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Abstract

Let S(n) be a random walk which behaves as a symmetric random walk every-
where except for the point 0. Upon hitting 0 the random walk is arrested there
for a random amount of time n; > 0 (i.i.d.); and then continues its way as usual.
We study the limit behaviour of this process scaled as in the Donsker theorem.
In case of En; < oo, it is proved convergence towards a Wiener process. We also
consider a sequence of processes whose arrest times are geometrically distributed
and grow with n. We prove that possible limits for the last model are a Wiener
process, a Wiener process stopped at 0 and a Wiener process with a sticky point.

1 Introduction

Let {S(n),n € Z} be a random walk on Z and S(0) = 0 with centred and
square integrable jumps with variance equals to o?. We linearly interpolate the
sequence S for all t > 0. Set

S(nt)
o/n’

A well-known Donsker theorem (e.g. [1]) states weak convergence of stochas-
tic processes in C([0,7T)

X,(t) = n € N.

w

Xp(t) = W(t), n — oo,
where W is a Wiener process.
Upon changing transition probabilities at one point or a set of points (e.g.
2, 3, 4]) one could obtain limit processes connected to Brownian motion, for ex-
ample, skew Brownian motion, Brownian motion with a sticky point, Brownian
motion with bouncing.
Semi-Markov random walks with continuous-time and non-exponential ar-

rests give rise to equations with fractional derivatives [5, 6, 7]. For example, a
process with jumps in R and lagged at each point for a random amount of time
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with a “heavy tail” distribution constitutes a sub-diffusion model. As remarked
in [8] the processes with a sticky point could be used for modelling behaviour
on a financial market with governmental control. Sticky Brownian motion also
arises while discussing storage processes that have different intensities in and
out of zero, [9].

We consider a modified discrete random walk which is arrested for a random
amount of time at each visit of zero. We show that if an expectation of the arrest
time is finite then naturally the limiting process is a Brownian motion. We
also consider a triangular array of random walks with geometrically distributed
times of arrest whose expectations depend on n. This construction let Brownian

motion with a sticky point to appear. For further discussion of this process
check [8, 9, 10, 11, 12].

2 Problem statement and results

Let {S(n)} be a random walk generated by independent identically distributed
random variables {£,}°°,

S(n) = Zfi, n € N and S(0) = 0.

1=1

Moreover E¢; = 0 and E€? = 02 < 0.
Extend S for all positive ¢ > 0 by linearity:

S(t) = S(n) + (t—n)(S(n+1) — S(n)), t € [n,n+1].

Let also {n,}>°, be a sequence of non-negative integer-valued i.i.d. that is
independent of {¢;}.

We construct a modified random walk {S(n)} as follows. Let the excursions
of S(-) be equal to those of S(-). Insert n; amount of time between i-th and
i 4+ 1-st excursion of S(-). Check pictures 1, 2.



Figure 1: S(t)

Figure 2: S(t)

The modification {S(n)} could be defined more formally. Define firstly o(t):

To(t)
at) =t+Y m, t>0.

1=1

where m(t) = #{k : S(k) =0, 1 < k <t} is a number of visits to zero of the
random walk S(-) before the time ¢.
Set a generalised inverse

o V() = Inv[a()](t) = inf{z : a(z) > t}, t > 0.



Figure 3: Plots of a(t) and a(=1(¢)

The process S(t) is defined by

Our goal is to study the limit behaviour of a sequence {%} as n — 00.

Denote by C[0, 00) a space of continuous functions endowed with a topology of
uniform convergence on finite intervals.

Theorem 1. Let {S(n)} be a modified random walk, where Eny < oo. For a

sequence of processes { X, () = i(n\/ﬁ), n > 1} weak convergence in C[0, 00) holds:

Xu(-) = W(), n— o0,
where W is a Wiener process.

Remark 1. Consider a Markov chain

pij = P(§ =7 —14) and po = p,po; = (1 — p)P(§ = 7),

where E€ = 0, E£2 < co. Theorem 1 may be applied to this case for {n;} being

independent geometrically distributed random variables with En; = ]lj.

Let us consider more closely the random walk from the remark above. De-
note it as S?)(-). The sequence of processes

X (1) = M
av/n
with
- r
Pn= "=



has different limits with respect to «v. Theorem 2 describes all possible modes.
Denote by Wg.gicky(t) a Brownian motion with a sticky point defined by

Wsias (£) = W(AS Y (1)),

where
As(t) =t + BL(1), A(ﬂ_l)(t) is a generalised inverse
and
1
L(t) = P- lg%%/o Liw(s)e[-e.e} S

a local time of a Brownian motion at zero. As opposed to a usual Brownian
motion, this one stays at zero for a positive amount of time, yet there is no
interval of positive length that it is there.

Theorem 2. Convergence in distribution in C[0,00) holds:
if 0 <~ < 0.5, then XP)(t) 5 W(t), n — oo,
if v > 0.5, then Xflp”)(t) 30, n — oo,
if v = 0.5, then X)) 5 W,t_gion, (1), n — o0.

