(N) with finite intensity measure T, A given by

reald) = S py(X) (4.14)

Proof. Indeed, if n € M}(N) and n* € M'(NV) denotes the support of 7, then

210 pi (X5 )19)
B, . (n) =B (nar =1n) = exp(—p.(X AT
A0 = B (o =) = el TT =805
7oA ()19
= eXP(_Tz,A(N)) H ’7.'7
e 10!
since p,(Xp) = 7 A(N). O

Let p. A denote the normalisation of the finite measure p, A, then the n-convolution
Pp"m A of the probability measures p;a,j = 1 for some 7 € Mf(N) is defined as

which represents the superposition of loops of a given length j according to the number
1n(j). The B, ,-combination of that convolution is

Ppa= Y B (P, (4.16)
neMi;(N)

Accordingly, ]5,)27,\ is given by a two step mechanism: At first choose a composition

n e Mf(N) defining the number of loops in some bounded region A and then realise a

configuration according to this composition. An effect is that the fugacity z does only

affect the choice of the composition and not PZ A

These probability measures are closely related to the ideal Bose gas restricted to
bounded sets A, P,_ .

Lemma 59. B, (Alny =n) = P, (A).

Proof. Since exactly K = Zj n(j) loops are contained in A and if they are ordered in
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4.2. The Microcanonical Loop Ensemble

increasing length,

1
B.a(An{na =n}) = exp(—p:(Xn)) ) —x
n=0
/ / LaL sy (s o O )poa(dr) - po p (i)
= exp(— pz(XA))K,

y /..-/1,41{%:77}(511 60 )pen(d) - pon(day)

2100) p s (X 0 )19)
= eXP(_Pz(XA)) H . (-J) Y X
e MInG)!
y /.../1A1{M=n}(5m oo G )P (s day)
Zjn(j)pj(XA)n(J)

= exp(—p=(Xa)) [ PIA(An{na =n}),

n(@n(4)!
e "G

Finally, setting A = M'(X) the normalisation constant is obtained and using the fact
that P;A(n,\ =n) = 1, the assertion follows. O

Corollary 60. sz,A =P .

Proof. This follows immediately since

Ppal@)= > B )P(»)
neM;(N)

= Y B (MBa(plna =n) = B.a(®)
neMi;(N)

for any measurable, non-negative function ¢. O

That way a new representation of B, is found. For u € M'(X) let u™ be the
restriction of p on X§, define on X x M'(X)

Al @) = B a (@(' + M(A)) ‘nA = nAu)

= ngﬁ(@(- +/~L(A))>
and observe that 7} is a probability kernel. 7" = {7} is indeed an F-specification,

which follows from the conditioning procedure of the Poisson process. By definition,
P, € C(rF), hence the set of stochastic fields C(n") associated to " is not empty.
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4. Limit theorems and Extremal Measures

Let (Ag)r be the sequence of cubes of lemma 53, Fo, = [, Fa, be the tail-field, and
P e C(r"). Then for p € L(P),

P(p|Fw0) = klgrgo W}lik( ) P-a.s.. (4.17)

Therefore the limits @, = limy, 7I‘£F\k (1, -) exist P-a.s. in g and are by construction con-

tained in the Martin-Dynkin boundary Co(7").
Define the j-loop density of some configuration u in Ay as

na, ()
Yig(p) = —F=5 (4.18)

! Pj (X Ag )
let Y be its limit as k — oo provided that the limit exists and write Y = (Y});. Let M be
the set of all those € M'(X), such that Y exists for each j € N and is finite. Note that
instead of the volume of Aj the volume of X, is used to define the density. However,
it has been shown in lemma 53 that, asymptotically, their volume is the same up to the

constant (27w3j ~d/2 For notationally purpose we denote the convex y-combination by
J
yep:i= yip; (4.19)
j=1

for any sequence y = (y;); of non-negative real numbers. These preparations lead to the
limits

Proposition 61. Let f : X — R be non-negative and measurable with bounded support,
we M and Y (u) e p(exp(—f) - 1) convergent. Then for any P e C, p € L'(P)

P(plFi) = lim 75, (- 0) = Brap(p)  Peos. (4.20)

Proof. At first existence and equality of the following limit is shown,

i Lo () = L, () = exo (= Vs (1= ep(=0) ). (@)

koo T j=1
Let NV be the set of ”good configurations”,
N={peM(X): klim wﬁk(u, +) exists}.
—>0

Let f : X — R be non-negative and measurable with bounded support and such that
f(exp(—f) — l)d,o # 0, then there exists kg such that supp f < Ay, for k = kg. Provided
penN,

Loty (1) = [ (D), () = [ exp(=(0)) B )
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4.2. The Microcanonical Loop Ensemble

= /exp(—f(ﬂcl) B f(ank,u(N)))ﬁX;:k#(dxla R danku(N))
. nA 1(5)

=TI [ exo(-r@)ma o)™

Je(ma, m)*

na, 1(7)

= H [1 + 0j.As (exp(—f) - 1)]

Je(na, p)*

n @

- 11 { 145 (eXp(—f) - 1)]')]()(”)}%

je(na, m)* pj(XAk)

supp f = supp (exp(— - 1) yields the last line. Since the lhs converges by assumption,

so the rhs does. Therefore N' € M. Vice versa, if ;4 € M, the rhs converges and so the
lhs does, hence M € N and (4.21) is shown.

Immediately follows that @, is a Poisson process with intensity measure Y (u) o p,
which is the claim. O

In case of divergence of the series, L, (f) = 0 whenever f # 0, and there is no suitable
limit for (). Thus it follows that the only possible limits for ), are Poisson processes.

For Fy-measurable ¢ and P € C proposition 61 implies ]P’(go f(Q.)) =P(¢ Py., (f(Q)))
and therefore
Py()ep(Q. = Q) =1 P-a.s.
Particularly, Y; = Y;(u) P-a.s. for each j.

Let AF = {PeCxynC:Q. =P P-as.} be the essential part of the Martin-Dynkin
boundary associated to F. For a state P € C define a probability measure V¥ on AF as

VE(A) = P(Q. € 4),
hence by conditioning
Ple) = PQe) = [ PV (aP)

can be written as a Cox process. Vice versa, any probability measure V on AF induces
a state P € C. This argumentation in combination with proposition 61 results into the
theorem

Theorem 62. The essential part of the Martin-Dynkin boundary of ¥ consists of all
Poisson processes with intensity measure y e p for non-negative sequences y = (y;); such
that y e p is a o-finite measure on X,

AF = {Byep : y ® p o-finite}.
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4. Limit theorems and Extremal Measures

Proof. Let y e p be o-finite. As already seen, B, € C(7F), and by proposition 61 and
its proof
Qu=HFep Brpas.

For arbitrary P e AF,
| POVIEP) =B = Q) Pas

This implies VF = dp,., for some o-finite intensity measure y o p. O

The essential part of the Martin-Dynkin boundary therefore consists of Poisson pro-
cesses with arbitrary intensities of loops of each kind, where the only restriction is the
o-finiteness of the intensity measure y e p.

4.3. The Canonical Loop Ensemble

In the previous section we conditioned on the different types of loops, now we drop this
distinguishing feature and consider the total number of loops. Intuitively, this means
to forget the superposition of the different Poisson processes on each space of j-loops.
We firstly use B, 5 to get an appropriate representation of B,, and show that for any
stochastic field P, P(-|Gy) is a mixed Poisson process (proposition 64), and that the
phases are again Poisson processes (theorem 65). Some details are left out, since they
can be found in the previous section. Throughout this section the fugacity z remains
fixed.

Lemma 63. Let B, = {n € M}(N): > n(j) = k} the set of compositions of mass k,

then ( )k
Pz XA
B'z,/\ (Bk) = E B'z,A (77) = K

neBy,

exp(pZ(XA))

Proof.
B. »(B) = B.alea = k).

Since ¢y is the sum of independent, Poisson distributed random variables, c¢p is Poisson
distributed itself with the given intensity. O

From the decomposition of P,, 5 in Corollary 60 follows

Boalla=en = (3 Bm) X BLMPLG)  (422)

WEBCA;L nEBCA“

for any measurable function ¢ on Xy, which again emphasises the two step mechanism:
At first choose a composition according to some law and then realise the loops according
to the given composition.
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4.3. The Canonical Loop Ensemble

Clearly 7€ = {7{1} given by

(1. 9) =B A <<p(- +u) )CA - cAu>, (4.23)

is a G-specification with B,, contained in C(7®). If (Ay)x is the sequence of cubes of
lemma 53, Goo = [, Ga, the tail-field and P € Co (1), then for ¢ € L}(P),

P(¢|Ge) = lim 7§ (-,¢)  P-as. (4.24)
k—o0
Therefore the limits
. G
Qu = lim 8, (s -) (4.25)

exist P-a.s. in g and are by construction contained in the Martin-Dynkin boundary
Coo(7®) in case of existence.
Let the loop density of a configuration p in Ag be

_ _ CAH
Wi(p) = (Xa)’ (4.26)

and let W be its limit as £ — oo provided that the limit exists. Let M be the set of all
those p € M'(X), such that W exists.

Proposition 64. Let f : X — R be non-negative and measurable with bounded support
and W (p) < 0o0. Then for any Pe C, p € L'(P)

P(¢|Gx) = lim 75, (,¢) = Bv,.(p)  Pas. (4.27)

Proof. Essentially the arguments as in the previous section apply,

CAk/L
p-(exp(— )" o (exp(—f(2)) — 1) 170600 70
Los () = o =9 |1+
A P2 (Xa) ™ p=(Xa,)
- eXp<—W(u)pz(1 - eXP(-f)))-
Hence we get
Lo,(f) = exp( WG (1~ exp(=) ).
that is that @), is a Poisson process with intensity measure W (u)p.. O
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4. Limit theorems and Extremal Measures

Similar to the microcanonical case, if W () is not finite, L, (f) = 0 whenever f # 0,
and there is no suitable limit for ¢),,. Furthermore, the possible limits @), are Poisson
processes.

Since this implies for Goo-measurable ¢, P(p f(Q.)) = P(¢ By, (f(Q.))) one gets

R’V(u)pz(Q- =Qu =1 P-a.s.

Particularly W = W(u) P-a.s. holds.
Let A® = {PeCx nC|Q. =P P-as.} be the essential part of the Martin-Dynkin
boundary of 7. For P € C' define a probability measure VF on A€ as

VH(A) = P(Q. € 4),
for that reason

P(g) = P(Q.(¢)) = / P(¢)VF(dP)

AG

is a mixed Poisson process. Vice versa, any probability measure V on A€ induces a
P e C. All this can be put together:

Theorem 65. The essential part of the Martin-Dynkin boundary of #€ consists of all
Poisson processes with intensity measure wp, for any positive real number w,

AG = {BUPz|w > 0}

Proof. If w is a positive real number, wp, is a o-finite measure on X. Since B,,, € C(7®),
and by proposition 64 Q, = B,,, E,,.-a.s. For arbitrary IP € AT we have

/A POVIAP) =B(p) = Q(p)  Pas

This implies V¥ = 6p, ,. for some o-finite intensity measure wp,. O

4.4. The Grand Canonical Loop Ensemble

This ensemble completes the considerations about loop ensembles, and we do not con-
dition on a number of loops of a given configuration inside a given region. One expects
that there is exactly one stochastic field, and this is the result of theorem 67. For that,
define the kernel as follows

mx (11 ¢) = B (cp( F+ u(A))). (4.28)
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4.5. The Canonical Ensemble of Elementary Components

Similar to the previous sections 7° = {77%} A is an E-specification. For the sequence of
cubes (Ag)k, o = i €, the tail-field P € Coo(7F), and ¢ € LY(P),

P(p|€x) = lim W%k( Q) P-a.s.. (4.29)
k—a0
The limits
Q= Jim X, (u, ) (4.30)

exist P-a.s. in p and are by construction contained in the Martin-Dynkin boundary
Coo(T5).

Proposition 66. Let f be non-negative and measurable with bounded support. Then
Lg,(f) = lim Lﬂ (u,)(f) exists, is non-degenerate and
k b}

L, (f) = exp(=p: (1 = exp(= ). (4.31)

Proof. The proof of the corresponding microcanonical loop ensemble applies with Y; =

z O
3

This means that the Poisson process with intensity measure p, is the only limit, hence
there is no phase transition. We obtain

Theorem 67. The essential part of the Martin-Dynkin boundary of © consists of the
Poisson process with intensity measure p,.

