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Zusammenfassung

Zufällige Punktprozesse beschreiben eine (zufällige) zeitliche Abfolge von Ereignissen
oder eine (zufällige) räumliche Anordnung von Objekten. Deren wichtigster Vertreter ist
der Poissonprozeß. Der Poissonprozeß zum Intensitätsmaß λ, das Lebesgue-Maß λ ordnet
jedem Gebiet sein Volumen zu, erzeugt lokal, d.h in einem beschränkten Gebiet B, gerade
eine mit dem Volumen von B poissonverteilte Anzahl von Punkten, die identisch und
unabhängig voneinander in B plaziert werden; im Mittel ist diese Anzahl λpBq. Ersetzt
man λ durch ein Vielfaches aλ, so wird diese Anzahl mit dem a-fachen Mittelwert erzeugt.
Poissonprozesse, die im gesamten Raum unendlich viele Punkte realisieren, enthalten
bereits in einer einzigen Stichprobe genügend Informationen, um Statistik betreiben zu
können: Bedingt man lokal bzgl. der Anzahl der Teilchen einer Stichprobe, so fragt man
nach allen Punktprozessen, die eine solche Beobachtung hätten liefern können. Diese
sind Limespunktprozesse zu dieser Beobachtung. Kommt mehr als einer in Frage, spricht
man von einem Phasenübergang. Da die Menge dieser Limespunktprozesse konvex ist,
fragt man nach deren Extremalpunkten, dem Rand.

Im ersten Teil wird ein Poissonprozeß für ein physikalisches Teilchenmodell für Boso-
nen konstruiert. Dieses erzeugt sogenannte Loops, das sind geschlossene Polygonzüge,
die dadurch charakterisiert sind, daß man an einem Ort mit einem Punkt startet, den mit
einem normalverteilten Schritt läuft und dabei nach einer gegebenen, aber zufälligen An-
zahl von Schritten zum Ausgangspunkt zurückkehrt. Für verschiedene Beobachtungen
von Stichproben werden zugehörige Limespunktprozesse diskutiert. Diese Beobachtun-
gen umfassen etwa das Zählen der Loops gemäß ihrer Länge, das Zählen der Loops
insgesamt, oder das Zählen der von den Loops gemachten Schritte. Jede Wahl zieht eine
charakteristische Struktur der invarianten Punktprozesse nach sich. In allen hiesigen
Fällen wird ein charakteristischer Phasenübergang gezeigt und Extremalpunkte werden
als spezielle Poissonprozesse identifiziert. Insbesondere wird gezeigt, wie die Wahl der
Beobachtung die Länge der Loops beeinflußt.

Geometrische Eigenschaften dieser Poissonprozesse sind der Gegenstand des zweiten
Teils der Arbeit. Die Technik der Palmschen Verteilungen eines Punktprozesses er-
laubt es, unter den unendlich vielen Loops einer Realisierung den typischen Loop her-
auszupicken, dessen Geometrie dann untersucht wird. Eigenschaften sind unter anderem
die euklidische Länge eines Schrittes oder, nimmt man mehrere aufeinander folgende
Schritte, das Volumen des von ihnen definierten Simplex. Weiterhin wird gezeigt, daß
der Schwerpunkt eines typischen Loops normalverteilt ist mit einer festen Varianz.

Der dritte und letzte Teil befaßt sich mit der Konstruktion, den Eigenschaften und der
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Statistik eines neuartigen Punktprozesses, der Pólyascher Summenprozeß genannt wird.
Seine Konstruktion verallgemeinert das Prinzip der Pólyaschen Urne: Im Gegensatz zum
Poissonprozeß, der alle Punkte unabhängig und vor allem identisch verteilt, werden hier
die Punkte nacheinander derart verteilt, daß der Ort, an dem ein Punkt plaziert wird,
eine Belohnung auf die Wahrscheinlichkeit bekommt, nach der nachfolgende Punkte
verteilt werden. Auf diese Weise baut der Pólyasche Summenprozeß ”Türmchen”, in-
dem sich verschiedene Punkte am selben Ort stapeln. Es wird gezeigt, daß dennoch
grundlegende Eigenschaften mit denjenigen des Poissonprozesses übereinstimmen, dazu
gehören unendliche Teilbarkeit sowie Unabhängigkeit der Zuwächse. Zudem werden sein
Laplace-Funktional sowie seine Palmsche Verteilung bestimmt. Letztere zeigt, daß die
Höhe der Türmchen gerade geometrisch verteilt ist. Abschließend werden wiederum
Statistiken, nun für den Summenprozeß, diskutiert. Je nach Art der Beobachtung von
der Stichprobe, etwa Anzahl, Gesamthöhe der Türmchen oder beides, gibt es in jedem
der drei Fälle charakteristische Limespunktprozesse und es stellt sich heraus, daß die
zugehörigen Extremalverteilungen wiederum Pólyasche Summenprozesse sind.
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0. Introduction

The accidental occurrence of certain events in time, like incoming phone calls in a call
centre, the growth of a queue, impulses of nerve fibres or detection of ionising radiation
by a Geiger-Müller counter, is a very fundamental problem in probability. At discrete,
but random times specified events occur, which leads to the first idea of counting pro-
cesses; processes which count the number of certain events in some time interval. Such
processes may be easily described by the (random) waiting time between two events.
An important role play exponential waiting times, since this distribution is known to
be memoryless. If these waiting times are in addition assumed to be independently and
identically distributed, the number of events in some given time interval has a Poisson
distribution proportional to the length of the interval. Moreover, the quantities of dif-
ferent periods of time are independent. These are the characterising properties of the
Poisson process.

In focusing the events as points in time, temporal counting processes are extended to
spatial counting processes. Events are now points in space, which may be counted in
any bounded domain. A primer example is given by the positions of physical particles,
or even individuals, animals, plants, stars. In any case a realisation of a point process is
a snapshot of some situation. Moreover, points may be replaced by geometric objects,
such as spheres representing holes in some porous medium or hard-core particles as well
as line segments representing fractures of the earth’s surface. Natural questions refer
for instance to the size of clusters built through overlapping objects. Such percolation
problems were addressed by e.g. Hall [Hal85] and will occur in the second part of this
work. In general point processes can be defined on polish spaces, compact presentations
are Kerstan, Matthes and Mecke [KMM74] and Kallenberg [Kal83], Daley and Vere-
Jones [DVJ08a, DVJ08b].

Very often earthquakes cause further earthquakes nearby their epicentre, offsprings of
a tree grow not too far away from their parental tree or settlements are very unlikely to
be isolated. The first of the examples may be considered in time as well, an earthquake
causes further earth tremors. These examples show that naturally dependencies between
points arise: points affiliate to clusters and define some kind of families of a population.
Objects are divided into classes of related objects: the set of points is partitioned.
Considerations about the sizes of families of a population, though without any spatial or
temporal component, can be found in the works of Ewens and Kingman [Kin78a, Kin78b].
Starting from a sample of a population of size N , the different species define a (random)
integer partition of N , and by the demand for a consistent sampling procedure, the latter
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0. Introduction

author gave a characterisation of the limiting proportions of these species whenever the
proportions are in descending order. Two interesting aspects of Kingman’s results should
be pointed out, and this work shows comparable results: Firstly, the set of limits is
convex and the limits themselves have a representation as mixtures of extremal points
of the whole set. Therefore the analysis may be restricted to the set of extremal points.
Secondly, the limiting proportions are not necessarily proportions in the sense that they
sum up to 1. In fact there is the possibility that really many small families get lost in
the limiting procedure. If the amount of such families is sufficiently large, then the small
families all together may contribute to the whole population. Chapter 4, in particular
section 4.5 touches related questions.

Permutations on a finite set of N elements define integer partitions by determining
the cycle sizes of the cycle decomposition of a permutation. In this manner random
permutations lead to random integer partitions. It is a highly non-trivial task to find out
about limiting objects and sizes of cycles when expanding the set of permuted elements;
such questions were addressed by Tsilevich [Tsi97], Vershik and Schmidt [VS77, VS78].
They studied the asymptotic behaviour of functionals on symmetric groups which only
depends of the length on the cycles.

An important application relating random integer partitions and their extremal limits
on the one hand and point processes on the other hand are quantum particle systems.
Consider a finite system in equilibrium described by a Hamiltonian H. A pair pλ, ψq
satisfying Hψ � λψ, where λ is a real number and ψ a square integrable, normalised
function with square integrable second derivative, represents the system at energy λ.
Such solutions satisfy the so-called Boltzmann statistics. Combinatorial difficulties enter
as soon as one demands additional symmetry properties, which are invariance of ψ under
any permutation π of the particles, ψ � π � ψ, for Bose statistics, and invariance under
any permutation with an added minus for odd permutations, ψ � π � sgnpπqψ, for
Fermi-Dirac statistics.

Feynman [Fey48, Fey90] introduced functional integration, which was treated rigor-
ously by Kac. His method is applied to the object of interest, the statistical operator
expp�βHq, where β ¡ 0 is the inverse temperature. Ginibre [Gin71] carried out this
analysis and obtained an integration on closed trajectories, i.e. Brownian bridges, also
named loops. For Boltzmann statistics these loops are exactly of length β. The introduc-
tion of the invariance under permutations for the other two statistics is a sophisticated
part, but has an interesting effect; its treatment was Ginibre’s important step. While for
the Boltzmann statistics the end point of each loop is equal to its starting point, in Bose
or Fermi-Dirac statistics starting point and end point are not obliged to be identical.
Indeed, the symmetrisation of N elementary trajectories means to obtain the end points
of these trajectories from a permutation of their starting points. Since every permuta-
tion decomposes into cycles, the set of elementary trajectories decomposes into classes
of connected trajectories, where two trajectories ω and ω1 are connected if and only if
there exists a sequence of successive trajectories with the first being ω and the final
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one being ω1. These classes are called composite loops. Therefore in a natural way the
equivalence relation on the set of elementary trajectories defines an integer partition of
N . One starting point of this work will be the interpretation of Ginibre’s Feynman-Kac
representation of expp�βHq as a Poisson process Pρz on the space of composite loops.

A basic question originates in the pioneering work of Bose and Einstein in the 1920’s
about Bosons. They proposed a curious phase transition, nowadays named Bose-Einstein
condensation. They showed that if the particle density exceeds some critical value, a
positive fraction of the whole amount of particles conglomerates or ”condenses” in the
lowest eigenstate. In 1938 London proposed that a phase transition between He I and
He II is related to the Bose-Einstein condensation. But not until 1995 Bose-Einstein
condensation was observed experimentally in a gas of Rubidium and Natrium. The
physicists Cornell, Ketterle and Wieman received the Nobel price for that experiment in
2001. Feynman [Fey53b, Fey53a] again proposed that Bose-Einstein condensation occurs
if and only if infinitely long loops occur with positive probability.

The connection between Bose-Einstein condensation and cycle percolation has been
established by Sütő [Süt93, Süt02] and Benfatto et al [BCMP05] in the mean field.
Sütő considers a model on random integer partitions and Benfatto et al a mean field
model, both did not take spatial relations into account. Fichtner pointed out the con-
nection between random permutations of countable subsets of Rd and its decomposi-
tion into finite clusters in [Fic91b] and moreover gave a characterisation of the position
distribution of the Bose gas in terms of its moment measures of a point process on
Rd in [Fic91a]. Later Ueltschi [Uel06a, Uel06b] examined lattice models on the ba-
sis of Sütő’s work and thereby introduced so-called spatial permutations. Very recently,
Ueltschi and Betz [BU09, Uel08] generalised the lattice model to models of random point
configurations in a continuous space. By symmetrising initial and terminal conditions
of Brownian bridges of a given length β, Adams and König [AK07] construct for each
Brownian bridge a successor starting at the terminal point, and a predator ending at
the starting point. In that way connected bridges define loops (as classes of connected
Brownian bridges).

In chapters 3 – 5 a related model is considered. Initial point is the already mentioned
Feynman-Kac representation of the Bose gas obtained by Ginibre. The specific model is
constructed in chapter 3, which contains the construction of the space of composite loops
and the Poisson process Pρz thereon. Furthermore properties of the intensity measure
ρz are shown, such as a factorisation and asymptotics.

Chapter 4 is devoted to limit theorems of local specifications derived from Pρz to
obtain representation theorems for Pρz conditioned on different invariant fields. The
first section of this chapter introduces the notion of local specifications and the Martin-
Dynkin boundary technique. Different ways of counting lead to different invariant fields
and they are introduced and studied in the following sections. Firstly by counting loops
for the microcanonical, canonical and grand canonical ensemble, loop representations of
their corresponding Martin-Dynkin boundary is obtained in terms of extremal points by
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0. Introduction

direct computations. The most delicate part consists of the determination of the Martin-
Dynkin boundary in the canonical ensemble of elementary components in section 4.5.
The large deviation principle from section 2.2 allows the representation of limits of
random integer partitions in terms of a variational problem with constraints, which is
solved afterwards. This procedures allows the determination of the essential part of the
canonical Martin-Dynkin boundary.

The complex of the limits of integer partitions gives insight into a global property
with no focus on spatial properties of the loops. Chapter 5 faces geometric properties
of configurations weighted by Pρz . The main object is the typical loop under Pρz . Since
Pρz realises configurations of a countably infinite number of loops, and due to the lack
of an uniform distribution on countably infinite sets, there is no natural definition of a
typical loop. This implies a change of the point of view on the point process: from the
number of points in some region to the single point. The modern definition of the typical
point has its origin in the work of Kummer and Matthes [KM70] with the introduction
of the Campbell measure, which is also developed in the monograph of Kerstan, Matthes
and Mecke [KMM74]. In using this concept of the typical loop, properties such as its
barycentre, its euclidean length and the number of its extremal points are considered.
Furthermore a percolation problem of the configurations is treated.

A fundamental characteristic of the Poisson process is that points are placed indepen-
dently and foremost each one with the same intensity. Papangelou processes, apart from
the Poisson process, contrast this construction. In [MWM79] Papangelou processes were
characterised by a partial integration formula. Recently, Zessin [Zes09] gave a direct con-
struction of these larger class of processes. Particularly the points are placed according
to conditional intensities. Zessin’s construction is reproduced in subsection 1.2.3 and
simplified under an additional assumption. These preparations unfold their relevance in
chapter 6, where the so-called Pólya sum process, which firstly occurred in [Zes09], is
constructed. Instead of placing the points independently and, most notably, identically,
the mechanism of placing the points makes use of Pólya’s urn dynamics: points are
placed successively and each location, at which a point is placed, gets a reward on the
probability to get another point. That way ”turrets” are built from ”bricks”. Apart from
this building brick construction, the Pólya sum process is shown to share many proper-
ties with the Poisson process, particularly infinite divisibility and complete randomness.
Moreover, its Palm kernels are characterised.

In chapter 7 again limit theorems for local specifications are shown, this time for
the Pólya sum process and different limiting stochastic fields obtained from different
observations: firstly by counting turrets, then by counting bricks and finally by counting
turrets and bricks. Particularly the methods used to obtain the last two ensembles are
related to the methods used in section 4.5.

The fundament for these discussions is laid in chapters 1 and 2. Basic tools are
introduced in required generality and discussed. Section 1.1 deals with the definition
of point processes and Poisson processes on complete, separable metric spaces. Their

4



basic construction via Laplace functionals is recalled as well as the moment measures
defined. Important properties of the Poisson process, such as complete randomness and
infinite divisibility, and their classification into larger classes of point processes follow.
Further properties which are not shared by all Poisson processes, like orderliness and
stationarity, are reviewed. Particularly stationarity, the invariance under translations,
leads to helpful factorisations. In section 1.2 the concept of the Campbell measure is
introduced, and its disintegrations, which lead to Palm and Papangelou kernels, are
recalled.

Chapter 2 recalls deviation principles, which are used to obtain properties of the
Poisson process Pρz constructed in chapter 3 and the limits of converging sequences
of measures as solution of certain minimisation problems. An important role for the
former application play large and small deviations of Brownian bridges. They drive the
asymptotic behaviour of the intensity measure ρz. The latter application is prepared in
section 2.2 and applied in chapters 4 and 7.
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Part I.

An Introduction to Point Processes





1. Point Processes

In this very first part the theoretical background is developed, the framework of point
processes on complete, separable metric spaces (c.s.m.s.). This covers the basic objects
in subsection 1.1.1, particularly random measures and random point measures following
the books of Daley and Vere-Jones [DVJ08a, DVJ08b] as well as Kerstan et al. [KMM74]
and Kallenberg [Kal83].

Thereafter in subsection 1.1.2 point processes are focused. Besides the introduction of
the intensity measure and higher moment measures, the main question is to characterise
point processes as in von Waldenfels [vW68]. Since random measures are non-negative,
the Laplace functional turns out to be sufficient. Subsection 1.1.3 starts with the def-
inition of the Poisson process on a c.s.m.s. X in terms of its Laplace functional and
classifies its most important basic properties, which will be needed in this work and
underline the nature of the Poisson process. These are complete randomness given by
Kingman [Kin67] and infinite divisibility. Further properties like stationarity and order-
liness do not follow directly from the general definition of the Poisson process, but need
additional assumptions. If X is an Abelian group with corresponding Haar measure `
(in fact an arbitrary, but fixed Haar measure), then a Poisson process is stationary if
and only if its intensity measure is a multiple of `. Even more generally, if T is an
Abelian group acting measurably on X, then the factorisation theorem yields that a
T -invariant Poisson process’s intensity measure ρ disintegrates into a multiple m of `
and a probability measure νs on a spce of marks ”located” at s,

ρpdxq � mνspdxq`pdsq.

Moreover the simplicity of a point process is related to properties of the second order
moment measure. The orderliness of a Poisson process also addresses the multiplicity of
points. For the Poisson process this shows that simplicity is equivalent to the absence
of atoms of its intensity measure.

A fundamental tool in point process theory are Campbell and reduced Campbell mea-
sure recalled in section 1.2, which allows to change the point of view by disintegration.
While the Laplace functional describes the finite-dimensional distributions, the disin-
tegration of the Campbell measure with respect to the intensity measure of the point
process yields the Palm kernel, which is the point process conditioned on the event that
at a certain site a point is present. The result is the point process from the point of view
of a single point which is almost surely present in the realisations. Palm distributions
are the important tool in chapter 5 and occur a second time in chapter 6.
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1. Point Processes

Under additional assumptions, the reduced Campbell measure is absolutely continuous
with respect to the product of the intensity measure of and the point process itsself. The
disintegration, which yields the Papangelou kernel, allows a further change of the point
of view: the Papangelou kernel is the intensity of a point conditioned on the presence
of a certain configuration. These relations were established in [MWM79]. Very recently
Zessin [Zes09] started with some kernel and constructed the point process for which
the kernel is a Papangelou kernel. In section 1.2.3 we reproduce his proof, and give
in theorem 31 a simpler construction under an additional measurability assumption.
Moreover we generalise Zessin’s proof and correct an inaccuracy. A primer example, the
Pólya sum process defined in [Zes09], is presented and studied in chapters 6 and 7.

1.1. Point Processes

1.1.1. Basic Notions

Let X be a complete separable metric space (c.s.m.s.) and BpXq the σ-field of its
Borel sets, which is the smallest σ-field containing the open sets. A continuous function
f : X Ñ R therefore is necessarily measurable. Of great importance is the ring B0pXq of
bounded Borel sets allowing us to define locally finite measures on the measurable space(
X,BpXq

)
.

Definition 1 (Locally finite measures). A Borel measure µ on the c.s.m.s. X is locally
finite if µpBq   8 for every B P B0pXq.

These measures may contain an infinite mass, but locally only a finite amount is
allowed. Point configurations, i.e. generalised subsets of X, which are locally finite, play
a central role. They are expressed as measures which only take non-negative integer
values on bounded sets.

Definition 2 (Measure spaces). Define the following spaces of measures:

i) MpXq is the space of locally finite Borel measures on BpXq,

ii) M��pXq �
{
µ PMpXq : µpBq P N @B P B0pXq

}
,

iii) M�pXq �
{
µ PM��pXq : µ

(
{x}
)
¤ 1 @x P X

}
,

iv) Mf pXq �
{
µ PMpXq : µpXq   8

}
, analogously M��

f pXq.

Hence M��pXq is the set of all locally finite point measures on X, M�pXq the set of all
locally finite, simple point measures and likewise Mf pXq and M��

f pXq the corresponding
sets of measures of finite total mass. Any locally finite subset of X can be represented
as an element of M�pXq. With M��pXq we thus allow multiple points.

10



1.1. Point Processes

For measurable functions f : X Ñ R write

µpfq :�
∫
fdµ.

We say that a sequence of finite measures pµnqn �Mf pXq converges weakly if µnpfq Ñ
µpfq for any bounded, continuous f : X Ñ R. This concept carries over to locally finite
measures with the additional demand that f has bounded support.

Definition 3 (Vague convergence). A sequence pµnqn of locally finite measure converges
vaguely if for any continuous f with bounded support µnpfq Ñ µpfq

For B P BpXq define the evaluation mapping ζB as

ζB : MpXq Ñ R� Y {�8}, ζBµ :� µpBq. (1.1)

Later ζB is only considered as a mapping on M��pXq, and therefore takes values in
N Y {�8}. The next proposition shows their fundamental role, see [DVJ08b, prop.
9.1.IV].

Proposition 4. Let X be a c.s.m.s.

i) MpXq is a c.s.m.s. when endowed with the vague topology.

ii) The Borel σ-algebra B
(
MpXq

)
is the smallest σ-algebra on MpXq generated by

the mappings {ζB}BPB0pxq.

iii) M�pXq is a c.s.m.s. under the vague topology and its Borel sets agree with the
ones inherited from MpXq.

In particular the last statement follows directly from the following lemma, see [DVJ08b,
lemma 9.1.V].

Lemma 5. M��pXq is a closed subset of MpXq.

Let δx be the Dirac measure, that is for A P BpXq

δxpAq :�

{
1 if x P A
0 if x R A

.

The next proposition [DVJ08b, prop. 9.1.III] shows that measures µ P MpXq decom-
pose into an atomic and a diffuse part, i.e. the former having non-negative masses on
singletons and the latter not. Point measures are particular examples of purely atomic
measures and permit a representation as a sum of Dirac measures. Simple point mea-
sures relate locally finite sets of points of X and point measures of X; in fact this
correspondence is one-to-one. General point measures µ P M��pXq allow ”multiple”
points.

11



1. Point Processes

Proposition 6 (Decompositions). Let µ PM�pXq.

i) µ obeys a unique decomposition into µ � µa � µd with a purely atomic part µa,
which permits a representation

µa �
∑
i

kiδxi ,

where the ki’s are positive real numbers, pxiqi � X is an at most countable set and
µd is a diffuse measure.

ii) If µ PM��pXq, then µ coincides with its atomic part µa with additionally the ki’s
being non-negative integers and pxiqi � X has the property that pxiqiXB is a finite
set for any bounded B P B0pXq.

iii) µ PM�pXq if and only if ki � 1 for any i.

Write x P µ for some µ PM��pXq and x P X if µp{x}q ¡ 0, therefore µp{x}q ¥ 1, and
say that x is contained in µ. Thereby any locally finite point measure can be represented
as

µ �
∑
xPµ

µp{x}qδx

with the factors µp{x}q � 1 if and only if µ is a simple point measure. µ is called a
configuration of elements of X.

The basic terms are defined and point processes may now be defined.

Definition 7 (Random measure, Point process).

i) A probability measure on
(
MpXq,BpXq

)
is called a random measure on

(
MpXq,BpXq

)
.

ii) A probability measure P on
(
M��pXq,BpXq

)
is called a point process.

iii) A simple point process P is a point process which is concentrated on M�pXq,
P
(
M�pXq

)
� 1.

1.1.2. Moment Measures and Functionals of Point Processes

For Borel sets B P BpXq the evaluation mappings ζB are measurable, hence random
variables, and characteristic values of the evaluation mappings are their moments. For
a point process P consider the mapping

ρ : BpXq Ñ R�, ρ : B ÞÑ P pζBq :�
∫
ζBdP. (1.2)

ρ inherits the finite additivity property and monotone convergence property for increas-
ing sequences Bn Ñ B from P and therefore is a measure.

12



1.1. Point Processes

Definition 8 (Intensity measure). Let P be a point process. If ρ PMpXq, then P is of
first order and ρ is called the intensity measure of P .

Also ρ is named first moment measure. Since ρpBq is the expectation of ζB, ρpBq is
the expected number of points of P inside B whether finite or not. Suppose that the
intensity measure exists as a locally finite measure. Let f : X Ñ R be a positive and
measurable function, then the random integral

ζfµ :�
∫
fpxqµpdxq

can be constructed in the usual way as limit of simple functions, i.e. linear combinations
of ζB’s. Their expectation with respect to a point process P then is

P pζf q �

∫∫
fpxqµpdxqP pdµq �

∫
fpxqρpdxq (1.3)

Related integrals will appear in section 1.2. The postponed basic discussion of the so-
called Campbell measure will in fact allow the function f to depend on the configuration
µ.

Instead of integrating ζB, products of the form ζB1 � . . . � ζBn for not necessarily
disjoint, measurable B1, . . . , Bn may be integrated,

ρpnq : BpXqn Ñ R�, ρ : B1 � � � � �Bn ÞÑ P pζB1 � � � ζBnq :�
∫
ζB1 � � � ζBndP.

ρpnq can be extended in the usual way from rectangles to general sets in BpXnq, which
yields

Definition 9 (Higher order moment measures). Let P be a point process and n P N. If
ρpnq PMpXnq, then P is of n-th order and ρpnq is called the n-th order moment measure
of P .

Like moments of random variables extend to moment measures, the characterisation
of non-negative random variables by its Laplace transform carries over to the Laplace
functional of a point process. Let f : X Ñ R be non-negative, measurable and bounded
with bounded support. Then the Laplace functional LP of P is

LP pfq :� P
(

e�f
)
�

∫
exp
(
�µpfq

)
P pdµq.

The importance of the Laplace functional is due to the one-to-one correspondence be-
tween random measures and functionals which occur as Laplace functionals [DVJ08b,
prop. 9.4.II].
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1. Point Processes

Theorem 10. Let the functional L be defined for all non-negative, measurable and
bounded functions f : X Ñ R with bounded support. Then L is the Laplace functional
of a random measure P on X if and only if

i) for f1, . . . , fk non-negative, measurable and bounded with bounded support the func-
tional

Lkpf1, . . . , fk; s1, . . . , skq � L

( k∑
m�1

smfm

)
is the multivariate Laplace transform of random vector pY1, . . . , Ykq.

ii) for every sequence fn monotonously converging to f pointwise

Lpfnq Ñ Lpfq

iii) Lp0q � 1

Moreover, if these conditions are satisfied, the functional L uniquely determines P .

1.1.3. The Poisson Process

Definition 11 (Poisson process). Let ρ P MpXq. The Poisson process with intensity
measure ρ is the uniquely determined point process with Laplace transform

P
(

e�f
)
� exp

(
�ρ
(
1� e�f

))
for any continuous, non-negative f with bounded support. Write Pρ for this process.

Putting f � ζB with B � B1Y . . .YBk for pairwise disjoint and bounded B1, . . . , Bk,
we get that the family ζB1 , . . . , ζBk is mutually independent with each ζBm having Poisson
distribution with intensity ρpBmq. The independence property of Pρ is known as complete
randomness, in particular Poisson processes are prime examples for completely random
measures. An important representation theorem was given by Kingman [Kin67], also
in [DVJ08b, thm. 10.1.III].

Theorem 12 (Kingman). The log-Laplace functional of a completely random measure
is of the form

� logLP pfq � βpfq �
8∑
k�1

ϑk
(
fpxkq

)
�

∫∫
1� e�ufpxq κpdx, duq, (1.4)

where β PMpXq is a fixed, non-atomic measure, pxkqk enumerates an at most countable,
locally finite set of atoms of P , pϑkqk is a family of log-Laplace transforms of positive
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1.1. Point Processes

random variables and κ is the intensity measure of a Poisson process on X �R� which
satisfies for every ε ¡ 0 the integrability conditions for each B P B0pXq,

κpB, pε,8qq   8∫ ε

0
u κpB, duq   8.