3 Proofs

The following two lemmas may be found in [13] (proposition 3.2).

Lemma 1. Let {,(t)}n>1, t € [0,T] be a sequence of random processes such
that

(a) for each n the process &,(t) is monotonous a.s.;
(b) for everyt

&(1) = €(1), n — 00;
(c) the limiting process £(t) is continuous a.s.

Then uniform convergence in probability holds

sup [, (t) — £(t)] = 0, n — co.
t€[0,T)

Lemma 2. Let {,(t)}n>1, t € [0,T] be a sequence of random processes such
that (a), (b), (c) are satisfied and

(d) for each n
£,(0) =0, &,(00) = 0.

Then for any T > 0 uniform convergence in probability holds

sup (¢l (t) — €7D(8)] = 0, n — co.
t€[0,T)



3.1 Proof of Theorem 1
Set

From the definition of S(n) one has

i n NE. @2 0)
%) = S\(/ﬁt) S U\/é t)) _S( 0\/% ) — X (ho(D)).

Hence we prove that

X, (ha(1)) S W(-), n — o0. (1)

We are interested in the behaviour of h,(t) as n — oco. Note that the

function @

one has

is a generalised inverse for h,(t). That is because for any a # 0

Invlah(:)|(t) = Invlh(-)|(t/a),

Inolh(a))(t) = é Inolh()](8). (2)

Let us show that for any ¢ > 0 :

a(nt) 5t n— oo (3)

n
This is obvious if t = 0. For ¢t > 0

To(nt)

a(nt) :H% Z m:HTo(nt) 1 ) Z - (4)

n  1o(nt —

For a fixed ¢ > 0 one has P{ry(nt) — oo} = 1, thus due to the law of large
n—oo

numbers

n; — Enp < 00, n — 00, a.s.

It is well known that o converges weakly towards an absolute value of a
Gaussian random variable as n — co. So

To(nt) ﬂ 0, n = o0
n
And thus ;
a(n)gt,n%oo (5)
n



Since {@}nzl are monotonous and converge towards the continuous limit,
we invoke Lemmas 1 and 2 to see that

=D (nt
sup |hy(t) —t| = sup o (nt)

—t| 50, n— 0. (6)
te[0,7] te[0,77 n

The following is well-known, e.g. theorem 4.4 in [1].

Lemma 3. Let E be a Polish space, {X,,n > 1}, X,{hy,n > 1} be random
elements with values in E, and h € E be non-random. Assume that X, — X
and h, = h. Then the pairs of random variables converge weakly

(X, hy) = (X, h), n— oo.

As X,(-) = W(-) and h,(-) 5 h(-) for any finite interval and, furthermore,
the function A is non-random, Lemma 3 yields (X,,h,) — (W,h). Due to
the Skorokhod representation theorem [1] there exist a probability space and
random elements X,,, h,, there such that in C[0, c0):

(Xos hn) = (X, ),

and for any 7" > 0 uniform convergence on [0, 7] holds

X,(t) = W(t) and h,(t) =t asn — oo, a.s.

Thus X,,(h,(+)) = W(-), n — oo, a.s. So

Xo(ha()) = W().

3.2 Proof of Theorem 2

As previously we introduce «,,(t), oz(_l)(t),

and

SPI(nt)  S(al Vnt)  Sme—ll)
= e = e = Xal(®)

Let us start with discussing the behaviour of

X(e) =

Tén) (nt)

) LS, )

n n




where ngn) are geometrically distributed with parameter p, and Tén) (t) is the

number of visits to zero of S before the time t.
The last expression may be rewritten

T(n) n n
n” Tén)(nt) 1 ' 7773( : (8)

t+
vnovno Mgy =

Theorem 3 ([14]). Let W (t) be a Brownian motion in R, L(t) be its local time.
Then in C|0, 00)

(Tg(nt) S(nt)
vn ' ooyn

With this and the Skorokhod theorem we construct a probability space and
random variables there such that in C[0, c0):

) 5 (L(), WD), n— oo,

fén) n S (n w Té”) n (") (n
( Véit)’,s Vé{t))tzo:: < x}ﬁt)’ S'N;%z)>t207 9

and for any 7" > 0 uniform convergence on [0, 7] holds

—(n) Q(n
o (nt) = L(t) and S(\)/(ﬁnt)

To ease notation we omit the upper index. We define {ngn) }i independently
of 79(+) and L(-) on the same probability space.

