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Part |: Motivation and model specification
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Random hyperbolic graphs (RHGs): Introduction

» Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Bogung " " "0l

» Appeal: Replicate characteristic properties observed in “real world
networks” or “complex networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale-free (with exponent between 2 and 3)
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Random hyperbolic graphs (RHGs): Introduction

» Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Bogung " " "0l

» Appeal: Replicate characteristic properties observed in “real world
networks” or “complex networks”

Example of networks: Power grid
Internet
Social networks
Biological interaction networks

Typical properties: Sparse
Heterogeneous
Locally dense (exhibit clustering phenomena)
Small world
Navigable
Scale-free (with exponent between 2 and 3)

Susceptible to mathematical analysis!
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Informal definition of RHGs model

Like random geometric graphs but where the underlying space instead of
being Euclidean is Hyperbolic.

Euclidean plane R?

Hyperbolic plane H?




Geometric graphs
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Geometric graphs




Geometric graphs
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Examples of random geometric graphs
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Poincaré disk model of H?

» H? is represented as an open unit disk D

v

Blue curves are geodesics (arcs of circles
perpendicularly incident to D)

v

Each heptagon has the same area

\4

Points in 0D are at infinite distance from X

v

Points at (Euclidean) distance y from X are
at hyperbolic distance r from X where

r:|og1 Vv

[Rendered with KaleidoTile by J. Weeks]

Space expands at exponential rate!

Continuous analogue of regular trees.
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Native representation of H?

» H? is represented as R?
» A point p is represented in polar coordinates

» 1, is the hyperbolic distance between p and O

Bo(R): Ball of radius R
centered at origin O with
perimeter 27 sinh R = ©(ef).
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Poincaré vs Native representation of H?

Poincaré model

Native representation
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Formal definition of RHG model: G, (n)

(Gugelmann, Panagiotou, Peter [‘CALPQ])

Model parameters:
o,V S R+7n€ N+.

Set R:=2log L.
By(R)

Choose an n-node graph G = (V, E) as follows:

» Each v € V uniformly and independently in Bo(R) according to some
distribution depending on «

» uv € Eiffue B/(R).



Formal definition of RHG model: G, (n)

(Gugelmann, Panagiotou, Peter [‘CALPQ])

Model parameters:
o,V S R+,n€ N+.

Set R:=2log 2.
By(R)

Choose an n-node graph G = (V, E) as follows:
» Each v € V chooses ¢, ~ Unif[0, 27) independent of r, with density:

f(r) :== g2 sinh(ar) ~ e *"~"if0 < r < Rand 0 otherwise.

(Here, C, g is a normalizing constant).
» uv € Eiffue B/(R).
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Pdf of (ry, ¢v) and its heat plot

(Colder colors correspond to smaller density)
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Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r,.
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Calculating distances
Hyperbolic distance from v to origin O, ... easy! Just r,.

In general, use hyperbolic law of cosines

cosh(d) = cosh(ry) cosh(r,) — sinh(ry) sinh(r,) cos(¢u,v).




Calculating distances
Hyperbolic distance from v to origin O, ... easy! Just r,.

In general, use hyperbolic law of cosines

cosh(d) = cosh(ry) cosh(r,) — sinh(ry) sinh(r,) cos(¢u,v).

Ifd=Randr,+r > R, then®""

Or(ru, 1v) == 2e%(Fifru—rv)(1 + e(eﬁfrufrv))
- @(e%(ﬁ—ru—rv)).

Lemma: ¢y, < 0p(ry, 1) < dg(u,v) < R.

12/35



Examples of RHGs
(v = 1 fixed, n = 500)
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Examples of RHGs

(o = £ fixed, n = 500)

o 5 = = £ DA
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Soft version

Incorporates a temperature T and a probability of connecting u and v:

1

p(d) = 71 N e%(d—Fl)

where d := d.2(u, v) is the (hyperbolic) distance between u, v € H2.
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Alternative representation of H? using the halfplane model

T [T
IR TR RRR AR

Halfplane representation (FM18) on (—n, n) x [0, A|

> ¢:(r79)_>(eﬂg/27’q_r)

> (x,y), (X)) € Efff [x — x| < &2~
» Advantage: easy to see that it converges locally to the infinite model
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Nice, but who cares?

First model that “naturally” exhibits:
» Scale freeness, AND
» Non-negligible clustering.

But, what really drew attention ...