Conversely, each log-Laplace functional satisfying equation (1.4) defines a completely
random measure.

Thus completely random measures may consist of a fixed, non-atomic part β, an
atomic part at the sites pxkqk with random weights and a compound Poisson part inde-
pendent of the atomic part. For a completely random measure to be a point process,
β needs to vanish, each ϑk needs to be the log-Laplace transform of an integer-valued
random variable and κpB� � q needs to be a measure on the positive integers. Addition-
ally, to be Poisson, ϑkpsq � �ukp1 � e�sq and κ � ρd � δ1. The intensity measure ρ of
a Poisson process Pρ then is ρ � ρd �

∑
k ukδxk , which is exactly the decomposition in

theorem 6 of ρ into its diffuse and atomic part, respectively.
Sums of independently Poisson distributed random variables again have a Poisson

distribution, and the latter intensity is exactly the sum of the former ones. Vice versa,
each Poisson random variable can be represented as a sum of any given number of inde-
pendently, identically Poisson distributed random variables. This property is known as
infinite divisibility. Consequently, a point process, or more general a random measure,
is infinitely divisible, if it can be represented as a superposition of k independent, iden-
tically distributed point processes or random measures for any k. For a Poisson process
with intensity ρ choose ρ

k for a given non-negative integer k to obtain the representation
of the infinitely divisible Poisson process, see e.g. [DVJ08b, thm. 10.2.IX].

Theorem 13 (Lévy-Khinchin representation). A random measure P is infinitely divis-
ible if and only if its log-Laplace functional permits a representation

� logLP pfq � αpfq �

∫ [
1� exp

(
�ηpfq

)]
Λpdηq (1.5)

where α P MpXq and Λ is a σ-finite measure on MpXqz{H} such that for every B P
B0pXq the integrability condition∫

R�

[
1� e�u

](
Λ � ζ�1

B

)
pduq   8

is satisfied. Conversely, such measures α and Λ define via equation (1.5) an infinitely
divisible random measure.
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1. Point Processes

In the point process case, necessarily α � 0 and Λ is concentrated on M�pXq. Such
infinitely divisible random measures play an important role in limit theorems.

Now assume that in addition X is an Abelian group with the commutative group
operation �. There exists a measure ` P MpXq which is invariant under the group
action, i.e. `pA � xq � `pAq for every A P BpXq, x P X and A � x :� {a � x : a P A}.
` is called Haar measure and is uniquely determined up to a positive constant, see e.g.
Stroppel [Str06, thm. 12.23]. Every x P X induces an automorphism Tx on M��pXq by(

Txµ
)
pBq :� µpB � xq.

Because of Tx�y � TxTy, the set of automorphisms T � {Tx}xPX is an Abelian group
itself and in a natural way homeomorphic to X. A point process P is T -invariant, if the
action of T conserves the distribution,

P pTxAq � P pAq

for every x P X. In case of T being a translation group, P is also called stationary.
Since a point process P is determined by its Laplace functional LP , LP must be

stationary itself. Particularly the log-Laplace functional of a Poisson process satisfies

� logLP
(

e�fp ��xq
)
� ρ
(

1� e�fp ��xq
)
� ρ
(
1� e�f

)
and since the measure ρ is uniquely determined by the set of continuous functions and
is stationary, ρ can only be a multiple of the Haar measure ` on

(
X,BpXq

)
. Therefore

a Poisson process is stationary if and only if its intensity measure is a multiple of the
Haar measure on X.

More generally, T � {Ts}sPG can be an Abelian group defining transformations on
X, where G is a complete, separable metric group, which is locally compact. At least
partial results carry over to this more general case and a factorisation theorem 14 below
states that a T -invariant measure ρ decomposes into a measure which is a multiple of a
Haar measure on G and a second measure on some other space, see e.g. [DVJ08a, prop.
A2.7.III].

Proposition 14 (Factorisation). Let X be a c.s.m.s, T � {Ts}sPG a complete, separable,
locally compact metric group of transformations acting measurably on X. Furthermore
suppose that there exists a one-to-one, both ways measurable and bounded sets conserving
mapping ψ : G � Y Ñ X with some c.s.m.s. Y , which preserves the shifts Tg in the
sense that Tgψph, yq � ψpg � h, yq. Then any T -invariant measure ρ P MpXq can be
represented as

ρpfq �

∫
Y

∫
G
f
(
ψpg, yq

)
`pdgqκpdyq,

where ` is the Haar measure and κ is up to a constant a unique measure on Y for
measurable, non-negative functions f .
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1.1. Point Processes

Such a situation will occur in section 3.1, where a group of translations acts on a space
of functions and a translation invariant measure is decomposed into such two parts. A
further application will be in section 5.1 the disintegration of the so-called Campbell
measure of a stationary point process with respect to its intensity measure.

An important question are criteria for the simplicity of point processes, particularly
of Poisson processes. A first characterisation involves the second order moment measure
ρp2q of a point process P , see e.g. [DVJ08b, prop. 9.5.II]. Let the diagonal of a set
A P BpXq be

diagAk :� {px1, . . . , xkq P X
k : x1 � . . . � xk P A}.

Proposition 15. A point process P of second order satisfies ρp2qpdiagB2q ¥ ρpBq for
all B P B0pXq with equality if and only if P is simple.

Since the Poisson process Pρ is completely random,

ρp2qpB1 �B2q �

∫
ζB1ζB2dPρ �

∫
pζB1zB2

� ζB1XB2qpζB2zB2
� ζB1XB2qdPρ

� ρpB1zB2qρpB2zB1q � ρpB1 XB2q
[
ρpB1zB2q � ρpB2zB1q

]
�

∫ [
ζB1XB2 � ρpB1 XB2q

]2dPρ � ρpB1 XB2q
2

� ρpB1qρpB2q �

∫ [
ζB1XB2 � ρpB1 XB2q

]2dPρ

� ρpB1qρpB2q � ρpB1 XB2q.

Hence the second order moment measure of Pρ for a product is the product of the
intensities plus the variance on the common part of these two sets. Particularly on
products of disjoint sets the last term vanishes.

The following concept of orderliness also addresses the multiplicity of points of a
point process and particularly for Poisson processes. A point process P is orderly, if the
probability of finding many points in a sequence of shrinking spheres vanishes sufficiently
fast compared to the probability of finding some point,

P
(
ζSεpxq ¡ 1

)
� o
(
P
(
ζSεpxq ¡ 0

))
as εÑ 0 for every x P X,

where Sεpxq is the sphere with centre x and radius ε. For a Poisson process Pρ

Pρ
(
ζSεpxq ¡ 1

)
Pρ
(
ζSεpxq ¡ 0

) � 1� e�ρ
(
Sεpxq

)
�ρ
(
Sεpxq

)
e�ρ
(
Sεpxq

)
1� e�ρ

(
Sεpxq

)
vanishes as ε Ñ 0 if and only if x is not an atom of ρ, that is ρp{x}q � 0. Therefore,
see [DVJ08b, thm. 2.4.II],
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1. Point Processes

Theorem 16. A Poisson process Pρ is orderly if and only if Pρ is a simple point process.

Even more, orderliness and complete randomness together characterise Poisson pro-
cesses, see [DVJ08b, thm. 2.4.V]:

Theorem 17. A point process P without fixed atoms is a Poisson process if and only if
P is orderly and completely random.

Directly from the definition of the Poisson process and the subsequent discussion we
get a local representation of a Poisson process Pρ, i.e. if ϕ is EB-measurable for some
B P B0pXq, a Poisson process Pρ can be written as

Pρ,Bpϕq � e�ρpBq
8∑
n�0

1
n!

∫
Bn
ϕpδx1 � . . .� δxnqρpdx1q . . . ρpdxnq,

hence can be interpreted as first choosing an integer n according to a Poisson distribution
with intensity ρ and then placing n points independently according to ρ in Λ.

1.2. The Campbell Measure of a Point Process

As mentioned, the integral in equation (1.3) can be extended to functions f depending
on x and additionally on the configuration µ. The basic step is to attach to each point x
of a configuration µ the configuration itself. This operation is checked to be measurable:
set

C �
{
px, µq P X �MpXq : µp{x}q ¡ 0

}
,

then according to [KMM74, prop. 2.5.1], C is BpXqbB
(
MpXq

)
-measurable, and [KMM74,

thm. 2.5.2] states

Theorem and Definition 18 (Campbell measure). For any integrable or non-negative
function h : X �MpXq Ñ R the mapping

µ ÞÑ

∫
hpx, µqµpdxq

is measurable and the Campbell measure CP of a point process P on X is given by

CP phq �

∫∫
hpx, µqµpdxqP pdµq.

A characterisation of measures which may occur as a Campbell measure of a random
measure is given by Wegmann [Weg77]. However, such a characterisation is not needed
in this work.
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1.2. The Campbell Measure of a Point Process

A special case of such integrals occurred in section 1.1.2 as the expectation of random
integrals ζh with h only depending on x. Here even the dependence on the whole con-
figuration is allowed. Recall also that in choosing hApx, µq � 1Apxq, CP php � qq reduces
to the intensity measure of the point process P . Hence the Campbell measure is an
extension of the intensity measure.

Closely related is the reduced Campbell measure C !
P of a point process P . Instead of

attaching the whole configuration µ to x P µ, µ is reduced beforehand by δx, i.e. µ� δx
is attached to x.

Definition 19 (Reduced Campbell measure). The reduced Campbell measure C !
P of a

point process P on X is the measure on X �M��pXq given by

C !
P phq �

∫∫
hpx, µ� δxqµpdxqP pdµq, h ¥ 0 measurable.

1.2.1. Disintegration with respect to the Intensity Measure: Palm
Distributions

Campbell measure and reduced Campbell measure gain their importance due to two basic
disintegrations, which are now going to be explored. The next proposition [DVJ08b,
prop. 13.1.IV] demonstrates that for each A P BpM��pXqq the Campbell measure CP p � �
Aq of P is absolutely continuous with respect to the intensity measure ρ of P . Its Radon-
Nikodým derivative then is the measurable function P x which is uniquely determined
up to sets of ρ-measure zero.

Proposition 20 (Disintegration). Let P be a point process with finite intensity measure
ρ. Then there exists a Palm kernel, a regular family of local Palm measures {P x}xPX ,
which is uniquely defined up to ρ-null sets and

CP phq �

∫∫
hpx, µqP xpdµqρpdxq

for non-negative or CP -integrable h.

The disintegration result of the Campbell measure with respect to the intensity mea-
sure leads to the interpretation that P x is the original process P conditioned on the
event that there is at least a point at x, i.e. conditioned on the event

{
ζ{x} ¡ 0

}
. In the

special case of the Poisson process these Palm kernels take a simple form and moreover
characterise the Poisson process uniquely. Similar characterisations can be shown for a
larger class of processes.

Theorem 21 (Mecke’s characterisation of the Poisson process). There is exactly one
point process P satisfying for any measurable, non-negative h

CP phq �

∫∫
hpx, µ� δxqP pdµqρpdxq. (1.6)
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1. Point Processes

P � Pρ is the Poisson process with intensity measure ρ.

In replacing CP by the reduced Campbell measure C !
P , equation (1.6) is equivalent to

C !
Pρphq �

∫∫
hpx, µqρpdxqPρpdµq, (1.7)

i.e. the Poisson process Pρ is the unique solution of the functional equation

C !
P � ρb P. (1.8)

A further compact formulation, which is equivalent to equation (1.6), is

P x � P � δδx . (1.9)

This theorem was firstly given in a general form by Mecke [Mec67], see also [DVJ08b,
prop. 13.1.VII], and leads to the interpretation that the local Palm distribution P x of
the Poisson process P is the Poisson process with an additional point at x. Later this
characterisation was generalised e.g. by Nguyen, Zessin [NZ79] to Gibbs processes.

1.2.2. Disintegration with respect to the Point Process: Papangelou
Kernels

Mecke’s characterisation of the Poisson process in the version of equation (1.7) or (1.8),
respectively, states that the reduced Campbell measure C !

Pρ
is absolutely continuous with

respect to ρ b Pρ, and the Radon-Nikodým derivative is exactly the intensity measure.
In general this absolute continuity does not hold. But by the definition of the reduced
Campbell measure for B1, B2 P B0, C !

P pB1� � q ! C !
P pB2� � q holds whenever B1 � B2.

For the following discussion even the following condition is required:

Definition 22 (Condition pΣ1q). A point process P is said to satisfy the condition pΣ1q,
if

pΣ1q C !
P pB � � q ! P @B P B0

holds.

Condition pΣ1q ensures the absolute continuity C !
P pB � � q ! P for each B P B0pXq

and therefore the Radon-Nikodým derivative can be computed [Kal78].

Theorem and Definition 23 (Papangelou kernel). Let the point process P satisfy pΣ1q,
then there exists a measurable mapping

η : M�pXq ÑMpXq, µ ÞÑ ηpµ, � q

such that
dC !

P pB � � q

dP
� ηp � , Bq

for B P B0pXq. Since the paper [MWM79] η has been called Papangelou kernel for the
point process P .
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1.2. The Campbell Measure of a Point Process

By the Radon-Nikodým theorem the Papangelou kernel for P is P -a.s. unique. As in
the previous subsection the Palm kernel is interpreted as the point process conditioned
on the occurrence of a point at some site, the Papangelou kernel is interpreted as the
conditional intensity measure (on X) conditioned on a given configuration. The following
theorem from [MWM79] relates the Papangelou kernel with a partial integration formula
for CP .

Theorem 24 (Partial Integration). Let P be a point process and η : M��pXq ÑMpXq
measurable. Then the following statements are equivalent:

i) η is a Papangelou kernel for P

ii) P satisfies the partial integration formula for non-negative, measurable h

CP phq �

∫∫
hpx, µqµpdxqP pdµq �

∫∫
hpx, µ� δxqηpµ, dxqP pdµq

By Matthes et al. [MWM79] the last equivalence leads to a nice characterisation of
simple point processes involving the Papangelou kernel.

Corollary 25 (Simplicity). Let η be a Papangelou kernel for the point process P , then
the mapping µ ÞÑ ηpµ, suppµq is measurable and P

(
{ηpµ, suppµq ¡ 0}

)
� 0 is equivalent

to the simplicity of P .

This can be seen by setting h the indicator on pairs px, µq for which µpxq ¡ 1. For
Poisson processes Pρ this corollary implies the known fact that Pρ is a simple point process
if and only if the intensity measure ρ, which is a Papangelou kernel for Pρ, is a diffuse
measure.

1.2.3. Construction of Point Processes from Papangelou Kernels

In [MWM79] in general the existence of the point process P , for which the Papangelou
kernel is constructed, is assumed. An problem to be addressed in this section is the
reverse task firstly developed in [Zes09]: Given a kernel η, construct a point process P ,
such that η is a Papangelou kernel for P . Throughout this subsection let

η : M��pXq ÑMpXq

be a measurable mapping. Let us firstly derive some properties of the following iterated
kernels.

Definition 26 (Iterated kernel). For a Papangelou kernel η : M��pXq Ñ MpXq and
m P N let the iterated kernel ηpmq, m ¥ 1, of η be

ηpmqpµ, ϕq :�
∫
ϕpδx1 � . . .� δxmqηpµ� δx1 � . . .� δxm�1 ,dxmq � � � �

� ηpµ� δx1 , dx2qηpµ, dx1q.

(1.10)
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1. Point Processes

Set ηp0q :� 1.

The mapping ηpmq is measurable, and moreover is finite on rectangles of bounded sets
and for m ¥ 2 even a symmetric measure [MWM79].

Theorem 27. Let η be a Papangelou kernel for a point process P . Then for every m ¥ 1

P
(
ηpmqp � , B1 � . . .�Bmq   8 @B1, . . . , Bm P B0pXq

)
� 1

and for m ¥ 2

P
(
ηpmqp � , B1 � . . .�Bmq � ηpmqp � , Bσp1q � . . .�Bσpmqq

)
� 1

for every permutation σ on {1, . . . ,m} and bounded, measurable sets B1, . . . , Bm.

In order to construct a point process P for which the measurable mapping η : M��pXq Ñ
MpXq is a Papangelou kernel, the kernels ηpmq given by equation (1.10) at least need
to satisfy the properties of the previous theorem P -a.s. Particularly the symmetry of η
is assumed for all µ, which is equivalent to the cocyle condition,

Lemma 28 (Cocycle condition). Let ηpmq be given by equation (1.10) for some measur-
able mapping η : M��pXq Ñ MpXq. Then ηpmqpµ, � q is a symmetric measure for each
m P N, i.e.

ηpmq
(
µ,B1 � . . .�Bm

)
� ηpmq

(
µ,Bσp1q � . . .�Bσpmq

)
for every permutation σ on {1, . . . ,m} if and only if the cocycle condition holds

ηpµ� δx, dyqηpµ, dxq � ηpµ� δy, dxqηpµ, dyq.

Proof. Assume firstly that ηpmqpµ, � q is a symmetric measure for each µ. Then by
choosing m � 2,∫

1B1px1q1B2px2qηpµ� δx1 ,dx2qηpµ, dx1q � ηp2qpµ,B1 �B2q

� ηp2qpµ,B2 �B1q �

∫
1B2px1q1B1px2qηpµ� δx1 , dx2qηpµ, dx1q,

for all bounded, measurable B1, B2. Hence the cocycle condition holds.
Secondly assume that the cocyle condition holds for η, then

ηpmqpµ,B1 � � � � �Bmq �

∫
1B1px1q1B2px2q � � � 1Bmpxmqηpµ� δx1 � . . .� δxm�1 , dx2q

� � � ηpµ� δx1 ,dx2qηpµ, dx1q

�

∫
1B1px1q1B2px2q � � � 1Bmpxmqηpµ� δx1 � . . .� δxm�1 ,dx2q

� � � ηpµ� δx2 ,dx1qηpµ, dx2q

� ηpmqpµ,B2 �B1 � � � � �Bmq
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1.2. The Campbell Measure of a Point Process

due to the cocycle condition. This equation holds for every next neighbor transposition
and hence by iteration for all transpositions. Since every permutation has a decomposi-
tion into transpositions, the equation holds for all permutations, therefore ηpmqpµ, � q is
a symmetric measure.

In the previous subsection the Papangelou kernel η was obtained as the disintegration
of the reduced Campbell measure permitting the interpretation that ηpµ, � q is the con-
ditional intensity measure conditioned on the configuration µ. Thus in the following µ
plays the role of a boundary condition, for which the point process is constructed.

Let µ PM��pXq and Zpmqpµq be the mass of the iterated kernel ηpmq as well as Ξpµq
the possibly infinite limit of the series,

Zpmqpµq :� ηpmqpµ,X � . . .�Xq, Ξpµq :�
∑
m¥0

Zpmqpµq

m!
. (1.11)

η is called integrable if Ξpµq   8 for each µ PM��pXq, and in this case the point process
Pµ given by

Pµpϕq :�
1

Ξpµq

∑
m¥0

1
m!

∫
Xm

ϕpδx1 � . . .� δxmqη
pmq
(
µ, dx1, . . . ,dxm

)
(1.12)

is well-defined. By [Zes09]:

Proposition 29. Let η : M��pXq ÑMf be a finite kernel satisfying the cocycle condition
and assume η to be integrable. Then for every boundary configuration µ PM��pXq, Pµ

is a solution of the partial integration formula

CP phq �

∫∫
hpx, ν � δxqηpµ� ν,dxqP pdνq.

Definition 30 (Papangelou process for kernel η). Pµ is the (finite) Papangelou process
for the symmetric and integrable kernel η.

Proof of proposition 29. By the definition of the Campbell measure

CPµphq �

∫∫
hpx, νqνpdxqPµpdνq

�
1

Ξpµq

∑
m¥0

1
m!

∫
Xm

m∑
j�1

hpxj , δx1 � . . .� δxmqη
pmq
(
µ, dx1, . . . ,dxm

)
,
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1. Point Processes

then firstly by the symmetry of ηpmq and secondly by integration and the definition of
the iterated kernels

�
1

Ξpµq

∑
m¥0

1
pm� 1q!

∫
Xm

hpxm, δx1 � . . .� δxmqη
pmq
(
µ, dx1, . . . ,dxm

)
�

1
Ξpµq

∑
m¥0

1
pm� 1q!

∫
Xm�1

∫
X
hpxm, δx1 � . . .� δxmq

ηpµ� δx1 � . . .� δxm�1 ,dxmqη
pm�1q

(
µ,dx1, . . . ,dxm

)
�

∫∫
hpx, ν � δxqηpµ� ν, dxqPµpdνq.

The aim is to extend the construction of finite Papangelou processes for finite kernels
η to kernels which are σ-finite. The strategy is to construct the process locally and then
to glue these locally defined processes together. For a bounded and measurable B let
the σ-algebra of the events inside B be ÊB � σ

(
ζB1 : B1 � B,B1 P B0pXq

)
and define

the restriction to B for ÊB-measurable ϕ as

ηBpµ, ϕq :�
∑
m¥0

1
m!

∫
Bm

ϕpδx1 � . . .� δxmqη
pmq
(
µBc ,dx1, . . . ,dxm

)
. (1.13)

Note that the mass of µ in B is cut. The definitions of the normalisation constants
Z
pmq
B pµq and ΞBpµq in equation (1.11) carry over directly. η is called locally integrable

if for each bounded B and µ P M��pXq, ΞBpµq is finite. A construction similar to the
Poisson process can be used in case of additional measurability conditions on ηB, that
is if ηB cannot see what happens outside B.

Theorem 31 (Papangelou processes with independent increments). Let the measurable
mapping η : M��pXq Ñ MpXq be locally integrable and satisfy the cocycle condition.
If in addition ηB defined in equation (1.13) is ÊB-measurable, then there exists a point
process P on X which is independent of the boundary configuration µ PM��pXq and for
which η is a Papangelou kernel, i.e. P satisfies the partial integration formula,

CP phq �

∫∫
hpx, ν � δxqηpν, dxqP pdνq.

Proof. Two main steps have to be done: Firstly P has to be constructed and secondly
the partial integration formula for P has to be shown. For the first part let pBnqn¥0 be
a locally finite partition of X of bounded sets, i.e. for each bounded set B P B0pXq,
BXBn � H only for finitely many n. Then on each Bn a point process Pµn is constructed
according to equation (1.13),

Pµn pϕq :�
1

ΞBnpµq
ηBnpµ, ϕq.
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1.2. The Campbell Measure of a Point Process

Due to the measurability condition on ηB,

∫
Bmn

ϕpδx1 � . . .� δxmqη
pmq
(
µBcn ,dx1, . . . ,dxm

)
�

∫
Bmn

ϕpδx1 � . . .� δxmqη
pmq
(
0, dx1, . . . ,dxm

)
is independent of µ and the superscript of Pµn may be dropped.

Thus for each n a point process Pn on M��pBnq is constructed. Let

N :�
⊗
n¥0

M��pBnq

the product space. By the Daniell-Kolmogorov extension theorem, there exists a proba-
bility measure P on the product space N with finite-dimensional distributions given by
the corresponding product of the Pn’s. Finally map P via

N ÑM��pXq, pνnqn¥1 ÞÑ
∑
n¥0

νn

to obtain a probability measure on M��pXq, which also will be denoted by P with abuse
of notation. It remains to show that η is the Papangelou kernel for P .

First of all, let h be of the form hpx, µq � gpxqϕpµq with supp g � Bj for some j ¥ 1
and ϕ being ÊB0Y...YBm-measurable for some m ¥ j. Then

CP phq �

∫ ∑
n¥0

∫
h

(
x,

8∑
k�0

µk

)
µkpdxqP pdµq

�

∫ ∫
Bj

gpxqϕ

(
8∑
k�0

µk

)
µjpdxqP pdµq

since supp g � Bj and furthermore because of ϕ being ÊB1Y...YBm-measurable,

�

∫ ∫
Bj

gpxqϕ

(
m∑
k�0

µk

)
µjpdxqP pdµq,
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1. Point Processes

for which P can now be replaced by P1 b � � � b Pm. Finally the application of partial
integration for Pj yields

�

∫ ∫
Bj

gpxqϕ

(
m∑
k�0

µk

)
µjpdxqP0pdµ0q � � �Pmpdµmq

�

∫ ∫
Bj

gpxqϕ

(
m∑
k�0

µk � δx

)
ηpµj ,dxqP0pdµ0q � � �Pmpdµmq

�

∫ ∫
Bj

gpxqϕ

(
m∑
k�0

µk � δx

)
η

(
m∑
k�0

µk,dx

)
P0pdµ0q � � �Pmpdµmq

�

∫∫
gpxqϕpµqηpµ, dxqP pdµq.

This result extends to general non-negative and measurable h.

Particularly in the step of the application of the partial integration formula the mea-
surability condition on ηB, and hence the independence simplified a lot. For general
η, that is ηB not necessarily ÊB-measurable, finer instruments are necessary. In fact,
proposition 31 is a special case of proposition 33. In [Zes09] the theorem is only given
for the boundary configuration µ � 0, here we drop this restriction. Furthermore an
additional assumption on the normalisation constants seems to be required in contrast
to [Zes09]. The main schedule, firstly to construct the global process and secondly to
show the partial integration formula, stays the same. The means of theorem 31 have to
be refined: a Markov construction together with the theorem of Ionescu Tulcea [Kal02,
thm. 6.17] yields the first part, for the second further assumptions are necessary.

Theorem 32 (Ionescu Tulcea). For any measurable spaces pSn, Snq and probability ker-
nels µn from S1 � � � � � Sn�1 to Sn, n P N, there exist some random elements ξn in Sn,
n P N, such that pξ1, . . . , ξnq

d
� µ1 b � � � b µn for all n.

A kernel η is said to satisfy the Feller condition if for every increasing sequence pBnqn
of bounded sets which exhausts X,

ηpµBn , � q Ñ ηpµ, � q

vaguely as nÑ8.
A further condition needs to be discussed: If ηpµ�δy, � q is absolutely continuous with

respect to ηpµ, � q outside {y} for every boundary configuration µ PM��pXq,

1{y}cpxqηpµ� δy,dxq � 1{y}cpxqfηpy, xqηpµ, dxq, (1.14)
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1.2. The Campbell Measure of a Point Process

then for bounded, measurable B and x R B,

ηBpµ� δx, ϕq �
∑
m¥0

1
m!

∫
Bm

ϕpδx1 � . . .� δxm � µBc � δxq

� ηpmq
(
µBc � δx, dx1, . . . ,dxm

)
�
∑
m¥0

1
m!

∫
Bm

ϕpδx1 � . . .� δxm � µBc � δxqfηpx, xmq � � � fηpx, x1q

� ηpmq
(
µBc , dx1, . . . ,dxm

)
� ηB

(
µ, ϕp � � δxq � fηpx, � q

)
,

where fηpx, δx1�. . .�δxmq :� fηpx, x1q � � � fηpx, xmq. Therefore, if PµB :� ΞBpµq�1ηBpµ, � q,

Pµ�δxB pϕq �
ΞBpµq

ΞBpµ� δxq
PµB
(
ϕp � � δxqfηpx, � q

)
. (1.15)

Theorem 33 (General Papangelou processes). Assume that the measurable mapping η :
M��pXq ÑMpXq satisfies the cocycle condition and the Feller condition, and is locally
integrable. Let µ PM��pXq be a given boundary configuration. If furthermore ηpµ�δy, � q
is absolutely continuous with respect to ηpµ, � q outside {y} as in equation (1.14), and
for each B P B0pXq, x P Bc the normalisation constants satisfy ΞBpµq � ΞBpµ � δxq,
then there exists a point process Pµ on X for which η is a Papangelou kernel, i.e. Pµ

satisfies the partial integration formula

CP phq �

∫∫
hpx, ν � δxqηpν,dxqP pdνq.