4.5. The Canonical Ensemble of Elementary Components

In sections 4.2 — 4.4 we conditioned on the number of loops, now we condition on the
number of elementary components, and since a j-loop contains exactly j elementary
components, we give more weight to long loops. Hence we are interested in statements
about the number of particles in some bounded region A. Recall from equation (4.12)
that the number of elementary components in a bounded region A is

Nap =Y jnap(j).

j=1

Hence, under P,,, N has a compound Poisson distribution whenever z < 1 for d > 3
and z < 1 for d = 1,2. However, the nature of the sub-o-algebras does not allow a
direct computation of the limits like in the propositions 61, 64 and 66. Similar to the
loop ensembles we define ﬂ'jﬁ\ﬂ as a conditioned Poisson process, represent it as a convex
combination of P, , but instead of these computations we show a large deviation principle
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4. Limit theorems and Extremal Measures

for the mixing measure. If the latter measure converges to a suitable limiting probability
measure, then, since the microcanonical weak limits are known, Wj}\ﬂ will converge as well.

From now on fix d > 3, z = 1 and write p instead of p;. Remark 74 below comments
on what differs in the cases z < 1 and d = 1,2. At first we derive the representation in
terms of P) .

Lemma 68. With Cyy = {n € M}(N) : >_jn(j) = M} being the set of compositions
with first moment M and p e M'(X) a fixved configuration with Nyp = M, it follows

[elv+ s ey B = ¥ Buwrp (o +a®)). @

neCu

Proof. This can be seen from disintegration of conditional expectations like in the be-
ginning of section 4.2. O

If we now condition P,, on the event {Ny = M} on the lhs of equation (4.32), this
turns into B, conditioned on Cjs on the rhs. Define

A (1, 9) = By («p(- +M(A))‘NA = NAM) - /PZA <<P<' +u(A))>PTA(dn|CNAu),

(4.33)

which is indeed a probability kernel on X x M'(X), 7 = {7i}, is even an H-
specification. Like in the previous sections, let (Ag)r be the sequence of cubes of
lemma 53. Before we turn to the analysis of the Martin-Dynkin boundary of =™, we
derive a large deviation principle for B, (-|Cn,,). This one can be shown in using a
large deviation principle for B, (- ). Since the deviation is done for fixed ,u, we write My,
instead of N, v and think of it as an increasing parameter in k such that AL A ‘ converges
to some finite limit as k — 0.

Large deviation principle for B TAk Recall from lemma 53 that the intensity measure
Ta, grows asymptotically like the volume of Ay, and let

(2r3) 42 4.34
J S |Ak| p) ;JH—d I ( )

T represents the critical limiting loop densities. By corollary 40, B, (ﬁ € ) satisfies
M(N) — [0, 0]

a large deviation principle with speed |Ax| and good rate function I
given by the relative entropy with respect to 7,

)

400 otherwise

I(n-T)Z{T(flogf_fH) if w7 fi= Gt flogf—f+1eLl()
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4.5. The Canonical Ensemble of Elementary Components

which means that {I < c} is compact for any ¢ > 0 and for any G € M(N) weakly open

hnl)lggf |A | log B, <{n Al € G}> — inf I(k;T) (4.35)

keG

and for any F' € M(N) weakly closed

Ui
lim su log B —— e F —inf I(k;7 4.36
a1y 1o Ak({” Al }> BRI 430

Large deviation principle for P g (+1Cwm, ). The conditioned Poisson process is abso-
lutely continuous with respect to the unconditioned process, where the density is an
indicator function times a normalisation constant. That way the LDP for BAk trans-
forms into some LDP for B, (-[Ch,).

B, (1|Ch) = (PTAk (exp(—xen) ) exp(xen, () B, ()

where the functional x 4 for some set A € M(N) is defined to be

(%) 0 ifke A
K) = .
xa +00  otherwise

As known in large deviation theory, the rate function for B, (-|Ch,) will be the rate
function for B, ~plus a functional of the form x4 for a suitable set A, see i.e. [DS00].
Because of poor continuity properties of these functionals x4 additional care has to be

taken. Let
Duzz{me./\/l Zyn —u}

be the set of measures on N with first moment u representing the densities of the loops
of the different kinds. Observe that in the weak topology xp, is neither upper nor
lower semicontinuous. But if its upper or lower semicontinuous regularisations are not
infinite for every x € M(N), one may deduce the lower and upper large deviation bound,
respectively, as we will do in the sequel.

Cc

Lemma 69. The upper and lower semicontinuous reqularisations X75¢ and Xlsc of XD,

with respect to the weak topology are

+oo  if Y k() > u

_ (4.37)
0 otherwise

XBo(r) = 40, XBi(K) = {
Proof. First note that x'%\*° = xXinta and Xlsc = Xca4. But cdD, = {k € M(N) :
> jk(7) < u}, hence we get the lower semicontinuous regularisation of xp,. By the same

argument we get int D,, = (cl DS)¢ = J and the upper semicontinuous regularisation.
O
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4. Limit theorems and Extremal Measures

Upper large deviation bound of the partition function. In applying [DS00, Lemma
2.1.7] we get the upper bound as

1
li — logP _ < — inf [I+ ’] 438
P g o8 P (opnen ) < = 10 -

Since xp, is not lower semicontinuous, it is replaced by its lower semicontinuous regu-
larisation on the rhs. We solve the variational problem on the rhs. of equation (4.38),
which is a minimisation problem with a constraint.

Proposition 70. Let z, be the solution of

(278) 2 gu0(2) = u A ¥, (4.39)

where u* = (2775)_d/2gd/2(1) and gq/9 s given in equation (3.4). Then the minimiser k

of

nf, [I + X%ﬂ (4.40)

s given by
J
_ —d/2 2y )
f=(2mB) ) ji+dr2 05-
j=1

Proof. The minimisation of I + Xlei is equivalent to the minimisation of I under the con-
straint Y jk(j) < u. For the moment, assume u < u* and minimise I given »_ jk(j) = v
for any v < u. By the Euler-Lagrange method of conditional minimisation,

I(k) — ij(j) logz = Z/ﬁj <log/;8:§ - 1) + 7(N) — Zlogzjm(j)

j=1 j=1 j=1
= ZKIJ‘ <log F&(]) — 1) + 7(N),
: 27(5)
Jj=z1

which has a unique minimiser on M(N), £ = >_,-; za’ﬁ(j)éj with z, being the solution
of equation (4.39) with u replaced by v. Immediately

I(R) = =Y 2r(j) +7(N) = Y (1 = 2)r(j)

j=1 j=1

follows. Since necessarily z, < 1 and z, is an increasing function of v, equation (4.40)
holds.
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4.5. The Canonical Ensemble of Elementary Components

—d/2

Now let u > u*, so there is no solution of equation (4.39). Let ug = u*—(273)=%=g4/5(1)

be the surplus mass. Define & = 7 and ") = & + “06,, then clearly for all n

> GEMG) =Y GRG) +uo = u

=1 j=1

while 7™ — % weakly. Furthermore

I(7™) = Zk(j) <1og 583 — ) + (/ﬁ(n) + Z;O) (log ’W — 1) + 7(N)

O

Lower large deviation bound of the partition function. By lemma 69, the upper
semicontinuous regularisation x5 of xp, is not finite, and the analogue argument for
the lower bound does not apply. The reason is the sparseness of D, in the weak topology
which even holds for the blow ups D of D, of the form D = {x € M(N): |> jr(j) —
u| < e} for any € > 0. Otherwise this could have been used for some kind of Boltzmann
principle, see e.g. [RZ93].

However, the 2-parameter sets

Dy i= {KEM(N) : ;j;—;(j) < s}, (4.41)

are weakly open. Furthermore

ﬂ m Dm,erE = ClDS,

e>0mz=1
Since now Xp,, ... is upper semicontinuous for any m € N and

A 1
lim lim sup W log B, (exp(—xpmﬁg) 1{XDm,s+s<—L}> = —w, (4.42)

L—o [0

we get for any m and ¢ by [DS00, Lemma 2.1.8] a lower bound

R | .
hﬁl{gf W log B, (exP(—XDpposs)) = — /\il%!) [I + XDm’SJrE} (4.43)
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4. Limit theorems and Extremal Measures

for the system restricted to the first m components. Therefore we get the lower bound
for the original problem as m — o and ¢ — 0.

Consider now the family of minimisation problems on the rhs of equation (4.43). Here
we have to link the two parameters m and s. Since ) j=m jd% is strictly decreasing to

0, there exists mg € N such that for any m > myg, u — (2r3)~%? > iem gd% > 0.

Proposition 71. Lete > 0 and m € N be such that s,, - := u+e—(2n3)~%? > jom jd% >

0 and z(y, ) be the solution of (2r3) =42 ngm j‘fi—iz = Sme. Then the infimum of I +
XDm.s,, . 01 M(N) is attained at ke with

1 .
. 1 Traz J > M
k() = Zomam § Fomey ; (4.44)
€ (27Tﬁ)d/2 {;H}/; 7<m

and as firstly m — o0 and then € — 0, 2(, o) = 2u, where z, is given in proposition 70.

Proof. The first part is similar to the previous proof where the minimiser is given in
equation 4.44. To see the second part, assume for the moment u = u*, then s,, . is not
exactly the m-th partial sum of the series of (27r/8)_d/29d/2(1), but close to it. Observe
that 2, . > 1 for each m > mg and (z(myg))m>m0 is an decreasing sequence for any
€ > 0. Indeed, from

J
z
(2mp) =2 Z d/2 Te= = (2nB)"4? Z ('d/2)

]<m I<m J

immediately follows z(;, .y > 1 and

m+1
_ —d/2 1 —d/2 Z(mvf)
Sm+le = Sme = (27TB) / m < (27Tﬂ) / m

yields the decrease. Finally the sequence (Z(m75))m can not be bounded away from 1

z
(m,e)
js<m  jd/2

for any € > 0 since otherwise the sequence of sums | > > would diverge.
mz=mo

Hence z(, ) — 1 for any € > 0 as m — oo.

For u > u* these arguments apply as well.

Let now u < u*, fix ¢ > 0 such that v + & < u™ and mg be even large enough, such
that sm, e > 0. Then firstly 2, ) <1 for each m = myq follows since

J

z
—dQZ (me) _ dQZ dzz
(271'5) / W = Sm,e < U 27Tﬁ / d/Q = 2 ﬁ / d/2

jsm ]>m j<m
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4.5. The Canonical Ensemble of Elementary Components

Next we show that (2(;, c))m=m, is an increasing sequence in m and tends to z,e. Since

m+1
_ —d/2 1 _dj2 “lme)
st = sme = ()™ > Gno) P

Z(m+1,¢) Needs to be bigger than z(,, .y. Since necessarily (2, -))m is bounded from above
by 1, the sequence converges and the only limit can be z,. since s,, . tends to u + ¢ as
m — o0. By the continuity of g4/ the claim follows as ¢ — 0. O

Since the minimiser of the minimisation problem was unique, the conditioned Poisson
process is asymptotically degenerate and

lim B, ({n: ﬁ e -Hem) = o, (4.45)

weakly. In particular, the case u > u* causes the difficulties in propositions 70 and 71.
See also remark 75.

Martin-Dynkin boundary. Back to Martin-Dynkin boundary technique, we interpret
the boundary condition p € M'(X) as a random element and write capital letters instead
of small ones to emphasise the dependence on u. Let U be the limiting particle density,

U(p) = limg_,q0 %, in case of existence of the limit and put U(u) = oo if the limit
does not exist. For each configuration p with U(u) < oo there exists Z = Z(u) such that

(273) "2 g4p0(Z) = U A u*. (4.46)

The considerations on large deviations lead to the desired weak convergence and we
obtain

Proposition 72. Let f : X — R be non-negative and measurable with bounded support,
PeC and pe M. Then for anyPe C, ¢ € L' (P)

P(¢[Ho) = lim 7 (+,0) =B, (¢)  P-as.
Proof. From equation (4.45) we get

P ({12 Yonar) =

as k — o. Now we can use the results of section 4.2 to deduce that the measures

converge

O

. H _
k:h—I}c}o A (,u, ) - ]-:,)02(”)'
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4. Limit theorems and Extremal Measures

Again the reasoning of the previous sections applies. Since for Hy-measurable ¢,

P(e f(Q.)) =P(ePB,,(f(Q.))) holds, we get
POZ(H)(CJ = Qu) =1 P-a.s.

In particular Z = Z(u) P-as. Let A" = {Pe C,nC|Q. = P P-as.} be the essential
part of the Martin-Dynkin boundary associated to H, then we deduce

Theorem 73. The essential part of the Martin-Dynkin boundary of ©™ consists of all
Poisson processes with intensity measure p, for z € [0,1] and d = 3,

A" ={B.l0<z<1}.

