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The Model Number-Rigidity Equivalence of ensembles

Introduction

Gibbs point process on Rd interacting with the Riesz pair

potential

g(x) =
1

|x|s
d− 1 < s < d

g is non-integrable at in�nity, ∇g is integrable.

canonical ensemble with constant density ρ > 0 and inverse

temperature β > 0.

periodic boundary condition

number-rigidity and equivalence of ensembles



The Model Number-Rigidity Equivalence of ensembles

1 The Model

2 Number-Rigidity

3 Equivalence of ensembles



The Model Number-Rigidity Equivalence of ensembles

1 The Model



The Model Number-Rigidity Equivalence of ensembles

The Riesz energy with background

γ = {x1, . . . , xn} included Λn = [−n1/d/2, n1/d/2]d

H(γ) =
∑

{x,y}∈γ

g(x− y) =
1

2

∫ ∫
Rd\Diag

g(x− y)γ(dx)γ(dy).

With the background on Λn

H̃n(γ) =
1

2

∫ ∫
Λn\Diag

g(x− y)(γ(dx)− dx)(γ(dy)− dy).

The energy H̃n(γ) is of order n (the volume).



The Model Number-Rigidity Equivalence of ensembles

The Riesz energy with background

γ = {x1, . . . , xn} included Λn = [−n1/d/2, n1/d/2]d

H(γ) =
∑

{x,y}∈γ

g(x− y) =
1

2

∫ ∫
Rd\Diag

g(x− y)γ(dx)γ(dy).

With the background on Λn

H̃n(γ) =
1

2

∫ ∫
Λn\Diag

g(x− y)(γ(dx)− dx)(γ(dy)− dy).

The energy H̃n(γ) is of order n (the volume).



The Model Number-Rigidity Equivalence of ensembles

The periodic Riesz energy

For k ≥ 1, γk is the concatenation of (2k + 1) copies of γ in the

translations of Λn. It is a con�guration in Λ(2k+1)dn.

Proposition

lim
k→∞

H̃Λ
(2k+1)dn

(γk)

(2k + 1)d
=

∑
{x,y}∈γ

gn(x− y) + nεn

with gn(x) =
∑

k∈Zd(g(x+ kn1/d)− 1
n

∫
Λn

g(y + kn1/d)dy).

For all x ∈ Λn, |gn(x)− g(x)| ≤ Cn−s/d.

De�nition

The periodic Riesz energy of γ in Λn is de�ned by

Hn(γ) =
∑

{x,y}⊂γ

gn(x− y).
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Properties of gn

gn(x) =
∑
k∈Zd

(g(x+ kn1/d)− 1

n

∫
Λn

g(y + kn1/d)dy).

Proposition

(Stability) There exists a constant A ≥ 0 such that for point

con�guration γ ∈ Λn such that |γ| = n, we have

Hn(γ) ≥ −An.

(Shift invariance) For every u ∈ Λn and every con�guration

γ in Λn we have Hn(τ
n
u (γ)) = Hn(γ).

(Approximation) There exists a constant c > 0 such that for

every point x ∈ Λn we have

|gn(x)− g(x)| ≤ cn−s/d
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The canonical ensemble

BinΛ,n is the distribution of n independent points uniformly

distributed in Λ.

De�nition

The canonical Gibbs measure in Λn with inverse temperature

β > 0 is

P β
n =

1

Zβ
n

e−βHnBinΛn,n.

Theorem

The sequence (P β
n )n≥1 admits accumulation points for the local

convergence topology. They are called β-circular Riesz gases.

Uniqueness or non-uniqueness of accumulation points is

unknown.
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Main arguments of the proof

The energy is stable : For any γ such that #(γ) = n

Hn(γ) ≥ −An.

The partition function : There exists 0 < aβ < bβ < +∞

anβ ≤ Zβ
n ≤ bnβ.

The relative entropy is uniformly bounded

I(P β
n |πΛn)/|Λn| ≤ C.