Proof. As in the proof of proposition 31 let pBnqn¥0 be a locally finite partition of X of
bounded sets. Then the following finite point processes exist by equation (1.12)

Pµn pϕq �
1

Ξnpµq

∑
m¥0

1
m!

∫
Bmn

ϕpδx1 � . . .� δnmqη
pmq
(
µBcn ,dx1, . . . ,dxm

)
. (1.16)

Successively on each Bn a finite point process will be constructed with the boundary
condition µ in the regions B0, . . . , Bn�1 replaced by a realisation of the corresponding,
already constructed, finite point processes on B0, . . . , Bn�1. Let

Q0pdν0q :� Pµ0 pdν0q,

the dependence on µ suppressed for the moment. Furthermore denote by νm the sum
ν0 � . . .� νm and by µpmq the restriction of µ to the complement of B0 Y . . .YBm. For
pν0, . . . , νm�1q PM��pB0q � � � � �M��pBm�1q let

Qmpν0, . . . , νm�1; dνmq :� Pµ
pm�1q�νm�1

m pdνmq, (1.17)
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1. Point Processes

i.e. Qm is a probability kernel M��pB0q � � � � �M��pBm�1q Ñ M��pBmq. Since by
equation (1.16) any contribution of µ inside Bm is cut, in the definition (1.17) µpm�1q

may be replaced by µpmq. The choice µpm�1q is consistent with the definition of Q0.
By the theorem of Ionescu Tulcea there exists a probability measure P on N such

that its finite-dimensional distributions Pµp0,...,nq are given by

Pµp0,...,nqpdν0, . . . ,dνnq � Pµ
pn�1q�νn�1

n pdνnq � � �P
µp0q

1 pdν1qP
µ
0 pdν0q.

For simplicity Pµ again is identified with its image under the mapping

N ÑM��pXq, pνnqn¥0 ÞÑ
∑
n¥0

νn.

Therefore the point process Pµ exists, considered either as a point process on N or
M��pXq, respectively. The partial integration formula remains to be shown.

In choosing again h to be of the form hpx, µq � gpxqϕpµq with supp g � Bj for some
j ¥ 1 and ϕ being EB0Y...YBm-measurable for some m ¥ j, the first lines of the proof of
the partial integration in the proof of proposition 31 can be followed, and then continued
by

CP phq �

∫ ∫
Bj

gpxqϕ
(
νm
)
νjpdxqPµ

pm�1q�νm�1

m pdνmq � � �P
µp0q

1 pdν1qP
µ
0 pdν0q,

for which the partial integration formula for finite Papangelou processes can be applied
for the j-th kernel

�

∫ ∫
Bj

gpxqϕ
(
νm � δx

)
Pµ

pm�1q�νm�1�δx
m pdνmq � � �P

µpjq�νj�δx
j�1 pdνj�1q�

� ηpνj ,dxqPµ
pj�1q�νj�1

j pdνjq � � �P
µp0q

1 pdν1qP
µ
0 pdν0q.

Because of x R Bj�1, by equation (1.15) and the equality of the normalisation constants,
and the integrations can be exchanged such that firstly with respect to x is integrated,

�

∫ ∫
Bj

gpxqϕ
(
νm � δx

) m∏
k�j�1

fηpx, νkqηpν
j , dxq

� Pµ
pm�1q�νm�1

m pdνnq � � �P
µp0q

1 pdν1qP
µ
0 pdν0q

�

∫∫
gpxqϕpνqηpν, dxqPµpdνq.

For the last line observe that by assumption

fηpx, νj�1qηpν
j , dxq � ηpνj�1,dxq.

Indeed, the ÊB-measurability in proposition 31 implies Feller and absolute continuity
condition, and therefore proposition 31 is a special case of proposition 33.
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2. Deviation Principles

One of the main techniques used in the later parts is the principle of large deviations. Ba-
sically, the situation is the following: given a sequence pYkqk¥1 of identically distributed,
uncorrelated random variables with finite second moment, the weak law of large numbers
states that the average of the first n variables 1

nSn tends to the expectation EY1 weakly
as n Ñ 8. Clearly the probability that the average 1

nSn stays away from EY1, tends
to 0. Such events {| 1nSn � EY1| ¡ δ} are called rare events, untypical events or large
deviations. The basic question is: What is the probability of a rare event and at which
speed does it vanish?

Cramér’s theorem (see e.g. Dembo and Zeitouni [DZ98, thm. 2.2.3] or Deuschel and
Stroock [DS00, thm. 1.2.6]) states that this probability behaves like exp

(
�n inf{Ipxq :

|x � EY1| ¡ δ}
)
, where I is a non-negative function called rate function. Several ob-

servations can be made: Firstly, the probability of this rare event decays exponen-
tially fast, i.e. 1

nSn may deviate with only exponentially small probability. Secondly,
inf{Ipxq : x P R} � 0 and moreover, the infimum is in fact a minimum. The limit of the
1
nSn’s occurs as the minimum of I, which is at the same time a zero of I. Finally the
theorem is not restricted to only random variables; for random vectors Cramér’s theorem
is also valid and allows extensions to projective limits (which are not trivial indeed).

Particularly the second observation, the determination of a weak limit as the minimiser
of an optimisation problem, will be important: the weak limit is exactly the minimiser of
I. Conversely, determining the minimiser of I means to find a weak limit. Moreover, if
a condition on the 1

nSn is present, the large deviation principle leads to an optimisation
problem with constraints.

In sections 4.5, 7.2 and 7.3, large deviation principles are a basic tool for the deriva-
tion of limit theorems. The large deviations for Poisson processes at high intensity,
see [GW95], and required adaptations are discussed in section 2.2. For the discussion
of the asymptotic behaviour of the model to be introduced in chapter 3 large and small
deviations for Brownian bridges are given in subsection 2.3.

2.1. General Large Deviation Principles

In the situation of the uncorrelated, identically distributed random variables, the rate
function I can be shown to satisfy two important properties: convexity and the com-
pactness of the level sets {I ¤ u}. This ensures the existence of a minimiser, which is, in
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2. Deviation Principles

the situation above, unique and at the same time the (unique) zero of I. To obtain suit-
able optimisation problems and for I to encode the behaviour of a family of probability
measures, the following properties are required:

Definition 34 (Rate function). A rate function I is a lower semicontinuous mapping
I : Y Ñ r0,8s, i.e. the level sets {y P Y : Ipyq ¤ α} are closed for every non-negative
α. I is furthermore a good rate function, if the level sets are compact.

Over closed sets good rate functions achieve its minimum, which implies that a weak
law of large numbers holds. Assume pPnqn being a sequence of probability measures on(
Y,BpY q

)
with BpY q complete. The precise definition of the large deviation principle is

the following

Definition 35 (Large Deviation Principle). The sequence pPnqn of probability measures
satisfies a large deviation principle with good rate function I and speed an if the following
two bounds hold for every G � BpY q open and every F � BpY q closed:

lim inf
nÑ8

1
|an|

logPn
(
G
)
¥ � inf

yPG
Ipyq (2.1)

lim sup
nÑ8

1
|an|

logPn
(
F
)
¤ � inf

yPF
Ipyq. (2.2)

By the lower semicontinuity, see e.g. Deuschel and Stroock [DS00, lemma 2.1.1], the
rate function can be shown to be unique in case of existence once the speed is fixed.
Therefore I is said to govern the large deviations of pPnqn.

The main job is to determine the rate function I. Consider Pn to be the law of Sn as
in the example at the beginning, then by the Markov inequality

P
(
Sn ¡ nx

)
� P

(
euSn ¡ eunx

)
¤ e�unx E euSn � exp

[
�n
(
ux� log Λpuq

)]
,

where Λpuq :� log E euY1 is the logarithmic moment generating function. Optimising
the exponent on the rhs. with respect to u yields a candidate for the rate function I
governing the large deviations of pSnqn. Indeed, basically Cramér’s theorem states that
the convex conjugate Λ� of Λ is the rate function,

Ipxq � Λ�pxq :� sup{ux� log Λpuq : u P R}.

and the speed can be chosen to be an � n. Furthermore I can be shown to have exactly
one minimiser given by EY1, which is simultaneously the unique zero. Roughly speaking,
Sn satisfying a large deviation principle with rate function I means

P
(
Sn P A

)
� e�n infxPA Ipxq .
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2.2. Large Deviations for Poisson Processes at increasing Intensity

Such a statement remains true in greater generality for measures on a space Y . Let
Y � be the dual of Y , then for a probability measure P let ΛP be its logarithmic moment
generating function

ΛP : Y � Ñ R ΛP puq :� log
∫
Y

exp
(
〈u, y〉

)
P pdyq,

where 〈u, y〉 :� upyq.

Definition 36 (Fenchel-Legendre transform). For a sequence pPnqn of probability mea-
sures and an increasing sequence panqn of positive real numbers let

Λpuq :� lim
nÑ8

1
an

ΛPnpu{anq

The Fenchel-Legendre transform Λ� of Λ is the convex conjugate of Λ,

Λ�pyq :� sup{〈u, y〉� Λpuq : u P Y �}.

In the following we need to assume that Λ is well-defined and finite in an open set
containing 0, Gâteaux-differentiable and lower semicontinuous. The rate function then
is exactly Λ�, see e.g. [DZ98, thm. 4.5.27].

Theorem 37 (Gärtner-Ellis). Let pPnqn be an exponentially tight sequence of proba-
bility measures. If Λ exists in a neighborhood of 0, is Gâteaux-differentiable and lower
semicontinuous, then pPnqn satisfies a large deviation principle with good rate function
Λ�.

2.2. Large Deviations for Poisson Processes at increasing
Intensity

In the particular situations in sections 4.5, 7.2 and 7.3 Poisson processes with increasing
intensity are given. Assume Prτ being a Poisson process with intensity measure rτ , r ¡ 0.
As r Ñ 8, the expected number of particles ζB in a bounded region B grows by the
same factor r and ζB

r Ñ τpBq by the law of large numbers. Therefore

Pr :� Prτ
(ζB
r
P �
)

is a candidate for a large deviation principle. The result of Guo and Wu [GW95] even
states
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2. Deviation Principles

Theorem 38 (Large deviation principle for Poisson processes at high intensity). As
r Ñ 8, Prτ

({µ
r P �

})
satisfies a large deviation principle on MpXq with speed r and

rate function Ip � ; τq : MpXq Ñ r0,8s,

Ipκ; τq �

{
ρpf log f � f � 1q if κ ! ρ, f :� dκ

dτ , f log f � f � 1 P L1pτq

8 otherwise
.

The function Ip � ; ρq is called relative entropy with respect to ρ and agrees with Λ�.
Because of some necessary comments on that result, the main points of the proof are
demonstrated

Sketch of Proof. The moment generating function for the Poisson process was given in
section 1.1.3, and therefore passing to the limit yields

Λpfq � �

∫
X

[
1� ef

]
dτ (2.3)

for any continuous f with bounded support. Moreover, Λ is Gâteaux-differentiable in a
neighborhood of f with

dΛpfqrgs :�
d
dt

Λpf � tgq|t�0 �

∫
X
g ef dτ.

Therefore Prτ
({µ

r P �
})

satisfies a large deviation principle with rate function Λ�, which
can be identified as the relative entropy with respect to τ by solving the variational
principle.

Remark 39. Instead of the intensity measure rτ for an increasing factor r a sequence
pτnqn of intensity measures with τn

n Ñ τ is sufficient for the limit in equation (2.3) to
exist, which is exactly the situation in section 4.5.

Particularly the case X � N is important for sections 4.5, 7.2 and 7.3, where the
intensity measure τ is a finite measure of the form

τ �
∑
j¥1

zj

jα
δj (2.4)

for certain parameters z P p0, 1s and α ¥ 0. There even stronger results hold and are
required: In section 4.5, z � 1 and α ¡ 2, the test functions are allowed to have an
unbounded support, but stay bounded; and in chapter 7, α � 1 and z   1, the test
functions are allowed to grow linearly. These stronger results have to be justified.
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2.3. Deviations for Brownian Motions and Brownian Bridges

In the first case, τpjq � j�α for some α ¡ 2, for f and g bounded the following two
estimates hold

Λpfq �
∑
j¥1

j�α
(

efpjq�1
)
¤ ec1 τpNq   8

dΛpfqrgs �
∑
j¥1

j�αgpjq efpjq ¤ c2 ec1 τpNq   8

for constants c1 ¥ |f | and c2 ¥ |g|. The first estimate ensures that the domain of Λ
contains an open neighborhood of 0, the second ensures the differentiability.

Corollary 40 (Large Deviations for weak topology). The large deviation principle of
the family of Poisson processes Prτ , r ¡ 0, on N with τ given by equation (2.4) for
α ¡ 2 and z ¤ 1 in theorem 38 holds true on MpNq equipped with the topology of weak
convergence.

For the second case, τpjq � zj

j , let |fpjq| ¤ c1p1� jq and |gpjq| ¤ c2p1� jq, then

Λpfq �
∑
j¥1

zj

j

(
efpjq�1

)
¤
∑
j¥1

zj

j
ec1p1�jq

dΛpfqrgs �
∑
j¥1

zj

j
gpjq efpjq ¤ c2

∑
j¥1

zj ec1p1�jq .

For sufficiently small c1, the rhs. of the first equation converges, hence the domain of Λ
contains an open neighborhood of 0, and the second estimate yields the differentiability
of Λ in the domain of its convergence. Let the �-topology be the topology on MpNq
generated by these at most linearly growning functions.

Corollary 41 (Large Deviations for �-topology). The large deviation principle of the
family of Poisson processes Prτ , r ¡ 0, on N with τ given by equation (2.4) for α � 1 and
z   1 in theorem 38 holds true on MpNq equipped with the topology of �-convergence.

2.3. Deviations for Brownian Motions and Brownian Bridges

The model to be introduced in section 3.1 deals with measures on Brownian loop spaces.
Particular large deviation principles for Brownian motion can serve information about
the asymptotic behaviour of these measures for increasing and decreasing loop lengths,
respectively. The behaviour for long loops relies on theorem 44, which is a generalisation
of Schilder’s theorem, see e.g. Dembo and Zeitouni [DZ98, thm. 5.2.3].
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2. Deviation Principles

Theorem 42 (Large deviations of Brownian motion, Schilder). Let pWtqtPr0,1s be a
Brownian motion. Then for Borel measurable A,

lim inf
εÑ0

ε2 log PpεW P Bq ¥ � inf
yPintA

Ipyq,

lim sup
εÑ0

ε2 log PpεW P Bq ¤ � inf
yPclA

Ipyq,

where Ipyq �
∥∥ 9y∥∥2

2
is a good rate function.

Schilder’s theorem is a particular case of a large deviation principle for general centered
Gaussian measures on separable, real Banach spaces [DS00, thm. 3.4.12]

Definition 43 (Wiener quadruple). pE,H, S, P q is a Wiener quadruple if

i) E is a separable, real Banach space,

ii) H is a separable, real Hilbert space,

iii) S : H Ñ E is continuous, linear and injective,

iv) P is a Gaussian measure on R, i.e.∫
E

exp [i〈λ, x〉]P pdxq � exp
[
�

1
2
‖S�λ‖2

H

]
for all λ P E�, where S� : E� Ñ H is the adjoint map of S.

Theorem 44 (Large Deviations of centered Gaussian processes). If P is a centered
Gaussian measure on the separable, real Banach space E, then there exist a separable,
real Hilbert space H and a continuous, linear injection S : H Ñ E such that pE,H, S, P q
is a Wiener quadruple. Moreover, if pE,H, S, P q is any Wiener quadruple, then S is a
compact map, satisfies

‖S‖ ¤
(∫

E
‖x‖2

Eµpdxq
)1{2

and the family pµpqqn¥1 satisfies a large deviation principle with rate function

Λ�pxq �

{
1
2‖S

�1x‖2
H if x P SpHq

�8 if x P E\SpHq

For the the Wiener measure W T on r0, T s, E � {x P C
(
r0, T s,Rd

)
: xp0q � 0}, H is

the space of absolutely continuous functions whose derivatives L2-norm is bounded and
S is given by (

Sh
)
ptq �

∫ t

0
hpsqds.
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2.3. Deviations for Brownian Motions and Brownian Bridges

S� is computed to be (
S�λ

)
ptq �

∫ T

t
λpdsq,

from which the covariance follows as

Qpλ, λ1q :� 〈S�λ, S�λ1〉 �
∫ T

0

∫ T

0
s^ t λ1pdsqλpdtq. (2.5)

In case of the Brownian bridge on r0, T s, E gets the additional condition xpT q � 0, H
gets the condition that the integral over r0, T s vanishes, and the kernel for the covariance
in equation (2.5) is replaced by s^ t� st

T . Particularly S�1 is still the derivative.
Therefore, if B � pBtqtPr01,s is a Brownian bridge, then the probability of the event

{suptPr0,1s |Bt| ¥ L} vanishes exponentially fast as LÑ8. More precisely

lim
LÑ8

1
L2

log P

(
sup
tPr0,1s

|Bt| ¥ L

)
� �2,

and Brownian motions and bridges are very unlikely to leave a large region at least once.
On the other hand both processes are very likely to leave very small regions. The precise
statements about the small ball probabilities are given by Li and Shao [LS01, thm. 6.3].

Theorem 45 (Small deviations of Brownian bridges; Shao, Li). Let pBtqtPr0,1s be a
Brownian bridge. Then

lim
εÑ0

ε2 log Pp
∥∥Bt∥∥8 ¤ εq � �

π2

8
.

The deviation results are going to be used in the section 3.1 to get further insight into
the behaviour of the Brownian loop measure, which is going to be constructed there.
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Part II.

A Bose Gas Model





3. Construction of the ideal Bose Gas

This chapter is devoted to the construction of the ideal Bose gas. The initial point is
the already mentioned work of Ginibre [Gin71], where inter alia a Feynman-Kac repre-
sentation of a Bose gas is derived. His results restricted to the non-interacting case are
interpreted in terms of point processes, which leads to a Poisson process on a space of
loops.

For the construction of the Poisson process the construction of the measurable space
of composite loops

(
X,BpXq

)
together with a ring of bounded sets B0pXq and a locally

finite measure ρ is sufficient. The space of loops is constructed in definition 46, followed
by the Borel-σ-algebra and the ring of bounded Borel sets in definition 48. Subsequently
the intensity measure ρ is constructed. ρ is shown to be invariant under a group of
translations isomorphic to Rd and therefore permits a disintegration with respect to the
Lebesque measure. Two important consequences are its local boundedness, lemma 51,
and the absence of atoms, lemma 52. The section concludes with an application of the
deviations for Brownian bridges of section 2.3 giving a deeper insight into the behaviour
of ρ. Particularly the weight of ρ for long loops in a fixed region drops exponentially
fast, lemma 54, and the weight for short loops is exponentially close to the volume of
that region, lemma 55.

3.1. The Loop Space and the Brownian Loop Measure

Ginibre [Gin71] studied quantum particle systems in thermal equilibrium by means of
their reduced density matrices. He deduced an integral representation for the reduced
density matrices, in which, due to Feynman-Kac formula, an integration over closed loops
occurred. For Boltzmann Statistics it turned out that these closed loops are trajectories
on the short time interval r0, βs which return to their starting point.

The Quantum statistics, in particular the interesting Bose statistic, needs a sym-
metrisation procedure to be introduced. This procedure has some peculiar effect on
these closed loops: A particle does not need to return to its starting point, instead it
may move to a different particle’s starting point. Hence he gets composite closed loops.
Next we construct the basic objects following the requirements of Ginibre’s results.

Fix the inverse temperature β ¡ 0.

Definition 46 (Loops, Space of loops).
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3. Construction of the ideal Bose Gas

i) For an arbitrary integer j ¥ 1 a j-loop is a continuous function x : r0, jβs ÞÑ Rd

with xp0q � xpjβq.

ii) The set Xj of these j-loops is called the space of j-loops.

iii) The space of loops is
X �

⋃
j¥1

Xj

The image of a j-loop x in Rd represents j simultaneously moving particles starting
at xpkβq, k � 0, . . . , j � 1 and changing its positions during a time interval of length β.
x
(
rkβ, pk � 1qβs

)
is the trace of a single particle or elementary component.

Each of the spaces of j-loops is endowed with the Borel topology BpXjq, and X is
endowed with the corresponding disjoint union topology, that is the finest topology such
that the canonical injections Xj Ñ X are continuous. Let BpXq denote this topology
on X.

Lemma 47. BpXq consists of sets of the form
⋃
j¥1Bj, where Bj P BpXjq for every j.

The pre-image of an open set of any canonical injection Xj Ñ X is always open and
further sets cannot be added to X keeping the injections continuous. BpXq is much finer
than the product topology, which is generated by the canonical projections X Ñ Xj .
The latter only admits sets of the form of lemma 47, where all but a finite number of
Bj ’s is allowed to differ from Xj . However, the σ-algebras generated by both topologies
agree due to the countability of the index set.

Let B0pRdq be the ring of bounded Borel sets of Rd, which is a partially ordered set
when endowed with the inclusion

(
B0pRdq,�

)
.

Definition 48 (Bounded sets). For Λ P B0pRdq define the set of bounded sets of X to
be

B0 � B0pXq �
{
B P BpXq : B � XΛ for some Λ P B0pRdq

}
where XΛ is the set of all the loops contained in Λ:

XΛ � {x P X : rangex � Λ}.

Therefore a loop x is contained in some region Λ, whenever the image of the loop is
fully contained in Λ, for which x � Λ is written; a set of loops is bounded, whenever there
exists some bounded region Λ, which contains these loops. Clearly, if Λ1,Λ2 P B0pRdq
are two disjoint bounded regions, then XΛ1YXΛ2 � XΛ1YΛ2 without equality in general,
since loops may start in one region and cross the other one.

For s P Rd let
Ts : X Ñ X, Tsx � x� s
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3.1. The Loop Space and the Brownian Loop Measure

be the shift of a loop x by s and T � {Ts}sPRd . T is a translation group acting on the
space of loops X, each Ts shifting loops as a whole by s P Rd.

Thus the space of loops and a ring of bounded sets BpXq is constructed. A Poisson
process on pMpXq,BpXq,B0pXqq is defined by its intensity measure, whose construction
is the next aim. Let ψβ be the density of the centered normal distribution on Rd with
covariance matrix βI and consider on pRdqj the measure

ρ̄jpdaq � ψβpa1 � a0q � . . . � ψβpaj�1 � aj�2qψβpa0 � aj�1qda0 . . . daj�1.

With abuse of notation let T be the corresponding translation group on pRdqj with
each Ts shifting each of the j components by s P Rd. Then ρ̄j is T -invariant and the
factorisation proposition 14 applies.

Lemma 49 (Disintegration of ρ̄). ρ̄j permits a disintegration

ρ̄jpfq � p2πβjq�d{2
∫∫

fpa0; a1 . . . , aj�1qΨ̄a0
j,βpda1, . . . ,daj�1qda0, (3.1)

where Ψ̄a0
j,β is the distribution of a random walk bridge of length j starting at a0 and

having normally distributed steps.

Proof.

ρ̄jpfq �

∫
fpa0, . . . , aj�1qψβpa1 � a0q . . . ψβpaj�1 � aj�2qψβpa0 � aj�1qda0 . . . daj�1

� p2πβq�d
∫∫

fpa0; a1 . . . , aj�1q exp
[
�
pa1 � a0q

2

2β
�
pa0 � aj�1q

2

2β

]
�

� ψβpa2 � a1q . . . ψβpaj�1 � aj�2qda1 . . . daj�1da0

� p2πβjq�d{2
∫∫

fpa0; a1 . . . , aj�1qΨ̄a0
j,βpda1, . . . ,daj�1qda0

with Ψ̄a0
j,β the probability measure of a random walk starting at a0 with normally dis-

tributed steps conditioned on returning at the j-th step to the starting point.
In choosing f only depending on a0, one gets the prefactor due to j convolutions of

normal distributions.

Therefore ρ̄j acts in the following way: The first component is weighted according
to a multiple, which depends on j, of the Lebesgue measure on Rd, and the remaining
ones are weighted according to a random walk bridge of j steps given by the probability
measure Ψ̄a0

j,β. Figure 3.1(a) shows such an arrangement of some points. In the next step
these points are connected in the corresponding order in a way such that the resulting
measure is translation invariant. Hence ρ̄j , which acts on

(
Rd
)j , is lifted to a measure

ρj on the space of j-loops Xj such that the translation invariance remains true for ρj .
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3. Construction of the ideal Bose Gas
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(b) corresponding random walk loop

Figure 3.1.: Construction of a 6-loop

More precisely, let p : Xj Ñ pRdqj be the projection x ÞÑ
(
xp0q, xpβq, . . . , xppj � 1qβq

)
and ρj be a T -invariant measure on Xj such that ρj � p�1 � ρ̄j .

Figure 3.1(b) shows the projection of the linear interpolation of the points of fig-
ure 3.1(a) in Rd. A further possibility is to choose Brownian bridges instead of the
linear interpolation. Any T -invariant choice of ρj satisfies automatically a representa-
tion analogue to equation (3.1), therefore to each ρj corresponds a probability measure
Ψa0
j,β. We denote by ρj the measure on Xj obtained by choosing Brownian bridge in-

terpolation for which Ψa0
j,β is the probability measure of a Brownian bridge of length jβ

starting at a0. Furthermore, with abuse of notation, by ρ̄j we denote the measure on Xj

constructed with the linear interpolation, then consequently Ψ̄a0
j,β denotes the probability

measure of a random walk bridge of j steps starting at a0. Note that neither ρj nor ρ̄j
is a probability measure.

Definition 50 (Loop measures).

i) ρj is called the Brownian loop measure on Xj and Ψa0
j,β the distribution of a Brow-

nian bridge of length jβ starting at a0 obtained from the disintegration of ρj ,

ρjpfq � p2πβjq�d{2
∫∫

fpxqΨa0
j,βpdxqda0.

ii) ρ̄j is called the random walk loop measure on Xj and Ψ̄a0
j,β the distribution of a

random walk bridge of j steps starting at a0 obtained from the disintegration of
ρ̄j ,

ρ̄jpfq � p2πβjq�d{2
∫∫

fpxqΨ̄a0
j,βpdxqda0.
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3.1. The Loop Space and the Brownian Loop Measure

In the sequel the constructions can be carried out with ρj as well as with its bared
version. However, most of the results do not depend on the choice, particularly the
ones of chapter 4. Whenever differences occur or only one of these measures is used, an
explicit hint will be given.

Each of these measures ρj will be, up to a constant, the intensity measure of a Poisson
process on X, and the superposition of these will lead to a Poisson process on X with
intensity

ρz :�
∑
j¥1

zj

j
ρj , (3.2)

where the parameter z P p0, 1s is the fugacity. The latter Poisson process is well-defined,
if the intensity measure ρz is σ-finite.

Lemma 51. For any z P p0, 1s and any d ¥ 1, ρz is a σ-finite but infinite measure on
X.

Proof. Basically the σ-finiteness is directly concluded from the disintegration lemma 49,
that is for every j P N

ρj � s�1 �
1

p2πβjqd{2
λ

holds with s : X Ñ Rd being the projection on the initial point of a loop, s : x ÞÑ xp0q
and λ denoting the Lebesgue measure on Rd. Hence

ρz � s�1 � p2πβq�d{2g1� d
2
pzqλ, (3.3)

where gα : r0, 1s Ñ R� Y {8} is for any α ¡ 0 defined as

gαpzq �
∑
j¥1

zj

jα
. (3.4)

The claim follows from the finiteness of gα on r0, 1s for every α ¡ 1.

Observe that for 0   α ¤ 1 the series gα is only finite on r0, 1q without the right
boundary. Furthermore gα is strictly increasing and continuous whenever it is finite.