Proof. B, € C(7™), and Q, = P,, P, -a.s. by proposition 73. For arbitrary P € A we
have

LPEVIEAP) =P) = Q(p)  Pas.
This implies V¥ = dp _. B

Remark 74. For d = 1,2, we necessarily start with the intensity measure p, for some
Zz' < 1. By corollary 41, the large deviation principle remains valid with respect to
the *-topology with the relative entropy properly adjusted. The Lagrange multiplier
z, which occurs during the minimisation procedure using p, will be, given p./, some 2
related to z via z = 2’2. The discussion is carried out in more detail in subsection 7.4.
In fact, since gd/Q(l) diverges for d = 1,2, the minimisation problems in proposition 70
and 71 simplify since no mass can get lost.

Remark 75. We constructed the minimiser in proposition 70 and 71 for the weak topology
on M(N), which means that the loop densities ﬁ, the loop densities represented as
measures on N, converge as k — oo for arbitrary A € N. However, for the particle
densities different behaviours occur. For a low particle density u < u* the total mass
is conserved, hence we get convergence for any A — N and any particle is contained in
some finite loop, whereas for u > u* some mass is moved to infinity and lost. Therefore
for the limits @, the particle density U is P-a.s. bounded for any P € C(n™), hence
P-a.s. the limit (4.45) even holds on N endowed with the %-topology. This phenomenon
of bounded particle density shows that a condensation effect is present, but does not
occur with positive probability.

Remark 76. One may collect the surplus mass at an exterior point, say oo, by replacing
N endowed with the vague topology by its Alexandrov compactification N U {oo}. Still
B,, (+|Cwm,) converges weakly to the same deterministic limit. At low density u < u*
the particle densities stay the same, but at u > u* the surplus mass ug reaches co. On
the contrary, by the proof of proposition 70, there is no excess of loops. Hence one may
define a density of particles contained in infinitely long loops, but no density of infinite

loops.
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5. Geometric Aspects of the ideal Bose Gas

In this chapter the point of view is changed from a global one to a local one. Particularly
the loop as a geometric object and the configuration of loops as a collection of geometric
objects in R? are focused.

The basic means are Palm measure and Palm distribution of a point process P of first
order. As outlined in section 1.2, the modern construction of the Palm distribution of
P consists of constructing its Campbell measure Cp and factorising Cp with respect to
the intensity measure p of P,

Cot) = [ [ ha.n) P ap)ota), (5.1)

resulting in a family {P*},cx, see proposition 20. This construction permits the inter-
pretation that P* is P conditioned on the event {C{x} > 0}. Further analysis can be
carried out in case of P obeying additional invariance properties, particularly translation
invariance. Indeed, as shown in chapter 1, B,, is invariant under the translation group
T = {Ts}4epd, i-e. B, is invariant under the translations 75 : X — X, z — s+x for each
s € R?. Under such a condition a result of Mecke [Mec67] is extended: Let s : X — R?,
x > 2(0) be the projection of a loop to its starting point, g : RY — 0o be a non-negative,
measurable and sp.-integrable function, then the Palm distribution can be obtained by
the g-weighted average over all loops of a configuration p which start in the support
of g, and then average with respect to the point process. Hence the Palm distribution
takes the form

P = (s0) (o) [ gttaTmsutdn) Plap) (5.2

Furthermore, in [Mec67] from the stationarity of P the independence of the particular
choice of ¢ is shown.

In chapter 4 the point processes which are a stochastic field for a given specification
were characterised. They are given as a mixture of extremal elements from the Martin-
Dynkin boundary, its essential part. These are exactly the ergodic point processes,
and for those additional results with an important interpretation can be given. In
equation (5.2) replace g step by step by the indicators of nice, convex sets Ay

In sections 5.2 — 5.5 different properties related to the typical loop are considered. In
contrast to chapter 4, results may differ depending on whether a loop is Brownian or a
random walk loop. Table 5.1 shows some of the results for typical loops.
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5. Geometric Aspects of the ideal Bose Gas

property random walk loop Brownian loop
typical barycentre
j-loop bo~ N (0,5 (1= 1) by~ N (0,41)
composite loop - by ~ ( ,ﬂgfi/;/(j(z) )

expected typical 1-volume

one step of j-loop V2rB, 1 — 1w )

J Wd+1
expected typical k-volume

k
k steps of j-loop (zw]g)f /1= ?%‘Zﬁl -

expected number of vertices of convex hull
j—lOOp 2 Zn 1 n

percolation

no percolation for sufficiently small z

Table 5.1.: Geometric Properties

The first property to explore is the typical barycentre in section 5.2, which turns
out to be normally distributed in any case. In the Brownian bridge case, the typical
j-loop barycentre turns out to be normally distributed with covariance matrix %I ,

proposition 80 and ﬂ g‘i/ 2 ()Z)I for the typical barycentre, corollary 81, where I is the

identity matrix. The covarlance of the typical j-loop barycentre in the random walk
bridge case agrees with the one in the Brownian bridge case up to an additional correction
factor 1 — 52, proposition 84, and turns out to be closely related to the computation of
the barycentre of a given set of points in R?, which is an important task in multivariate
statistics [And84]. In particular the variance of the barycentre of the random walk j-loop
is always smaller than the variance of the barycentre of the Brownian j-loop, but they
agree asymptotically.

In section 5.3 the location of the typical random walk loop at the discrete times
0,08,20,... is considered. The mean euclidean distance between succeeding points as
well as the mean euclidean length of a typical loop is determined. As one expects, the
mean length of a step of a j-loop turns out to be shorter than a corresponding step of an
unconditioned random walk, with the correction factor being /1 — 1/7, see corollary 93.
Even more holds: two succeeding steps define a triangle with associated area or 2-volume
and more generally, k steps define a simplex with the associated k-volume. Similar to the
1-volume case, the k-volume of a j-loop is smaller than the k-volume of an unconditioned
random walk, now by a factor /1 — k/j.

The following section 5.4 again considers the set of vertices in R? given by the random
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5.1. Palm Distributions and Stationarity

walk j-loop. The interest lies in the number of extremal points of this set and its
asymptotic behaviour as j — o0. These extremal points are exactly the vertices of
the convex hull of the given set, and therefore the vertices of a polytope. In general
independent points, uniformly distributed in a domain of a special shape, have been
considered by various authors. Computations for normally distributed points can be
found in Rényi and Sulanke [RS63]. Here, however, the dependence is the main difficulty,
but we use fruitfully a close connection to the event for random walks to stay positive.

Section 5.5 is concerned with percolation. A typical configuration consists of infinitely
many loops, of which some may overlap. Clusters are built from overlapping loops and
the basic question is about the size of the typical cluster which is the cluster which
contains the typical loop. We show in proposition 104 that for sufficiently small z, there
is P, -a.s. no unbounded cluster, and moreover in corollary 105 that the diameter of the
typical cluster has at least a finite forth moment.

5.1. Palm Distributions and Stationarity

In theorem 18 the Campbell measure Cp of a first order point process P was given as

Cp(h) = / / (e, () P(dp)

for non-negative, measurable functions h : X x M"(X) — R. The observation in
proposition 20 that for every A € B(M"(X)), Cp(- x A) is absolutely continuous with
respect to the intensity measure p of P lead to the disintegration

Cp(h) = / / (e, 1) P (dp)p(dz) (5.3)

with the family {P*}, being the Palm kernel. The Palm distribution P* of P at z is
interpreted as P conditioned on the event {C{w} > 0} that there is at least one point at
the site x. In case of P being a stationary point process an independence of the Palm
distribution P® of x should be expected.

Assume X to be an Abelian group with the translations 7 = {1, },ex acting measur-
ably on X. A point process P on X is stationary if

P(T,A) = P(A)

for every x € X. In this case, by Mecke [Mec67], the Palm distribution may be defined
alternatively as

Po(A) = p(lg) / / AT pt)g() () P(dp)

for any non-negative, measurable function g : X — R with [ gdp < c0. The stationarity
ensures that this definition does not depend on the choice of g and therefore is well-
defined. If X = R? the usual choice for ¢ is the indicator of the unit cube. The
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5. Geometric Aspects of the ideal Bose Gas

Palm kernel defined in equation (5.3) agrees with the definition in equation (5.1) in the
following sense [DVJO08b, thm.13.2.I11],

Theorem 77. Let P be a stationary point process. Then the Palm kernels { P*},ex can
be chosen such that for any r € X,

P™(A) = Py(T,A).

Therefore P* can be obtained from Py by shifting the origin towards x and the sub-
script is allowed to become a superscript. Due to the definition of the family of Palm
kernels as a Radon-Nikodym derivative, {P*},ex has to be chosen appropriately on
p-null sets.

The next step is to relax the assumption that X is an Abelian group, but assume that
a group of translations 7 acts measurably on X. Since by the discussion in section 1.1.3
the 7-invariance of a Poisson process is reflected by the 7-invariance of its intensity
measure and vice versa, by the disintegration lemma 49 for p., B, is invariant under the
translation group 7 = {Ts} cpa-

Especially for F,_ the disintegration means the Palm distribution P? is the Poisson
process P, conditioned on the occurrence of a fixed loop x € X. In attempting to use the
T -invariance, the condition on the occurrence of some loop starting at s € R? seems more
suitable. By construction the loop measures p; were required to satisfy a disintegration

o) = @) [ [ o)W p(da)as
{s}

= (2n3) Y? / / f(s + m0) ) 5(dmo)ds
RdXX{O}
with \Ilj 3 being the distribution of the j-loop starting at s € R%. Necessarily ‘Ilj ;3 agrees
with \IJ? 5o Ts. Consider again the disintegration of the Campbell measure C'p and

supposejfurther that the function A, which is integrated with respect to Cp, depends on
x only via the starting point sz := x(0), then

Cr, (1) = [ sz, B @)

J
- o [ e asgas
j>1

1 DS
 g1eap(?) // s, 1), (di)ds,

where f_’psz (dp) is the weighted convex combination of the P+ (d,u)\lfgﬁ’s

PSS zj s+x
Bi) = Y o [ B WS (),

j=1
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Instead of P}’ being the Poisson process E,, conditioned on the particular loop x being
contained in the configuration, f’psz is P,, conditioned on some loop starting at s € R
Thus we lost information due to the averaging, but gained the independence of the
averaged Palm kernels f’p‘z of the position.

Definition 78 (Typical loop). The typical loop of P, is the loop starting at the origin
under Ppg.

Therefore we get an analogue of equation (5.1) for the 7-invariant Poisson process
which reads as

P () = g12a/2(2) / / (1 — s) Lp(s) () By (dp),

where F' is the unit cube in R?. Here the starting point of every loop starting in F' is
moved towards the origin, where ¢ is evaluated.

By now the typical loop of P, is the loop which starts at the origin with respect to the
Palm distribution Ppo. On the other hand, a loop consists of possibly several elementary
constituents and a typical particle could be of another interest than a typical loop. If
we introduce the symmetrisation t of a loop = € X; as

BJZ’

j—1
t:0z > t(0a) = > Ourng
k=0

and appropriately continued for € M'(X), we get the symmetrised Point process tP,,.
Note that simple configurations stay simple if and only if for any two distinct loops
x,y € u and any k the kS-time shift of x is different from y. Furthermore the projection
of the loop of a configuration p into R? does not change under symmetrisation. Let
sk 1 X; — R? be the projection on the starting point of the k-th particle,

Sk : 0g > sxx = x(kf)
for0 <k <j.
Lemma 79. On M (Xj) the relation sot = f;é sk holds.

Therefore the Palm distribution of the symmetrised process
(68.)°(0) = (=) [ [ ol = sa)Le(so)u(do)e. (@u)
— (&) | [ ot = so)1p(s2)tutco . (0
— 04 (2) [ [ oltn = sta) e (st (@B ()
= 9a/2(?) (tp — skz)1p(skz)p(dz)B), (dp)
9d/2 //zk:SO,u kT )LF(SkT)H p. (Al

is the distribution of the typical elementary component.
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5. Geometric Aspects of the ideal Bose Gas

5.2. The Barycentre

For a finite set of points {s1,...sn}, their barycentre S is defined by

N
S::stm'

m=1

In subsection 5.2.2 these points are given by the locations of a random walk loop, a
j-loop brings along j points. The definition of the barycentre carries over to a set given
by a measurable function f on some interval [0,T1],

S ;/f(t)dt.

Of special interest in subsection 5.2.1 is the barycentre of the typical Brownian loop.

5.2.1. The Barycentre of a Brownian Loop

For every j € N let
J 1 [P
b: X; - RY :Cb—>,/ x(s)ds
iB Jo
assign to each loop its barycentre and assume b acting on X. Furthermore continue
b on M'(X) such that for y € M (X), bu € M (R?) is the point configuration of the

barycentres of the loops of p. For € M*(X) with 11(Xyy) > 0 let bou be the barycentre
of the loop starting at the origin,

bou == bz if x € p with sz = 0.
Recall s : X — R¢ being the projection on the starting point. Before we turn to the
typical loop, we compute the distribution of the barycentre of the typical j-loop, i.e. the

distribution of by under Pp%. at inverse temperature 3 > 0.