P β
n is stationary on the torus Λn.
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Connections with other models

Hardin, Sa� and Simanek (2014) : Periodic energy of a

crystal

Physicists : Periodic jellium (s = d− 2)

Leblé-Serfaty (2017) : LDP with con�ning potential

Valko,Virag (2009), Killip-Stoiciu (2009), Nakano (2014)

beta-circular ensembles and the Sine-β process (s = 0,
d = 1)

Boursier (2022) : Riesz gas on the circle (0 < s < 1, d = 1)

Lewin (2022) : Survey on Riesz gas
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2 Number-Rigidity
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Number-Rigidity

De�nition (Ghosh-Peres 2017)

A point process Γ in Rd is said number-rigid if for any bounded

set Λ ⊂ Rd there exists a function FΛ such that almost surely

#ΓΛ = FΛ(ΓΛc).

Are the β-circular gases number-rigid ?

Previous works for Gibbs point process :

s > d summable potential : Non number-rigidity (grand

canonical DLR equations)

s = 0, d = 2 and β = 2 : Number-Rigidity (DPP structure

+ linear statistics), Ghosh-Lebowitz 2017

s = 0, d = 1 and β > 0 : Number-Rigidity (canonical DLR

equations or linear statistics), D.-Leblé-Hardy-Maïda 2019

or Chhaibi-Najnudel 2018.
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One point deletion

De�nition (Holroyd-Soo 2013)

A point process Γ in Rd is said one-point deletion if for any

random variate X ⊂ Γ the distribution of Γ\X is absolutely

continuous with respect to Γ.

"Non number-rigidity" and "One point deletion" are almost

equivalent.

Heuristically, for Gibbs point processes and if X is "typical"

PΓ

PΓ\X
∼ e−βh(X,Γ\X).

The one point deletion property requires a good de�nition for

h(X,Γ\X).
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The energy of a point

Let x ∈ Rd and γ an in�nite con�guration (x /∈ γ). Three
candidates for h(x, γ) :

h1(x, γ) =
∑
y∈γ

1

|x− y|s
=

∫
1

|x− y|s
γ(dy)

h2(x, γ) = lim
n→∞

∫
Λn

1

|x− y|s
(γ(dy)− dy)

h3(x, γ) = lim
n→∞

(∫
Λn

1

|x− y|s
γ(dy)− Cn(#γΛn , γΛc

n
)

)
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The main result

Theorem

For any β > 0, there exists a β-circular Riesz gas P β
⋆ which is

not number-rigid. P β
⋆ is also one-point deletion.

P β
⋆ = limk→∞ P β

nk for a subsequence (nk).
We believe that all β-circular Riesz gas are not number-rigid.

Corollary

For any bounded Λ and k ≥ 0 then for all P β
⋆ -a.s. γ,

P β
⋆ (NΛ = k|γΛc) > 0.
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Main ingredient of the proof

Proposition

For any β > 0, there exists a constant K > 0 and an

subsequence (nk)k≥1 such that for all k ≥ 1∫
|hnk

(0, γ)|P β
nk
(dγ) ≤ K,

where

hn(x, γ) =
∑
y∈γ

gn(x− y),

gn(x) =
∑
k∈Zd

(g(x+ kn1/d)− 1

n

∫
Λn

g(y + kn1/d)dy).
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3 Equivalence of ensembles
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General principle

Canonical ensembles : The density of particles ρ > 0 is

prescribed. In the thermodynamic limit (Λn → ∞) the number

of particles is �xed equal to ρ|Λn|.

Grand canonical ensembles : The activity z > 0 (or the

chemical potential µ) is prescribed (z = e−βµ). During the

thermodynamic limit (Λn → ∞) the number of particles is

random. The Gibbs process is absolutely continuous with

respect to the Poisson point process with intensity z > 0.

De�nition (Equivalence of ensembles)

The canonical ensembles and the grand canonical ensembles are

the same. There exist functions ρ 7→ zρ and z 7→ zρ.