= W(t) as n— oo, a.s. (10)

Theorem 4. For every T' > 0

nL(t n =
LS 0" L) e
sup |—= —— ———=| =0, n— o0, (11)
o) |V = n p
where Y| means Zz[i]l
Proposition 1. For any fixed t > 0 we have
— —, N — 00
v i P
Proof. Since
vt (n)
1 n; t
E— : —



it suffices to check that the variance of the sequence converges to 0. The sum-
mands are independent, thus

(s

Recall that {n§n)} are geometrically distributed random variables. So

n2v

) _anf)

i:1

L
=1 n?"yn27 \/ﬁ p2

This proves that for v > 0 one has convergence towards 0 of the mentioned.
|

Proposition 2. For every interval [0,T] and for any ¢ > 0 we have

\fﬁ (n) t
lim P Sup‘ ——’>s = 0.
n=o0 \ tel0,7] \/_ P

Proof. The sum is monotonous in ¢ and due to proposition 1 it has a continuous
limit. Thus this proposition follows from lemma 1. |

Proof of the theorem 4. Let § > 0 be a fixed number. Find 7" such that the set
Qs = {L(T') < T'} satisfies P(€25) > 1 — 6. Note that for any ¢ € [0, T] it holds
that L(t) < L(T). Hence on the set {25

t) (n T vy (n
t€[0,7] \/_ p ye[0,17] \/ﬁ P nv p
Denote by

Ap. =4 sup > ¢
te () T

P(A,.) =P(A,. N Q) +P(A, - N Q).

From proposition 2

Vi & p
And write

lim P(A,.) <0+ 4.

n—oo

As ¢ and ¢ were arbitrary, the last inequality proves the theorem. |



Now suppose that €2 is a set where (10) holds with probability 1. Let € be
fixed, then for N large enough find the set €25 C €2 such that the event

fo(nt)
sup ’L ‘ <e
t€[0,7] Vn
holds for each n > N and P(€5) > 1 — 6.
Consider the difference
(n) To(nt) (n)

sup L ‘ (12)

teOT\/_‘ _an.

1=

We show that (12) converges to 0 and so the limits of the summands should

coincide. Since {771@)} are independent of (L, 7), the last expression is equal in
distribution to

Visupeory [LO-"02 )

Vn — ny’

Now on the set (25 for n > N this is less or equal to

1 Vne m(n)

N

Proposition 2 entails its convergence to %. Since the probability of the com-
plement of €25 is small and £ was arbitrary, one sees that (12) converges in
probability to 0. Now due to Theorem 4

- 2

v peri p

50, n— oo (13)

sup
t€[0,7T)

3.2.1 Proof of the theorem in case v < 0.5

Recall (8):
« (n ) — ¢+ TL_

I v DI

4) Converges to t in probability.
>

(14)

In case v < 0.5 the right hand side of (1
Now lemmas 1 and 2 assure that for every T

(=1)
n t
sup |h,(t) —t| = sup an_(nt)

—4£Qn%w. (15)
te[0,7] te[0,T7 n
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The last limit is non random, thus we use Lemma 3 and the Skorokhod
theorem to construct a probability space and random variables there such that
in C[0, 00):

(fé"\)/(gt)’ S(i)/(gt)? Bn;nt))tzoi (Té?/%ﬁ)) S(i)/(ﬁnt)’ hn;nt)>t>0’

and for every T' > 0 uniform convergence on [0, 7] holds

7_'(571)/(%“5) S(i)/(ﬁnt) = W (t) and ﬁnglnt)

Recall that in Theorem 1 we had the similar situation. So analogously one
obtains that the limit is a Brownian motion

= L(t), =t as n— 00, as.

X))y B W), n— .

n

3.2.2 Proof of the theorem in case v > 0.5

In case v > 0.5 the expression (14) converges to oo in probability for every

(n-)

t > 0. Since for any n > 1 functions a”T are monotonous, we have

ap(nt)

W6 > 0 YM 3N Vit € [6,00) Yn > N IP( >M)>1—5.

This ensures that uniform convergence on [0, c0) in probability holds

Once again this limit is non random. By Lemma 3 and the Skorokhod
theorem we construct a probability space and random variables there such that
in C[0, 00):

(7"6?/%%)’ 5(73(;1;)’ h t))m w (Tén)(nt) S(”)(nt)’ n (t))

and uniform convergence on [0, c0) holds

_(n) G (n 7
75" (nt) S(\)/(ﬁnt) W) and hnflnt)

= 0 as n — 00, a.s.

X, (ha(t)) = 0, n — o0,
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3.2.3 Proof of the theorem in case v = 0.5

In this case % = 1 and so from (13) one sees that (14) has a non-trivial limit

ha(t) = O‘”f}"t) St L)/ p, n— o0

Furthermore, we may consider the copies of random variables that we con-
structed after stating Theorem 3 and for which we proved (13). For them
convergence towards the limit is uniform for any 7' > 0

ay, (nt) 4 @
n p

sup
t€[0,7]

5 0, n — o0. (16)

For each n the functions d”fln') are monotone and their limit is continuous
(because the local time is continuous). Thus from Lemma 2 we have

(_1)(71:10)

sup — Inv[t + L(t)/p)(z) 50, n— 0. (17)

te[0,T] n

And hence convergence in C[0, 00) is proved

Xo(ha()) = W(Invlt + L(t)/p](-)), n — oo.
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