Proposition 80 (Typical j-loop barycentre). Let j € N be a positive integer and 3 > 0.
Then under Pp(;., the typical j-loop barycentre is

i

In fact there is no big surprise that the barycentre of a Brownian bridge starting and
ending at the origin is normally distributed with its mean at the origin.
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5.2. The Barycentre

Proof. Let T = j and (By)o<i<r be a Brownian motion. Then with A;(z) = z(t), see
e.g. Revuz, Yor [RY91, prop. 1.3.7],

d t
At = Bt— TBT

i/ B.ds — /BTds_/ Bds——
0

Therefore b is normally distributed and it suffices to compute expectation and covariance
matrix. But the expectation vanishes since the Brownian motion is a centered process.
Therefore the covariance matrix remains, for which it suffices to compute the diagonal
elements because of the independence of the components. Hence for i =1,...,d

N2 _ (1 g i B% ?
(b) _<T/0 Hads — 2)
1 T % ? B% T i (B’%)2
-5 </0 Bsds> _T/o Bids + .

Starting from the last one we calculate the three expectations. Clearly E(Brfp)2 =T1T.
Because of EB%B@ = s for s < T, the expectation of the second summand is

B. [T 1 [T T
E-L | Blds= — ds = —.
T/O 509 T/OSS 2

For the first summand let I; = f(f Bids and apply partial integration to its square,

T T rt A
=12 +2 / LAl =2 / / BldsBldt
0 0 0
1 T N2 o T gt
'3 _ 7
j—'ZE</O BSdS) = 1—'2/0 A EBSBtdet

Summation leads to the desired result. O

and

hence by Fubini

Alternative proof. Let T := j8 and \Ilo be the Brownian bridge measure on X; from
definition 50. Then, see e.g. Revuz, Yor [RY91, prop. 1.3.7], for i = 1,...,d,

st

/:ri(s):vi(t)\ll%(dx) =sAt— T (5.4)
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5. Geometric Aspects of the ideal Bose Gas

Since ‘11% is the probability measure of a Gaussian process and

1 T
= — t)dt
T/O“T

b is normally distributed and it suffices to compute expectation and covariance matrix.
But the expectation vanishes since the Brownian bridge is a centered process and the co-
variance matrix remains. Since the components of the Brownian bridge are independent,

it is sufficient to compute the diagonal elements. For ¢ = 1,...,d,
5 1 (T . 2
/ (b)) 209 () = / <T /0 xZ(s)ds> 0 ,(de). (5.5)
Partial integration of the square of the inner integral I;(z fO s)ds leads to

Ir(z%)? = Iy(xh)? +2/ ItdIt_Q/ / s)dsz’(t)dt.

Applying Funbini and equation (5.4) continues equation (5.5) as

[l ey - 7 | ' / t [0t 0 (aasa
_ ;/OT/O(l _ ;)dsdt

T

= 0
12

Corollary 81 (Typical Barycentre). Let the fucacity satisfy 0 < z < 1 if d = 3 and
strictly less than 1 if d = 1,2. Then under Ppoz 18 the typical barycentre

N gd/2( z)
P N<O 691+d/2( )I>.

This means that at fugacity z = 1 still each typical loop has a well-defined barycentre
as long as the dimension is at least 3. Only in the low dimensions 1 and 2, when the
particle number is not integrable anyways, the barycentre has no well-defined distribu-
tion.

Proposition 82 (Expected sample variance of the typical j-loop). The expected sample

variance of the typical j-loop is 451.

Proof. - )
1 / / [(t) - (b:r)l} dtw? 5(dx)

T // — 20(¢)(ba)’ + ((ba)')*|dtw) 5(dr)
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5.2. The Barycentre

Starting from the last integral we calculate the three quantities,

/ (b))%t (dx):/OTlTth I
;/0/ (1) (bz)i ¥ d:vdt—T2/ // Jiu? ,(de)dsdt
:TQ/O /0 S At Sdsdi

1 (T 2 T

= = t——dtz—

T 6

1 12 T

= s(da)dt = — t——dt_—
// (dz) T 6

which together results into

% / /0 ' [27(t) — (ba)| "at0? (dz) = 132 0

5.2.2. The Barycentre of a Random Walk Loop

The discrete analogon of the Brownian loop is the random walk loop, which defines a set
of points in R%. In this case the barycentre is the empirical mean of the positions of these
points. The spirit of the computations is very much the same and makes heavy use of a
similar representation of a random walk bridge in terms of a random walk with normally
distributed steps. For this reason we take the same notation as in subsection 5.2.1. Aside
from the discrete setting the main difference is the lack of a partial integration.

For every j € N let
T
b:X; - RY -
j ]n;

assign to each loop its barycentre and assume b acting on X. Furthermore continue
b on M'(X) such that for p € M (X), by € M (R?) is the point configuration of the
barycentres of the loops of 1. For € M'(X) with u(Xygy) > 0 let bou be the barycentre
of the typical loop,

bou = bx if z € p with sz =0.

First of all, for an overview, a few sums are collected, which will occur in the sequel.
They are given without proof.
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5. Geometric Aspects of the ideal Bose Gas

Lemma 83. Let j € N. Then

i) m(m —1) = 55~ 1) - 2),

m=0
) — 1. . T2
i) S = 3560 (57553 )
= m 1, .
i11) %m(l—j) = 6(]—1)(]4—1).

At first the distribution of the barycentre of the typical j-loop, i.e. the distribution of
by under P,g. at inverse temperature 3 > 0 is computed, and later the distribution of b
of the typical loop is focused.

Proposition 84 (Typical j-loop barycentre). Let j € N be a positive integer and 3 > 0.
Then under Ppg. the typical j-loop barycentre is

2020

Proof. Let (Ry)m=o0..n be a random walk with independent, N (0, 31)-distributed steps.
Then the distribution of the m-th step, z(m(3), and

Ry — 2R,
j

are equal and the appropriate representation of the barycentre is

i—1 j—1
13 1
bl Py
‘]m:0 ]m:O‘]
= <1 )R
sz 1) 2

Therefore b is normally distributed. The expectation of b vanishes since the family
(Rm)m is centered. We compute the covariance matrix. In analogy to the continuous
case fori=1,....d,

e[ (5)]
FEE )T e () e
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5.2. The Barycentre

and we calculate the three expectations starting from the last one. Clearly E(R;)2 = j0.
Because of ER;Rin =m for m < j,

7j—1 L.

o -1
> ER%@R;-ZLJ 5 )5
m=0

and finally
-1 j—1 =1 =1 o
E[ZPJ} E(R,)*+2Y Y ER,R,
m=0 m=0 m=0n=m+1
D503 mig—1-myo
m=1
~ D [5G -1 - LG - @i - ]9
G-1, J6G-1D0-2)
5 P 3 b

Therefore putting the expectation on equation (5.7) leads to
: 1 1 1 2 1 1 1 1
ot s 1) -3 10-)
J/ 125 3 i) 2 i) 4 J
BN (e D). 0
12 7 7

Alternative proof. The covariances of each component ¢ = 1...,d of the random walk
bridge are given by

[ wimpyai sy ()=B<mAn—nm>- (5.8)

Since

[y

.

$

u\»—l

m=0

b is normally distributed and it suffices to compute expectation and covariance matrix.
But the expectation vanishes since the random walk bridge is a centered process and the
covariance matrix remains, again the computation of the diagonal elements is sufficient,

/ (bi)20 / C g:: )2\1/%((195). (5.9)
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5. Geometric Aspects of the ideal Bose Gas

Applying Funbini and equation (5.8) continues equation (5.9) as
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Therefore the results of proposition 84 and proposition 80 agree up to the correction
term 1 — j~2. As j increases, both variances grow by the same rate. Moreover, the
variance of the barycentre of a random walk loop is always smaller than the corresponding
variance of the random walk bridge. Directly the distribution of the typical barycentre

follows:

Corollary 85 (Typical Barycentre). Let the fugacity satisfy 0 < z < 1 if d = 3 and
strictly less than 1 if d = 1,2. Then under Ppoz,

b0~N<O, ! ij(u;?)ﬁ]).

91+d/2(2) =17

Proposition 86 (Expected sample variance of the typical j-loop). The expected sample

variance of the typical j-loop is %(] + I
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0 J
m—1 j—1
:é n<1—m>+g <m_mn>
J n=0 J J n=m J
g m’
= — m — —
2 J
Therefore the expected sample variance of the i-th component, ¢ = 1,...,d, is

7j—1
]_1/2 i(mg) — (bx)'] xp%d@:ﬁ(]ﬂ) 0

5.3. k-Volumes

The basic question addressed in this section is ”What is the length of a typical loop”?
More precise, the question could be "How many steps does a typical loop have?”

Another way of thinking about that is the question for expected euclidean length of
a typical loop, for a j-loop this is j times the expected length of one step, say the first
one. If x is the loop of u starting at the origin, this is the expected distance between
the two successive points x(0) = 0 and x(8). In taking two steps one gets the three
points z(0), z(5) and x(23) forming a triangle which has a certain area. This way the
1-volume and the 2-volume of one and two successive steps are defined, respectively. The
generalisation to general k is straightforward.

We start with independent vectors before passing to the dependent case and finally
to more general rotational invariant situation.
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5. Geometric Aspects of the ideal Bose Gas

5.3.1. k-Volumes of independent Vectors

Let k be a positive integer and Y1, ..., Yy ~ N(0, I) independent, d-dimensional vectors.
The convex hull of these vectors and the origin form a k-dimensional simplex in R?. Any
rotation around the origin does neither change the shape nor the volume, we therefore
pass to polar coordinates, which are in higher dimensions for m =1,...,k

Y1 =Ry sindy® sind® x...x sind},
— m 31 m 3 m

Yin2 =Ry cosdi sind' x...x sindj,

Yins=Rnp cosV" x...x sind],

Yma=Rn cos 9",

where Jf" € [0,27) is the azimuth angle, J7" € [0,7) for j > 1 are the polar angles and
Ry, = |Yn| is the length of Y,,. Because Of rotational invariance of the k-volume, we
may choose

S S S

This rotation causes Y} to direct to the north pole and fixes the remaining vectors such
that the k-volume of the k vectors admits a simpler representation.

Lemma 87. The k-volumes voly, satisfy the recursion

d—2
R
volg(Y1,...,Y:) = = H smi?kvolk 1(Yo, ..., V).
j=d—k

Proof. Due to the choice of the angles, 19;1“ is the angle between the line through Y7 and the
origin and the plane given by {0, Ys,..., Y%} and hence the calculation is standard. [

Conditioned on the vectors Y3, ..., Y} this directly leads to

Lemma 88. Let w,, denote the volume of the n-dimensional unit sphere. Then the
expected k-volumes satisfy the recursion

V2T Wi k11

2 Cdhr2 VOlk_l (YQ, N ,Yk) .

E(volk(Yl,...,Yk)‘Yg,...,Yk) _
Proof. Because of the independence of the length of a vector and its direction,

E(volk(Yl,...,Yk ‘YQ,...,Yk)

d—k—1

E
=vol_1(Ya,..., Y} R1 / H sin/ *1 9! H sin/ 9}dd] - - doy_,
j=d—k
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The sines result from the transformation to polar coordinates and lemma 87. Because

of ERy = v/2m wﬁ - and the integrals over the products yield w‘:fz;

tively, we may continue to deduce

and wy_g41, respec-

V2 _
E(volk(Yl,...,Yk)‘Yg,...,Yk) = voly_1(Ya, ..., Y;) - Yo Wazksl 0
ko wa—pr2
Corollary 89. With w, denoting the volume of the n-dimensional unit sphere for the
k-volume of k independent, normally distributed vectors Yi,...Y) holds

k
(27)2 Wy g1
k! Wd+1 '

E(volk(YI,...,Yk)> _

In particular we get

E<v011 (Yl)) =2r Wd

Wd+1

E(volg(Yl,Yg)> N

Wd+1 2
E(voly(Y3,....Ya)) (n)} w
Y . = — .
d\11, y I'd d! Wit
5.3.2. k-Volumes of dependent Vectors
Let now Xi,..., X, be d-dimensional, normally distributed vectors. We allow a very

particular dependence relation, which exists in the Bose gas: The components of a single
vector are independent, whereas e.g. the family of the first components of these vectors
are dependent.

Definition 90 (Geometric Covariance). Let X7, ..., X} d-dimensional random vectors
such that if X7 ;,..., X} ; are the j-ths components, they have covariance matrix o for
any j. o is the geometric covariance matriz of Xq,..., Xk.