Mapping of Internet’s Autonomous Systems (ASs)
(2009 data collected by infrastructure developed by CAIDA)

pre——ttl
= é;;m
witzerland

Data set:
» 23,752 ASs
» 58,416 links
» Average degree 4.92

“Maximum Likelihood” fit:
» a =0.55
» R=27

[From Bogufd, Papadopoulus, Krioukov (Nat. Comm. '10)]

» Temperature T = 0.69
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Greedy Forwarding

Papadopoulos et al. """°°"*°"% in an experimental study (but without “real”
data) report excellent stretch (average ~ 1, max ~ 1.4) and success ratio

(0.99920 for o ~ % t0 0.92 for a ~ 1, with «, v as in the Internet).
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Part II: Analysis of model
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Poissonized model of RHGs: G, ,(n)

It is more natural to consider a Poissonized version of G....(n).

l.e., a process where given o oo it holds that

S; Ss
» E|V N S| is proportional to nu(S) where p(S) := // f(r,¢)drd¢.
S
» |VN S|, VNS, ... are independent.
Equivalently, vS C H?, |SN V| ~ Poisson(nu(S)), i.e, Yk > 0,

P(SNVI=K) = e ™ML (mu(S))"



Easy (useful) fact

IS0 V" nu(S).

If u(S)

|SN V|is small, w.e.p.
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Easy (useful) fact

S0 V"2 nu(S).

It u(S)

SN V|Wep (log n)”o( )

Depoissonization for our purposes (so far) easy
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Henceforth 3 < a < 1.

Do Not Forget!
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Vertices per layer
(measure centered balls)

Calculations yield ™"
\ = H#(Bo(i))
pu(Li) = 1_e—o

1(Bo(i)) =2 e~

Layer L; - ="Bg(H\ Bo(i—1)
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O
Vertices per layer
(measure centered balls)

Calculations yield“”" "

~ 1(Bo(i))
p(Li) = %-
p(Bol(i)) = e~ A7
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Vertices per layer
(measure centered balls)

Calculations yield ™"

~ 1(Bo(7))
n(L) = q_eg-a "

u(Bo(i)) = ™17

Define Vg,‘ =Vn Bo(l)

Letip := ( - )Fi' So M(Bo(lo)) =

1
n:
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Vertices per layer
(measure centered balls)

Calculations yield“"™"

~ 1(Bol(i))
) = G
p(Bol(i)) = e~ A7

Define V-; := V N Bo(i).

If iy = io—

logR
«

Let ip := (1—2-)R. So u(Bo(ib)) =

1
E

24/35

w(1), then E| ngg |=nu(Bo(iy ))=o0(1).




Vertices per layer
(measure centered balls)

Calculations yield“™"

-
(Bo(i)) = e~

but # 0 a.a.s

Define V<, := V N Bo(i)

Let ip := (1—2-)R. So u(Bo(i)) = 1.
If iy = io—"2%—w(1), then E| < 1= nu(Bo(iy ) =o0(1)
If i+ = i + EF (1), then B(| V.. | > log n) <

24/35

Iog n

]E| V</+| - 0(1)
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Vertices per layer
(measure centered balls)

Calculations yield“™"

~ 1(Bo(i))
) = G
p(Bol(i)) = e~ A7



Vertex degrees

(measure of non-centered balls)

Calculations yield

1(Bp(R)) = Cae™ (1 + 0(1)).

X

(=Jee(+)
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Vertex degrees
(measure of non-centered balls)
Calculations yield

1(Bp(R)) = Cae™ (1 + 0(1)).

Thus,

O(log n) (no concentration),
if re > R—2log R+0O(1),

v deg(P) =

@(ne”fp) w.e.p.,
otherwise.

(=Jee(+)
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Consequences

. A
> A.a.s., amax degree vertex is in V- and has degree nz« +ol) w.e.p.

> If k= Cane*% ,J > iy, then w.e.p. the number of degree > k nodes is
2a
~ pg—eB) _ [ Ca
=~ ne n( p ) .

l.e., power law degree distribution with exponent 2« + 1

v

The average degree is 7vC2(1 + o(1)), i.e., constant!

v

If v & Vep_e, C constant,
P(deg(v) = 0) = C,e” /2

and w.e.p. there are ©(n) such vertices

v

V<p,2 induces a clique K (w.e.p. |V<g 2| = ©(n'~*))
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Location of neighbors of a vertex

Calculations yield

w(Be(R) N L) = ©(e AN ez(A-i-rp)y
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Location of neighbors of a vertex

Calculations yield

1

w(Bp(R) N L) = ©(e” AN gz(A=I=rp))

As a function of i grows like et~ 2)'.

