Introduction to random hyperbolic Graphs

Dieter Mitsche

Colloquium, Univ. Potsdam, June 17, 2020

Part I: Motivation and model specification

Random hyperbolic graphs (RHGs): Introduction

▶ Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá [Phys. Rev. '10]

 Appeal: Replicate characteristic properties observed in "real world networks" or "complex networks"

Example of networks: Power grid

Internet

Social networks

Biological interaction networks

...

Typical properties: Sparse

Heterogeneous

Locally dense (exhibit clustering phenomena)

Small world Navigable

Scale-free (with exponent between 2 and 3)

...

Random hyperbolic graphs (RHGs): Introduction

▶ Introduced by Krioukov, Papadopoulos, Kitsak, Vahdat, Boguñá [Phys. Rev. '10]

 Appeal: Replicate characteristic properties observed in "real world networks" or "complex networks"

Example of networks: Power grid

Internet

Social networks

Biological interaction networks

...

Typical properties: Sparse

Heterogeneous

Locally dense (exhibit clustering phenomena)

Small world Navigable

Scale-free (with exponent between 2 and 3)

...

Susceptible to mathematical analysis!

Informal definition of RHGs model

Like random geometric graphs but where the underlying space instead of being Euclidean is Hyperbolic.

Examples of random geometric graphs

Poincaré disk model of H²

[Rendered with KaleidoTile by J. Weeks]

- ▶ ℍ² is represented as an open unit disk D
- Blue curves are geodesics (arcs of circles perpendicularly incident to D)
- Each heptagon has the same area
- Points in ∂D are at infinite distance from X
- Points at (Euclidean) distance y from X are at hyperbolic distance r from X where

$$r = \log \frac{1+y}{1-y}.$$

Space expands at exponential rate!

Continuous analogue of regular trees.

Native representation of \mathbb{H}^2

 $B_O(R)$: Ball of radius R centered at origin O with perimeter $2\pi \sinh R = \Theta(e^R)$.

- ▶ \mathbb{H}^2 is represented as \mathbb{R}^2
- ► A point *p* is represented in polar coordinates
- ► r_p is the hyperbolic distance between p and O

Poincaré vs Native representation of \mathbb{H}^2

Formal definition of RHG model: $G_{\alpha,\nu}(n)$

(Gugelmann, Panagiotou, Peter [ICALP'12])

Model parameters:

$$\alpha, \nu \in \mathbb{R}_+, \mathbf{n} \in \mathbb{N}_+.$$

Set
$$R := 2 \log \frac{n}{\nu}$$
.

Choose an *n*-node graph G = (V, E) as follows:

- Each v ∈ V uniformly and independently in B_O(R) according to some distribution depending on α
- ▶ $uv \in E$ iff $u \in B_v(R)$.

Formal definition of RHG model: $G_{\alpha,\nu}(n)$

(Gugelmann, Panagiotou, Peter [ICALP'12])

Model parameters:

$$\alpha, \nu \in \mathbb{R}_+, n \in \mathbb{N}_+$$

Set $R := 2 \log \frac{n}{\nu}$.

Choose an *n*-node graph G = (V, E) as follows:

▶ Each $v \in V$ chooses $\phi_v \sim \text{Unif}[0, 2\pi)$ independent of r_v with density:

$$f(r) := \frac{\alpha}{C_{\alpha,R}} \sinh(\alpha r) \approx \alpha e^{-\alpha(R-r)}$$
 if $0 \le r < R$ and 0 otherwise.

(Here, $C_{\alpha,R}$ is a normalizing constant).

▶ $uv \in E$ iff $u \in B_v(R)$.

Pdf of (r_v, ϕ_v) and its heat plot

(Colder colors correspond to smaller density)

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

In general, use hyperbolic law of cosines

$$\cosh(d) = \cosh(r_u) \cosh(r_v) - \sinh(r_u) \sinh(r_v) \cos(\phi_{u,v}).$$

Calculating distances

Hyperbolic distance from v to origin O, ... easy! Just r_v .

In general, use hyperbolic law of cosines

$$\cosh(d) = \cosh(r_u) \cosh(r_v) - \sinh(r_u) \sinh(r_v) \cos(\phi_{u,v}).$$

If
$$d = R$$
 and $r_u + r_v > R$, then $[GPP^*12]$

$$A_T(r, r) := 2a^{\frac{1}{2}(R-r_u-r_v)}(1 + R)(a^{R-r_u-r_v})$$

$$\begin{aligned} \theta_R(r_u, r_v) &:= 2e^{\frac{1}{2}(R - r_u - r_v)} (1 + \Theta(e^{R - r_u - r_v})) \\ &= \Theta(e^{\frac{1}{2}(R - r_u - r_v)}). \end{aligned}$$

Lemma:
$$\phi_{u,v} \leq \theta_R(r_u, r_v) \iff d_{\mathbb{H}^2}(u, v) \leq R$$
.