A further property of ρz which follows directly from T -invariance or from the disin-
tegration is the absence of atoms. Since any locally finite measure on Rd with atoms
cannot be translation invariant.

Lemma 52. ρz has no fixed atoms.

Lemma 51 gives a bound from above for ρzpXΛq for bounded Λ, which in fact is really
crude since for every bounded region, loops x P Xj for very large j hardly stay in Λ
and hence do not contribute significantly. The next lemma shows that nevertheless the
bound of lemma 51 asymptotically is the best one for sequences of cubes.
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3. Construction of the ideal Bose Gas

Lemma 53 (Large cube asymptotics). For the sequence of cubes given by Λk � r�k, ksd,

lim
kÑ8

ρjpXΛkq

|Λk|
� p2πβjq�d{2.

Proof. Because of Lemma 51∫
1XΛ

pxqρjpdxq ¤ p2πβjq�d{2|Λ|,

and therefore the limit is bounded from above by the correct value. If Λ1
k � r�k

2 ,
k
2 s and

b : X Ñ {x P X : xp0q � 0} shifts a loop to the origin, b : x ÞÑ x� sx, then clearly

XΛk � {x P X : sx P Λ1
k, bx P XΛ1

k
}

and ∫
1XΛk

pxqρjpdxq ¥
∫

1Λ1
k
psxq1XΛ1

k

pbxqρjpdxq,

which tends to the desired quantity.

In lemma 53 loops are fixed to a certain length and a statement about increasing
regions the loops live in was derived. The next aim is to fix a cube with given side
length and to get results on the behaviour when varying jβ. This includes varying j at
fixed inverse temperature β as well as varying β at fixed length j.

Lemma 54 (Long loop asymptotics). Fix Λk � r�k, ksd. Then the contribution of
ρjpXΛkq as j Ñ8 can be estimated by

lim sup
jÑ8

1
jβ

log

[(
2k√
2πjβ

)�d
ρjpXΛkq

]
¤ �

π2d

8k2
, (3.5)

lim inf
jÑ8

1
jβ

log

[(
2γk√
2πjβ

)�d
ρjpXΛkq

]
¥ �

π2d

8p1� γq2k2
(3.6)

for evey γ P p0, 1q.

Lemma 54 gives estimates on the contribution of ρjpXΛkq as j Ñ8. Two effects can
be seen: firstly long loops hardly stay in small regions, which yields the decay on the
exponential scale, and secondly the disintegration, from which followed that the mass of
loops which start in Λk is p2πjβq�d{2 times the volume of Λk. In both cases j may be
replaced by β, i.e. the estimates also hold as the inverse temperature increases.
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b

Figure 3.2.: Loops in Λk with
their starting points
marked. The black
loops start inside the
small cube and stay
completely inside the
large one. The grey
loops either do not
start inside the small
cube or leave the large
one.

Proof. By theorem 45,

lim
jÑ8

1
jβ

log Ψ0
j,β

({
x : sup

0¤t¤jβ
|xiptq| ¤ k, i � 1, . . . , d

})
� �C, (3.7)

where C � π2d
8k2 . Because of the disintegration of ρj we have to estimate the behaviour

of Ψa0
j,β if the starting point a0 is allowed to be any point of the cube.

Clearly for any a0 P Λk

Ψa0
j,β

({
x : xptq P Λk, t P r0, jβs

})
¤ Ψ0

j,β

({
x : xptq P Λk, t P r0, jβs

})
,

and therefore ρjpXΛkq can be estimated from above by

ρjpXΛkq ¤ p2kqdΨ0
j,β

({
x : xptq P Λk, t P r0, jβs

})
and the estimate (3.5) holds.

For the lower bound divide Λk into two parts: a centered inner cube Λ1 of side length
2c ¤ 2k, where c is chosen later, and an outer part, see figure 3.2. On the outer part we
forget about the contribution of the loops and only estimate the contribution in Λ1. Let
s : X Ñ Rd, sx � xp0q be the projection of a loop on its starting point.

ρjpXΛkq ¥ ρjpXΛk X {x P X : sx P Λ1}q

¥ p2cqdΨ0
j,β

({
x : sup

0¤t¤jβ
|xiptq| ¤ k � c, i � 1, . . . , d

})
Finally choose γ P p0, 1q and c � γk to obtain the estimate (3.6).

Instead of c � γk the choice c � kγ for appropriate γ is also possible with the
corresponding consequences on the lemma.
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3. Construction of the ideal Bose Gas

(a) random walk loop configuration (b) Brownian loop configuration

Figure 3.3.: Configuration of loops

Lemma 55 (Short loop asymptotics). Fix Λk � r�k, ksd.

lim inf
βÑ0

jβ log

[
1�

(
2k√
2πjβ

)�d
ρjpXΛkq

]
¥ �2dk2, (3.8)

lim sup
βÑ0

jβ log

[(
2γk√
2πjβ

)�d
ρjpXΛkq

]
¤ �2dp1� γq2k2 (3.9)

for each γ P p0, 1q.

Proof. Since
Ψ0
j,β

({
x : sup

0¤t¤jβ
|xiptq| ¡ k, i � 1, . . . , d

})
� 1�Ψ0

j,β

({
x : sup

0¤t¤jβ
|xiptq| ¤ k, i � 1, . . . , d

})
,

the arguments agree with the ones of the proof of lemma 54 with the small deviations
replaced by the large deviations of Brownian bridges.

Finally we collect the results of this section and define the Bose gas.

Definition 56 (Ideal Bose Gas). The ideal Bose gas with fugacity z P p0, 1s is the
Poisson process Pρz on M�pXq for X given in definition 46.

Figure 3.3(a) shows a realisation of P̄ρz and figure 3.3(b) a realisation of Pρz . Since ρz is
T -invariant, Pρz inherits this invariance with each Ts now shifting complete configurations
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3.1. The Loop Space and the Brownian Loop Measure

of loops µ PM�pXq. Pρz is indeed a simple Poisson process since by lemma 52 its intensity
measure ρz does not have fixed atoms, loops in a configuration µ occur at most once
Pρz -a.s.

On fixed cubes Λk � r�k, ksd, Pρz realises j-loops with intensity zj

j ρj , which is close
to p2πβjq�d{2 by lemma 55 for small j and close to 0 for large j by lemma 54.
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4. Limit theorems and Extremal Measures

This chapter is devoted to statistics of the particle system described by Pρz . The Poisson
process Pρz describes the grand canonical ensemble of a non-interacting particle system,
from which by conditioning on certain observations further ensembles can be deduced.
Locally, for each Λ P B0pRdq, these observations are given by a σ-algebra EΛ such that
the family E � {EΛ}ΛPB0pRdq is decreasing. The local characteristics are then given by

πΛ :� Pρzp � |EΛq. (4.1)

π � {πΛ}Λ describes a particle system locally, therefore one is interested in the set
C � Cpπq of all stochastic fields P which locally look like π:

P pϕ|EΛq � πΛp � , ϕq P -a.s. (4.2)

Once C is identified, its structure needs to be clearified. Clearly C is a convex set.
If C contains exactly one element, the local characteristic π determines this element
uniquely. Otherwise a phase transition is said to occur. Due to the convexity, whenever
a subset of C is given, further elements can be obtained by convex combinations, hence
are the barycentre of that combination. The basic question which follows is if there
exists a subset C, such that every P P C can be represented uniquely as the barycentre
of this subset of extremal points under a certain probability measure.

Let pΛkqk � B0pRdq be an increasing sequence of bounded sets which exhausts Rd,
such as an increasing sequence of centered cubes. Furthermore let

E8 :�
⋂

ΛPB0pRdq

EΛ

be the tail-σ-algebra of E. Since B0pRdq is directed from above, i.e. for any two bounded
sets there exists another bounded set which contains the former two, the intersection
over the σ-algebras for all bounded sets Λ may be restricted to the countable family
pΛkqk while keeping equality. Due to this fact and monotonicity of pEΛkqk, for every
P P Cpπq the limit

P pϕ|E8q � lim
kÑ8

πΛkp � , ϕq (4.3)

exists P -a.s. As outlined in Dynkin [Dyn78], a σ-algebra E8 is sufficient for a class M of
probability measures, if there exists a probability kernel Q, such that for every P P M ,
P conditioned on E8 is given by Q,

P pϕ|E8q � Q � pϕq P -a.s. (4.4)
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If even Qµ PM , then E8, following Dynkin [Dyn78], is called H-sufficient. Furthermore,
if Q is the weak limit of a sequence pQkqk, then the latter sequence is called asymptot-
ically H-sufficient. In the given situation for an increasing sequence pΛkqk of bounded
regions, pπΛkqk is indeed an asymptotically H-sufficient statistics for the set Cpπq of
stochastic fields. Furthermore there exists a subset ∆ of extremal points of C, such that
every point process P can be written as the barycentre of this set of extremal points
under a probability measure, and the extremal point are exactly those, for which the
probability measure is just a Dirac measure.

Hence the programme is the following: the first major step is to determine the limiting
kernel Q. Set C8pπq the set of limits

lim
kÑ8

πΛkpµk, � q,

which is, as a measurable space, called the Martin-Dynkin boundary of π. The essential
part ∆ of the Martin-Dynkin boundary will be the set of those P P C8 X C, for which
the limits Q are P -a.s. constant,

QµpAq � P pAq P -a.s.pµq.

The Martin-Dynkin boundary technique has its origin in the works of Dynkin [Dyn71a,
Dyn71b] about general Markov processes. The extension to specifications was studied
intensely by Preston [Pre79] and Föllmer [Föl75] and finally the statistical interpretation
with various applications, including Föllmer’s work, is outlined in Dynkin [Dyn78]. As
a consequence, a characterisation of Poisson processes by their local specifications was
given by Nguyen and Zessin [NZ77].

The aim is to examine the role of E, its tail-σ-algebra E8 and its effect on the corre-
sponding set C of stochastic fields. They are precisely defined in the first section 4.1.
The specifications associated to Pρz and hence the corresponding ensembles are obtained
through different ways of counting the loops inside a bounded region: in particular
{FΛ}Λ associated to the microcanonical loop ensemble counting loops according to each
type, {GΛ}Λ associated to the canonical ensemble counting loops without discrimination
and {EΛ}Λ yielding the grand canonical loop ensemble. Of special interest will be {HΛ}Λ

associated to the canonical ensemle of elementary components counting the elementary
components. This is a biased version of the canonical loop ensemble in which every loop
gets an additional weight according to its length, but, as will be seen, the behaviour is
fundamentally different. Its importance is due to the fact that it describes the canonical
ensemble of an ideal Bose gas.

Starting with Pρz for a fixed z in equation (4.1), the main task is to determine the
possible limits Q in equation (4.4), which is done for various loop ensembles in sec-
tions 4.2 – 4.4. By identifying their Laplace functionals, these limits are identified in
propositions 61 and 64 for the microcanonical and the canonical loop ensemble as mixed
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4.1. The Construction of Martin-Dynkin Boundaries

Poisson processes PY 
ρ and PWρ, respectively, and in proposition 66 as the Poisson pro-
cess Pρz for the grand canonical ensemble. Therefore only in the latter ensemble no phase
transition occurs, and the extremal points are the corresponding Poisson processes, re-
spectively.

In section 4.5 the canonical ensemble is the main subject. Proposition 72 identifies
the limits Q as mixed Poisson processes PρZ by means of a principle of large deviations.
Consequently, theorem 73 shows that the essential part of the Martin-Dynkin boundary
of the canonical ensemle consists of the Poisson processes Pρz with z P r0, 1s for d ¥ 3
and z P r0, 1q for d � 1, 2. A major observation is the fact, that the particle density
of PρZ is always bounded from above by a critical density, which is given explicitly and
agrees with the one given in physics literature, see e.g. [Hua87].

4.1. The Construction of Martin-Dynkin Boundaries

4.1.1. Local Specifications and Martin-Dynkin Boundary

Consider the measurable space pM�pXq, Eq of simple point measures on X and fix a with
respect to pB0pRdq,�q decreasing family of sub-σ-fields E � {EΛ}Λ of E . A probability
kernel π1 is a mapping M�pXq � E Ñ R with the properties

i) @µ PM�pXq : π1pµ, � q is a measure,

ii) @E P E : π1p � , Eq is E-measurable.

An E-specification π � {πΛ}Λ is a collection of probability kernels on M�pXq�E such
that

i) @A P E : πΛp � , Aq is EΛ-measurable,

ii) @A P EΛ : πΛp � , Aq � 1A,

iii) @µ PM�pXq : πΛpµ,M�pXqq P {0, 1},

iv) @Λ � Λ1 : πΛ1 � πΛ1πΛ.

A stochastic field with respect to the E-specification is a probability measure P on
M��pXq such that its conditional expectations given the σ-algebras in the family E are
given by the corresponding kernel,

P
(
� |EΛ

)
pµq � πΛpµ, � q P-a.s.

Let C � Cpπq denote the set of those stochastic fields. If C contains more than one
element, then P is not uniquely defined by the specification and one says that a phase
transition occurs.
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4. Limit theorems and Extremal Measures

Fix an increasing sequence pΛkqk in B0pRdq exhausting Rd and satisfying Λk � int Λk�1

for any k. Furthermore denote by C8 � C8pπq be the set of all limits

lim
kÑ8

πΛkpµk, � q (4.5)

for sequences pµkqk �M��pXq. C8 does not depend on the choice of the family pΛkqk.
Since X is polish, so M�pXq and the set of probability measures on M�pXq are, and
since C8 is complete, it is polish when endowed with the induced Borel field C8. The
Martin-Dynkin boundary associated to π is the measurable space pC8, C8q.

Finally, let Qµ for any µ PM�pXq be the limit

Qµ :� lim
kÑ8

πΛkpµ, � q. (4.6)

Definition 57 (Essential part of the Martin-Dynkin boundary). The essential part ∆
of the Martin-Dynkin boundary is the set of those P P C8 X C, for which the limit Q �

is P-almost surely constant, i.e.

QµpAq � PpAq for P-a.a. µ. (4.7)

4.1.2. Counting Loops

The crucial point is the choice of the decreasing family E, since any stochastic field
conditioned on the σ-algebra EΛ is given by the corresponding kernel πΛ. In this point
process case sub-σ-algebras may be obtained from different ways of counting the loops.
The basic properties that have to be fulfilled are monotonicity and measurability prop-
erties. At first define a collection of counting variables {nΛ}ΛPB0pRdq, each nΛ counting
the number of loops of each kind in some region Λ

nΛ : M�pXq ÑM��
f pNq, nΛµ :�

∑
j¥1

µpXΛ,jqδj , (4.8)

where XΛ,j :� XjXXΛ is the set of j-loops which are fully contained in Λ. nΛµ is indeed
an almost surely finite measure under Pρz , since Pρz is locally finite and hence ζXΛ,j

  8
almost surely for any bounded region Λ. From the definition immediately follows that
nΛµ ¤ nΛ1µ for each configuration µ and bounded regions Λ � Λ1. Therefore spatial
increments can be defined, that is for Λ,Λ1 P B0pRdq with Λ � Λ1

nΛ1,Λ : M�pXq ÑM��
f pNq, nΛ1,Λ :� nΛ1 � nΛ.

The family of increments defines the outside events and the family of outside events
E � {EΛ}Λ,

EΛ � σ
({
nΛ1,Λ � η

}
: Λ1 P B0pRdq,Λ � Λ1, η PM��

f pNq
)
, (4.9)
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4.2. The Microcanonical Loop Ensemble

which is the smallest σ-algebra, such that the increments of the region Λ are measurable.
In keeping the terminology of Preston, the stochastic fields corresponding to E form the
grand canonical loop ensemble.

Adding more detailed information about the interior leads to the family F � {FΛ}Λ,

FΛ � EΛ _ σ
({
nΛ � η

}
: η PM��

f pNq
)
, (4.10)

which is associated to the microcanonical loop ensemble.
For a configuration µ PM�pXq let cΛµ � nΛµpNq be the total number of loops inside

Λ and
GΛ � EΛ _ σ

({
cΛ � k

}
: k P N

)
, (4.11)

then G � {GΛ}Λ defines the canonical loop ensemble. nΛ passes its monotonicity and
measurability properties on to cΛ.

Finally, much interest lies in what happens if we give different weights to loops of
different lengths, in particular we consider the counting variable

NΛ : M�pXq Ñ N, NΛµ �
∑
j¥1

jnΛµpjq, (4.12)

which counts the number of elementary components of the loops inside Λ. It is clear
that NΛ fulfills the same monotonicity and measurablility properties of the increments
as cΛ. Let

HΛ � EΛ _ σ

({
NΛ � k

}
: k P N

)
(4.13)

and call the corresponding ensemble H � {HΛ}Λ canonical ensemble.
In the following sections specifications with respect to these decreasing families and

their limit points are going to be discussed: In section 4.2 the microcanonical loop
ensemble F, in section 4.3 the canonical loop ensemble G, in section 4.4 the grand
canonical loop ensemble E and finally in section 4.5 the canonical ensemble H.

4.2. The Microcanonical Loop Ensemble

In this section the specification for the family of sub-σ-algebras F � {FΛ}Λ is discussed.
As an intermediate step, the Poisson process Pτz,Λ obtained from Pρz via the mapping
nΛ to deduce an appropriate representation of Pρz is introduced. The first step to com-
pute the Martin-Dynkin boundary will be done in proposition 61, where the stochastic
fields conditioned on the tail field F8 of F are identified as mixed Poisson processes.
Theorem 62 states the main result that the extremal microcanonical stochastic fields are
Poisson processes with different weights on loops of different lengths.

Fix a fugacity z P p0, 1s.
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4. Limit theorems and Extremal Measures

Lemma 58. For each Λ P B0pRdq, nΛ maps the simple Poisson process Pρz on M�pXq
into a Poisson process Pτz,Λ on M��

f pNq with finite intensity measure τz,Λ given by

τz,Λpjq �
zj

j
ρjpXΛq. (4.14)

Proof. Indeed, if η PM��
f pNq and η� PM�pNq denotes the support of η, then

Pτz,Λpηq � PρzpnΛ � ηq � expp�ρzpXΛqq
∏
jPη�

zjηpjqρjpXΛq
ηpjq

jηpjqηpjq!

� expp�τz,ΛpNqq
∏
jPη�

τz,Λpjq
ηpjq

ηpjq!
,

since ρzpXΛq � τz,ΛpNq.

Let ρ̃z,Λ denote the normalisation of the finite measure ρz,Λ, then the η-convolution
P ηρz ,Λ of the probability measures ρ̃j,Λ, j ¥ 1 for some η PM��

f pNq is defined as

P ηρ,Λ :� ρ̃ηΛ � �
jPη�

ρ̃
�ηpjq
j,Λ , (4.15)

which represents the superposition of loops of a given length j according to the number
ηpjq. The Pτz,Λ-combination of that convolution is

P̃ρz ,Λ �
∑

ηPM��
f pNq

Pτz,ΛpηqP
η
ρ,Λ. (4.16)

Accordingly, P̃ρz ,Λ is given by a two step mechanism: At first choose a composition
η P M��

f pNq defining the number of loops in some bounded region Λ and then realise a
configuration according to this composition. An effect is that the fugacity z does only
affect the choice of the composition and not P ηρ,Λ.

These probability measures are closely related to the ideal Bose gas restricted to
bounded sets Λ, Pρz ,Λ.

Lemma 59. Pρz,ΛpA|nΛ � ηq � P ηρ,ΛpAq.

Proof. Since exactly K �
∑

j ηpjq loops are contained in Λ and if they are ordered in
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4.2. The Microcanonical Loop Ensemble

increasing length,

Pρz,Λ
(
AX {nΛ � η}

)
� exp

(
�ρzpXΛq

)∑
n¥0

1
n!
�

�

∫
� � �

∫
1A1{nΛ�η}pδx1 � . . .� δxnqρz,Λpdx1q � � � ρz,Λpdxnq

� exp
(
�ρzpXΛq

) 1
K!
�

�

∫
� � �

∫
1A1{nΛ�η}pδx1 � . . .� δxK qρz,Λpdx1q � � � ρz,ΛpdxN q

� exp
(
�ρzpXΛq

) ∏
jPη�

zjηpjqρjpXΛq
ηpjq

jηpjqηpjq!
�

�

∫
� � �

∫
1A1{nΛ�η}pδx1 � . . .� δxN qρ̃

η
z,Λpdx1, . . . , dxN q

� exp
(
�ρzpXΛq

) ∏
jPη�

zjηpjqρjpXΛq
ηpjq

jηpjqηpjq!
P ηρ,Λ

(
AX {nΛ � η}

)
,

Finally, setting A � M�pXq the normalisation constant is obtained and using the fact
that P ηρ,ΛpnΛ � ηq � 1, the assertion follows.

Corollary 60. P̃ρz ,Λ � Pρz ,Λ.

Proof. This follows immediately since

P̃ρz ,Λpϕq �
∑

ηPM��
f pNq

Pτz,ΛpηqP
η
ρ,Λpϕq

�
∑

ηPM��
f pNq

Pτz,ΛpηqPρ,Λpϕ|nΛ � ηq � Pρz ,Λpϕq

for any measurable, non-negative function ϕ.

That way a new representation of Pρz is found. For µ P M�pXq let µpΛq be the
restriction of µ on Xc

Λ, define on X �M�pXq

πF
Λpµ, ϕq � Pρz ,Λ

(
ϕ
(
� � µpΛq

)∣∣∣nΛ � nΛµ

)
� PnΛµ

ρz,Λ

(
ϕ
(
� � µpΛq

))
and observe that πF

Λ is a probability kernel. πF � {πF
Λ}Λ is indeed an F-specification,

which follows from the conditioning procedure of the Poisson process. By definition,
Pρz P Cpπ

Fq, hence the set of stochastic fields CpπFq associated to πF is not empty.
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4. Limit theorems and Extremal Measures

Let pΛkqk be the sequence of cubes of lemma 53, F8 �
⋂
k FΛk be the tail-field, and

P P CpπFq. Then for ϕ P L1pPq,

Ppϕ|F8q � lim
kÑ8

πF
Λk
p � , ϕq P-a.s.. (4.17)

Therefore the limits Qµ � limk π
F
Λk
pµ, � q exist P-a.s. in µ and are by construction con-

tained in the Martin-Dynkin boundary C8pπFq.
Define the j-loop density of some configuration µ in Λk as

Yj,kpµq �
nΛkµpjq

ρjpXΛkq
; (4.18)

let Yj be its limit as k Ñ8 provided that the limit exists and write Y � pYjqj . Let M be
the set of all those µ PM�pXq, such that Yj exists for each j P N and is finite. Note that
instead of the volume of Λk the volume of XΛk is used to define the density. However,
it has been shown in lemma 53 that, asymptotically, their volume is the same up to the
constant p2πβjq�d{2. For notationally purpose we denote the convex y-combination by

y 
 ρ :�
∑
j¥1

yjρj (4.19)

for any sequence y � pyjqj of non-negative real numbers. These preparations lead to the
limits

Proposition 61. Let f : X Ñ R be non-negative and measurable with bounded support,
µ PM and Y pµq 
 ρ

(
expp�fq � 1

)
convergent. Then for any P P C, ϕ P L1pPq

Ppϕ|F8q � lim
kÑ8

πF
Λk
p � , ϕq � PY 
ρpϕq P-a.s. (4.20)

Proof. At first existence and equality of the following limit is shown,

lim
kÑ8

LπF
Λk
pµ, � qpfq � LQµpfq � exp

(
�
∑
j¥1

Yjpµqρj

(
1� expp�fq

))
. (4.21)

Let N be the set of ”good configurations”,

N �
{
µ PM�pXq : lim

kÑ8
πF

Λk
pµ, � q exists

}
.

Let f : X Ñ R be non-negative and measurable with bounded support and such that∫ (
expp�fq � 1

)
dρ � 0, then there exists k0 such that supp f � Λk for k ¥ k0. Provided

µ P N ,

LπF
Λpµ, � q

pfq �

∫
exp
(
�νpfq

)
πF

Λk
pµ,dνq �

∫
exp
(
�νpfq

)
P
nΛk

µ
ρΛk

pdνq
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4.2. The Microcanonical Loop Ensemble

�

∫
exp
(
�fpx1q � . . .� fpxnΛk

µpNqq
)
ρ̃
nΛk

µ

Λk
pdx1, . . . ,dxnΛk

µpNqq

�
∏

jPpnΛk
µq�

[∫
exp
(
�fpxq

)
ρ̃j,Λkpdxq

]nΛk
µpjq

�
∏

jPpnΛk
µq�

[
1� ρ̃j,Λk

(
exp
(
�f
)
� 1
)]nΛk

µpjq

�
∏

jPpnΛk
µq�

{[
1�

ρj

(
exp
(
�f
)
� 1
)

ρjpXΛkq

]ρjpXΛk
q} nΛk

µpjq

ρjpXΛk
q

.

supp f � supp
(

expp�fq�1
)

yields the last line. Since the lhs converges by assumption,
so the rhs does. Therefore N � M . Vice versa, if µ P M , the rhs converges and so the
lhs does, hence M � N and (4.21) is shown.

Immediately follows that Qµ is a Poisson process with intensity measure Y pµq 
 ρ,
which is the claim.

In case of divergence of the series, LQµpfq � 0 whenever f � 0, and there is no suitable
limit for Qµ. Thus it follows that the only possible limits for Qµ are Poisson processes.

For F8-measurable ϕ and P P C proposition 61 implies P
(
ϕfpQ�q

)
� PpϕPY 
ρ

(
f
(
Q�q
))

and therefore
PY pµq
ρpQ� � Qµq � 1 P-a.s.

Particularly, Yj � Yjpµq P-a.s. for each j.
Let ∆F � {P P C8 XC : Q� � P P -a.s.} be the essential part of the Martin-Dynkin

boundary associated to F. For a state P P C define a probability measure V P on ∆F as

V PpAq � PpQ� P Aq,

hence by conditioning

Ppϕq � PpQ�pϕqq �

∫
∆F
P pϕqV PpdP q

can be written as a Cox process. Vice versa, any probability measure V on ∆F induces
a state P P C. This argumentation in combination with proposition 61 results into the
theorem

Theorem 62. The essential part of the Martin-Dynkin boundary of πF consists of all
Poisson processes with intensity measure y 
 ρ for non-negative sequences y � pyjqj such
that y 
 ρ is a σ-finite measure on X,

∆F � {Py
ρ : y 
 ρ σ-finite}.
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4. Limit theorems and Extremal Measures

Proof. Let y 
 ρ be σ-finite. As already seen, Py
ρ P CpπFq, and by proposition 61 and
its proof

Qµ � Py
ρ Py
ρ-a.s.

For arbitrary P P ∆F, ∫
∆F
P pϕqV PpdP q � Ppϕq � Q�pϕq P-a.s.

This implies V P � δPy
ρ for some σ-finite intensity measure y 
 ρ.

The essential part of the Martin-Dynkin boundary therefore consists of Poisson pro-
cesses with arbitrary intensities of loops of each kind, where the only restriction is the
σ-finiteness of the intensity measure y 
 ρ.

4.3. The Canonical Loop Ensemble

In the previous section we conditioned on the different types of loops, now we drop this
distinguishing feature and consider the total number of loops. Intuitively, this means
to forget the superposition of the different Poisson processes on each space of j-loops.
We firstly use Pτz ,Λ to get an appropriate representation of Pρz and show that for any
stochastic field P, Pp � |G8q is a mixed Poisson process (proposition 64), and that the
phases are again Poisson processes (theorem 65). Some details are left out, since they
can be found in the previous section. Throughout this section the fugacity z remains
fixed.

Lemma 63. Let Bk � {η P M��
f pNq :

∑
ηpjq � k} the set of compositions of mass k,

then

Pτz,ΛpBkq �
∑
ηPBk

Pτz,Λpηq �
ρzpXΛq

k

k!
exp
(
ρzpXΛq

)
Proof.

Pτz,ΛpBkq � Pρz ,ΛpcΛ � kq.