If X is the kd-dimensional vector obtained by adjoining Xi,..., X}y, then X has co-
variance matrix of block form

011 O1k

011 O1k

Okl Okk

Ok1 Okk
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5. Geometric Aspects of the ideal Bose Gas

with k£ diagonal blocks of size d x d on each row and column. Particularly, if o is
symmetric and positive definite, also ¥ is. In this case we may find symmetric and
positive definite matrices v and I'. such that v7y = ¢ and I''T = ¥ and the relation
between v and I' is the same as between ¢ and X.

Now complete X1, ..., X with d — k unit vectors Xj.1,..., Xy which are orthogonal
among themselves and to X1,..., X;. Then

1
VOlk(Xl, - ,Xk) = g‘det(le - ,Xd)‘

Proposition 91. Let Xi,... X, normally distributed random wvectors with geometric
covariance o. Then

Evoli(Xi,..., X)) = detyEvolg(Y1,...,Y)
where Y1,...,Yy are i.i.d. normally distributed.

Proof. By the definition of the volume and with z denoting the kd-vector obtained from
joining x1,...x,

1

Evol,(X) = (2m)kd/2| det T'|k!

1
/‘det(ml, . ,xd)‘ exp <—2xT§]1;p> dzx.

Put y = I' 'z, then dz = det I'dy, and

1

1 _
= ()RR /‘det((Fy)l, e (TY)ky Tty - - - ,xd)‘ exp <—2xTE 13:) dx

In fact, (I'y); = vj1y1 + ... + kY is just a linear combination of vectors and therefore
by linearity of the determinant in each component det((Fy)l, o (TY ey g1y - - ,xd) =

detydet(yl, e Yk, Tty - ..xd)
= detyEvolg(Y1,...,Y%),

since due to the choice of xj1,...,xq still x;Ly; for ¢ > k and j < k. ]

5.3.3. k-Volumes of Random Walk Loops

In a rather general setting, proposition 91 shows how to compute the volume of a simplex
spanned of dependent vectors. This is now going to be applied to the Bose gas. Let
x € X; be a j-loop starting at the origin. We are now ready to compute the k-volume
of the first k steps of x. If k& = j, then this k-volume vanishes. Hence let k < j.
Furthermore let

gmzac(mﬁ) m=0,...,k
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as

(221

Figure 5.1.: Simplex defined by the first two steps of a 6-loop

be the visited points of the first k£ steps including the starting point. Then, again
dy = dyi - - - dyi,

D..

/(6. &) = (2m)5) 2/f v, g s () (yz — 1) X - -
xPg(—yj—1)dyr - - - dy;j1
(275 3) g/f Yty - U)Us(y)ve(y2 —y1) x -+

X@ZJB( Yk — Ye—1)V—k)a(—yr)dys - ... - dy;1
(%‘w 5 /f Y1,y eXP( ! TEly) dy
" (2nB)E (2n (- )

and we may identify the inverse of the geometric covariance as the k x k-matrix

2 -1 0
-1
ol = I6]
. 2 -1
1
0 -1 1+ 54

with the remaining elements being 0.

Lemma 92. The determinant of o~ ! is

deto™t =37 1.+<f37 —pgk_
J- Jj—k
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5. Geometric Aspects of the ideal Bose Gas

Proof. This can be seen by induction in applying successively Laplace expansion from
the lower right corner or from the normalisation in the calculation above. O

Finally put proposition 91 and corollary 89 together to obtain the result

Corollary 93. The k-volumes of the first k steps of j-loops for k < j are

k
2w 3)2 | kwg_
EVOlk(glw-'agk): ( ]{f) 1_*M
: J Wd+1

Proof. Due to proposition 91

|k
EVOIk(&l?"'?&k) = (2 1_;EV01k(Yia--~aYk),

which can be continued by corollary 89 to conclude that

_ (27p)* 1 k wi—g41
k! J Wd+1

since Y7,..., Y} are independent and normally distributed. ]

Therefore the k-volumes of the first k£ steps of a j-loop are up to a factor depending on
j the k-volumes of a random walk with independent steps. For j large this is expected
to be close to the independent case and the corollary shows exactly the difference.

Define the k-volume of a j-loop as the sum of the k-volumes when starting at each of
steps 2(0),z(0), ..., z((j —1)3), which is by symmetry j times the k-volume of the first
k steps. Suppose furthermore vol; to be continued on M'(X) such that vol; measures
the k-volume of the loop starting at the origin.

Corollary 94 (Expected k-volume of the typical loop). The expected k-volume of the
typical loop is

k
273)2 Wa k11
P? (vol) = - X (
P gl+d/2 ;]d/z k! Wd+1

5.3.4. Rotational invariant Distributions

In subsection 5.3.1 we calculated the k-volume of a simplex built from independent
normally distributed random vectors. The property we made use of was the invariance
of the distribution of the random vectors under rotation. Here we still keep the direction
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of the random vector to be uniformly distributed on S%!, but let the radial distribution
T be arbitrary with the properties

/rdr(dr) =V <w
/Td_lT(dT) =C,,

i.e. if the radius of a sphere has distribution 7, its expected volume is finite. In this case

Ef(Z) = — / F(r, o)t e (dr)dg

wqCr

for any rotational invariant random vector Z with radial distribution 7. The results then
take the form

Lemma 95. Let Z1,..., Z be k independent and rotationally invariant random vectors
with radial distribution 7. Then the k-volume of the simplex spanned by the origin and
the Z!s satisfies the recursion

V wit1wa—k+1
E(volk(Zl, 7 ’ZQ, o Zk) = SEHELE ol (2., 21,
WaWd—k+2
This is directly obtained from the proof of lemma 88 in replacing ER; by V. Therefore
it is no surprise that the results only differ by a factor. From the recursion one obtains
an explicit result,

Corollary 96. Let Z1,...,Zy be k independent and rotationally invariant random vec-
tors with radial distribution 7. Then the k-volume of the simplex spanned by the origin
and the Z!s is exactly

k
B % (wd+1> Wd—k+1

E(Volk (217 cee Zk)) ﬁ wq Wd+1

5.4. Convex Hulls in R?

The k-volumes of k + 1 successive points of a loop are a property depending only on
subset of the points visited by a loop, hence of local nature. A natural question that
faces the whole sets of points of a loop is e.g. the question for the number of its extremal
points. For a finite number of points in V' < R? the convex hull convV is a convex
polygon, whose number of vertices (and edges) is exactly the number of extremal points
of V.

A line between two points of V' is an edge of conv V' if and only if V' is contained in
one of the half-spaces defined by that line. Rényi and Sulanke use this relation in [RS63]
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to determine the number of extremal points of V. In this paper V is a fixed number of
independently, normally distributed points in R?. Here we treat the same question for
the typical loop x € p, namely V = {x(kB) : k =0,...,j — 1} if x € X;. The points are
still normally distributed, but far away from being independent.

Unfortunately the relation between edges and vertices fails in higher dimensions, but
the idea how to identify a line between two points of V as an edge of convV in two
dimensions can still be used to identify the appropriate part of a hyperplane as a face of
the polytope conv V. We address this questions of higher dimensions at the end of this
section and keep on considering d = 2.

For v,w € V let vw be the line defined by and [vw] be the line segment between v
and w. Introduce the indicator

{1 if [vw] is an edge of conv V'
Yow = .

0 otherwise

Then the total number of edges is half of the sum ~,,, over all pairs v,we V,

(V) = % Z Yow-

v, weV
VAW

Assume T to act on X through the relation V = {z(kf) : k =0,...,j — 1} if z € X;
and continue I' on M’ (X) such that to a starting point 2(0) of a loop x the mark I'(V)
is attached. Let I'g be the corresponding value of the typical loop. To get the expected
number of edges of V', one has to compute the probability that ~,, is an edge. There is
a strong connection between this probability and the probability p, that a random walk
bridge of length n stays non-negative.

Lemma 97 (Vertices of the convex hull of j-loops). Let x € X, then

j—1
P (T0) =34 > pupjn-

n=1

Proof. For the moment fix v = (0) and w = z(kf) for some k € {1,...,5—1}. Then the
loop resolves into the two independent bridges from v to w and from w to v, respectively.
Therefore it suffices to compute the expectation Ppg_ (Yow), i-e. the probability that both
bridges lie completely in the same of the two half spaces defined by vw.

Decompose each of these bridges into the components orthogonal and parallel to Tw,
then the probability Pp(; (Yww) does not depend on the parallel component. Hence

Pp(;- (,va) = 2pk:pj—ka
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5.4. Convex Hulls in R?

Figure 5.2.: Convex hull of a 6-loop

and since this situation occurs for any v € {z(k8) : k =0,...,j — 1},
1 —
P) (o) = 3 Z Va(if)z(kB) = J anpjfn- O
ik=0,...j—1 n=1
i#k

Lemma 98 (Probability of positivity of a random walk bridge). The probability of a
random walk bridge of length n =1 is

Pn = —.
n

Proof. The argument is standard in random polymers and relies on the fact that for a
bridge Z = (Zi)k=0,...n;
pn=P(Z020,...,2,120)=P(Zo = Zy,..., Zn1 > Zy)

for any k. Since the latter is the probability that Z has its minimum at &, the claim
follows. O

The combination of these results yields an explicit expression for the number of vertices
of the convex hull of a random walk j-loop. Denote by ho(m) four times the partial sum of
the harmonic series ho(m) =43 " | % Factor and index are motivated in the discussion
of the higher dimensions below.

Theorem 99 (Expected number of vertices for the typical j-loop in two dimensions).
Let j € N. Then the number of vertices of the convex hull of a j-loop is

..
P) (o) = Sh2(j = 1).
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Proof. By lemma 97,

j—1
P)(To) =5 Y pupjn
n=1
with p, = % Because of J%n =1+
1 1
I;g(ro)=;n+;j_n=2h2(j—1). 0

Thus the expected number of edges and vertices, respectively, grows like the logarithm
of the length of the loop, which is faster than the result Rényi and Sulanke obtained
in [RS63] for independently distributed points. They showed that the expected number
of extremal points in the independent case grows like the square root of the logarithm
of the number of points. Consequently one gets the expected number of vertices of the
typical loop,

Theorem 100 (Expected number of vertices for the typical loop in two dimensions).

2 .
Ppg(l“o) = 22 WhQ(J - 1)-

j=1

Remark 101. These arguments apply in a similar manner to dimensions d > 2, where
edges have to be replaced by facets of the polytope conv V. Facets are defined by d
vertices vy, ..., v for which we write in the style of dimension two [vi,...,vg]. In
between these points are now d bridges instead of two in lemma 97, which is generalised
straight forward.

Lemma 102 (Facets of the convex hull of j-loops in higher dimensions). Let d > 2 and
x € Xj, then

2 j—(d—1) j—n1—(d—2) Jj—mni—.—ng_1—1 1 1
PQ(FO)Zf Z Z Z — X e X —,
p
’ d ni=1 ng=1 ng=1 " i

Proof. As in the proof of lemma 97, fix a starting point and subdivide the j steps into
exactly d parts ni,...,nqg = 1 with

ni <j—(d—1)
no9 <j—n1—(d—2)

<
ng<j—ng—...—ng—1—1
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For fixed ni,...,ngq, the probability that the d random walk bridges stay completely on
one side of the hyperplane defined by d vertices is

1
2— X e X —,
ni nq
Sum over all these partitions ni,...,ng, and since each of the j points may occur as
a starting point and each that way each partition is counted d times due to cyclic
permutation, the claim follows. ]

Unfortunately there seems to be no nice explicit formula apart from a generalisation
given in lemma 102 with d — 1 iterated sums, or, equivalently, a sum over all integer
partitions of j consisting of d positive integers. But there is a possibility to obtain a
recursion in d. Setting hy := 2, then as in the proof of theorem 99,

1 1 )

n1 1 TL1:

For d = 3 one additional bridge is inserted, and since only the orthogonal component
matter, this case is obtained from the case d = 2 as follows: Fix one bridge, which has
length say ni, then the remaining bridges have total length j — n; and

7—2 3—m1—1

2] 1
PO 3 Z Z nlngj—nl—ng

ni=1 no=1

] j—2 ] np—1 1 1
32:1 1]—n1 Zl ng j —ny—mna
ni na

.2

J 1 .

fE — ho(7 —nyp —1
3 ln 15 —mn1 207 —m )

ni=

Z 2(j —mn1 —1) [n11+ . ! ]Zéhg(j—?).

J—n

By continuing this recursion, the following result holds

Proposition 103 (Facets of the convex hull of j-loops). Let z € X; be a random walk

loop in RY, then the expected number of facets of the convex hull satisfies the recursion
ind
1 .
P) (o) = ghd(] —(d-1)), hy = 2.
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5. Geometric Aspects of the ideal Bose Gas

5.5. Percolation of Loops

Configurations of geometric objects in space may overlap or not, and overlapping objects
form clusters. Automatically one might ask, whether these clusters are small or big. In
the latter case of big clusters one might distinguish between infinite mean cluster size
or even infinite clusters occurring with positive probability; whereas in the former case
one could be interested in higher moments of the cluster size.