Examples of RHGs

 $(\nu = 1 \text{ fixed}, n = 500)$

Examples of RHGs

 $(\alpha = \frac{3}{4} \text{ fixed}, n = 500)$

 $\nu = 0.75$

 $\nu = 1.00$

Soft version

Incorporates a temperature T and a probability of connecting u and v:

$$p(d) := \frac{1}{1 + e^{\frac{1}{2T}(d-R)}}$$

where $d := d_{\mathbb{H}^2}(u, v)$ is the (hyperbolic) distance between $u, v \in \mathbb{H}^2$.

$$R = 3.0.$$

Alternative representation of \mathbb{H}^2 using the halfplane model

Halfplane representation (FM18) on $(-n, n) \times [0, R]$

- $ightharpoonup \phi: (r,\theta)
 ightarrow (rac{e^{R/2}}{2},R-r)$
- $(x,y),(x',y') \in E \text{ iff } |x-x'| \leq \frac{e^{y+y'}}{2}$
- Advantage: easy to see that it converges locally to the infinite model

◆ロト 4個 ト 4 重 ト 4 重 ト 9 年 9 9 ○

Nice, but who cares?

First model that "naturally" exhibits:

- ► Scale freeness, AND
- Non-negligible clustering.

But, what really drew attention ...

Mapping of Internet's Autonomous Systems (ASs)

(2009 data collected by infrastructure developed by CAIDA)

[From Boguñá, Papadopoulus, Krioukov (Nat. Comm. '10)]

Data set:

- 23,752 ASs
- ▶ 58,416 links
- Average degree 4.92

"Maximum Likelihood" fit:

- ▶ $\alpha = 0.55$
- ► R = 27
- ► Temperature T = 0.69

Greedy Forwarding

Papadopoulos et al. [INFOCOM 2010] in an experimental study (but without "real" data) report excellent stretch (average \sim 1, max \sim 1.4) and success ratio (0.99920 for $\alpha \sim \frac{1}{2}$ to 0.92 for $\alpha \sim 1$, with α, ν as in the Internet).

Part II: Analysis of model

Poissonized model of RHGs: $\mathcal{G}_{\alpha,\nu}(n)$

It is more natural to consider a Poissonized version of $G_{\alpha,\nu}(n)$.

- ▶ $\mathbb{E}|V \cap S|$ is proportional to $n\mu(S)$ where $\mu(S) := \iint_{S} f(r,\phi) dr d\phi$.
- ▶ $|V \cap S_1|$, $|V \cap S_2|$... are independent.

Equivalently, $\forall S \subseteq \mathbb{H}^2$, $|S \cap V| \sim \text{Poisson}(n\mu(S))$, i.e, $\forall k > 0$,

$$\mathbb{P}(|S\cap V|=k)=e^{-n\mu(S)}\frac{1}{k!}(n\mu(S))^k.$$

4日 > 4周 > 4目 > 4目 > 目 めなの

Easy (useful) fact

Easy (useful) fact

$$\text{is } \omega(\underbrace{\frac{\log n}{n}}) \to |S \cap V| \overset{\text{w.e.p.}}{\cong} n\mu(S).$$
 If $\mu(S)$ otherwise $|S \cap V| \overset{\text{w.e.p.}}{\leq} (\log n)^{1+o(1)}.$

Depoissonization for our purposes (so far) easy

Henceforth $\frac{1}{2} < \alpha < 1$.

Do Not Forget!

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
 $\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong rac{\mu(B_O(i))}{1 - e^{-lpha}}.$$
 $\mu(B_O(i)) \cong e^{-lpha(B-i)}.$

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$
 $\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$

Define
$$V_{\leq i} := V \cap B_O(i)$$
.

Let
$$i_0 := (1 - \frac{1}{2\alpha})R$$
. So $\mu(B_O(i_0)) \cong \frac{1}{n}$.

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$

$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Define $V_{\leq i} := V \cap B_O(i)$.

Let
$$i_0:=(1-\frac{1}{2\alpha})R$$
. So $\mu(B_O(i_0))\cong \frac{1}{n}$.

If
$$i_0^- = i_0 - \frac{\log R}{\alpha} - \omega(1)$$
, then $\mathbb{E}|V_{\leq i_0^-}| = n\mu(B_O(i_0^-)) = o(1)$.