So, P has:
» more neighbors towards 0B (R)
» const. fraction of neighbors “near” 9B (R)
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Visualization of claims

Q6

N



Non-negligible local clustering coefficient

[GPP'12]

|f CV = Psyt(st S E|S, t S Nv), then ]Evcv = Q(1).
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O
Giant component
[BFM, EJC'15; FM, AAP'18]

Letve Vbest. R—r,

Q(log R).
Thereisa r > 1 so that w.e.p. 3w ~ v s.t.

R—rw>71(R—rn).
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Giant component

[BFM, EJC'15; FM, AAP18]

Letv e Vbest R—r =Q(logR).

Thereisa T > 1 sothatw.e.p. 3w ~ v s.t

R—rw>71(R-rn).
|K|"PO(n' %)
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O
Giant component
[BFM, EJC'15; FM, AAP'18]

R)

Letve Vbest. R—r,

= Q(log R).
Thereisa T > 1 sothatw.e.p. 3w ~ v s.t

R—rw>7(R-r)
|K|"“ePO(n'—2)
| V<r’ |we e(polylog n))
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O
Giant component
[BFM, EJC'15; FM, AAP'18]

R)

Letv e Vbest R—r =Q(logR).

Thereisa T > 1 sothatw.e.p. 3w ~ v s.t

K[ e (')
|Ver [P0 sty

|Center component|23°Q(n)

R—rw>71(R-rn).

20/35

DA



O
Giant component
[BFM, EJC'15; FM, AAP'18]

R)

Letve Vbest. R—r,

= Q(log R).
Thereisa T > 1 sothatw.e.p. 3w ~ v s.t
R—rw>7(R-r)
|K["ePO(n' =)
V<r "2PO(omingm)

polylog polylog(n) )
|Center component|22©(n)
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[2nd component|‘”epe((log n)!/(—a))
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Forbidden configurations

[FK, ICALP’15]
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Forbidden configurations

[FK, ICALP’15]
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Idea on upper bound on 2nd component (and diameter)

Region ¢

V N Bp(r) contained in center comp.

L log R
r-=R-

[e3

1 ==
k- - (logn)T

If k = c(log n)ﬁ and c large enough, then

e S

P(® N Bo(R) NV = ) = e ®®een =2 _ o(n=2)



Idea on upper bound on 2nd component (and diameter)

Region ¢

V N Bp(r) contained in center comp.

& N Bo(r) N V + 0 likely k- 1(log na

ro— R— log R

1—a

If k = c(log n)ﬁ and c large enough, then

a
T—a

P(® N Bo(R)N V = () = g ©k)een

=0(n7®).

A union bound over all ®'s gives P(3®, ® N Bo(R) NV = 0) = o(1).
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Idea on upper bound on 2nd component (and diameter)

2
®\B V|*eP-Q((log n) ==
Region ® |®\ Bo(r) N V[*2PO((log n) T==)

V N Bp(r) contained in center comp.

& N Bo(r) N V + 0 likely k- 1(log na

ro— R— log R

1—a

If k = c(log n)ﬁ and c large enough, then

a
T—a

P(® N Bo(R)N V = () = g ©k)een

=0(n7®).

A union bound over all ®'s gives P(3®, ® N Bo(R) NV = 0) = o(1).
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Conductance and spectral gap
The graph conductance of the center component H of G..,.(n) is:

B _ E(S,V(H)\ S)
p(H)= mn, =)

0<vol(S)<|E(H)|

The spectral gap of H is \2(H) —the 2nd smallest eigenvalue of the
normalized Laplacian of H

By Cheeger’s inequality:

— 02 (H) < Aa(H) < 2p(H).

Upper bound is almost tight“" ***"® and

"wo( ;) Fairly small
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Other ...

Bipartite!™ "= " £17 and higher dimensional analogues, as well as
generalizations™ " *°*""! have also been considered

Average distance™"#*"%l

Separators and treewidth™™ *°**%: Balanced separator hierarchies with
separators of size O(n'~*) and O(n' ) treewidth, a.a.s.

Minimum and maximum bisection " #47"¢

Fast generatlon[BKL ESA'17; vLSMP, ISAAC’15] and embeddlng[BFKL ESA'16]
Connectivity threshold®™ fs&41¢]

Bootstrap percolation” SPen16 KL ICALP'I6 ec] i RHGs and GIRGs

BKLMM, arXiv'17]

Greedy routing'



What next?

(current / near future work)

» How do rumors spread on RHGs?
» How do epidemics/information spread through RHGs? Current work on

metastability of contact process
» Work on a dynamic version and establish detection times
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