On a lattice one has in general a natural graph structure, which is used to define
site or bond percolation. This fails in continuum percolation when starting with a
stationary point process. As done in Meester and Roy [MR96], one may introduce
edges by connecting a point to its k nearest neighbors and therefore defining the points
interacting with the given point. A further possibility is to assign to each point a
geometric object and to define that two points interact whenever their assigned objects
overlap. This has been done with spheres of a fixed radius by Miirmann, random radius
spheres by Hall [Hal85] and Gouéré [Gou08] to mention only some of them. In the latter
case of attaching geometric objects one has to link two parameters: the intensity of an
underlying point process and the size of the geometric objects attached at these points.

Let I denote the union of all the spheres and S the connected component that contains
the origin. For very large spheres, Meester and Roy showed that ¥ is the whole space
almost surely for any underlying stationary point process; very large means that the
expected volume of the spheres is infinite. This result was already given by Hall for
Poisson processes. He also showed that if the volume has a 2 — é—th moment, then for
low intensities of the underlying Poisson process S is bounded almost surely. Recently
Gouéré showed the boundedness of S for low intensities if and only if the expected
volume of the spheres is finite.

Here points and geometric objects are given by the ideal Bose gas P, , which is
equipped with two parameters: the fugacity z and the inverse temperature 3; the former
having an influence on the intensity and the size distribution of the loops, the latter in-
fluencing intensity and size (not the size distribution). Two loops z, y of a configuration
€ M (X) interact whenever there exist loops zo,...,z, € p with xg = z, 2, = y and
Tk N Tpe1 # . This interaction defines an equivalence relation on p and thus we get
clusters as connected components of interacting loops.

Of particular interest will be the typical loop and the cluster the typical loop is con-
tained in, which will be called the typical cluster. If this cluster is unbounded with
positive probability, we say that percolation occurs, that is

P? (typical cluster unbounded) > 0.

We use the results of Gouéré [Gou08] to show that for sufficiently low fugacity the ideal
Bose gas admits no loop percolation.

Theorem 104. There exists zg > 0, such that for z < 29, B,, admits no loop percolation.
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5.5. Percolation of Loops

Figure 5.3.: Configuration of loops with clusters, each loop is shown with the correspond-
ing disc

Proof. For a loop x € X; let cx be the pair centre and radius of the smallest disc which
contains z and has center z(0),

c: X > R*xR,, z — (2(0), sup |z(t) — z(0)]) if x € X;.

0<t<j

Assume c to be continued on X. Furthermore continue ¢ on M'(X) by ¢ = 3" ¢, dca-
Thus cP,, is a Poisson process which realises circles with random radii, and if cF,, admits
no percolation, so P, does. Hence the job is to check whether the expected volume of a
typical disc of cP,, is finite for some z > 0.

Let B = (Bt)se[o,1] be a 2-dimensional Brownian motion and Y; := B; — tBy. Then
Y = (Yi)iefo,1) is a 2-dimensional Brownian bridge. Let My := suppo ) [Y2], then by
standard estimates

= sup [(Btl —tB})? + (B? —tB%)Q}

M12 = [sup Y
te[0,1]

te[0,1]

<2 sup (B} —tB})* <4 sup (B})* +4(B})°
te[0,1] t[0,1]

< 8 sup (Btl)Q.
te[0,1]

By Doob’s L%inequality EMZ < oo follows. If M. ;3 is the corresponding maximum of a
Brownian bridge on [0, j5], then by scaling EM jQﬁ = jBEM?.
Let
r:R2xR, - Ry, (y,v) » v
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5. Geometric Aspects of the ideal Bose Gas

be the projection of ¢ on the second component, i.e. the radius of the disc and for a
configuration n € M'(R? x R, ) with n({0} x Ry) > 0 let rn be the radius of the disc
centered at the origin. Then

_ Z] _ ZJ .
P (r%) = g1422(2) 7 Y mEMng = 95'(2) Y 5iBEM]

jzl‘7 j=1
EM? J
- PBMES 2 e
92(2) = J 92(2)

Therefore cP (r?) < oo if and only if 2z < 1.

To finish the proof we have to check the intensity of the centers of cP,, is sufficiently
small. But this intensity was identified in lemma 49 as ﬁgg(z). Hence there exists
a constant K, such that we do not observe percolation, if the intensity is less than K
constant over the expected volume of the discs,

() <
27Tﬁ92 : cP! (r?)’
This is the case if and only if
2K > EMgi(2). O

Very interesting is that this criterion for non-percolation is independent of 3. This is
due to the fact, that in two dimensions the loss of area of the spheres due to decreasing (8
exactly compensates the gain of intensity or conversely, thinning compensates growing.
This proof allows a stronger version, namely the typical cluster is not only bounded
almost surely, its diameter

D= sup supla(s) - y(t)|
z,yesS s,t

is integrable. The corresponding theorem is stated in the already mentioned paper of
Gouéré [Gou08|.

Corollary 105. Diameter has at least finite forth moment.

Proof. Because of EMfg‘S = (jﬁ)lJr‘S/ZEMQQJ”S with the notation of the previous proof
we get

_ 2
P (r*T%) = go(2) 7' ) | SEMS?
=17
_ BOPEME g5 (2)
92(2)

Similar to the previous proof we get EM22+5 < o in using Doob’s LP-inequality for
p = 2+ §. Therefore the rhs. of the equation above is finite for at least § < 4. O
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A Generalisation of the Pdlya Urn
Schemes: the Poélya Sum Process






6. The Pdlya Sum Processes

Basic models in probability theory are urn models: Balls of different colours are drawn
from an urn, either with or without replacement. In case of balls of two different colours
the former one is a Bernoulli model, and the latter one a hypergeometric model.

Pélya’s urn generalises these ideas: Instead of putting back or removing the drawn
ball, the drawn ball is laid back together with another (or even more) ball(s) of the same
colour. Therefore the colour of a drawn ball gets a reward. Given the knowledge about
the draws 1,..., N, at least the number of drawn balls of each colour, the probability
to draw a ball of a certain colour at time N is known. Hence the Pdlya urn scheme is a
primer example for an experiment for which the outcome depends on the previous ones.
However, without this knowledge, the probability that the ball of the N-th draw is of a
certain colour is the same as in the first draw.

Two important extensions of and relations to Pdlya’s urn were established in the
papers of Hoppe [Hop84] and Blackwell, MacQueen [BM73]. In the first one Hoppe
introduced the special black ball of a given mass as an initial condition. Each draw of
that black ball causes the introduction of a new, non-black colour. After N draws from
that urn he gets a collection of coloured, non-black balls, which defines a partition of N.
Using that construction he obtains a Markov chain, which, after the N-th draw, yields
a random partition. He shows that the marginal distribution of each step satisfies the
Ewens’ sampling formula. Again a link to population biology occurs.

In the earlier paper Blackwell and MacQueen extend Pdélya’s urn scheme to a contin-
uum of colours. The role of the black ball of the given mass is taken by a large set of
colours and a finite measure thereon. After each draw from that large set of colours,
a reward is given to that colour introducing the Pélya property. After the N-th draw
they obtain a random measure on the set of colours of total mass IV, which, if being
normalised by NN, converges as N — o0 to a limiting random probability measure. The
finite dimensional distributions of this limiting random probability measure are shown
to be Dirichlet distributed.

Both constructions are similar in their spirit. However, the latter construction of
Blackwell and MacQueen is more general, as for a measure on the set of colours having
atoms, the black ball may, with positive probability, introduce a ball of a colour already
drawn. In the following sections the Pdélya sum process, a point process using these
conditional constructions, is going to be constructed and some properties are determined.
The basic measure on the set of colours is allowed to be o-finite, but infinite.

In this chapter we firstly compute the Laplace funtionals of the Pélya sum process in
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6. The Pdlya Sum Processes

using the partial integration formula and derive different representations thereof. From
that follows that the Pdlya sum process is infinitely divisible. Furthermore we compute
its Palm distribution.

6.1. The Definition of the Pdlya Sum Process

The Pélya sum process is constructed in [Zes09] in using the Pdlya sum kernel

n(u, B) = z(p + 1) (B). (6.1)

for some z € (0,1) and some locally bounded but infinite measure p on X. In equa-
tion (1.13) np was defined for Eg-measurable ¢ as

1
ne(u, p) = Z m!/Bm ©(0gy + ...+ 6zm)77(m) (ﬂBc,dxl,...,dmm).

mz=0

Since the mapping p — np(u, @) is Ep-measurable, proposition 31 applies and the Pdlya
sum process is constructed as a point process with independent increments.

Definition 106 (Pdlya sum process). The Pdlya sum process S, , for (z, p) is the point
process constructed from the Papangelou kernel n in equation (6.1), explicitly for B €
Bo(X) and Ep-measurable, non-negative ¢

1
Sz,p,B(SO) = (1 - Z)p(B) Z W/So(dzm +...t 5zm)773(6x1 +... (5acm717d33m) X

mz=0

X 773(5331 s d-TQ)nB(Oa dxl)

The construction of the Pélya sum process reveals the relation to the Pélya urn: If the
point x is drawn in one step, an additional weight of unit size is given to that point in
the next and the following draws. The parameter z controls the total number of draws
and ensures its finiteness. Note that the choice of non-unit weights for drawn points can
be reached by adjusting z and p appropriately.

For example choose X = N, z € (0, 1) and p the counting measure. Then the Pélya sum
process realises at each n € N a geometrically distributed number of points independently
of the other sites. If the counting measure is replaced by an integer multiple of the
counting measure, the geometric distribution is replaced by the corresponding negative
binomial distribution. In general the integer multiple of the counting measure can be
replaced by any positive multiple, and therefore the number of point at each site is in a
generalised sense negative binomially distributed with a non-integral parameter.

The fundamental property of the Pélya sum process is that it solves the partial inte-
gration formula

Co., (1) = [[ i+ 82120 + ) (@150,
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which differs from the formula of the Poisson process only in the additional summand
in the kernel. In fact it will turn out that S, , shares many important properties with
the Poisson process, such as complete randomness and infinite divisibility.

6.2. Laplace Functionals

Proposition 107 (Laplace functional of Pélya sum process). Let S, , be the Pdlya sum
process on X for the pair (z,p). Then the Laplace functional of S, , is

— s @)
Ls ,(f) = eXp(—/Xlog 1lzfzp(d:c)>.(e—<f)

Proof. For an integer m and a positive number r denote by r[™ = r(r+1)--- (r+m—1)
the Pochhammer symbol and compute firstly the Laplace transform of the evaluation
mapping 1p for bounded, measurable B,

m [m]
s utm) = [0S, ) = (1= 2 3 (z0) "2

mz=0 m!
1—2 p(B)
B <1 - ze‘“)

1—ze™
= exp (—p(B) log 1—z> :

By the independence property this is extended to linear combinations and by monotone
convergence to general continuous f with bounded support. O

Besides the complete randomness, from proposition 107 follows that the Pdélya sum
process is infinitely divisible. Setting a := 1;’2 results

Ls, ,(f) = exp <— /X10g<1 + 1_eju)>p(dw)>,

therefore S, , is a gamma process-Poisson-mixture. The Lévy-Khinchin-representation
of the gamma process then yields

Corollary 108 (Gamma-Poisson representation of the Pélya sum process).

Lo, =~ [ [ 1-e(=2 (1= 7)) |saaptan)

1
v(ds) = —e *ds

S

with
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The Gamma-Poisson representation expresses the representation of the negative bino-
mial distribution as a Poisson distribution with gamma distributed intensity.

An important second representation is the Lévy-Khintchin representation of the Pélya
sum process, which is obtained by expanding the logarithm in proposition 107.

Corollary 109 (Lévy-Khintchin representation of the Pdlya sum process).
J )
LSz,p (f) = exp <— Z / i (1 — e-”%@)p(d%)) .
=YX J

Proof. The expansion of the logarithm yields

1—ze /@
- _ e @) _ _
log T log(l ze ) log(1 — 2)

oy

= =Y

i .
= (1 - e if@
Z 7 (1 e ) O

j=z1

The Lévy-Khintchin representation relates the Pélya sum process with compound
Poisson processes. That is, the Pdlya sum process S; , can be recovered as the image of
the Poisson process B,, on X x N with intensity measure

0, = Z?’Jl)@éj

j=1

under the mapping

= > ppr D Jla (6.2)
(z.g)en

(z.5)en

Proposition 110. Let B, be the Poisson process on X xN with intensity measure o, for
gwen z € (0,1) and p € M(X). Then the Pélya sum process S, , for the pair (z, p) is the
image of B, under the mapping M(X xN) — M(X), i = 32, sen O(z.g) ™ 2(2,5)e IO

In contrast to the analogue relation for the gamma process, o,(B x N) < oo for all
bounded B.