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$

$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Define $V_{\leq i} := V \cap B_O(i)$.

Let
$$i_0 := (1 - \frac{1}{2\alpha})R$$
. So $\mu(B_O(i_0)) \cong \frac{1}{n}$.

If
$$i_0^- = i_0 - \frac{\log R}{\alpha} - \omega(1)$$
, then $\mathbb{E}|V_{\leq i_0^-}| = n\mu(B_O(i_0^-)) = o(1)$.

If
$$i_0^+=i_0+\frac{\log R}{\alpha}-\omega(1)$$
, then $\mathbb{P}(|V_{\leq i_0^+}|>\log n)\leq \frac{1}{\log n}\mathbb{E}|V_{\leq i_0^+}|=o(1)$.

Vertices per layer

(measure centered balls)

Calculations yield[GPP'12]

$$\mu(L_i) \cong \frac{\mu(B_O(i))}{1 - e^{-\alpha}}.$$

$$\mu(B_O(i)) \cong e^{-\alpha(R-i)}.$$

Vertex degrees

(measure of non-centered balls)

Calculations yield

$$\mu(B_P(R)) = C_{\alpha} e^{-\frac{r_P}{2}} (1 + o(1)).$$

Vertex degrees

(measure of non-centered balls)

Calculations yield

$$\mu(B_P(R)) = C_{\alpha}e^{-\frac{r_P}{2}}(1+o(1)).$$

Thus,

$$\deg(P) = \begin{cases} O(\log n) \text{ (no concentration)}, \\ \text{if } r_P \geq R - 2\log R + O(1), \\ \Theta(ne^{-\frac{r_P}{2}}) \text{ w.e.p.,} \\ \text{otherwise.} \end{cases}$$

Consequences

- ► A.a.s., a max degree vertex is in $V_{i_0^+}$ and has degree $n^{\frac{1}{2\alpha} + o(1)}$ w.e.p.
- ▶ If $k = C_{\alpha} n e^{-\frac{j}{2}}$, $j \ge i_0^+$, then w.e.p. the number of degree $\ge k$ nodes is

$$\cong ne^{-\alpha(R-j)} = n\left(\frac{C_{\alpha}}{k}\right)^{2\alpha}.$$

I.e., power law degree distribution with exponent $2\alpha + 1$

- ► The average degree is $\pi \nu C_{\alpha}^2 (1 + o(1))$, i.e., constant!
- ▶ If $v \notin V_{\leq R-c}$, c constant,

$$\mathbb{P}(\deg(v)=0)\cong C_{\alpha}e^{-c/2}$$

and w.e.p. there are $\Theta(n)$ such vertices

▶ $V_{\leq R/2}$ induces a clique K (w.e.p. $|V_{\leq R/2}| = \Theta(n^{1-\alpha})$)

Location of neighbors of a vertex

Calculations yield

$$\mu(\mathcal{B}_{P}(R)\cap L_{i})=\Theta(e^{-\alpha(R-i)}e^{\frac{1}{2}(R-i-r_{P})})$$

Location of neighbors of a vertex

Calculations yield

$$\mu(B_P(R) \cap L_i) = \Theta(e^{-\alpha(R-i)}e^{\frac{1}{2}(R-i-r_P)})$$

As a function of *i* grows like $e^{(\alpha - \frac{1}{2})i}$.

So, P has:

- ▶ more neighbors towards $\partial B_O(R)$
- ▶ const. fraction of neighbors "near" $\partial B_O(R)$

◆ロト ◆団 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Visualization of claims

Non-negligible local clustering coefficient

[GPP'12]

If $C_{v} := \mathbb{P}_{s,t}(st \in E|s,t \in \mathcal{N}_{v})$, then $\mathbb{E}_{v}C_{v} = \Omega(1)$.

[BFM, EJC'15; FM, AAP'18]

Let $v \in V$ be s.t. $R - r_v = \Omega(\log R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

$$R-r_w > \tau (R-r_v).$$

[BFM, EJC'15; FM, AAP'18]

 $|K|_{=}^{\text{wep}}\Theta(n^{1-\alpha})$

Let $v \in V$ be s.t. $R - r_v = \Omega(\log R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

$$R-r_w > \tau(R-r_v).$$

[BFM, EJC'15; FM, AAP'18]

Let $v \in V$ be s.t. $R - r_v = \Omega(\log R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

$$R-r_w > \tau (R-r_v).$$

$$|K|_{=}^{\text{wep}}\Theta(n^{1-\alpha})$$

$$|V_{\leq r'}|_{=}^{\text{wep}}\Theta(\frac{n}{\text{polylog}(n)})$$

[BFM, EJC'15; FM, AAP'18]

Let
$$v \in V$$
 be s.t. $R - r_v = \Omega(\log R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

$$R-r_w > \tau (R-r_v).$$

$$|K| \stackrel{\mathsf{wep}}{=} \Theta(n^{1-\alpha})$$
$$|V_{\leq r'}| \stackrel{\mathsf{wep}}{=} \Theta(\frac{n}{\text{polylog(n)}})$$

 $|Center component| = \Theta(n)$

[BFM, EJC'15; FM, AAP'18]

Let $v \in V$ be s.t. $R - r_v = \Omega(\log R)$.