Since cΛ is the sum of independent, Poisson distributed random variables, cΛ is Poisson
distributed itself with the given intensity.

From the decomposition of Pρz ,Λ in Corollary 60 follows

Pρz ,Λpϕ|cΛ � cΛµq �
( ∑
ηPBcΛµ

Pτz,Λpηq
)�1 ∑

ηPBcΛµ

Pτz,ΛpηqP
η
ρ,Λpϕq (4.22)

for any measurable function ϕ on XΛ, which again emphasises the two step mechanism:
At first choose a composition according to some law and then realise the loops according
to the given composition.
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4.3. The Canonical Loop Ensemble

Clearly πG � {πG
Λ}Λ given by

πG
Λpµ, ϕq � Pρz ,Λ

(
ϕ
(
� � µpΛq

)∣∣∣cΛ � cΛµ

)
, (4.23)

is a G-specification with Pρz contained in CpπGq. If pΛkqk is the sequence of cubes of
lemma 53, G8 �

⋂
k GΛk the tail-field and P P C8pπGq, then for ϕ P L1pPq,

Ppϕ|G8q � lim
kÑ8

πG
Λk
p � , ϕq P-a.s. (4.24)

Therefore the limits
Qµ � lim

kÑ8
πG

Λk
pµ, � q (4.25)

exist P-a.s. in µ and are by construction contained in the Martin-Dynkin boundary
C8pπ

Gq in case of existence.
Let the loop density of a configuration µ in Λk be

Wkpµq �
cΛkµ

ρzpXΛkq
, (4.26)

and let W be its limit as k Ñ 8 provided that the limit exists. Let M be the set of all
those µ PM�pXq, such that W exists.

Proposition 64. Let f : X Ñ R be non-negative and measurable with bounded support
and W pµq   8. Then for any P P C, ϕ P L1pPq

Ppϕ|G8q � lim
kÑ8

πG
Λk
p � , ϕq � PWρzpϕq P-a.s.. (4.27)

Proof. Essentially the arguments as in the previous section apply,

LπG
Λk
pµ, � qpfq �

ρzpexpp�fqqcΛkµ

ρzpXΛq
cΛkµ

�

{[
1�

ρz
(
expp�fpxqq � 1

)
ρzpXΛkq

]ρzpXΛk
q
} cΛk

µ

ρzpXΛk
q

Ñ exp
(
�W pµqρz

(
1� expp�fq

))
.

Hence we get

LQµpfq � exp
(
�W pµqρz

(
1� expp�fq

))
,

that is that Qµ is a Poisson process with intensity measure W pµqρz.
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4. Limit theorems and Extremal Measures

Similar to the microcanonical case, if W pµq is not finite, LQµpfq � 0 whenever f � 0,
and there is no suitable limit for Qµ. Furthermore, the possible limits Qµ are Poisson
processes.

Since this implies for G8-measurable ϕ, PpϕfpQ�qq � PpϕPWρzpfpQ�qqq one gets

PW pµqρzpQ� � Qµq � 1 P-a.s.

Particularly W �W pµq P-a.s. holds.
Let ∆G � {P P C8 X C|Q� � P P -a.s.} be the essential part of the Martin-Dynkin

boundary of πG. For P P C define a probability measure V P on ∆G as

V PpAq � PpQ� P Aq,

for that reason

Ppϕq � PpQ�pϕqq �

∫
∆G

P pϕqV PpdP q

is a mixed Poisson process. Vice versa, any probability measure V on ∆G induces a
P P C. All this can be put together:

Theorem 65. The essential part of the Martin-Dynkin boundary of πG consists of all
Poisson processes with intensity measure wρz for any positive real number w,

∆G � {Pwρz |w ¡ 0}.

Proof. If w is a positive real number, wρz is a σ-finite measure on X. Since Pwρz P Cpπ
Gq,

and by proposition 64 Qµ � Pwρz Pwρz -a.s. For arbitrary P P ∆F we have∫
∆G

P pϕqV PpdP q � Ppϕq � Q�pϕq P-a.s.

This implies V P � δPwρz for some σ-finite intensity measure wρz.

4.4. The Grand Canonical Loop Ensemble

This ensemble completes the considerations about loop ensembles, and we do not con-
dition on a number of loops of a given configuration inside a given region. One expects
that there is exactly one stochastic field, and this is the result of theorem 67. For that,
define the kernel as follows

πE
Λpµ, ϕq � Pρz ,Λ

(
ϕ
(
� � µpΛq

))
. (4.28)
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Similar to the previous sections πE � {πE
Λ}Λ is an E-specification. For the sequence of

cubes pΛkqk, E8 �
⋂
k EΛk the tail-field P P C8pπEq, and ϕ P L1pPq,

Ppϕ|E8q � lim
kÑ8

πE
Λk
p � , ϕq P-a.s.. (4.29)

The limits

Qµ � lim
kÑ8

πE
Λk
pµ, � q (4.30)

exist P-a.s. in µ and are by construction contained in the Martin-Dynkin boundary
C8pπ

Eq.

Proposition 66. Let f be non-negative and measurable with bounded support. Then
LQµpfq � limLπE

Λk
pµ, � qpfq exists, is non-degenerate and

LQµpfq � exp
(
�ρz

(
1� expp�fq

))
. (4.31)

Proof. The proof of the corresponding microcanonical loop ensemble applies with Yj �
zj

j .

This means that the Poisson process with intensity measure ρz is the only limit, hence
there is no phase transition. We obtain

Theorem 67. The essential part of the Martin-Dynkin boundary of πE consists of the
Poisson process with intensity measure ρz.

4.5. The Canonical Ensemble of Elementary Components

In sections 4.2 – 4.4 we conditioned on the number of loops, now we condition on the
number of elementary components, and since a j-loop contains exactly j elementary
components, we give more weight to long loops. Hence we are interested in statements
about the number of particles in some bounded region Λ. Recall from equation (4.12)
that the number of elementary components in a bounded region Λ is

NΛµ �
∑
j¥1

jnΛµpjq.

Hence, under Pρz , NΛ has a compound Poisson distribution whenever z ¤ 1 for d ¥ 3
and z   1 for d � 1, 2. However, the nature of the sub-σ-algebras does not allow a
direct computation of the limits like in the propositions 61, 64 and 66. Similar to the
loop ensembles we define πH

Λ as a conditioned Poisson process, represent it as a convex
combination of P ηρΛ , but instead of these computations we show a large deviation principle

61



4. Limit theorems and Extremal Measures

for the mixing measure. If the latter measure converges to a suitable limiting probability
measure, then, since the microcanonical weak limits are known, πH

Λ will converge as well.
From now on fix d ¥ 3, z � 1 and write ρ instead of ρ1. Remark 74 below comments

on what differs in the cases z   1 and d � 1, 2. At first we derive the representation in
terms of P ηρ,Λ.

Lemma 68. With CM � {η P M��
f pNq :

∑
jηpjq � M} being the set of compositions

with first moment M and µ PM�pXq a fixed configuration with NΛµ �M , it follows∫
ϕ
(
ν � µpΛq

)
1CM pνqPρΛpdνq �

∑
ηPCM

PτΛpηqP
η
ρ,Λ

(
ϕ
(
� � µpΛq

))
. (4.32)

Proof. This can be seen from disintegration of conditional expectations like in the be-
ginning of section 4.2.

If we now condition PρΛ on the event {NΛ � M} on the lhs of equation (4.32), this
turns into PτΛ conditioned on CM on the rhs. Define

πH
Λpµ, ϕq � Pρ,Λ

(
ϕ
(
� � µpΛq

)∣∣∣NΛ � NΛµ

)
�

∫
P ηρ,Λ

(
ϕ
(
� � µpΛq

))
PτΛpdη|CNΛµq,

(4.33)

which is indeed a probability kernel on X � M�pXq, πH � {πH
Λ}Λ is even an H-

specification. Like in the previous sections, let pΛkqk be the sequence of cubes of
lemma 53. Before we turn to the analysis of the Martin-Dynkin boundary of πH, we
derive a large deviation principle for PτΛp � |CNΛµq. This one can be shown in using a
large deviation principle for PτΛp � q. Since the deviation is done for fixed µ, we write Mk

instead of NΛkµ and think of it as an increasing parameter in k such that Mk
|Λk|

converges
to some finite limit as k Ñ8.

Large deviation principle for PτΛk . Recall from lemma 53 that the intensity measure
τΛk grows asymptotically like the volume of Λk, and let

τ :� lim
kÑ8

τΛk

|Λk|
� p2πβq�d{2

∑
j¥1

1

j1� d
2

δj . (4.34)

τ represents the critical limiting loop densities. By corollary 40, PτΛk

(
η

|Λk|
P �
)

satisfies
a large deviation principle with speed |Λk| and good rate function I : MpNq Ñ r0,8s
given by the relative entropy with respect to τ ,

Ipκ; τq �

{
τpf log f � f � 1q if κ ! τ, f :� dκ

dτ , f log f � f � 1 P L1pτq

�8 otherwise
,
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4.5. The Canonical Ensemble of Elementary Components

which means that {I ¤ c} is compact for any c ¥ 0 and for any G �MpNq weakly open

lim inf
kÑ8

1
|Λk|

log PτΛk

({
η :

η

|Λk|
P G

})
¥ � inf

κPG
Ipκ; τq (4.35)

and for any F �MpNq weakly closed

lim sup
kÑ8

1
|Λk|

log PτΛk

({
η :

η

|Λk|
P F

})
¤ � inf

κPF
Ipκ; τq. (4.36)

Large deviation principle for PτΛk p � |CMk
q. The conditioned Poisson process is abso-

lutely continuous with respect to the unconditioned process, where the density is an
indicator function times a normalisation constant. That way the LDP for PτΛk trans-
forms into some LDP for PτΛk p � |CMk

q.

PτΛk pη|CMk
q �

(
PτΛk

(
expp�χCMk q

))�1
exp
(
�χCMk pηq

)
PτΛk pηq,

where the functional χA for some set A �MpNq is defined to be

χApκq �

{
0 if κ P A
�8 otherwise

.

As known in large deviation theory, the rate function for PτΛk p � |CMk
q will be the rate

function for PτΛk plus a functional of the form χA for a suitable set A, see i.e. [DS00].
Because of poor continuity properties of these functionals χA additional care has to be
taken. Let

Du :�
{
κ PMpNq :

∑
jκpjq � u

}
be the set of measures on N with first moment u representing the densities of the loops
of the different kinds. Observe that in the weak topology χDu is neither upper nor
lower semicontinuous. But if its upper or lower semicontinuous regularisations are not
infinite for every κ PMpNq, one may deduce the lower and upper large deviation bound,
respectively, as we will do in the sequel.

Lemma 69. The upper and lower semicontinuous regularisations χuscDu
and χlscDu of χDu

with respect to the weak topology are

χuscDu pκq � �8, χlscDupκq �

{
�8 if

∑
jκpjq ¡ u

0 otherwise
. (4.37)

Proof. First note that χuscA � χintA and χlscA � χclA. But clDu � {κ P MpNq :∑
jκpjq ¤ u}, hence we get the lower semicontinuous regularisation of χDu . By the same

argument we get intDu � pclDc
uq
c � H and the upper semicontinuous regularisation.

63



4. Limit theorems and Extremal Measures

Upper large deviation bound of the partition function. In applying [DS00, Lemma
2.1.7] we get the upper bound as

lim sup
kÑ8

1
|Λk|

log PτΛk
(
expp�χCMk q

)
¤ � inf

MpNq

[
I � χlscDu

]
. (4.38)

Since χDu is not lower semicontinuous, it is replaced by its lower semicontinuous regu-
larisation on the rhs. We solve the variational problem on the rhs. of equation (4.38),
which is a minimisation problem with a constraint.

Proposition 70. Let zu be the solution of

p2πβq�d{2gd{2pzq � u^ u�, (4.39)

where u� :� p2πβq�d{2gd{2p1q and gd{2 is given in equation (3.4). Then the minimiser κ̄
of

inf
MpNq

[
I � χlscDu

]
(4.40)

is given by

κ̄ � p2πβq�d{2
∑
j¥1

zju

j1�d{2
δj .

Proof. The minimisation of I�χlscDu is equivalent to the minimisation of I under the con-
straint

∑
jκpjq ¤ u. For the moment, assume u ¤ u� and minimise I given

∑
jκpjq � υ

for any υ ¤ u. By the Euler-Lagrange method of conditional minimisation,

Ipκq �
∑
j¥1

jκpjq log z �
∑
j¥1

κj

(
log

κpjq

τpjq
� 1
)
� τpNq �

∑
j¥1

log zjκpjq

�
∑
j¥1

κj

(
log

κpjq

zjτpjq
� 1
)
� τpNq,

which has a unique minimiser on MpNq, κ̄ �
∑

j¥1 z
j
υτpjqδj with zυ being the solution

of equation (4.39) with u replaced by υ. Immediately

Ipκ̄q � �
∑
j¥1

zjυτpjq � τpNq �
∑
j¥1

p1� zjυqτpjq

follows. Since necessarily zυ ¤ 1 and zυ is an increasing function of υ, equation (4.40)
holds.
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4.5. The Canonical Ensemble of Elementary Components

Now let u ¡ u�, so there is no solution of equation (4.39). Let u0 � u��p2πβq�d{2gd{2p1q
be the surplus mass. Define κ̄ � τ and κ̄pnq � κ̄� u0

n δn, then clearly for all n∑
j¥1

jκ̄pnqpjq �
∑
j¥1

jκ̄pjq � u0 � u

while κ̄pnq Ñ κ̄ weakly. Furthermore

I
(
κ̄pnq

)
�
∑
j�n

κ̄pjq

(
log

κ̄pjq

τpjq
� 1
)
�

(
κ̄pnq �

u0

n

)(
log

κ̄pnq � u0
n

τpnq
� 1
)
� τpNq

� �τpN\{n}q �
(
τpnq �

u0

n

)(
log
(

1�
u0

nτpnq

)
� 1
)
� τpNq

Ñ Ipκ̄q � Ipτq � 0 as nÑ8.

Lower large deviation bound of the partition function. By lemma 69, the upper
semicontinuous regularisation χuscDu

of χDu is not finite, and the analogue argument for
the lower bound does not apply. The reason is the sparseness of Du in the weak topology
which even holds for the blow ups Dε

u of Du of the form Dε
u � {κ PMpNq : |

∑
jκpjq �

u| ¤ ε} for any ε ¡ 0. Otherwise this could have been used for some kind of Boltzmann
principle, see e.g. [RZ93].

However, the 2-parameter sets

Dm,s :�
{
κ PMpNq :

∑
j¤m

jκpjq   s

}
, (4.41)

are weakly open. Furthermore ⋂
ε¡0

⋂
m¥1

Dm,s�ε � clDs,

Since now χDm,s�ε is upper semicontinuous for any m P N and

lim
LÑ8

lim sup
kÑ8

1
|Λk|

log PτΛk

(
exp
(
�χDm,s�ε

)
1{χDm,s�ε¤�L}

)
� �8, (4.42)

we get for any m and ε by [DS00, Lemma 2.1.8] a lower bound

lim inf
kÑ8

1
|Λk|

log PτΛk
(
expp�χDm,s�εq

)
¥ � inf

MpNq

[
I � χDm,s�ε

]
(4.43)
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4. Limit theorems and Extremal Measures

for the system restricted to the first m components. Therefore we get the lower bound
for the original problem as mÑ8 and εÑ 0.

Consider now the family of minimisation problems on the rhs of equation (4.43). Here
we have to link the two parameters m and s. Since

∑
j¡m

1
jd{2

is strictly decreasing to

0, there exists m0 P N such that for any m ¥ m0, u� p2πβq�d{2
∑

j¡m
1
jd{2

¥ 0.

Proposition 71. Let ε ¡ 0 and m P N be such that sm,ε :� u�ε�p2πβq�d{2
∑

j¡m
1
jd{2

¥

0 and zpm,εq be the solution of p2πβq�d{2
∑

j¤m
zj

jd{2
� sm,ε. Then the infimum of I �

χDm,sm,ε on MpNq is attained at κ̄ε with

κ̄εpjq �
1

p2πβqd{2

{
1

j1�d{2
j ¡ m

zpm,εq
j1�d{2

j ¤ m
, (4.44)

and as firstly mÑ8 and then εÑ 0, zpm,εq Ñ zu, where zu is given in proposition 70.

Proof. The first part is similar to the previous proof where the minimiser is given in
equation 4.44. To see the second part, assume for the moment u � u�, then sm,ε is not
exactly the m-th partial sum of the series of p2πβq�d{2gd{2p1q, but close to it. Observe
that zpm,εq ¡ 1 for each m ¥ m0 and pzpm,εqqm¥m0 is an decreasing sequence for any
ε ¡ 0. Indeed, from

p2πβq�d{2
∑
j¤m

1
jd{2

� ε � sm,ε � p2πβq�d{2
∑
j¤m

zjpm,εq

jd{2

immediately follows zpm,εq ¡ 1 and

sm�1,ε � sm,ε � p2πβq�d{2
1

pm� 1qd{2
  p2πβq�d{2

zm�1
pm,εq

pm� 1qd{2

yields the decrease. Finally the sequence pzpm,εqqm can not be bounded away from 1

for any ε ¡ 0 since otherwise the sequence of sums
(∑

j¤m

zj
pm,εq

jd{2

)
m¥m0

would diverge.

Hence zpm,εq Ñ 1 for any ε ¡ 0 as mÑ8.
For u ¡ u� these arguments apply as well.
Let now u   u�, fix ε ¡ 0 such that u � ε   u� and m0 be even large enough, such

that sm,ε ¡ 0. Then firstly zpm,εq   1 for each m ¥ m0 follows since

p2πβq�d{2
∑
j¤m

zjpm,εq

jd{2
� sm,ε   u� � p2πβq�d{2

∑
j¡m

1
jd{2

� p2πβq�d{2
∑
j¤m

1
jd{2

.
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4.5. The Canonical Ensemble of Elementary Components

Next we show that pzpm,εqqm¥m0 is an increasing sequence in m and tends to zu�ε. Since

sm�1,ε � sm,ε � p2πβq�d{2
1

pm� 1qd{2
¡ p2πβq�d{2

zm�1
pm,εq

pm� 1qd{2
,

zpm�1,εq needs to be bigger than zpm,εq. Since necessarily pzpm,εqqm is bounded from above
by 1, the sequence converges and the only limit can be zu�ε since sm,ε tends to u� ε as
mÑ8. By the continuity of gd{2 the claim follows as εÑ 0.

Since the minimiser of the minimisation problem was unique, the conditioned Poisson
process is asymptotically degenerate and

lim
kÑ8

PτΛk

({
η :

η

|Λk|
P �
}∣∣∣CMk

)
� δτzu (4.45)

weakly. In particular, the case u ¡ u� causes the difficulties in propositions 70 and 71.
See also remark 75.

Martin-Dynkin boundary. Back to Martin-Dynkin boundary technique, we interpret
the boundary condition µ PM�pXq as a random element and write capital letters instead
of small ones to emphasise the dependence on µ. Let U be the limiting particle density,
Upµq � limkÑ8

NΛk
µ

|Λk|
, in case of existence of the limit and put Upµq � 8 if the limit

does not exist. For each configuration µ with Upµq   8 there exists Z � Zpµq such that

p2πβq�d{2gd{2pZq � U ^ u�. (4.46)

The considerations on large deviations lead to the desired weak convergence and we
obtain

Proposition 72. Let f : X Ñ R be non-negative and measurable with bounded support,
P P C and µ PM . Then for any P P C, ϕ P L1pPq

Ppϕ|H8q � lim
kÑ8

πH
Λk
p � , ϕq � PρZ pϕq P-a.s.

Proof. From equation (4.45) we get

PτΛk

({
η :

η

|Λk|
P �
}∣∣∣CNΛk

µ

)
Ñ δτZpµq

as k Ñ 8. Now we can use the results of section 4.2 to deduce that the measures
converge

lim
kÑ8

πH
Λk
pµ, � q � PρZpµq .
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Again the reasoning of the previous sections applies. Since for H8-measurable ϕ,
PpϕfpQ�qq � PpϕPρZ pfpQ�qqq holds, we get

PρZpµqpQ� � Qµq � 1 P-a.s.

In particular Z � Zpµq P-a.s. Let ∆H � {P P C8XC|Q� � P P -a.s.} be the essential
part of the Martin-Dynkin boundary associated to H, then we deduce

Theorem 73. The essential part of the Martin-Dynkin boundary of πH consists of all
Poisson processes with intensity measure ρz for z P r0, 1s and d ¥ 3,

∆H � {Pρz |0 ¤ z ¤ 1}.

Proof. Pρz P Cpπ
Hq, and Qµ � Pρz Pρz -a.s. by proposition 73. For arbitrary P P ∆H we

have ∫
∆H

P pϕqV PpdP q � Ppϕq � Q�pϕq P-a.s.

This implies V P � δPρz .

Remark 74. For d � 1, 2, we necessarily start with the intensity measure ρz1 for some
z1   1. By corollary 41, the large deviation principle remains valid with respect to
the �-topology with the relative entropy properly adjusted. The Lagrange multiplier
z, which occurs during the minimisation procedure using ρ, will be, given ρz1 , some z̃
related to z via z � z1z̃. The discussion is carried out in more detail in subsection 7.4.
In fact, since gd{2p1q diverges for d � 1, 2, the minimisation problems in proposition 70
and 71 simplify since no mass can get lost.
Remark 75. We constructed the minimiser in proposition 70 and 71 for the weak topology
on MpNq, which means that the loop densities ζA

|Λk|
, the loop densities represented as

measures on N, converge as k Ñ 8 for arbitrary A � N. However, for the particle
densities different behaviours occur. For a low particle density u ¤ u� the total mass
is conserved, hence we get convergence for any A � N and any particle is contained in
some finite loop, whereas for u ¡ u� some mass is moved to infinity and lost. Therefore
for the limits Qµ the particle density U is P-a.s. bounded for any P P CpπHq, hence
P-a.s. the limit (4.45) even holds on N endowed with the �-topology. This phenomenon
of bounded particle density shows that a condensation effect is present, but does not
occur with positive probability.
Remark 76. One may collect the surplus mass at an exterior point, say 8, by replacing
N endowed with the vague topology by its Alexandrov compactification NY {8}. Still
PτΛk p � |CMk

q converges weakly to the same deterministic limit. At low density u ¤ u�

the particle densities stay the same, but at u ¡ u� the surplus mass u0 reaches 8. On
the contrary, by the proof of proposition 70, there is no excess of loops. Hence one may
define a density of particles contained in infinitely long loops, but no density of infinite
loops.
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5. Geometric Aspects of the ideal Bose Gas

In this chapter the point of view is changed from a global one to a local one. Particularly
the loop as a geometric object and the configuration of loops as a collection of geometric
objects in Rd are focused.

The basic means are Palm measure and Palm distribution of a point process P of first
order. As outlined in section 1.2, the modern construction of the Palm distribution of
P consists of constructing its Campbell measure CP and factorising CP with respect to
the intensity measure ρ of P ,

CP phq �

∫∫
hpx, µqP xpdµqρpdxq, (5.1)

resulting in a family {P x}xPX , see proposition 20. This construction permits the inter-
pretation that P x is P conditioned on the event {ζ{x} ¡ 0}. Further analysis can be
carried out in case of P obeying additional invariance properties, particularly translation
invariance. Indeed, as shown in chapter 1, Pρz is invariant under the translation group
T � {Ts}sPRd , i.e. Pρz is invariant under the translations Ts : X Ñ X, x ÞÑ s�x for each
s P Rd. Under such a condition a result of Mecke [Mec67] is extended: Let s : X Ñ Rd,
x ÞÑ xp0q be the projection of a loop to its starting point, g : Rd Ñ8 be a non-negative,
measurable and sρz-integrable function, then the Palm distribution can be obtained by
the g-weighted average over all loops of a configuration µ which start in the support
of g, and then average with respect to the point process. Hence the Palm distribution
takes the form

P 0pAq �
(
sρ
)
pgq�1

∫∫
gpuq1ApTuµqsµpduqP pdµq. (5.2)

Furthermore, in [Mec67] from the stationarity of P the independence of the particular
choice of g is shown.

In chapter 4 the point processes which are a stochastic field for a given specification
were characterised. They are given as a mixture of extremal elements from the Martin-
Dynkin boundary, its essential part. These are exactly the ergodic point processes,
and for those additional results with an important interpretation can be given. In
equation (5.2) replace g step by step by the indicators of nice, convex sets Λk

In sections 5.2 – 5.5 different properties related to the typical loop are considered. In
contrast to chapter 4, results may differ depending on whether a loop is Brownian or a
random walk loop. Table 5.1 shows some of the results for typical loops.
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property random walk loop Brownian loop

typical barycentre
j-loop b0 � N

(
0, jβ12

(
1� j�2

)
I
)

b0 � N
(

0, jβ12 I
)

composite loop – b0 � N
(

0, β gd{2pzq

g1�d{2pzq
I
)

expected typical 1-volume

one step of j-loop
√

2πβ
√

1� 1
j

ωd
ωd�1

-

expected typical k-volume

k steps of j-loop p2πβq
k
2

k!

√
1� k

j
ωd�k�1

ωd�1
-

expected number of vertices of convex hull
j-loop 2

∑j
n�1

1
n

percolation
no percolation for sufficiently small z

Table 5.1.: Geometric Properties

The first property to explore is the typical barycentre in section 5.2, which turns
out to be normally distributed in any case. In the Brownian bridge case, the typical
j-loop barycentre turns out to be normally distributed with covariance matrix jβ

12 I,

proposition 80 and β
gd{2pzq

g1�d{2pzq
I for the typical barycentre, corollary 81, where I is the

identity matrix. The covariance of the typical j-loop barycentre in the random walk
bridge case agrees with the one in the Brownian bridge case up to an additional correction
factor 1� j�2, proposition 84, and turns out to be closely related to the computation of
the barycentre of a given set of points in Rd, which is an important task in multivariate
statistics [And84]. In particular the variance of the barycentre of the random walk j-loop
is always smaller than the variance of the barycentre of the Brownian j-loop, but they
agree asymptotically.

In section 5.3 the location of the typical random walk loop at the discrete times
0, β, 2β, . . . is considered. The mean euclidean distance between succeeding points as
well as the mean euclidean length of a typical loop is determined. As one expects, the
mean length of a step of a j-loop turns out to be shorter than a corresponding step of an
unconditioned random walk, with the correction factor being

√
1� 1{j, see corollary 93.

Even more holds: two succeeding steps define a triangle with associated area or 2-volume
and more generally, k steps define a simplex with the associated k-volume. Similar to the
1-volume case, the k-volume of a j-loop is smaller than the k-volume of an unconditioned
random walk, now by a factor

√
1� k{j.

The following section 5.4 again considers the set of vertices in R2 given by the random
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walk j-loop. The interest lies in the number of extremal points of this set and its
asymptotic behaviour as j Ñ 8. These extremal points are exactly the vertices of
the convex hull of the given set, and therefore the vertices of a polytope. In general
independent points, uniformly distributed in a domain of a special shape, have been
considered by various authors. Computations for normally distributed points can be
found in Rényi and Sulanke [RS63]. Here, however, the dependence is the main difficulty,
but we use fruitfully a close connection to the event for random walks to stay positive.

Section 5.5 is concerned with percolation. A typical configuration consists of infinitely
many loops, of which some may overlap. Clusters are built from overlapping loops and
the basic question is about the size of the typical cluster which is the cluster which
contains the typical loop. We show in proposition 104 that for sufficiently small z, there
is Pρz -a.s. no unbounded cluster, and moreover in corollary 105 that the diameter of the
typical cluster has at least a finite forth moment.