The Lévy-Khintchin representation of the Pdlya sum process S; , in connection with
the last remark about the finiteness of o, allows the immediate computation of the
support process S, which is given as the image of S, , under the mapping p — p*.
For simplicity the result is restricted to diffuse measures p, which ensures the infinite
divisibility of S ,. In analogy to the Poisson process, this property is lost if p has atoms

(for the Poisson process this statement is trivial).
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Corollary 111 (Laplace functional of support process). Let p be a diffuse measure

Lss (f) = exp ( [ 1= oga - z)p(dm),
’ X
i.€. S;p is a Poisson process with intensity measure —log(1l — z)p.

Proof. The weight j gets lost, therefore

Les () = exp<— /X 3 Zj (1 - ef(x)>p(dx)>. O

j=1

In case of p = pg + po with pg being the diffuse part and p, being a non-vanishing
atomic part of p, both parts need to be treated separately. While for p; the corollary
above applies, p, leads to a binomial part with term

(1= 2)Peh) 4 (1 (1- Z)fp<{x}>) o @)

This treatment is necessary since there is no possibility to distinguish if during the
successive placement of the points a point is placed at an atom « of p because of a parent
at x or just by chance.

6.3. Disintegration and Partial Integration

In this section we consider the disintegration of the Campbell measure of the Pélya sum
process with respect to its intensity measure, which yields the Palm distributions. The
partial integration formula turns out to be the basic tool for it. Moreover, a partial
integration formula for the support process S, is shown implying that S, is a Poisson
process. Indeed, in corollary 111 S7 ) has already been shown to be a Poisson process.
Therefore proposition 113 is a second proof for that fact.

Proposition 112 (Palm distribution of Pélya sum process). Let S, , be the Pdlya sum
process on X for the pair (z,p). Then the Palm measure S:ip for P-a.s.x € X is given

by
S:p = 1;2 sz<sz,p* (55I>*j).

j=1
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Proof. Iterated application of the partial integration formula yields

= / / h(z, p)p(de)S. ,(dp) = / / h(@, i+ 62)z(p + p)(dz)S. p(dp)

N
= 2 [ bz, p+ 36.)p(d2)S, p(dp) + 2N [ | h(x, u+ N6 )p(dz)S. ,(du)
jzl // 1+ joa)p p(dp // 1 7 p(dp
— 2 Mz, p + joz)S: p(dp)p(de).
; // 1+ §62)S. p(dp)p

The intensity measure of S, , is obtained in setting h = 15, A4+ (x), 1.6 755 p- O

The immediate consequence is that the typical point has a geometrically distributed
total mass whenever it is not an atom of p.

Next we show in using the partial integration formula that S, is a Poisson process
with intensity measure —log(1 — z)p.

Proposition 113 (Partial integration formula for support process). Let p € M(X) be
a diffuse measure and z € (0,1). Then

Cs (h) = // h(z, p + 62)S2 ,(dp) (—log(1 — 2)p) (dx)

Proof.

Cos, () = [ ha (s, (@) = [ [ e u®)n* (@)s. ()

The integration with respect to u* on the rhs. vanishes if yu = 0, therefore

= [ 1ot ¥ ML w)s. (an)

o A C)
= [ tcenotir 5" EUEID s, )

Since the configuration p + &, contains a point, the indicator vanishes and

// “” Mt 80") s ap) +z// ‘”5 Mt 00") s, o
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In the numerator of the second summand (p +d,)* = p* because of the integration with
respect to p. Furthermore pu(x) = 0 p-a.s. in the denominator of the first integrand.
Therefore inductively follows

—ZZ]// MH )(dfv p(dp) + 2 // +Nu 2)S.,p(dp)
azzj [ e+ 8207 plas. (e

// (1 +02)%) (= log (1 = 2)p) (dz)S;,p(dp)
_ / / W 1+ 8:) (~ og(1 — 2)p)(dx)S%, (du). 0
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7. Limit Theorems for Conditioned Pdlya
Sum Processes

The construction of the Pdlya sum process can be understood in a very intuitive way:
X is interpreted as a set of sites, where building bricks are placed randomly. Given a
bounded, measurable subset B of X, a random, negative binomially distributed number
of bricks is chosen and then placed successively: Once a brick is placed at some site
x € B, this site gets a reward for the choice of the sites of the following bricks. Since
there is naturally a positive probability to hit a site where previously a brick was placed,
turrets of bricks are built. The following question can be posed: What happens if
additional information about the number of turrets built or the number of bricks placed
are available? Strongly connected is the question for sufficient statistics for families of
Pélya sum processes. Similar questions have already been addressed in chapter 4.

Thus the interest lies in determining limit stochastic fields for conditioned Pélya sum
processes, particularly the extremal points of this set of stochastic fields. A way to the
Martin-Dynkin boundaries and their essential parts allows proposition 110, by which the
Lévy-Khinchin representation translates the infinitely divisible Pélya sum process on X
for the pair (z, p) into a Poisson process on X x N with intensity measure

o :zZ—,p@éj. (7.1)
j=1 J i

Pj

The Polya sum process can be recovered form E,, as the image of the mapping given in

equation (6.2),

MXxN) > M(X), A= Y Sajy— D, jbu (7.2)

(z.g)en (z.g)en

Since the basic structure of the intensity measure o, is very much in the spirit of the
intensity measure of the Bose gas for d = 0, large parts of the discussion are closely
related to those of chapter 4.

The object of interest is the Pdlya sum process conditioned on some tail o-field.
Following the lines of chapter 4, the methods of the canonical loop ensemble in section 4.3
and the methods of the canonical ensemble of elementary components in section 4.5
apply up to minor modifications to the Poisson process P, . Since a priori the image
of the thermodynamic limits are not necessarily of Pélya type, this has to be checked.
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Conditioning on the number of loops is analogue to conditioning on the number of turrets
as well as conditioning on the number of elementary components accords conditioning
on the number of building bricks.

7.1. The Turret Ensemble

As in chapter 4 let Eg, B € By(X), denote the o-field generated by the increments
(B = (g —(p, B’ 2 B measurable and bounded. Furthermore consider the o-algebra
Gp generated by £p and o({p),

Gp :=E&p v o(€p),

where Egp = (pp* counts the support of a configuration u, i.e. counts the number
of turrets in B. Since S, was shown to be a Poisson process with intensity measure
—log(1 — z)p, the programme of section 4.3 can be adopted directly. If the local speci-
fication 7€ is given by

T, @) =S (01G8) (1) = Sep(@(+ + ppe)|€B = Epp),

then with n = £pu

0o = (5m) L, Xl )2 ) pldn) (73)

i1,ein>1

follow. Particularly equation (7.3) means that in B exactly n = {pu towers of geometric
size each are distributed independently. Besides S, ,, any Pélya sum process S, ,,, with
0 < m < o has the local specification 7&. Particularly C* := C(7®) is not empty.

Let (Bg)r be an increasing sequence of bounded sets which exhausts X, Go := (), Gp,
the tail-o-field, then for P-integrable ¢, P € C*,

P(p|Geo) (1) = lim 73, (11, )
since G is decreasing. Denote by @), the pointwise limit

=1 G .
Qu = lim 7, (u, -),
which is by construction an element of C’go, as well as Wy, the number of turrets in By
normalised by its volume

EBy 1

Wkﬂ = ke

p(Bk)
If Wy is the limit of Wi in case of existence, then from the results of section 4.3 can
be deduced
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Proposition 114. Let f : X — R be non-negative and measurable with bounded support
and W(p) < oo. Then for any P e C* and p € L' (P)

P(¢lGo) = lim 75 (+,0) = Swply)  P-as. (7.4)

Proof. As mentioned, the results for the Poisson process P, are going to be applied.
Therefore with abuse of notation let {5 : M (X x N) - N u {400} the mapping which
counts the number of points in B x N and G the corresponding decreasing family of
o-algebras. Then by proposition 64

BTZ (90|gOO) (:U') = PW(/L)O'Z (90)7

which has the correct structure such that under the mapping (7.2) the result is a Pélya
sum process. O

By the reasoning of section 4.3, the extremal points of the Martin-Dynkin boundary
O are exactly those, for which W is almost surely constant and therefore

Theorem 115 (Martin-Dynkin boundary Pélya sum process). Let z € (0,1). The tail-
o-field Go s H-sufficient for the family

C' = C@") = {Swp},
and the set of its extremal points is exactly the family

A= {S, 4y 1 0 < w < 0},

7.2. The Brick Ensemble

A similar result holds true if the Pélya sum process is conditioned on the number of
building bricks per volume, and the plan of proof agrees with the one in section 4.5
in particular in connection with remark 74 since the setup here coincides with the low
dimensional case in that former discussion. For the discussion the parameter z will be
named 2’ as in the mentioned remark. A reparametrisation will allow 2’ to disappear in
the results.

The main arguments, adapted to B,_, are the following: Since there is no possibility
to compute the limits directly, a large deviation principle for the particle density, here
the building brick density, is used to identify the limit as the minimiser of a functional.
Due to conditioning, two steps are necessary, firstly for the process without condition,
given in corollary 41, and then with the correct condition.

Let Hp be the o-algebra generated by the o-algebra of the outside events £ and
o((p), where (p measures the total mass of a configuration p, i.e. counts the number
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7. Limit Theorems for Conditioned Pdélya Sum Processes

of bricks in B. Now follow the programme of section 4.5. If the local specification 7™ is

given by
(s 0) =S o (0lHB) (1) = Sop(@(+ + ppe)|Cs = (1),

then immediately

T2 (1, @) = p(B})[n] /n @0z, + ...+ 00,)(p+ 00y + .o 4 Ogyy ) (dap) X (7.5)
X (p + 00, ) (dw2) p(da1),

where n = (pu. Equation (7.5) reflects the construction of the Pélya sum process
by means of conditional intensities. Apart from S, ,, any Pélya sum process S, with
0 < z < 1 has the local specification 7. Particularly C® := C(z™) is not empty and
Martin-Dynkin boundary technique may be applied.

Let (By) be an increasing sequence of bounded sets which exhausts X, He = [, Hp,
the tail-o-field, then for P-integrable o, P e C?,

Pp[Hen) (1) = lim 7, (1, 0)  P-as.
Denote by @, the pointwise limit
Qu = Jim 7, (u, ).

which is by construction an element of C%, as well as Uy the number of bricks in By
normalised by its volume

CBy 1
UL = .
Kl p(By)

If Up is the limit of Ugp in case of existence, then from the results of section 4.5,
particularly in connection with remark 74 can be deduced

Proposition 116. Let f : X — R be non-negative and measurable with bounded support
and U(p) < 0. Then for any P e C?, ¢ € L'(P)

P(¢plHeo) = lim 7§ (-,¢) = Sz,(p)  P-as. (7.6)

with Z being the solution of the equation

Particularly Z € |0,1).

In fact, Z depends on the configuration u as well as on the choice of 2’ in the very
beginning. The reparametrisation carried out in propositions 125 and 126 allows Z to
be less than one in any case.
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Proof. Let 7™ denote the specification obtained from the Poisson process B,
p =B, (-IHp)
with abuse of notation of the family H. Then by proposition 126 below for any P € C(7),
P(p|Ho) = B,

with Z being the solution of

ZijU.

j=1
Since U exists and is finite P-a.s., so Z does. Finally observe, that the Pélya sum process
Sz, is the image of B, under the mapping (7.2). O

Remark 117. The discussion of minimiser of the rate function simplifies since here there
is no critical value present and hence no condensation effects occur.

Theorem 118 (Martin-Dynkin boundary Pélya sum process). The tail-o-field Ho is
H-sufficient for the family C® and the essential part of the Martin-Dynkin boundary
consists exactly of the family

Ap=1{S,:0<z<1}.

7.3. The General Ensemble

Each of the tail-o-fields G and He, was shown to be an H-sufficient statistic for a
corresponding familiy of Pdlya sum processes, but none of them for the whole family.
The aim now is to combine these two o-fields and to construct an H-sufficient statistic
for the whole family of Pdélya sum processes. Let

Ip:=E&gv o) va(llp),

hence the number of turrets in B as well as their total height is known.
Let the local specification 7' be given by

Tk, @) = S0 (0|Z8) (1) = Sop(0(+ + 1Be)lCB = (1 EB = EBM),
then

b= o X ) &

15e-km =0
ki+...+km=n—m

x o((k1 4+ 1)6z, + ... 4 (kym + 1)65,,) p(dy) - - - p(day ),
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where n = (pu and m = {ppu. Here exactly m = {pp towers have to be built from n =
(g bricks, where each tower contains at least one brick. Therefore the local specification
can be constructed by first choosing the sites for the m towers and afterwards by placing
each of the n — m remaining bricks independently and uniformly at the given sites. At
least the Pélya sum process S , has the local specification 7!, therefore C** = C(n') is
not empty.