There is a $\tau > 1$ so that w.e.p. $\exists w \sim v$ s.t.

$$R-r_w > \tau (R-r_v).$$

$$|K|_{=}^{\text{wep}}\Theta(n^{1-\alpha})$$

$$|V_{\leq r'}|_{=}^{\text{wep}}\Theta(\frac{n}{\text{polylog(n)}})$$

 $|Center component| = \Theta(n)$

|2nd component| $\underset{[KM \ 2019]}{\text{wep}}\Theta((\log n)^{1/(1-\alpha)})$

Forbidden configurations [FK, ICALP'15]

Forbidden configurations [FK, ICALP'15]

Idea on upper bound on 2nd component (and diameter)

If
$$k = c(\log n)^{\frac{1}{1-\alpha}}$$
 and c large enough, then

$$\mathbb{P}(\Phi \cap B_O(R) \cap V = \emptyset) = e^{-\Theta(k)(\log n)^{-\frac{\alpha}{1-\alpha}}} = O(n^{-3}).$$

Idea on upper bound on 2nd component (and diameter)

If $k = c(\log n)^{\frac{1}{1-\alpha}}$ and c large enough, then

$$\mathbb{P}(\Phi \cap B_O(R) \cap V = \emptyset) = e^{-\Theta(k)(\log n)^{-\frac{\alpha}{1-\alpha}}} = O(n^{-3}).$$

A union bound over all Φ 's gives $\mathbb{P}(\exists \Phi, \Phi \cap B_O(R) \cap V = \emptyset) = o(\frac{1}{n})$.

Idea on upper bound on 2nd component (and diameter)

If $k = c(\log n)^{\frac{1}{1-\alpha}}$ and c large enough, then

$$\mathbb{P}(\Phi \cap B_O(R) \cap V = \emptyset) = e^{-\Theta(k)(\log n)^{-\frac{\alpha}{1-\alpha}}} = O(n^{-3}).$$

A union bound over all Φ 's gives $\mathbb{P}(\exists \Phi, \Phi \cap B_O(R) \cap V = \emptyset) = o(\frac{1}{n})$.

Conductance and spectral gap

The graph conductance of the center component H of $G_{\alpha,\nu}(n)$ is:

$$\varphi(H) := \min_{\substack{S \subseteq V(H) \\ 0 < \operatorname{vol}(S) \le |E(H)|}} \frac{E(S, V(H) \setminus S)}{\operatorname{vol}(S)}.$$

The spectral gap of H is $\lambda_2(H)$ – the 2nd smallest eigenvalue of the normalized Laplacian of H

By Cheeger's inequality:

$$\frac{1}{2}\varphi^2(H) \le \lambda_2(H) \le 2\varphi(H).$$

Upper bound is almost tight[KM, AAP'18] and

$$\underset{\approx}{\text{wep}} \Theta\left(\frac{1}{n^{2\alpha-1}}\right)$$
 Fairly small!

Other ...

- ▶ Bipartite^[KPK, Phys. Rev. E'17] and higher dimensional analogues, as well as generalizations^[BKL, ESA'17] have also been considered
- ► Average distance [BKL, arXiv'16]
- ► Separators and treewidth^[BFK, ESA'16]: Balanced separator hierarchies with separators of size $O(n^{1-\alpha})$ and $O(n^{1-\alpha})$ treewidth, a.a.s.
- ▶ Minimum and maximum bisection [KM, AAP'18]
- ► Fast generation^[BKL, ESA'17; vLSMP, ISAAC'15] and embedding^[BFKL, ESA'16]
- Connectivity threshold^[BFM, RS&A'16]
- ▶ Bootstrap percolation^[CF, SP&A'16; KL, ICALP'16; etc.] in RHGs and GIRGs
- ► Greedy routing [BKLMM, arXiv'17]

What next?

(current / near future work)

- How do rumors spread on RHGs?
- How do epidemics/information spread through RHGs? Current work on metastability of contact process
- Work on a dynamic version and establish detection times