5.1. Palm Distributions and Stationarity

In theorem 18 the Campbell measure CP of a first order point process P was given as

CP phq �

∫∫
hpx, µqµpdxqP pdµq

for non-negative, measurable functions h : X � M��pXq Ñ R. The observation in
proposition 20 that for every A P BpM��pXqq, CP p � � Aq is absolutely continuous with
respect to the intensity measure ρ of P lead to the disintegration

CP phq �

∫∫
hpx, µqP xpdµqρpdxq (5.3)

with the family {P x}x being the Palm kernel. The Palm distribution P x of P at x is
interpreted as P conditioned on the event

{
ζ{x} ¡ 0

}
that there is at least one point at

the site x. In case of P being a stationary point process an independence of the Palm
distribution P x of x should be expected.

Assume X to be an Abelian group with the translations T � {Tx}xPX acting measur-
ably on X. A point process P on X is stationary if

P pTxAq � P pAq

for every x P X. In this case, by Mecke [Mec67], the Palm distribution may be defined
alternatively as

P0pAq �
1

ρpgq

∫∫
1ApTxµqgpxqµpdxqP pdµq

for any non-negative, measurable function g : X Ñ R with
∫
gdρ   8. The stationarity

ensures that this definition does not depend on the choice of g and therefore is well-
defined. If X � Rd the usual choice for g is the indicator of the unit cube. The
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5. Geometric Aspects of the ideal Bose Gas

Palm kernel defined in equation (5.3) agrees with the definition in equation (5.1) in the
following sense [DVJ08b, thm.13.2.III],

Theorem 77. Let P be a stationary point process. Then the Palm kernels {P x}xPX can
be chosen such that for any x P X,

P xpAq � P0pTxAq.

Therefore P x can be obtained from P0 by shifting the origin towards x and the sub-
script is allowed to become a superscript. Due to the definition of the family of Palm
kernels as a Radon-Nikodým derivative, {P x}xPX has to be chosen appropriately on
ρ-null sets.

The next step is to relax the assumption that X is an Abelian group, but assume that
a group of translations T acts measurably on X. Since by the discussion in section 1.1.3
the T -invariance of a Poisson process is reflected by the T -invariance of its intensity
measure and vice versa, by the disintegration lemma 49 for ρz, Pρz is invariant under the
translation group T � {Ts}sPRd .

Especially for Pρz the disintegration means the Palm distribution Px
ρz is the Poisson

process Pρz conditioned on the occurrence of a fixed loop x P X. In attempting to use the
T -invariance, the condition on the occurrence of some loop starting at s P Rd seems more
suitable. By construction the loop measures ρj were required to satisfy a disintegration

ρjpfq � p2πβq�d{2
∫

Rd

∫
X{s}

fpx0qΨs
j,βpdx0qds

� p2πβq�d{2
∫∫

Rd�X{0}

fps� x0qΨ0
j,βpdx0qds

with Ψs
j,β being the distribution of the j-loop starting at s P Rd. Necessarily Ψs

j,β agrees
with Ψ0

j,β � Ts. Consider again the disintegration of the Campbell measure CP and
suppose further that the function h, which is integrated with respect to CP , depends on
x only via the starting point sx :� xp0q, then

CPρz phq �

∫∫
hpsx, µqPx

ρzpdµqρzpdxq

�
∑
j¥1

zj

jp2πβjqd{2

∫∫∫
hps, µqPs�x0

ρz pdµqΨ0
j,βpdx0qds

�
1

g1�d{2pzq

∫∫
hps, µqP̄s

ρzpdµqds,

where P̄s
ρzpdµq is the weighted convex combination of the Ps�x0

ρz pdµqΨ0
j,β’s,

P̄s
ρzpdµq �

∑
j¥1

zj

j1�d{2

∫
Ps�x0
ρz pdµqΨ0

j,βpdx0q.
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Instead of Px
ρz being the Poisson process Pρz conditioned on the particular loop x being

contained in the configuration, P̄s
ρz is Pρz conditioned on some loop starting at s P Rd.

Thus we lost information due to the averaging, but gained the independence of the
averaged Palm kernels P̄s

ρz of the position.

Definition 78 (Typical loop). The typical loop of Pρz is the loop starting at the origin
under P̄0

ρz .

Therefore we get an analogue of equation (5.1) for the T -invariant Poisson process
Pρz , which reads as

P̄0
ρzpϕq � g1�d{2pzq

∫∫
ϕpµ� sxq1F psxqµpdxqPρzpdµq,

where F is the unit cube in Rd. Here the starting point of every loop starting in F is
moved towards the origin, where ϕ is evaluated.

By now the typical loop of Pρ is the loop which starts at the origin with respect to the
Palm distribution P0

ρ. On the other hand, a loop consists of possibly several elementary
constituents and a typical particle could be of another interest than a typical loop. If
we introduce the symmetrisation t of a loop x P Xj as

t : δx ÞÑ tpδxq �
j�1∑
k�0

δxp��kβq

and appropriately continued for µ PM�pXq, we get the symmetrised Point process tPρz .
Note that simple configurations stay simple if and only if for any two distinct loops
x, y P µ and any k the kβ-time shift of x is different from y. Furthermore the projection
of the loop of a configuration µ into Rd does not change under symmetrisation. Let
sk : Xj Ñ Rd be the projection on the starting point of the k-th particle,

sk : δx ÞÑ skx � xpkβq

for 0 ¤ k   j.

Lemma 79. On M�pXjq the relation s � t �
∑j�1

k�0 sk holds.

Therefore the Palm distribution of the symmetrised process

pt̄Pρzq
0pϕq � gd{2pzq

∫∫
ϕpµ� sxq1F psxqµpdxqtPρzpdµq

� gd{2pzq

∫∫
ϕptµ� sxq1F psxqtµpdxqPρzpdµq

� gd{2pzq

∫∫
ϕptµ� stxq1F pstxqµpdxqPρzpdµq

� gd{2pzq

∫∫ ∑
k

ϕptµ� skxq1F pskxqµpdxqPρzpdµq

is the distribution of the typical elementary component.
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5.2. The Barycentre

For a finite set of points {s1, . . . sN}, their barycentre S is defined by

S :�
1
N

N∑
m�1

sm.

In subsection 5.2.2 these points are given by the locations of a random walk loop, a
j-loop brings along j points. The definition of the barycentre carries over to a set given
by a measurable function f on some interval r0, T s,

S :�
1
T

∫
fptqdt.

Of special interest in subsection 5.2.1 is the barycentre of the typical Brownian loop.

5.2.1. The Barycentre of a Brownian Loop

For every j P N let

b : Xj Ñ Rd, x ÞÑ
1
jβ

∫ jβ

0
xpsqds

assign to each loop its barycentre and assume b acting on X. Furthermore continue
b on M�pXq such that for µ P M�pXq, bµ P M��pRdq is the point configuration of the
barycentres of the loops of µ. For µ PM�pXq with µpX{0}q ¡ 0 let b0µ be the barycentre
of the loop starting at the origin,

b0µ :� bx if x P µ with sx � 0.

Recall s : X Ñ Rd being the projection on the starting point. Before we turn to the
typical loop, we compute the distribution of the barycentre of the typical j-loop, i.e. the
distribution of b0 under P0

ρj at inverse temperature β ¡ 0.

Proposition 80 (Typical j-loop barycentre). Let j P N be a positive integer and β ¡ 0.
Then under P0

ρj , the typical j-loop barycentre is

b0 � N

(
0,
jβ

12
I

)
.

In fact there is no big surprise that the barycentre of a Brownian bridge starting and
ending at the origin is normally distributed with its mean at the origin.
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5.2. The Barycentre

Proof. Let T :� jβ and pBtq0¤t¤T be a Brownian motion. Then with Atpxq � xptq, see
e.g. Revuz, Yor [RY91, prop. 1.3.7],

At
d
� Bt �

t

T
BT

and

b d
�

1
T

∫ T

0
Bsds�

1
T

∫ T

0

s

T
BTds �

1
T

∫ T

0
Bsds�

BT
2
.

Therefore b is normally distributed and it suffices to compute expectation and covariance
matrix. But the expectation vanishes since the Brownian motion is a centered process.
Therefore the covariance matrix remains, for which it suffices to compute the diagonal
elements because of the independence of the components. Hence for i � 1, . . . , d

(
bi
)2
�

(
1
T

∫ T

0
Bi
sds�

Bi
T

2

)2

�
1
T 2

(∫ T

0
Bi
sds
)2

�
Bi
T

T

∫ T

0
Bi
sds�

(
Bi
T

)2
4

.

Starting from the last one we calculate the three expectations. Clearly E
(
Bi
T

)2
� T .

Because of EBi
TB

i
s � s for s ¤ T , the expectation of the second summand is

E
Bi
T

T

∫ T

0
Bi
sds �

1
T

∫ T

0
sds �

T

2
.

For the first summand let It :�
∫ t

0 B
i
sds and apply partial integration to its square,

I2
T � I2

0 � 2
∫ T

0
ItdIt � 2

∫ T

0

∫ t

0
Bi
sdsB

i
tdt

hence by Fubini

1
T 2

E
(∫ T

0
Bi
sds
)2

�
2
T 2

∫ T

0

∫ t

0
EBi

sB
i
tdsdt

�
T

3
.

Summation leads to the desired result.

Alternative proof. Let T :� jβ and Ψ0
j,β be the Brownian bridge measure on Xj from

definition 50. Then, see e.g. Revuz, Yor [RY91, prop. 1.3.7], for i � 1, . . . , d,∫
xipsqxiptqΨ0

T pdxq � s^ t�
st

T
. (5.4)
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Since Ψ0
T is the probability measure of a Gaussian process and

bx �
1
T

∫ T

0
xptqdt,

b is normally distributed and it suffices to compute expectation and covariance matrix.
But the expectation vanishes since the Brownian bridge is a centered process and the co-
variance matrix remains. Since the components of the Brownian bridge are independent,
it is sufficient to compute the diagonal elements. For i � 1, . . . , d,∫ [

pbxqi
]2Ψ0

j,βpdxq �
∫ (

1
T

∫ T

0
xipsqds

)2

Ψ0
j,βpdxq. (5.5)

Partial integration of the square of the inner integral Itpxiq :�
∫ t

0 x
ipsqds leads to

IT px
iq2 � I0px

iq2 � 2
∫ T

0
ItdIt � 2

∫ T

0

∫ t

0
xipsqdsxiptqdt.

Applying Funbini and equation (5.4) continues equation (5.5) as∫ [
pbxqi

]2Ψ0
j,βpdxq �

2
T 2

∫ T

0

∫ t

0

∫
xipsqxiptqΨ0

j,βpdxqdsdt

�
2
T 2

∫ T

0

∫ t

0
s

(
1�

t

T

)
dsdt

�
T

12
.

Corollary 81 (Typical Barycentre). Let the fucacity satisfy 0   z ¤ 1 if d ¥ 3 and
strictly less than 1 if d � 1, 2. Then under P0

ρz is the typical barycentre

b0 � N
(

0, β
gd{2pzq

g1�d{2pzq
I

)
.

This means that at fugacity z � 1 still each typical loop has a well-defined barycentre
as long as the dimension is at least 3. Only in the low dimensions 1 and 2, when the
particle number is not integrable anyways, the barycentre has no well-defined distribu-
tion.

Proposition 82 (Expected sample variance of the typical j-loop). The expected sample
variance of the typical j-loop is jβ

12 I.

Proof.
1
T

∫∫ T

0

[
xiptq � pbxqi

]2
dtΨ0

j,βpdxq

�
1
T

∫∫ T

0

[
xiptq2 � 2xiptqpbxqi �

(
pbxqi

)2]dtΨ0
j,βpdxq
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5.2. The Barycentre

Starting from the last integral we calculate the three quantities,

1
T

∫ T

0

(
pbxqi

)2dtΨ0
j,βpdxq �

1
T

∫ T

0

T

12
dt �

T

12
2
T

∫ T

0

∫
xiptqpbxqiΨ0

j,βpdxqdt �
2
T 2

∫ T

0

∫ T

0

∫
xiptqpbxqiΨ0

j,βpdxqdsdt

�
2
T 2

∫ T

0

∫ T

0
s^ t�

st

T
dsdt

�
1
T

∫ T

0
t�

t2

T
dt �

T

6
1
T

∫ T

0

∫
xiptq2Ψ0

j,βpdxqdt �
1
T

∫ T

0
t�

t2

T
dt �

T

6

which together results into

1
T

∫∫ T

0

[
xiptq � pbxqi

]2
dtΨ0

j,βpdxq �
T

12

5.2.2. The Barycentre of a Random Walk Loop

The discrete analogon of the Brownian loop is the random walk loop, which defines a set
of points in Rd. In this case the barycentre is the empirical mean of the positions of these
points. The spirit of the computations is very much the same and makes heavy use of a
similar representation of a random walk bridge in terms of a random walk with normally
distributed steps. For this reason we take the same notation as in subsection 5.2.1. Aside
from the discrete setting the main difference is the lack of a partial integration.

For every j P N let

b : Xj Ñ Rd, x ÞÑ
1
j

j�1∑
m�0

xpmβq

assign to each loop its barycentre and assume b acting on X. Furthermore continue
b on M�pXq such that for µ P M�pXq, bµ P M��pRdq is the point configuration of the
barycentres of the loops of µ. For µ PM�pXq with µpX{0}q ¡ 0 let b0µ be the barycentre
of the typical loop,

b0µ :� bx if x P µ with sx � 0.

First of all, for an overview, a few sums are collected, which will occur in the sequel.
They are given without proof.
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5. Geometric Aspects of the ideal Bose Gas

Lemma 83. Let j P N. Then

iq

j�1∑
m�0

mpm� 1q �
1
3
jpj � 1qpj � 2q,

iiq

j�1∑
m�0

m2pm� 1q �
1
4
jpj � 1q

(
j2 �

7
3
j �

2
3

)
,

iiiq

j�1∑
m�0

m

(
1�

m

j

)
�

1
6
pj � 1qpj � 1q.

At first the distribution of the barycentre of the typical j-loop, i.e. the distribution of
b0 under P0

ρj at inverse temperature β ¡ 0 is computed, and later the distribution of b
of the typical loop is focused.

Proposition 84 (Typical j-loop barycentre). Let j P N be a positive integer and β ¡ 0.
Then under P0

ρj the typical j-loop barycentre is

b0 � N

(
0,
jβ

12

(
1�

1
j2

)
I

)
.

Proof. Let pRmqm�0...N be a random walk with independent, N p0, βIq-distributed steps.
Then the distribution of the m-th step, xpmβq, and

Rm �
m

j
Rj

are equal and the appropriate representation of the barycentre is

b d
�

1
j

j�1∑
m�0

Rm �
1
j

j�1∑
m�0

m

j
Rj

�
1
j

j�1∑
m�0

Rm �

(
1�

1
j

)
Rj
2
.

Therefore b is normally distributed. The expectation of b vanishes since the family
pRmqm is centered. We compute the covariance matrix. In analogy to the continuous
case for i � 1, . . . , d,

(
bi
)2
�

[
1
j

j�1∑
m�0

Rim �

(
1�

1
j

)
Rij
2

]2

(5.6)

�
1
j2

[ j�1∑
m�0

Rim

]2

�

(
1�

1
j

)
Rij
j

j�1∑
m�0

Rm �

(
1�

1
j

)2
(
Rij
)2

4
(5.7)
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and we calculate the three expectations starting from the last one. Clearly E
(
Rij
)2
� jβ.

Because of ERijR
i
m � m for m ¤ j,

j�1∑
m�0

ERimR
i
j �

jpj � 1q
2

β

and finally

E
[ j�1∑
m�0

Rim

]2
�

j�1∑
m�0

E
(
Rim
)2
� 2

j�1∑
m�0

j�1∑
n�m�1

ERimR
i
n

�
jpj � 1q

2
β �

j�1∑
m�1

mpj � 1�mqβ

�
jpj � 1q

2
β �

[
jpj � 1q2 �

1
3
jpj � 1qp2j � 1q

]
β

�
jpj � 1q

2
β �

jpj � 1qpj � 2q
3

β

Therefore putting the expectation on equation (5.7) leads to

E
(
bi
)2
� j
(

1�
1
j

)
β

[
1
2j
�

1
3

(
1�

2
j

)
�

1
2

(
1�

1
j

)
�

1
4

(
1�

1
j

)]
�
jβ

12

(
1�

1
j

)(
1�

1
j

)
.

Alternative proof. The covariances of each component i � 1 . . . , d of the random walk
bridge are given by ∫

xipmβqxipnβqΨ̄0
T pdxq � β

(
m^ n�

mn

j

)
. (5.8)

Since

bx �
1
j

j�1∑
m�0

xpmβq,

b is normally distributed and it suffices to compute expectation and covariance matrix.
But the expectation vanishes since the random walk bridge is a centered process and the
covariance matrix remains, again the computation of the diagonal elements is sufficient,

∫ (
bi
)2Ψ̄0

T pdxq �
∫ (

1
j

j�1∑
m�0

xipmβq

)2

Ψ̄0
T pdxq. (5.9)
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Applying Funbini and equation (5.8) continues equation (5.9) as

∫ (
bi
)2Ψ̄0

T pdxq �
1
j2

j�1∑
m�0

∫ [
xipmβq

]2Ψ̄0
T pdxq �

2
j2

j�1∑
m�0

m�1∑
n�0

∫
xipmβqxipnβqΨ̄0

T pdxq

�
β

j2

j�1∑
m�0

(
m�

m2

j

)
�

2β
j2

j�1∑
m�0

m�1∑
n�0

n

(
1�

m

j

)

�
β

j2

j�1∑
m�0

(
m�

m2

j

)
�
β

j2

j�1∑
m�0

mpm� 1q
(

1�
m

j

)
�
β

6

(
1�

1
j2

)
�
jβ

3

(
1�

1
j

)(
1�

2
j

)
�
jβ

4

(
1�

1
j

)(
1�

7
3j
�

2
3j2

)
� jβ

(
1�

1
j

)[
1
6

(
1
j
�

1
j2

)
�

1
3

(
1�

2
j

)
�

1
3

(
1�

7
3j
�

2
3j

)]
�
jβ

12

(
1�

1
j

)(
1�

1
j

)

Therefore the results of proposition 84 and proposition 80 agree up to the correction
term 1 � j�2. As j increases, both variances grow by the same rate. Moreover, the
variance of the barycentre of a random walk loop is always smaller than the corresponding
variance of the random walk bridge. Directly the distribution of the typical barycentre
follows:

Corollary 85 (Typical Barycentre). Let the fugacity satisfy 0   z ¤ 1 if d ¥ 3 and
strictly less than 1 if d � 1, 2. Then under P0

ρz ,

b0 � N

(
0,

1
g1�d{2pzq

∑
j¥1

zj

jd{2

(
1�

1
j2

)
βI

)
.

Proposition 86 (Expected sample variance of the typical j-loop). The expected sample
variance of the typical j-loop is β

12pj � 1qI.
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Proof.∫ j�1∑
m�0

[
xipmβq � pbxqi

]2
Ψ̄0
T pdxq �

j�1∑
m�0

∫ [
xipmβq2 � 2xipmβqpbxqi �

(
pbxqi

)2]Ψ̄0
T pdxq

j�1∑
m�0

∫
xipmβq2Ψ̄0

T pdxq � β

j�1∑
m�0

m

(
1�

m

j

)
�
β

6
pj � 1qpj � 1q

j�1∑
m�0

∫ (
pbxqi

)2Ψ̄0
T pdxq �

β

12
pj � 1qpj � 1q

j�1∑
m�0

∫
xipmβqpbxqiΨ̄0

T pdxq �
j�1∑
m�0

m

(
1�

m

j

)
�
β

6
pj � 1qpj � 1q,

where the pre-last equation is obtained from∫
xipmβqpbxqiΨ̄0

T pdxq �
β

j

j�1∑
n�0

(
m^ n�

mn

j

)

�
β

j

m�1∑
n�0

n

(
1�

m

j

)
�
β

j

j�1∑
n�m

(
m�

mn

j

)
�
β

2

(
m�

m2

j

)
.

Therefore the expected sample variance of the i-th component, i � 1, . . . , d, is

1
j � 1

∫ j�1∑
m�0

[
xipmβq � pbxqi

]2
Ψ̄0
T pdxq �

β

12
pj � 1q.

5.3. k-Volumes

The basic question addressed in this section is ”What is the length of a typical loop”?
More precise, the question could be ”How many steps does a typical loop have?”

Another way of thinking about that is the question for expected euclidean length of
a typical loop, for a j-loop this is j times the expected length of one step, say the first
one. If x is the loop of µ starting at the origin, this is the expected distance between
the two successive points xp0q � 0 and xpβq. In taking two steps one gets the three
points xp0q, xpβq and xp2βq forming a triangle which has a certain area. This way the
1-volume and the 2-volume of one and two successive steps are defined, respectively. The
generalisation to general k is straightforward.

We start with independent vectors before passing to the dependent case and finally
to more general rotational invariant situation.
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5.3.1. k-Volumes of independent Vectors

Let k be a positive integer and Y1, . . . , Yk � N p0, Iq independent, d-dimensional vectors.
The convex hull of these vectors and the origin form a k-dimensional simplex in Rd. Any
rotation around the origin does neither change the shape nor the volume, we therefore
pass to polar coordinates, which are in higher dimensions for m � 1, . . . , k

Ym,1 � Rm sinϑm0 sinϑm1 � . . .� sinϑmd�2

Ym,2 � Rm cosϑm0 sinϑm1 � . . .� sinϑmd�2

Ym,3 � Rm cosϑm1 � . . .� sinϑmd�2
...

Ym,d � Rm cosϑmd�2

,

where ϑm0 P r0, 2πq is the azimuth angle, ϑmj P r0, πq for j ¥ 1 are the polar angles and
Rm :� |Ym| is the length of Ym. Because of rotational invariance of the k-volume, we
may choose

ϑkd�2 � ϑk�1
d�3 � . . . � ϑ1

d�k�1 � 0.

This rotation causes Yk to direct to the north pole and fixes the remaining vectors such
that the k-volume of the k vectors admits a simpler representation.

Lemma 87. The k-volumes volk satisfy the recursion

volkpY1, . . . , Ykq �
R1

k

d�2∏
j�d�k

sinϑkj volk�1pY2, . . . , Ykq.

Proof. Due to the choice of the angles, ϑkj is the angle between the line through Y1 and the
origin and the plane given by {0, Y2, . . . , Yk} and hence the calculation is standard.

Conditioned on the vectors Y2, . . . , Yk this directly leads to

Lemma 88. Let ωn denote the volume of the n-dimensional unit sphere. Then the
expected k-volumes satisfy the recursion

E
(

volk
(
Y1, . . . , Yk

)∣∣∣Y2, . . . , Yk

)
�

√
2π
k

ωd�k�1

ωd�k�2
volk�1

(
Y2, . . . , Yk

)
.

Proof. Because of the independence of the length of a vector and its direction,

E
(

volk
(
Y1, . . . , Yk

)∣∣∣Y2, . . . , Yk

)
� volk�1

(
Y2, . . . , Yk

)ER1

k
�

1
ωd

∫ d�2∏
j�d�k

sinj�1 ϑ1
j

d�k�1∏
j�1

sinj ϑ1
jdϑ

1
1 � � � dϑ

1
d�2
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The sines result from the transformation to polar coordinates and lemma 87. Because
of ER1 �

√
2π ωd

ωd�1
and the integrals over the products yield ωd�1

ωd�k�2
and ωd�k�1, respec-

tively, we may continue to deduce

E
(

volk
(
Y1, . . . , Yk

)∣∣∣Y2, . . . , Yk

)
� volk�1pY2, . . . , Ykq �

√
2π
k

ωd�k�1

ωd�k�2
.

Corollary 89. With ωn denoting the volume of the n-dimensional unit sphere for the
k-volume of k independent, normally distributed vectors Y1, . . . Yk holds

E
(

volk
(
Y1, . . . , Yk

))
�
p2πq

k
2

k!
ωd�k�1

ωd�1
.

In particular we get

E
(

vol1
(
Y1

))
�
√

2π
ωd
ωd�1

E
(

vol2
(
Y1, Y2

))
� π

ωd�1

ωd�1
�
d� 1

2

E
(

vold
(
Y1, . . . , Yd

))
�
p2πq

d
2

d!
ω1

ωd�1
.

5.3.2. k-Volumes of dependent Vectors

Let now X1, . . . , Xk be d-dimensional, normally distributed vectors. We allow a very
particular dependence relation, which exists in the Bose gas: The components of a single
vector are independent, whereas e.g. the family of the first components of these vectors
are dependent.

Definition 90 (Geometric Covariance). Let X1, . . . , Xk d-dimensional random vectors
such that if X1,j , . . . , Xk,j are the j-ths components, they have covariance matrix σ for
any j. σ is the geometric covariance matrix of X1, . . . , Xk.

If X is the kd-dimensional vector obtained by adjoining X1, . . . , Xk, then X has co-
variance matrix of block form

Σ �



σ11

. . .
σ11

� � �

σ1k

. . .
σ1k

...
...

σk1

. . .
σk1

� � �

σkk
. . .

σkk


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5. Geometric Aspects of the ideal Bose Gas

with k diagonal blocks of size d � d on each row and column. Particularly, if σ is
symmetric and positive definite, also Σ is. In this case we may find symmetric and
positive definite matrices γ and Γ. such that γTγ � σ and ΓTΓ � Σ and the relation
between γ and Γ is the same as between σ and Σ.

Now complete X1, . . . , Xk with d� k unit vectors Xk�1, . . . , Xd which are orthogonal
among themselves and to X1, . . . , Xk. Then

volkpX1, . . . , Xkq �
1
k!

∣∣∣det
(
X1, . . . , Xd

)∣∣∣
Proposition 91. Let X1, . . . Xk normally distributed random vectors with geometric
covariance σ. Then

E volkpX1, . . . , Xkq � det γE volkpY1, . . . , Ykq

where Y1, . . . , Yk are i.i.d. normally distributed.

Proof. By the definition of the volume and with x denoting the kd-vector obtained from
joining x1, . . . xk,

E volkpXq �
1

p2πqkd{2|det Γ|k!

∫ ∣∣detpx1, . . . , xdq
∣∣ exp

(
�

1
2
xTΣ�1x

)
dx.

Put y � Γ�1x, then dx � det Γdy, and

�
1

p2πqkd{2k!

∫ ∣∣∣det
(
pΓyq1, . . . , pΓyqk, xk�1, . . . , xd

)∣∣∣ exp
(
�

1
2
xTΣ�1x

)
dx

In fact, pΓyqj � γj1y1 � . . .� γjkyk is just a linear combination of vectors and therefore
by linearity of the determinant in each component det

(
pΓyq1, . . . , pΓyqk, xk�1, . . . , xd

)
�

det γ det
(
y1, . . . , yk, xx�1, . . . xd

)
� det γE volkpY1, . . . , Ykq,

since due to the choice of xk�1, . . . , xd still xiKyj for i ¡ k and j ¤ k.

5.3.3. k-Volumes of Random Walk Loops

In a rather general setting, proposition 91 shows how to compute the volume of a simplex
spanned of dependent vectors. This is now going to be applied to the Bose gas. Let
x P Xj be a j-loop starting at the origin. We are now ready to compute the k-volume
of the first k steps of x. If k ¥ j, then this k-volume vanishes. Hence let k   j.
Furthermore let

ξm � x
(
mβ
)

m � 0, . . . , k
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Figure 5.1.: Simplex defined by the first two steps of a 6-loop

be the visited points of the first k steps including the starting point. Then, again
dy � dy1 � � � dyk,

Efpξ1, . . . , ξkq � p2πjβq
d
2

∫
fpy1, . . . ykqψβpy1qψβpy2 � y1q � � � �

�ψβp�yj�1qdy1 � � � dyj�1

� p2πjβq
d
2

∫
fpy1, . . . ykqψβpy1qψβpy2 � y1q � � � �

�ψβpyk � yk�1qψpj�kqβp�ykqdy1 � . . . � dyj�1

�
p2πjβq

d
2

p2πβq
kd
2 p2πpj � kqβq

d
2

∫
fpy1, . . . ykq exp

(
�

1
2
yTΣ�1y

)
dy

and we may identify the inverse of the geometric covariance as the k � k-matrix

σ�1 � β


2 �1 0

�1
. . . . . .
. . . 2 �1

0 �1 1� 1
j�k


with the remaining elements being 0.