Let (Bg)k be an increasing sequence of bounded sets which exhausts X, Zo, =, Zp,
the tail-o-field, then for P-integrable ¢, P € C*,

P(p|Ze) (1) = lim (@) P-a.s.

k—o0

Denote by @, the limit
Q= lim 7, (p, ),

which is by construction an element of C%2, as well as U, the number of bricks in By, and
Vi the number of towers in By, each normalised by its volume

— CBk:ILL Vk,u — kap
p(By) p(Br)’

Let Up and Vi be the limits of Ugp and Vi in case of existence, respectively. Note that
the existence of U implies the existence of V. The key to the limits as k& — o0 is again
the Poisson process B, ,, where now the two conditions of the previous discussions are
combined. Particularly the discussion of the brick ensemble receives a straightforward
extension.

Ukp

Proposition 119. Let f : X — R be non-negative and measurable with bounded support
and U(p) < 0. Then for any P e C* and ¢ € L' (PP)

P(p|F) = lim 75 (-, 9) = Szwplp)  P-as. (7.8)

where

Z

Proof. The important part is to determine E;_,, again with abuse of notation, conditioned
on the tail-o-algebra

B (90|Ioo) (1)

Therefore let 7! denote the corresponding specification

g =R (-1Ip)
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with abuse of notation of the family I. Then by proposition 125 below for any P € C/(71),

P(¢olZe) = Ry,
with W and Z being the solution of the pair of equations
, Z]
wyz-u Wy
j=1 j=1

Since the basic disintegration still holds true, only the limit of the mixing measure has
to be determined, which is analogue to the procedure in section 4.5. O

Theorem 120 (Martin-Dynkin boundary Pélya sum process). The tail-field Iy, is H-
sufficient for the family C*, and its extremal points are given exactly by all Pélya sum
processes for the pairs (z,wp),

={Suwp:0<2<00,0<w< o}

Proof. Follow the lines of the proof of canonical ensemble. The very first step was the
determination of the microcanonical limits, then the densities with large deviations. [J

7.4. Large Deviations

Finally closer considerations about the limits are necessary since the weak topology is
too weak this purpose. Let

1j
7= lim ——— Zaz By, x {j})d; = Z%éj

Jj=z1

then by the discussion following theorem 38 yielding corollary 41, B, satisfies a large
deviation principle in the »-topology, where the rate function is the relative entropy
with respect to T,

)

0 otherwise

{T(flogf—erl) ifr«r, fi=% flogf—f+1elLlr)
I(k;T) = T

Next the general ensemble is considered in detail while the differences occuring for the
brick ensemble are mentioned. Let

Du,viz{ﬁEM(N):Zn(' =0, jr(j) =
—{IQEM Z]/{] =
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denote the measures on N with total mass v and first moment u, and first moment wu,
respectively. Then D, , as well as D,, are *-closed, but not *-open. Recall the setting

xa(k) = {O kKeEA

40 k¢ A’
hence

Lemma 121 (Semicontinuous Regularisations of xp, ,). The upper and lower semicon-

tinuous regularisations X7~ and Xll%i . of xp,,, with respect to *-topology are

usc lsc

XD, (8) =0, XB, (k) = XD, (7.9)

Lemma 122 (Semicontinuous Regularisations of xp,). The upper and lower semicon-

tinuous regularisations X7y¢ and le)i of xp, with respect to *-topology are

XBE(R) =0,  XBL(K) = XD, (7.10)

Both results are consequences of the fact that whenever a sequence of measures in

M(N) converges with respect to the *-topology, their total mass and their first moment

need to converge as well. From these two lemmas for each of the ensembles the upper
bound of the particular large deviation principle follows directly,

1
i ——— log B, - < — inf [T+ x5 7.11
12n_§£p 2(Br) og B, (exp(—xcy, v, ) AI/II%N)[ XDM} (7.11)
i log B - < — inf |T+x5¢). 7.12
msup o5 log « (exp(=xcy,)) /\ilI%N)[ XDJ (7.12)

Because of the previous lemmas, the superscript lsc can be dropped. Before we study
the lower bound, the minimisation problem is solved for the general ensemble. Much
work has already been done in section 4.5.

Proposition 123 (Minimiser of I + xp,,). Let 0 < v < w < 0 and 2y, Wy be the

solution of the system '
5 .
w — =, w 2 = u. 7.13
e > ar

j=1 j=1

lsc

Then the minimiser of inf vq(v) [I + XD, v} s given by

j
R wee Y (7.14)

= Y
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Proof.
I(k) = Y jr(j)logz = k(j)logw
Jj=1 j=zl
= Z/i'j <logg‘7; - 1> + 7(N) — Zlog Zk(j) — Zm(j)logw
7=1 7=1 j=1
D)L
= ;/{J <log Twr()) 1) + 7(N),

j
which has a unique minimiser on M(N), & = Zj>1 wung—.’“éj with 2y, Wy, being
the solution of equation system (7.13). The uniqueness of the solution of the equation

system (7.13) can be seen in the following way: Let

Fr0,1)x(0,0) > {(s,) eRZ 15 > t},  (z,w) — (—wlog(l—z),w%), (7.15)

then we have to show that f~!(u,v) contains exactly one element, which is (2y .y, Wy0).-
Consider both components of f separately. Then

u = fi(z,w) :wlfzz’ v = fo(z,w) = —wlog(l — 2)

implicitly define two functions. Express z in terms of y := 1/w, then

_ W
14wy’

z1(y) z(y)=1-—e""

are two strictly increasing functions (0,00) — (0, 1), for which the limits agree as y — 0
and y — oo, respectively. Because of u > v they intersect at exactly one point, which

implies f~1(u,v) = {(2u., Wuw)}-
The initially given parameter z’ is contained in zy,,. O

In a similar fashion the minimisation problem for the brick ensemble is solved, and
due to the missing condition on the number of towers, w drops out. Therefore

Proposition 124 (Minimiser of I + xp, ). Let z, be the solution of

Y d=u (7.16)

j=1

lsc

Then the minimiser of inf yq) [I + XDJ s given by

=Y (7.17)
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7. Limit Theorems for Conditioned Pdélya Sum Processes

Note that in both cases weak and vague topology are too weak for D, , and D, to be
closed. In these cases the closure would contain at least measures with first moment less
or equal to u, which has a negative effect on the minimisation problems, particularly if
u is larger than the first moment of 7.

As already seen in section 4.5, the Boltzmann principle helps to get the lower bound
of the partition function, as will be the case here. The blow-ups of D, , and D, in the
*-topology are now easier to handle. For € > 0 let

D, = ke M(N): ZK(j)—U <e, Zj/i(j)—u <e

j=1 j=1

D =< rxe M(N): Zjn(j)—u <e

j=1

the blow ups. Since each of the complements is clearly closed, Dy, and D, are open,
and since the conditions

1

lim i 1P< e )1 _):-, 7.18

gt oy O B (o (s g <oy ) = oo (719)
1

lim i 71P< —xpe)1 ,):—, 1

fim, timsup 5 108 B (@xp(=x0a) Ly <-3) = =% (7.19)

hold by the non-negativity of x4, by [DS00, Lemma 2.1.8] the large deviation lower
bounds on the normalisation constants are given by

1
liminf — log B. D >—'f[1 } 7.20
B oy 108 Bl oxmen)) = = g [ v e
1
lim inf log B —xpe >—'f[1 } 7.21
BB Gy o8 P (oplxea)) = = i [ i

for every € > 0. Hence, for € — 0, the lower bound is obtained. In general the existence of
a minimiser can not be expected since Dy, ,, and Dy, are open. Nevertheless we construct
a sequence which converges as € — 0.

Proposition 125 (Minimiser of I + xps ). Let 0 < v <u < 0. For sufficiently small
e > 0 there exists a pair (2yp,e, Wuw,e) € (0,1) x (0,00) such that the infimum of I +x5
on M(N) is attained at

qu‘ v,g
Re = Wyv,e Z —=. (722)
j=1 J
Ase—0, Ruw,e > Ruwy Wywe > Wy and
lim k. = R

in %-topology, where i is given by equation (7.14) and 2y, and w,y, by equation (7.13).
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Proof. In the proof of proposition 123 we showed that for fixed u > v, the minimiser of
I on D, , was given by

kE=r(z,w) =w i
=Y
with (z,w) = f1(v,u) and f given in equation (7.15). Here we have to minimise with
respect to the parameters (z,w) € f~'((v —e,v +¢) x (u—&,u + €)), and therefore
consider I as a mapping on (0,1) x (0, ).
f is not only injective, but also continuous and maps open sets to open sets. Fix ¢ > (
such that 2¢ < u —v. Then the pre-image

A= (v—evte) x (u—eu+e)) S (0,1) x (0,00)

is open. If A° can be shown to be bounded, then I has a minimiser (z(g), w(e)) € cl A®.
Therefore consider (z4(g),w_(e)) = f~'(v —€,u + €), then z;(¢) is an upper bound
for z with (z,w) € A® as well as w_(¢g) is a lower bound for w with (z,w) € A since
as few turrets as possible have to be built with as many bricks as possible. Similarly
(2—(g),w4(e)) = f1(v+e,u—¢) yields the corresponding lower and upper bound.
Hence there exist parameters z(¢) and w(e) for which I is minimal.
As e — 0, we have to show that (z(e),w(¢)) — (2u,v,Wuw). Indeed, since f~1 is
continuous, z+(€) = 2y, and w4 () = Wy .
O

Proposition 126 (Minimiser of I+xp: ). Let 0 < u < 00. Then there exists z,. € [0, 0)
such that the infimum of I + x5, on M(N) is attained at

Z'z{ €
e =Y 5. (7.23)

=

Ase =0, zye — 2, and
lim k. = &
e—0

in *-topology, where K is given by equation (7.17) and z, by equation (7.16).
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8. Concluding Remarks

In this thesis we studied two models: Firstly a Poisson process on a space of composite
loops, and secondly the Pélya sum process. For both we identified the structure of the
process conditioned on various invariant o-algebras. Since these o-algebras were obtained
as tail-o-algebras of decreasing families of o-algebras, the conditioned stochastic fields
was obtained by a thermodynamic limit. The discussion of the Poisson process included
geometric properties of the typical loop. Furthermore we discussed the fundamental
Laplace functional as well as the Palm distribution for the Pélya sum process.

The most delicate part in the discussion of the limit theorems for the Bose gas was the
canonical ensemble of elementary components where finally we obtained the limits by a
large deviation argument. For the first moment strange phenomenon occurred: When
we computed the pointwise limits @),,, we had to pay attention to the configuration .
If the particle density Up exceeded some critical value u*, then we showed that U = u*
Q,-a.s. Hence some density got lost during the limiting procedure, but if we considered
u to be distributed according to some of the possible limits, then Uy is always bounded
by u*. An open problem is to collect the mass which was moved to longer and longer
loops, such that the limit does not swallow the surplus mass.

Furthermore working with a Poisson process means to work in the non-interacting case.
More generally, the question about the point process including interaction between the
elementary components of a single as well as of two different loops and conditioned on
invariant o-algebras remains open.

The properties and the construction of the Pélya sum process, especially compared to
those of the Poisson process, were very surprising. Both processes are completely random
and infinitely divisible. Moreover both processes can be constructed by partitioning
the whole space and constructing on each set of the partition a finite point process
independently of the other regions. Indeed, in general a Papangelou process can not be
constructed in that way. Furthermore their Palm distributions agree in spirit: While
the Palm distribution of the Poisson process is the process itself with an added point,
the Palm distribution of the Poélya sum process gets an extra point with geometrically
distributed weight. A fundamental question arises: What is the structure of similar
processes?

The Pdlya sum process opens a vast field of questions which we could not treat due to
a lack of time. Connections to the work of Kingman should be revealed, for which the
Gamma-Poisson representation could be an initial point. The Gamma-Poisson repre-
sentation includes the fact that negative binomially distributed random variables can be
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8. Concluding Remarks

represented as Poisson distributed with a gamma distributed intensity. More generally,
the underlying gamma process may be replaced by any random measure. So how does
this change affect the point process and its Papangelou property?

The Lévy-Khinchin representation of the Laplace functional established a fruitful con-
nection to the Bose gas. Limit theorems for conditioned stochastic fields could be dis-
cussed analogously to those of the Bose gas. Finally, but not the final question, increasing
the parameter z means to increase the mean size of the turrets. By a neat normalisation,
is there a suitable limit if z — 1 and how is it characterised?
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