The equivalence of ensembles is proved for a large class of

summable pairwise potentials (Ruelle 70, Georgii 94, Vasseur

2012), including the Riesz potential for s > d.
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Equivalence of ensembles with the DLR formalism

A canonical ensemble P satis�es the canonical DLR

(Dobrushin-Lanford-Ruelle) equations :

P (dγΛ|#γΛ = k, γΛc) =
1

Zβ
Λ(k, γΛc)

e−βH(γΛ|γΛc )BinΛ,k(dγΛ).

A grand canonical ensemble P satis�es the grand canonical

DLR equations :

P (dγΛ|γΛc) =
1

Zβ
Λ(γΛc)

e−βH(γΛ|γΛc )πz
Λ(dγΛ).

De�nition (Equivalence of ensembles)

If P satis�es the canonical DLR equations then P satis�es the

grand canonical DLR equations.
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Canonical DLR equations for β-circular Riesz gas

The energy to move a particle from 0 to x in γ is

M(x|γ) =
∑
y∈γ

g(x− y)− g(y).

Theorem (Canonical DLR equations)

Let Pβ be a β-Circular Riesz gas, Λ be a bounded Borel subset of

Rd. Then for P β a.e. γ

P β(dγΛ|#γΛ = k, γΛc) =
1

Zβ
Λ(k, γΛc)

e−βH(γΛ|γΛc )BinΛ,k(dγΛ).

where H(γΛ|γΛc) =
∑

{x,y}⊂γΛ
g(x− y) +

∑
x∈γΛ M(x|γΛc).

Similar proof as D.,Leblé,Hardy and Maïda for the Sine-β
process.
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Grand canonical DLR equations for P β
⋆

Based on the one-point deletion property of P β
⋆

Theorem (Grand canonical DLR equations)

Let Λ be a bounded Borel subset of Rd. Then for P β
⋆ a.e. γ

P β
⋆ (dγΛ|γΛc) =

1

Zβ
Λ(γΛc)

e−βH(γΛ|γΛc )πΛ(dγΛ).

where γΛ = {x1, x2, . . . , xk} and

H(γΛ|γΛc) = h(x1, γΛc)+h(x2, x1∪γΛc)+. . .+h(x2, x1∪. . .∪xk−1∪γΛc)

h(x, γ) = lim
n→∞

 ∑
y∈γΛn

g(x− y)− Cn(#γΛn , γΛc
n
)

 .
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Integral compensator

h(x, γ) = lim
n→∞

 ∑
y∈γΛn

g(x− y)− Cn(#γΛn , γΛc
n
)

 .

We believe that the integral compensator works

Cn(#γΛn , γΛc
n
) =

∫
Λn

g(y)dy

Proposition

If P β is hyperuniform with Var(NΛ) ≤ C|Λ|s/d−ε then the grand

canonical DLR equations hold with

h(x, γ) = lim
n→∞

 ∑
y∈γΛn

g(x− y)−
∫
Λn

g(y)dy

 .

It is the case for d = 1, Boursier 2022.
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Summary of the talk

We de�ne in�nite volume Riesz gases (d− 1 < s < d) in Rd

at inverse β > 0 with periodic boundary conditions.

At least one of them P β
⋆ is not number Rigid.

P β
⋆ satis�es canonical and grand canonical DLR equations.

The energy of a point x in γ exists

h(x, γ) = lim
n→∞

 ∑
y∈γΛn

g(x− y)− Cn(#γΛn , γΛc
n
)

 .

If d = 1, P β
⋆ is hyperuniform and so

h(x, γ) = lim
n→∞

 ∑
y∈γΛn

g(x− y)−
∫
Λn

g(y)dy

 .

We believe that the same hold for all d ≥ 2.
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Open questions

Hyperuniformity and integral compensator for d ≥ 2.

DLR equations for s ≤ d− 1 ?

Does the Number-Rigidity property appear at s = d− 1,
s = 0 ? (true for d = 1)

Is it really possible to have Number-Rigidity for large d ?
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