Lemma 92. The determinant of σ�1 is

detσ�1 � β�k
(

1�
k

j � k

)
� β�k

j

j � k
.
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Proof. This can be seen by induction in applying successively Laplace expansion from
the lower right corner or from the normalisation in the calculation above.

Finally put proposition 91 and corollary 89 together to obtain the result

Corollary 93. The k-volumes of the first k steps of j-loops for k   j are

E volkpξ1, . . . , ξkq �
p2πβq

k
2

k!

√
1�

k

j

ωd�k�1

ωd�1
.

Proof. Due to proposition 91

E volkpξ1, . . . , ξkq � β
k
2

√
1�

k

j
E volkpY1, . . . , Ykq,

which can be continued by corollary 89 to conclude that

�
p2πβq

k
2

k!

√
1�

k

j

ωd�k�1

ωd�1

since Y1, . . . , Yk are independent and normally distributed.

Therefore the k-volumes of the first k steps of a j-loop are up to a factor depending on
j the k-volumes of a random walk with independent steps. For j large this is expected
to be close to the independent case and the corollary shows exactly the difference.

Define the k-volume of a j-loop as the sum of the k-volumes when starting at each of
steps xp0q, xpβq, . . . , x

(
pj� 1qβ

)
, which is by symmetry j times the k-volume of the first

k steps. Suppose furthermore volk to be continued on M�pXq such that volk measures
the k-volume of the loop starting at the origin.

Corollary 94 (Expected k-volume of the typical loop). The expected k-volume of the
typical loop is

P0
ρzpvolkq �

1
g1�d{2pzq

∑
j¡k

zj

jd{2

√
1�

k

j
�
p2πβq

k
2

k!
ωd�k�1

ωd�1

5.3.4. Rotational invariant Distributions

In subsection 5.3.1 we calculated the k-volume of a simplex built from independent
normally distributed random vectors. The property we made use of was the invariance
of the distribution of the random vectors under rotation. Here we still keep the direction

86
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of the random vector to be uniformly distributed on Sd�1, but let the radial distribution
τ be arbitrary with the properties ∫

rdτpdrq � V   8∫
rd�1τpdrq � Cτ ,

i.e. if the radius of a sphere has distribution τ , its expected volume is finite. In this case

EfpZq �
1

ωdCτ

∫
fpr, ϕqrd�1τpdrqdϕ

for any rotational invariant random vector Z with radial distribution τ . The results then
take the form

Lemma 95. Let Z1, . . . , Zk be k independent and rotationally invariant random vectors
with radial distribution τ . Then the k-volume of the simplex spanned by the origin and
the Z 1

is satisfies the recursion

E
(

volk
(
Z1, . . . , Zk

)∣∣∣Z2, . . . , Zk

)
�
V

k

ωd�1ωd�k�1

ωdωd�k�2
volk�1

(
Z2, . . . , Zk

)
.

This is directly obtained from the proof of lemma 88 in replacing ER1 by V . Therefore
it is no surprise that the results only differ by a factor. From the recursion one obtains
an explicit result,

Corollary 96. Let Z1, . . . , Zk be k independent and rotationally invariant random vec-
tors with radial distribution τ . Then the k-volume of the simplex spanned by the origin
and the Z 1

is is exactly

E
(

volk
(
Z1, . . . , Zk

))
�
V k

k!

(
ωd�1

ωd

)k ωd�k�1

ωd�1
.

5.4. Convex Hulls in R2

The k-volumes of k � 1 successive points of a loop are a property depending only on
subset of the points visited by a loop, hence of local nature. A natural question that
faces the whole sets of points of a loop is e.g. the question for the number of its extremal
points. For a finite number of points in V � R2 the convex hull conv V is a convex
polygon, whose number of vertices (and edges) is exactly the number of extremal points
of V .

A line between two points of V is an edge of conv V if and only if V is contained in
one of the half-spaces defined by that line. Rényi and Sulanke use this relation in [RS63]
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5. Geometric Aspects of the ideal Bose Gas

to determine the number of extremal points of V . In this paper V is a fixed number of
independently, normally distributed points in R2. Here we treat the same question for
the typical loop x P µ, namely V � {xpkβq : k � 0, . . . , j � 1} if x P Xj . The points are
still normally distributed, but far away from being independent.

Unfortunately the relation between edges and vertices fails in higher dimensions, but
the idea how to identify a line between two points of V as an edge of conv V in two
dimensions can still be used to identify the appropriate part of a hyperplane as a face of
the polytope conv V . We address this questions of higher dimensions at the end of this
section and keep on considering d � 2.

For v, w P V let vw be the line defined by and rvws be the line segment between v
and w. Introduce the indicator

γvw :�

{
1 if rvws is an edge of conv V
0 otherwise

.

Then the total number of edges is half of the sum γvw over all pairs v, w P V ,

ΓpV q :�
1
2

∑
v,wPV
v�w

γvw.

Assume Γ to act on X through the relation V � {xpkβq : k � 0, . . . , j � 1} if x P Xj

and continue Γ on M�pXq such that to a starting point xp0q of a loop x the mark ΓpV q
is attached. Let Γ0 be the corresponding value of the typical loop. To get the expected
number of edges of V , one has to compute the probability that γvw is an edge. There is
a strong connection between this probability and the probability pn that a random walk
bridge of length n stays non-negative.

Lemma 97 (Vertices of the convex hull of j-loops). Let x P Xj, then

P0
ρj pΓ0q � j

j�1∑
n�1

pnpj�n.

Proof. For the moment fix v � xp0q and w � xpkβq for some k P {1, . . . , j�1}. Then the
loop resolves into the two independent bridges from v to w and from w to v, respectively.
Therefore it suffices to compute the expectation P0

ρj pγvwq, i.e. the probability that both
bridges lie completely in the same of the two half spaces defined by vw.

Decompose each of these bridges into the components orthogonal and parallel to vw,
then the probability P0

ρj pγvwq does not depend on the parallel component. Hence

P0
ρj pγvwq � 2pkpj�k,
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Figure 5.2.: Convex hull of a 6-loop

and since this situation occurs for any v P {xpkβq : k � 0, . . . , j � 1},

P0
ρj pΓ0q �

1
2

∑
i,k�0,...j�1

i�k

γxpiβqxpkβq � j

j�1∑
n�1

pnpj�n.

Lemma 98 (Probability of positivity of a random walk bridge). The probability of a
random walk bridge of length n ¥ 1 is

pn �
1
n
.

Proof. The argument is standard in random polymers and relies on the fact that for a
bridge Z � pZkqk�0,...n,

pn � PpZ0 ¥ 0, . . . , Zn�1 ¥ 0q � PpZ0 ¥ Zk, . . . , Zn�1 ¥ Zkq

for any k. Since the latter is the probability that Z has its minimum at k, the claim
follows.

The combination of these results yields an explicit expression for the number of vertices
of the convex hull of a random walk j-loop. Denote by h2pmq four times the partial sum of
the harmonic series h2pmq � 4

∑m
n�1

1
n . Factor and index are motivated in the discussion

of the higher dimensions below.

Theorem 99 (Expected number of vertices for the typical j-loop in two dimensions).
Let j P N. Then the number of vertices of the convex hull of a j-loop is

P0
ρj pΓ0q �

1
2
h2pj � 1q.
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Proof. By lemma 97,

P0
ρj pΓ0q � j

j�1∑
n�1

pnpj�n

with pk �
1
k . Because of j

j�n � 1� n
j�n ,

P0
ρj pΓ0q �

j�1∑
n�1

1
n
�

j�1∑
n�1

1
j � n

�
1
2
h2pj � 1q.

Thus the expected number of edges and vertices, respectively, grows like the logarithm
of the length of the loop, which is faster than the result Rényi and Sulanke obtained
in [RS63] for independently distributed points. They showed that the expected number
of extremal points in the independent case grows like the square root of the logarithm
of the number of points. Consequently one gets the expected number of vertices of the
typical loop,

Theorem 100 (Expected number of vertices for the typical loop in two dimensions).

P0
ρzpΓ0q � 2

∑
j¥1

zj

j1�d{2
h2pj � 1q.

Remark 101. These arguments apply in a similar manner to dimensions d ¡ 2, where
edges have to be replaced by facets of the polytope conv V . Facets are defined by d
vertices v1, . . . , vk for which we write in the style of dimension two rv1, . . . , vks. In
between these points are now d bridges instead of two in lemma 97, which is generalised
straight forward.

Lemma 102 (Facets of the convex hull of j-loops in higher dimensions). Let d ¡ 2 and
x P Xj, then

P0
ρj pΓ0q �

2j
d

j�pd�1q∑
n1�1

j�n1�pd�2q∑
n2�1

� � �

j�n1�...�nd�1�1∑
nd�1

1
n1

� � � � �
1
nd
.

Proof. As in the proof of lemma 97, fix a starting point and subdivide the j steps into
exactly d parts n1, . . . , nd ¥ 1 with

n1 ¤ j � pd� 1q
n2 ¤ j � n1 � pd� 2q

... ¤
...

nd ¤ j � n1 � . . .� nd�1 � 1.
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For fixed n1, . . . , nd, the probability that the d random walk bridges stay completely on
one side of the hyperplane defined by d vertices is

2
1
n1

� � � � �
1
nd
.

Sum over all these partitions n1, . . . , nd, and since each of the j points may occur as
a starting point and each that way each partition is counted d times due to cyclic
permutation, the claim follows.

Unfortunately there seems to be no nice explicit formula apart from a generalisation
given in lemma 102 with d � 1 iterated sums, or, equivalently, a sum over all integer
partitions of j consisting of d positive integers. But there is a possibility to obtain a
recursion in d. Setting h1 :� 2, then as in the proof of theorem 99,

P0
ρj pΓ0q �

1
2

j�1∑
n1�1

h1
1
n1

j

j � n1
�

1
2

j�1∑
n1�1

h1

[
1
n1

�
1

j � n1

]
�

1
2
h2pj � 1q.

For d � 3 one additional bridge is inserted, and since only the orthogonal component
matter, this case is obtained from the case d � 2 as follows: Fix one bridge, which has
length say n1, then the remaining bridges have total length j � n1 and

P0
ρj pΓ0q �

2j
3

j�2∑
n1�1

j�n1�1∑
n2�1

1
n1

1
n2

1
j � n1 � n2

�
j

3

j�2∑
n1�1

1
n1

1
j � n1

pj � n1q

j�n1�1∑
n2�1

2
1
n2

1
j � n1 � n2

�
j

3

j�2∑
n1�1

1
n1

1
j � n1

h2pj � n1 � 1q

�
1
3

j�2∑
n1�1

h2pj � n1 � 1q
[

1
n1

�
1

j � n1

]
�

1
3
h3pj � 2q.

By continuing this recursion, the following result holds

Proposition 103 (Facets of the convex hull of j-loops). Let x P Xj be a random walk
loop in Rd, then the expected number of facets of the convex hull satisfies the recursion
in d

P0
ρj pΓ0q �

1
d
hd
(
j � pd� 1q

)
, h1 � 2.
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5.5. Percolation of Loops

Configurations of geometric objects in space may overlap or not, and overlapping objects
form clusters. Automatically one might ask, whether these clusters are small or big. In
the latter case of big clusters one might distinguish between infinite mean cluster size
or even infinite clusters occurring with positive probability; whereas in the former case
one could be interested in higher moments of the cluster size.

On a lattice one has in general a natural graph structure, which is used to define
site or bond percolation. This fails in continuum percolation when starting with a
stationary point process. As done in Meester and Roy [MR96], one may introduce
edges by connecting a point to its k nearest neighbors and therefore defining the points
interacting with the given point. A further possibility is to assign to each point a
geometric object and to define that two points interact whenever their assigned objects
overlap. This has been done with spheres of a fixed radius by Mürmann, random radius
spheres by Hall [Hal85] and Gouéré [Gou08] to mention only some of them. In the latter
case of attaching geometric objects one has to link two parameters: the intensity of an
underlying point process and the size of the geometric objects attached at these points.

Let Σ denote the union of all the spheres and S the connected component that contains
the origin. For very large spheres, Meester and Roy showed that Σ is the whole space
almost surely for any underlying stationary point process; very large means that the
expected volume of the spheres is infinite. This result was already given by Hall for
Poisson processes. He also showed that if the volume has a 2 � 1

d -th moment, then for
low intensities of the underlying Poisson process S is bounded almost surely. Recently
Gouéré showed the boundedness of S for low intensities if and only if the expected
volume of the spheres is finite.

Here points and geometric objects are given by the ideal Bose gas Pρz , which is
equipped with two parameters: the fugacity z and the inverse temperature β; the former
having an influence on the intensity and the size distribution of the loops, the latter in-
fluencing intensity and size (not the size distribution). Two loops x, y of a configuration
µ PM�pXq interact whenever there exist loops x0, . . . , xn P µ with x0 � x, xn � y and
xk X xk�1 � H. This interaction defines an equivalence relation on µ and thus we get
clusters as connected components of interacting loops.

Of particular interest will be the typical loop and the cluster the typical loop is con-
tained in, which will be called the typical cluster. If this cluster is unbounded with
positive probability, we say that percolation occurs, that is

P0
ρzptypical cluster unboundedq ¡ 0.

We use the results of Gouéré [Gou08] to show that for sufficiently low fugacity the ideal
Bose gas admits no loop percolation.

Theorem 104. There exists z0 ¡ 0, such that for z ¤ z0, Pρz admits no loop percolation.
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Figure 5.3.: Configuration of loops with clusters, each loop is shown with the correspond-
ing disc

Proof. For a loop x P Xj let cx be the pair centre and radius of the smallest disc which
contains x and has center xp0q,

c : X Ñ R2 � R�, x ÞÑ
(
xp0q, sup

0¤t¤j
|xptq � xp0q|

)
if x P Xj .

Assume c to be continued on X. Furthermore continue c on M�pXq by cµ �
∑

xPµ δcx.
Thus cPρz is a Poisson process which realises circles with random radii, and if cPρz admits
no percolation, so Pρz does. Hence the job is to check whether the expected volume of a
typical disc of cPρz is finite for some z ¡ 0.

Let B � pBtqtPr0,1s be a 2-dimensional Brownian motion and Yt :� Bt � tB1. Then
Y � pYtqtPr0,1s is a 2-dimensional Brownian bridge. Let M1 :� suptPr0,1s |Yt|, then by
standard estimates

M2
1 �

[
sup
tPr0,1s

|Yt|

]2

� sup
tPr0,1s

[(
B1
t � tB1

1

)2
�
(
B2
t � tB2

1

)2]
¤ 2 sup

tPr0,1s

(
B1
t � tB1

1

)2
¤ 4 sup

tPr0,1s

(
B1
t

)2
� 4
(
B1

1

)2
¤ 8 sup

tPr0,1s

(
B1
t

)2
.

By Doob’s L2-inequality EM2
1   8 follows. If Mjβ is the corresponding maximum of a

Brownian bridge on r0, jβs, then by scaling EM2
jβ � jβEM2

1 .
Let

r : R2 � R� Ñ R�, py, υq ÞÑ υ
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be the projection of c on the second component, i.e. the radius of the disc and for a
configuration η P M�pR2 � R�q with ηp{0} � R�q ¡ 0 let rη be the radius of the disc
centered at the origin. Then

cP0
ρzpr

2q � g1�2{2pzq
�1
∑
j¥1

zj

j1�2{2
EM2

jβ � g�1
2 pzq

∑
j¥1

zj

j2
jβEM2

1

�
βEM2

1

g2pzq

∑
j¥1

zj

j
� βEM2

1

g1pzq

g2pzq

Therefore cP0
ρzpr

2q   8 if and only if z   1.
To finish the proof we have to check the intensity of the centers of cPρz is sufficiently

small. But this intensity was identified in lemma 49 as 1
2πβ g2pzq. Hence there exists

a constant K, such that we do not observe percolation, if the intensity is less than K
constant over the expected volume of the discs,

1
2πβ

g2pzq  
K

cP0
ρzpr2q

.

This is the case if and only if
2πK ¡ EM2

1 g1pzq.

Very interesting is that this criterion for non-percolation is independent of β. This is
due to the fact, that in two dimensions the loss of area of the spheres due to decreasing β
exactly compensates the gain of intensity or conversely, thinning compensates growing.
This proof allows a stronger version, namely the typical cluster is not only bounded
almost surely, its diameter

D :� sup
x,yPS

sup
s,t

|xpsq � yptq|

is integrable. The corresponding theorem is stated in the already mentioned paper of
Gouéré [Gou08].

Corollary 105. Diameter has at least finite forth moment.

Proof. Because of EM2�δ
jβ � pjβq1�δ{2EM2�δ

2 with the notation of the previous proof
we get

cP0
ρzpr

2�δq � g2pzq
�1
∑
j¥1

zj

j2
EM2�δ

jβ

�
β1�δ{2EM2�δ

1 g1�δ{2pzq

g2pzq
.

Similar to the previous proof we get EM2�δ
2   8 in using Doob’s Lp-inequality for

p � 2� δ. Therefore the rhs. of the equation above is finite for at least δ ¤ 4.
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Part III.

A Generalisation of the Pólya Urn
Schemes: the Pólya Sum Process





6. The Pólya Sum Processes

Basic models in probability theory are urn models: Balls of different colours are drawn
from an urn, either with or without replacement. In case of balls of two different colours
the former one is a Bernoulli model, and the latter one a hypergeometric model.

Pólya’s urn generalises these ideas: Instead of putting back or removing the drawn
ball, the drawn ball is laid back together with another (or even more) ball(s) of the same
colour. Therefore the colour of a drawn ball gets a reward. Given the knowledge about
the draws 1, . . . , N , at least the number of drawn balls of each colour, the probability
to draw a ball of a certain colour at time N is known. Hence the Pólya urn scheme is a
primer example for an experiment for which the outcome depends on the previous ones.
However, without this knowledge, the probability that the ball of the N -th draw is of a
certain colour is the same as in the first draw.

Two important extensions of and relations to Pólya’s urn were established in the
papers of Hoppe [Hop84] and Blackwell, MacQueen [BM73]. In the first one Hoppe
introduced the special black ball of a given mass as an initial condition. Each draw of
that black ball causes the introduction of a new, non-black colour. After N draws from
that urn he gets a collection of coloured, non-black balls, which defines a partition of N .
Using that construction he obtains a Markov chain, which, after the N -th draw, yields
a random partition. He shows that the marginal distribution of each step satisfies the
Ewens’ sampling formula. Again a link to population biology occurs.

In the earlier paper Blackwell and MacQueen extend Pólya’s urn scheme to a contin-
uum of colours. The role of the black ball of the given mass is taken by a large set of
colours and a finite measure thereon. After each draw from that large set of colours,
a reward is given to that colour introducing the Pólya property. After the N -th draw
they obtain a random measure on the set of colours of total mass N , which, if being
normalised by N , converges as N Ñ 8 to a limiting random probability measure. The
finite dimensional distributions of this limiting random probability measure are shown
to be Dirichlet distributed.

Both constructions are similar in their spirit. However, the latter construction of
Blackwell and MacQueen is more general, as for a measure on the set of colours having
atoms, the black ball may, with positive probability, introduce a ball of a colour already
drawn. In the following sections the Pólya sum process, a point process using these
conditional constructions, is going to be constructed and some properties are determined.
The basic measure on the set of colours is allowed to be σ-finite, but infinite.

In this chapter we firstly compute the Laplace funtionals of the Pólya sum process in
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6. The Pólya Sum Processes

using the partial integration formula and derive different representations thereof. From
that follows that the Pólya sum process is infinitely divisible. Furthermore we compute
its Palm distribution.

6.1. The Definition of the Pólya Sum Process

The Pólya sum process is constructed in [Zes09] in using the Pólya sum kernel

ηpµ,Bq :� z
(
ρ� µ

)
pBq. (6.1)

for some z P p0, 1q and some locally bounded but infinite measure ρ on X. In equa-
tion (1.13) ηB was defined for ÊB-measurable ϕ as

ηBpµ, ϕq :�
∑
m¥0

1
m!

∫
Bm

ϕpδx1 � . . .� δxmqη
pmq
(
µBc , dx1, . . . ,dxm

)
.

Since the mapping µ ÞÑ ηBpµ, ϕq is ÊB-measurable, proposition 31 applies and the Pólya
sum process is constructed as a point process with independent increments.

Definition 106 (Pólya sum process). The Pólya sum process Sz,ρ for pz, ρq is the point
process constructed from the Papangelou kernel η in equation (6.1), explicitly for B P
B0pXq and ÊB-measurable, non-negative ϕ

Sz,ρ,Bpϕq :� p1� zqρpBq
∑
m¥0

1
m!

∫
ϕpδx1 � . . .� δxmqηBpδx1 � . . .� δxm�1 ,dxmq � � � �

� ηBpδx1 ,dx2qηBp0,dx1q.

The construction of the Pólya sum process reveals the relation to the Pólya urn: If the
point x is drawn in one step, an additional weight of unit size is given to that point in
the next and the following draws. The parameter z controls the total number of draws
and ensures its finiteness. Note that the choice of non-unit weights for drawn points can
be reached by adjusting z and ρ appropriately.

For example choose X � N, z P p0, 1q and ρ the counting measure. Then the Pólya sum
process realises at each n P N a geometrically distributed number of points independently
of the other sites. If the counting measure is replaced by an integer multiple of the
counting measure, the geometric distribution is replaced by the corresponding negative
binomial distribution. In general the integer multiple of the counting measure can be
replaced by any positive multiple, and therefore the number of point at each site is in a
generalised sense negative binomially distributed with a non-integral parameter.

The fundamental property of the Pólya sum process is that it solves the partial inte-
gration formula

CSz,ρphq �

∫∫
hpx, µ� δxqz

(
ρ� µ

)
pdxqSz,ρpdµq,
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which differs from the formula of the Poisson process only in the additional summand
in the kernel. In fact it will turn out that Sz,ρ shares many important properties with
the Poisson process, such as complete randomness and infinite divisibility.

6.2. Laplace Functionals

Proposition 107 (Laplace functional of Pólya sum process). Let Sz,ρ be the Pólya sum
process on X for the pair pz, ρq. Then the Laplace functional of Sz,ρ is

LSz,ρpfq � exp
(
�

∫
X

log
1� z e�fpxq

1� z
ρpdxq

)
.
(
e�ζf

)
Proof. For an integer m and a positive number r denote by rrms :� rpr�1q � � � pr�m�1q
the Pochhammer symbol and compute firstly the Laplace transform of the evaluation
mapping 1B for bounded, measurable B,

LSz,ρpu1Bq �
∫

e�uµpBq Sz,ρpdµq � p1� zqρpBq
∑
m¥0

(
z e�u

)m ρpBqrms
m!

�

(
1� z

1� z e�u

)ρpBq
� exp

(
�ρpBq log

1� z e�u

1� z

)
.

By the independence property this is extended to linear combinations and by monotone
convergence to general continuous f with bounded support.

Besides the complete randomness, from proposition 107 follows that the Pólya sum
process is infinitely divisible. Setting α :� 1�z

z results

LSz,ρpfq � exp

(
�

∫
X

log
(

1�
1� e�fpxq

α

)
ρpdxq

)
,

therefore Sz,ρ is a gamma process-Poisson-mixture. The Lévy-Khinchin-representation
of the gamma process then yields

Corollary 108 (Gamma-Poisson representation of the Pólya sum process).

LSz,ρpfq � exp
(
�

∫
X

∫
p0,8q

[
1� exp

(
�
s

α

(
1� e�fpxq

))]
γpdsqρpdxq

)
with

γpdsq �
1
s

e�s ds
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6. The Pólya Sum Processes

The Gamma-Poisson representation expresses the representation of the negative bino-
mial distribution as a Poisson distribution with gamma distributed intensity.

An important second representation is the Lévy-Khintchin representation of the Pólya
sum process, which is obtained by expanding the logarithm in proposition 107.

Corollary 109 (Lévy-Khintchin representation of the Pólya sum process).

LSz,ρpfq � exp
(
�
∑
j¥1

∫
X

zj

j

(
1� e�jfpxq

)
ρpdxq

)
.

Proof. The expansion of the logarithm yields

log
1� z e�fpxq

1� z
� log

(
1� z e�fpxq

)
� logp1� zq

� �
∑
j¥1

zj e�jfpxq

j
�
∑
j¥1

zj

j

�
∑
j¥1

zj

j

(
1� e�jfpxq

)
.

The Lévy-Khintchin representation relates the Pólya sum process with compound
Poisson processes. That is, the Pólya sum process Sz,ρ can be recovered as the image of
the Poisson process Pσz on X � N with intensity measure

σz :�
∑
j¥1

zj

j
ρb δj

under the mapping
µ̄ �

∑
px,jqPµ̄

δpx,jq ÞÑ
∑

px,jqPµ̄

jδx. (6.2)

Proposition 110. Let Pσz be the Poisson process on X�N with intensity measure σz for
given z P p0, 1q and ρ PMpXq. Then the Pólya sum process Sz,ρ for the pair pz, ρq is the
image of Pσz under the mapping MpX�Nq ÑMpXq, µ̄ �

∑
px,jqPµ̄ δpx,jq ÞÑ

∑
px,jqPµ̄ jδx.

In contrast to the analogue relation for the gamma process, σzpB � Nq   8 for all
bounded B.

The Lévy-Khintchin representation of the Pólya sum process Sz,ρ in connection with
the last remark about the finiteness of σz allows the immediate computation of the
support process S�z,ρ, which is given as the image of Sz,ρ under the mapping µ ÞÑ µ�.
For simplicity the result is restricted to diffuse measures ρ, which ensures the infinite
divisibility of S�z,ρ. In analogy to the Poisson process, this property is lost if ρ has atoms
(for the Poisson process this statement is trivial).
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6.3. Disintegration and Partial Integration

Corollary 111 (Laplace functional of support process). Let ρ be a diffuse measure

LS�z,ρ
pfq � exp

(∫
X

[
1� e�fpxq

]
logp1� zqρpdxq

)
,

i.e. S�z,ρ is a Poisson process with intensity measure � logp1� zqρ.

Proof. The weight j gets lost, therefore

LS�z,ρ
pfq � exp

(
�

∫
X

∑
j¥1

zj

j

(
1� e�fpxq

)
ρpdxq

)
.

In case of ρ � ρd � ρa with ρd being the diffuse part and ρa being a non-vanishing
atomic part of ρ, both parts need to be treated separately. While for ρd the corollary
above applies, ρa leads to a binomial part with term

p1� zq�ρp{x}q �
(

1� p1� zq�ρp{x}q
)

e�fpxq .

This treatment is necessary since there is no possibility to distinguish if during the
successive placement of the points a point is placed at an atom x of ρ because of a parent
at x or just by chance.

6.3. Disintegration and Partial Integration

In this section we consider the disintegration of the Campbell measure of the Pólya sum
process with respect to its intensity measure, which yields the Palm distributions. The
partial integration formula turns out to be the basic tool for it. Moreover, a partial
integration formula for the support process S�z,ρ is shown implying that S�z,ρ is a Poisson
process. Indeed, in corollary 111 S�z,ρ has already been shown to be a Poisson process.
Therefore proposition 113 is a second proof for that fact.

Proposition 112 (Palm distribution of Pólya sum process). Let Sz,ρ be the Pólya sum
process on X for the pair pz, ρq. Then the Palm measure Sxz,ρ for P -a.s.x P X is given
by

Sxz,ρ �
1� z

z

∑
j¥1

zj
(

Sz,ρ �
(
δδx

)�j)
.
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6. The Pólya Sum Processes

Proof. Iterated application of the partial integration formula yields

CSz,ρphq �

∫∫
hpx, µqµpdxqSz,ρpdµq �

∫∫
hpx, µ� δxqzpρ� µqpdxqSz,ρpdµq

�
N∑
j�1

zj
∫∫

hpx, µ� jδxqρpdxqSz,ρpdµq � zN
∫∫

hpx, µ�NδxqµpdxqSz,ρpdµq

Ñ
8∑
j�1

zj
∫∫

hpx, µ� jδxqSz,ρpdµqρpdxq.

The intensity measure of Sz,ρ is obtained in setting h � 1B�M��pXq, i.e. z
1�zρ.

The immediate consequence is that the typical point has a geometrically distributed
total mass whenever it is not an atom of ρ.

Next we show in using the partial integration formula that S�z,ρ is a Poisson process
with intensity measure � logp1� zqρ.

Proposition 113 (Partial integration formula for support process). Let ρ P MpXq be
a diffuse measure and z P p0, 1q. Then

CS�z,ρ
phq �

∫∫
hpx, µ� δxqS

�
z,ρpdµq

(
� logp1� zqρ

)
pdxq

Proof.

CS�z,ρ
phq �

∫∫
hpx, µqµpdxqS�z,ρpdµq �

∫∫
hpx, µ�qµ�pdxqSz,ρpdµq

The integration with respect to µ� on the rhs. vanishes if µ � 0, therefore

�

∫
1ζX¡0pµq

∑
xPµ�

hpx, µ�q

µpxq
µpxqSz,ρpdµq

�

∫∫
1ζX¡0pµ� δxq

h
(
x, pµ� δxq

�
)

µpxq � 1
zpρ� µqpdxqSz,ρpdµq.

Since the configuration µ� δx contains a point, the indicator vanishes and

� z

∫∫
h
(
x, pµ� δxq

�
)

µpxq � 1
ρpdxqSz,ρpdµq � z

∫∫
h
(
x, pµ� δxq

�
)

µpxq � 1
µpdxqSz,ρpdµq

102



6.3. Disintegration and Partial Integration

In the numerator of the second summand pµ� δxq� � µ� because of the integration with
respect to µ. Furthermore µpxq � 0 ρ-a.s. in the denominator of the first integrand.
Therefore inductively follows

�
N∑
j�1

zj
∫∫

h
(
x, pµ� δxq

�
)

µpxq � j
ρpdxqSz,ρpdµq � zN

∫∫
hpx, µ�q

µpxq �N
µpdxqSz,ρpdµq

Ñ
8∑
j�1

zj

j

∫∫
h
(
x, pµ� δxq

�
)
ρpdxqSz,ρpdµq

�

∫∫
h
(
x, pµ� δxq

�
)(
� logp1� zqρ

)
pdxqSz,ρpdµq

�

∫∫
hpx, µ� δxq

(
� logp1� zqρ

)
pdxqS�z,ρpdµq.
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7. Limit Theorems for Conditioned Pólya
Sum Processes

The construction of the Pólya sum process can be understood in a very intuitive way:
X is interpreted as a set of sites, where building bricks are placed randomly. Given a
bounded, measurable subset B of X, a random, negative binomially distributed number
of bricks is chosen and then placed successively: Once a brick is placed at some site
x P B, this site gets a reward for the choice of the sites of the following bricks. Since
there is naturally a positive probability to hit a site where previously a brick was placed,
turrets of bricks are built. The following question can be posed: What happens if
additional information about the number of turrets built or the number of bricks placed
are available? Strongly connected is the question for sufficient statistics for families of
Pólya sum processes. Similar questions have already been addressed in chapter 4.

Thus the interest lies in determining limit stochastic fields for conditioned Pólya sum
processes, particularly the extremal points of this set of stochastic fields. A way to the
Martin-Dynkin boundaries and their essential parts allows proposition 110, by which the
Lévy-Khinchin representation translates the infinitely divisible Pólya sum process on X
for the pair pz, ρq into a Poisson process on X � N with intensity measure

σz :�
∑
j¥1

zj

j
ρb δj︸ ︷︷ ︸
ρj

. (7.1)

The Pólya sum process can be recovered form Pσz as the image of the mapping given in
equation (6.2),

M�pX � Nq ÑM�pXq, µ̄ �
∑

px,jqPµ̄

δpx,jq ÞÑ
∑

px,jqPµ̄

jδx. (7.2)

Since the basic structure of the intensity measure σz is very much in the spirit of the
intensity measure of the Bose gas for d � 0, large parts of the discussion are closely
related to those of chapter 4.

The object of interest is the Pólya sum process conditioned on some tail σ-field.
Following the lines of chapter 4, the methods of the canonical loop ensemble in section 4.3
and the methods of the canonical ensemble of elementary components in section 4.5
apply up to minor modifications to the Poisson process Pσz . Since a priori the image
of the thermodynamic limits are not necessarily of Pólya type, this has to be checked.
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7. Limit Theorems for Conditioned Pólya Sum Processes

Conditioning on the number of loops is analogue to conditioning on the number of turrets
as well as conditioning on the number of elementary components accords conditioning
on the number of building bricks.

7.1. The Turret Ensemble

As in chapter 4 let EB, B P B0pXq, denote the σ-field generated by the increments
ζB,B1 :� ζB1�ζB, B1 � B measurable and bounded. Furthermore consider the σ-algebra
GB generated by EB and σpξBq,

GB :� EB _ σpξBq,

where ξBµ :� ζBµ
� counts the support of a configuration µ, i.e. counts the number

of turrets in B. Since S�z,ρ was shown to be a Poisson process with intensity measure
� logp1� zqρ, the programme of section 4.3 can be adopted directly. If the local speci-
fication πG is given by

πG
Bpµ, ϕq :� Sz,ρ

(
ϕ|GB

)
pµq � Sz,ρ

(
ϕp � � µBcq|ξB � ξBµ

)
,

then with n � ξBµ

πG
Bpµ, ϕq �

(
1� z

zρpBq

)n ∫
Bn

∑
i1,...,in¥1

ϕpi1δx1�. . .�inδxnqz
i1�...�inρpdx1q � � � ρpdxnq (7.3)

follow. Particularly equation (7.3) means that in B exactly n � ξBµ towers of geometric
size each are distributed independently. Besides Sz,ρ, any Pólya sum process Sz,mρ with
0 ¤ m   8 has the local specification πG. Particularly Ct :� CpπGq is not empty.

Let pBkqk be an increasing sequence of bounded sets which exhausts X, G8 :�
⋂
k GBk

the tail-σ-field, then for P-integrable ϕ, P P Ct,

P
(
ϕ|G8

)
pµq � lim

kÑ8
πG
Bk
pµ, ϕq

since G is decreasing. Denote by Qµ the pointwise limit

Qµ :� lim
kÑ8

πG
Bk
pµ, � q,

which is by construction an element of Ct8, as well as Wk the number of turrets in Bk
normalised by its volume

Wkµ :�
ξBkµ

ρpBkq
.

If Wµ is the limit of Wkµ in case of existence, then from the results of section 4.3 can
be deduced
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7.2. The Brick Ensemble

Proposition 114. Let f : X Ñ R be non-negative and measurable with bounded support
and W pµq   8. Then for any P P Ct and ϕ P L1pPq

Ppϕ|G8q � lim
nÑ8

πG
Bnp � , ϕq � Sz,Wρpϕq P-a.s. (7.4)

Proof. As mentioned, the results for the Poisson process Pσz are going to be applied.
Therefore with abuse of notation let ξB : M��pX �Nq Ñ NY {�8} the mapping which
counts the number of points in B � N and G the corresponding decreasing family of
σ-algebras. Then by proposition 64

Pσz
(
ϕ|G8

)
pµq � PW pµqσzpϕq,

which has the correct structure such that under the mapping (7.2) the result is a Pólya
sum process.

By the reasoning of section 4.3, the extremal points of the Martin-Dynkin boundary
Ct are exactly those, for which W is almost surely constant and therefore

Theorem 115 (Martin-Dynkin boundary Pólya sum process). Let z P p0, 1q. The tail-
σ-field G8 is H-sufficient for the family

Ct � CpπGq � {Sz,Wρ},

and the set of its extremal points is exactly the family

∆t � {Sz,wρ : 0 ¤ w   8}.

7.2. The Brick Ensemble

A similar result holds true if the Pólya sum process is conditioned on the number of
building bricks per volume, and the plan of proof agrees with the one in section 4.5
in particular in connection with remark 74 since the setup here coincides with the low
dimensional case in that former discussion. For the discussion the parameter z will be
named z1 as in the mentioned remark. A reparametrisation will allow z1 to disappear in
the results.

The main arguments, adapted to Pσz , are the following: Since there is no possibility
to compute the limits directly, a large deviation principle for the particle density, here
the building brick density, is used to identify the limit as the minimiser of a functional.
Due to conditioning, two steps are necessary, firstly for the process without condition,
given in corollary 41, and then with the correct condition.

Let HB be the σ-algebra generated by the σ-algebra of the outside events EB and
σpζBq, where ζB measures the total mass of a configuration µ, i.e. counts the number
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7. Limit Theorems for Conditioned Pólya Sum Processes

of bricks in B. Now follow the programme of section 4.5. If the local specification πH is
given by

πH
Bpµ, ϕq :� Sz,ρ

(
ϕ|HB

)
pµq � Sz,ρ

(
ϕp � � µBcq|ζB � ζBµ

)
,

then immediately

πH
Bpµ, ϕq �

1
ρpBqrns

∫
Bn
ϕpδx1 � . . .� δxnq

(
ρ� δx1 � . . .� δxn�1

)
pdxnq�

�
(
ρ� δx1

)
pdx2qρpdx1q,

(7.5)

where n � ζBµ. Equation (7.5) reflects the construction of the Pólya sum process
by means of conditional intensities. Apart from Sz1,ρ, any Pólya sum process Sz,ρ with
0   z   1 has the local specification πH. Particularly Cb :� CpπHq is not empty and
Martin-Dynkin boundary technique may be applied.

Let pBkqk be an increasing sequence of bounded sets which exhausts X, H8 :�
⋂
kHBk

the tail-σ-field, then for P-integrable ϕ, P P Cb,

P
(
ϕ|H8

)
pµq � lim

kÑ8
πBkpµ, ϕq P-a.s.

Denote by Qµ the pointwise limit

Qµ :� lim
kÑ8

πH
Bk
pµ, � q,

which is by construction an element of Cb8, as well as Uk the number of bricks in Bk
normalised by its volume

Ukµ :�
ζBkµ

ρpBkq
.

If Uµ is the limit of Ukµ in case of existence, then from the results of section 4.5,
particularly in connection with remark 74 can be deduced

Proposition 116. Let f : X Ñ R be non-negative and measurable with bounded support
and Upµq   8. Then for any P P Cb, ϕ P L1pPq

Ppϕ|H8q � lim
nÑ8

πG
Bnp � , ϕq � SZ,ρpϕq P-a.s. (7.6)

with Z being the solution of the equation

Z

1� Z
� U.

Particularly Z P r0, 1q.

In fact, Z depends on the configuration µ as well as on the choice of z1 in the very
beginning. The reparametrisation carried out in propositions 125 and 126 allows Z to
be less than one in any case.
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Proof. Let π̃H denote the specification obtained from the Poisson process Pσz1 ,

π̃B :� Pσz1
(
� |HB

)
with abuse of notation of the family H. Then by proposition 126 below for any P P Cpπ̃Hq,

Ppϕ|H8q � PσZ

with Z being the solution of ∑
j¥1

Zj � U.

Since U exists and is finite P-a.s., so Z does. Finally observe, that the Pólya sum process
SZ,ρ is the image of PσZ under the mapping (7.2).

Remark 117. The discussion of minimiser of the rate function simplifies since here there
is no critical value present and hence no condensation effects occur.

Theorem 118 (Martin-Dynkin boundary Pólya sum process). The tail-σ-field H8 is
H-sufficient for the family Cb and the essential part of the Martin-Dynkin boundary
consists exactly of the family

∆b � {Sz,ρ : 0 ¤ z   1}.

7.3. The General Ensemble

Each of the tail-σ-fields G8 and H8 was shown to be an H-sufficient statistic for a
corresponding familiy of Pólya sum processes, but none of them for the whole family.
The aim now is to combine these two σ-fields and to construct an H-sufficient statistic
for the whole family of Pólya sum processes. Let

IB :� EB _ σpξBq _ σpζBq,

hence the number of turrets in B as well as their total height is known.
Let the local specification πI be given by

πI
Bpµ, ϕq :� Sz,ρ

(
ϕ|IB

)
pµq � Sz,ρ

(
ϕp � � µBcq|ζB � ζBµ, ξB � ξBµ

)
,

then

πI
Bpµ, ϕq �

1
ρpBqm

∫
Bn

∑
k1,...km¥0

k1�...�km�n�m

1
mn�m

(
n�m

k

)
�

� ϕ
(
pk1 � 1qδx1 � . . .� pkm � 1qδxm

)
ρpdxmq � � � ρpdx1q,

(7.7)
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7. Limit Theorems for Conditioned Pólya Sum Processes

where n � ζBµ and m � ξBµ. Here exactly m � ξBµ towers have to be built from n �
ζBµ bricks, where each tower contains at least one brick. Therefore the local specification
can be constructed by first choosing the sites for the m towers and afterwards by placing
each of the n�m remaining bricks independently and uniformly at the given sites. At
least the Pólya sum process Sz1,ρ has the local specification πI, therefore Ctb � CpπIq is
not empty.

Let pBkqk be an increasing sequence of bounded sets which exhausts X, I8 :�
⋂
k IBk

the tail-σ-field, then for P-integrable ϕ, P P Ctb,

P
(
ϕ|I8

)
pµq � lim

kÑ8
πIpµ, ϕq P-a.s.

Denote by Qµ the limit
Qµ :� lim

kÑ8
πI
Bk
pµ, � q,

which is by construction an element of Ctb8, as well as Uk the number of bricks in Bk and
Vk the number of towers in Bk, each normalised by its volume

Ukµ :�
ζBkµ

ρpBkq
Vkµ :�

ξBkµ

ρpBkq
.

Let Uµ and V µ be the limits of Ukµ and Vkµ in case of existence, respectively. Note that
the existence of U implies the existence of V . The key to the limits as k Ñ 8 is again
the Poisson process Pσz1 , where now the two conditions of the previous discussions are
combined. Particularly the discussion of the brick ensemble receives a straightforward
extension.

Proposition 119. Let f : X Ñ R be non-negative and measurable with bounded support
and Upµq   8. Then for any P P Ctb and ϕ P L1pPq

Ppϕ|F8q � lim
nÑ8

πG
Bnp � , ϕq � SZ,Wρpϕq P-a.s. (7.8)

where

W
Z

1� Z
� U �W logp1� Zq � V µ

Proof. The important part is to determine Pσz1 , again with abuse of notation, conditioned
on the tail-σ-algebra

Pσ
(
ϕ|I8

)
pµq.

Therefore let π̃I denote the corresponding specification

π̃B :� Pσz1
(
� |IB

)
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7.4. Large Deviations

with abuse of notation of the family I. Then by proposition 125 below for any P P Cpπ̃Iq,

Ppϕ|I8q � PWσZ

with W and Z being the solution of the pair of equations

W
∑
j¥1

Zj � U, W
∑
j¥1

Zj

j
� V.

Since the basic disintegration still holds true, only the limit of the mixing measure has
to be determined, which is analogue to the procedure in section 4.5.

Theorem 120 (Martin-Dynkin boundary Pólya sum process). The tail-field I8 is H-
sufficient for the family Cbt, and its extremal points are given exactly by all Pólya sum
processes for the pairs pz, wρq,

∆bt � {Sz,wρ : 0 ¤ z   8, 0 ¤ w   8}.

Proof. Follow the lines of the proof of canonical ensemble. The very first step was the
determination of the microcanonical limits, then the densities with large deviations.

7.4. Large Deviations

Finally closer considerations about the limits are necessary since the weak topology is
too weak this purpose. Let

τ :� lim
kÑ8

1
ρpBkq

∑
j¥1

σz1pBk � {j}qδj �
∑
j¥1

z1j

j
δj

then by the discussion following theorem 38 yielding corollary 41, Pτk satisfies a large
deviation principle in the �-topology, where the rate function is the relative entropy
with respect to τ ,

Ipκ; τq �

{
τpf log f � f � 1q if κ ! τ, f :� dκ

dτ , f log f � f � 1 P L1pτq

8 otherwise
,

Next the general ensemble is considered in detail while the differences occuring for the
brick ensemble are mentioned. Let

Du,v :� {κ PMpNq :
∑

κpjq � v,
∑

jκpjq � u}

Du :� {κ PMpNq :
∑

jκpjq � u}
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7. Limit Theorems for Conditioned Pólya Sum Processes

denote the measures on N with total mass v and first moment u, and first moment u,
respectively. Then Du,v as well as Du are �-closed, but not �-open. Recall the setting

χApκq :�

{
0 κ P A

�8 κ R A
,

hence

Lemma 121 (Semicontinuous Regularisations of χDu,v). The upper and lower semicon-
tinuous regularisations χuscDu,v

and χlscDu,v of χDu,v with respect to �-topology are

χuscDu,vpκq � 8, χlscDu,vpκq � χDu,v (7.9)

Lemma 122 (Semicontinuous Regularisations of χDu). The upper and lower semicon-
tinuous regularisations χuscDu

and χlscDu of χDu with respect to �-topology are

χuscDu pκq � 8, χlscDupκq � χDu (7.10)

Both results are consequences of the fact that whenever a sequence of measures in
MpNq converges with respect to the �-topology, their total mass and their first moment
need to converge as well. From these two lemmas for each of the ensembles the upper
bound of the particular large deviation principle follows directly,

lim sup
kÑ8

1
ρpBkq

log Pτk
(
expp�χCUk,Vk q

)
¤ � inf

MpNq

[
I � χlscDu,v

]
(7.11)

lim sup
kÑ8

1
ρpBkq

log Pτk
(
expp�χCUk q

)
¤ � inf

MpNq

[
I � χlscDu

]
. (7.12)

Because of the previous lemmas, the superscript lsc can be dropped. Before we study
the lower bound, the minimisation problem is solved for the general ensemble. Much
work has already been done in section 4.5.

Proposition 123 (Minimiser of I � χDu,v). Let 0   v   w   8 and zu,v, wu,v be the
solution of the system

w
∑
j¥1

zj

j
� v, w

∑
j¥1

zj � u. (7.13)

Then the minimiser of infMpNq

[
I � χlscDu,v

]
is given by

κ̄ � wu,v
∑
j¥1

zju,v
j
. (7.14)
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7.4. Large Deviations

Proof.

Ipκq �
∑
j¥1

jκpjq log z̃ �
∑
j¥1

κpjq logw

�
∑
j¥1

κj

(
log

κpjq

τpjq
� 1
)
� τpNq �

∑
j¥1

log z̃jκpjq �
∑
j¥1

κpjq logw

�
∑
j¥1

κj

(
log

κpjq

z̃jwτpjq
� 1
)
� τpNq,

which has a unique minimiser on MpNq, κ̄ �
∑

j¥1wu,v
zju,v
j δj with zu,v, wu,v being

the solution of equation system (7.13). The uniqueness of the solution of the equation
system (7.13) can be seen in the following way: Let

f : p0, 1q�p0,8q Ñ {ps, tq P R2
� : s ¡ t}, pz, wq ÞÑ

(
�w logp1�zq, w

z

1� z

)
, (7.15)

then we have to show that f�1pu, vq contains exactly one element, which is pzu,v, wu,vq.
Consider both components of f separately. Then

u � f1pz, wq � w
z

1� z
, v � f2pz, wq � �w logp1� zq

implicitly define two functions. Express z in terms of y :� 1{w, then

z1pyq �
uy

1� uy
, z2pyq � 1� e�vy

are two strictly increasing functions p0,8q Ñ p0, 1q, for which the limits agree as y Ñ 0
and y Ñ 8, respectively. Because of u ¡ v they intersect at exactly one point, which
implies f�1pu, vq � {pzu,v, wu,vq}.

The initially given parameter z1 is contained in zu,v.

In a similar fashion the minimisation problem for the brick ensemble is solved, and
due to the missing condition on the number of towers, w drops out. Therefore

Proposition 124 (Minimiser of I � χDu). Let zu be the solution of∑
j¥1

zj � u. (7.16)

Then the minimiser of infMpNq

[
I � χlscDu

]
is given by

κ̄ �
∑
j¥1

zju
j
. (7.17)
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7. Limit Theorems for Conditioned Pólya Sum Processes

Note that in both cases weak and vague topology are too weak for Du,v and Du to be
closed. In these cases the closure would contain at least measures with first moment less
or equal to u, which has a negative effect on the minimisation problems, particularly if
u is larger than the first moment of τ .

As already seen in section 4.5, the Boltzmann principle helps to get the lower bound
of the partition function, as will be the case here. The blow-ups of Du,v and Du in the
�-topology are now easier to handle. For ε ¡ 0 let

Dε
u,v :�

κ PMpNq :

∣∣∣∣∣∣
∑
j¥1

κpjq � v

∣∣∣∣∣∣   ε,

∣∣∣∣∣∣
∑
j¥1

jκpjq � u

∣∣∣∣∣∣   ε


Dε
u :�

κ PMpNq :

∣∣∣∣∣∣
∑
j¥1

jκpjq � u

∣∣∣∣∣∣   ε


the blow ups. Since each of the complements is clearly closed, Dε

u,v and Dε
u are open,

and since the conditions

lim
LÑ8

lim sup
kÑ8

1
ρpBkq

log Pτk
(

exp
(
�χDεu,v

)
1{χDεu,v¤�L}

)
� �8, (7.18)

lim
LÑ8

lim sup
kÑ8

1
ρpBkq

log Pτk
(

exp
(
�χDεu

)
1{χDεu¤�L}

)
� �8, (7.19)

hold by the non-negativity of χA, by [DS00, Lemma 2.1.8] the large deviation lower
bounds on the normalisation constants are given by

lim inf
kÑ8

1
ρpBkq

log Pτk
(
expp�χDεu,vq

)
¥ � inf

MpNq

[
I � χDεu,v

]
(7.20)

lim inf
kÑ8

1
ρpBkq

log Pτk
(
expp�χDεuq

)
¥ � inf

MpNq

[
I � χDεu

]
(7.21)

for every ε ¡ 0. Hence, for εÑ 0, the lower bound is obtained. In general the existence of
a minimiser can not be expected since Dε

u,v and Dε
u are open. Nevertheless we construct

a sequence which converges as εÑ 0.

Proposition 125 (Minimiser of I � χDεu,v). Let 0   v   u   8. For sufficiently small
ε ¡ 0 there exists a pair pzu,v,ε, wu,v,εq P p0, 1q�p0,8q such that the infimum of I�χεDu,v
on MpNq is attained at

κ̄ε � wu,v,ε
∑
j¥1

zju,v,ε
j

. (7.22)

As εÑ 0, zu,v,ε Ñ zu,v, wu,v,ε Ñ wu,v and

lim
εÑ0

κ̄ε � κ̄

in �-topology, where κ̄ is given by equation (7.14) and zu,v and wu,v by equation (7.13).
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7.4. Large Deviations

Proof. In the proof of proposition 123 we showed that for fixed u ¡ v, the minimiser of
I on Du,v was given by

κ̄ � κ̄pz, wq � w
∑
j¥1

zj

j

with pz, wq � f�1pv, uq and f given in equation (7.15). Here we have to minimise with
respect to the parameters pz, wq P f�1

(
pv � ε, v � εq � pu � ε, u � εq

)
, and therefore

consider I as a mapping on p0, 1q � p0,8q.
f is not only injective, but also continuous and maps open sets to open sets. Fix ε ¡ 0

such that 2ε   u� v. Then the pre-image

Aε :� f�1
(
pv � ε, v � εq � pu� ε, u� εq

)
� p0, 1q � p0,8q

is open. If Aε can be shown to be bounded, then I has a minimiser
(
zpεq, wpεq

)
P clAε.

Therefore consider
(
z�pεq, w�pεq

)
:� f�1pv � ε, u � εq, then z�pεq is an upper bound

for z with pz, wq P Aε as well as w�pεq is a lower bound for w with pz, wq P Aε since
as few turrets as possible have to be built with as many bricks as possible. Similarly(
z�pεq, w�pεq

)
:� f�1pv � ε, u � εq yields the corresponding lower and upper bound.

Hence there exist parameters zpεq and wpεq for which I is minimal.
As ε Ñ 0, we have to show that

(
zpεq, wpεq

)
Ñ pzu,v, wu,vq. Indeed, since f�1 is

continuous, z�pεq Ñ zu,v and w�pεq Ñ wu,v.

Proposition 126 (Minimiser of I�χDεu). Let 0 ¤ u   8. Then there exists zu,ε P r0,8q
such that the infimum of I � χεDu on MpNq is attained at

κ̄ε �
∑
j¥1

zju,ε
j
. (7.23)

As εÑ 0, zu,ε Ñ zu and
lim
εÑ0

κ̄ε � κ̄

in �-topology, where κ̄ is given by equation (7.17) and zu by equation (7.16).
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8. Concluding Remarks

In this thesis we studied two models: Firstly a Poisson process on a space of composite
loops, and secondly the Pólya sum process. For both we identified the structure of the
process conditioned on various invariant σ-algebras. Since these σ-algebras were obtained
as tail-σ-algebras of decreasing families of σ-algebras, the conditioned stochastic fields
was obtained by a thermodynamic limit. The discussion of the Poisson process included
geometric properties of the typical loop. Furthermore we discussed the fundamental
Laplace functional as well as the Palm distribution for the Pólya sum process.

The most delicate part in the discussion of the limit theorems for the Bose gas was the
canonical ensemble of elementary components where finally we obtained the limits by a
large deviation argument. For the first moment strange phenomenon occurred: When
we computed the pointwise limits Qµ, we had to pay attention to the configuration µ.
If the particle density Uµ exceeded some critical value u�, then we showed that U � u�

Qµ-a.s. Hence some density got lost during the limiting procedure, but if we considered
µ to be distributed according to some of the possible limits, then Uµ is always bounded
by u�. An open problem is to collect the mass which was moved to longer and longer
loops, such that the limit does not swallow the surplus mass.

Furthermore working with a Poisson process means to work in the non-interacting case.
More generally, the question about the point process including interaction between the
elementary components of a single as well as of two different loops and conditioned on
invariant σ-algebras remains open.

The properties and the construction of the Pólya sum process, especially compared to
those of the Poisson process, were very surprising. Both processes are completely random
and infinitely divisible. Moreover both processes can be constructed by partitioning
the whole space and constructing on each set of the partition a finite point process
independently of the other regions. Indeed, in general a Papangelou process can not be
constructed in that way. Furthermore their Palm distributions agree in spirit: While
the Palm distribution of the Poisson process is the process itself with an added point,
the Palm distribution of the Pólya sum process gets an extra point with geometrically
distributed weight. A fundamental question arises: What is the structure of similar
processes?

The Pólya sum process opens a vast field of questions which we could not treat due to
a lack of time. Connections to the work of Kingman should be revealed, for which the
Gamma-Poisson representation could be an initial point. The Gamma-Poisson repre-
sentation includes the fact that negative binomially distributed random variables can be
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8. Concluding Remarks

represented as Poisson distributed with a gamma distributed intensity. More generally,
the underlying gamma process may be replaced by any random measure. So how does
this change affect the point process and its Papangelou property?

The Lévy-Khinchin representation of the Laplace functional established a fruitful con-
nection to the Bose gas. Limit theorems for conditioned stochastic fields could be dis-
cussed analogously to those of the Bose gas. Finally, but not the final question, increasing
the parameter z means to increase the mean size of the turrets. By a neat normalisation,
is there a suitable limit if z Ñ 1 and how is it characterised?
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[RS63] A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten
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