

CAUSALITY CONSTRAINTS

on corrections to the graviton 3-point coupling

March 25, 2015 ANDREJEWSKI days @ Schloss Gollwitz

Xián O. Camanho

Albert-Einstein-Institut Potsdam-Golm

[1407.5597 & to appear] based on joint work with J. Edelstein, J. M. dacena & A. Zhiboedov

- Understand classical field theories (weakly coupled)
- ► **Consistency** conditions on classical lagrangians
 - unitarity
 - Lorentz invariance

Outline	Perturbative (Q)FT & Feynman diagrams oo	Causality 00	Journey through the shock	Higher-spin fix 00	Conclusions
MOT	IVATION				

- Understand classical field theories (weakly coupled)
- ► **Consistency** conditions on classical lagrangians
 - unitarity
 - Lorentz invariance

What is... ?

- 1. most general »pure gravity« theory? (only **massless gravitons**)
- 2. most general »classical« gravity theory? (possibly including massive **higher spins**)

Outline	Perturbative (Q)FT & Feynman diagrams 00	Causality 00	Journey through the shock	Higher-spin fix 00	Conclusions
OUTL	INE				

- 1. Perturbative (Q)FT & Feynman diagrams
- 2. Causality
- 3. Journey through the shock
- 4. Higher-spin fix
- 5. Conclusions

PERTURBATIVE (Q)FT & FEYNMAN DIAGRAMS

- Geometry
- ► QFT

- Geometry
- $\blacktriangleright \ \mbox{QFT} \rightarrow \mbox{GR} \ \mbox{is unique} \ \mbox{low energy theory for interacting spin 2}_{\mbox{Weinberg '64}}$

- Geometry
- $\blacktriangleright \ \mbox{QFT} \rightarrow \mbox{GR is unique low energy theory for interacting spin 2}_{\mbox{Weinberg '64}}$
 - ► Lorentz invariance ⇒ **diffeomorphism** invariance

- Geometry
- $\blacktriangleright \ \mbox{QFT} \rightarrow \mbox{GR is unique low energy theory for interacting spin 2}_{\mbox{Weinberg '64}}$
 - ► Lorentz invariance ⇒ diffeomorphism invariance → 2 helicity states!

 $h_{\mu\nu} / p^{\mu} h_{\mu\nu} = h^{\mu}_{\ \mu} = 0$ (5? d.o.f.)

- Geometry
- $\blacktriangleright \ \mbox{QFT} \rightarrow \mbox{GR is unique low energy theory for interacting spin 2}_{\mbox{Weinberg '64}}$
 - ► Lorentz invariance ⇒ diffeomorphism invariance → 2 helicity states!

$$\begin{split} h_{\mu\nu} \ / \ p^{\mu} h_{\mu\nu} &= h^{\mu}_{\ \mu} = 0 \quad (5? \text{ d.o.f.}) \\ h_{\mu\nu} &\to h_{\mu\nu} + \alpha_{\mu} p_{\nu} + \alpha_{\nu} p_{\mu} \qquad ; \quad \alpha^{\mu} p_{\mu} = 0 \end{split}$$

- Geometry
- $\blacktriangleright \ \mbox{QFT} \rightarrow \mbox{GR is unique low energy theory for interacting spin 2}_{\mbox{Weinberg '64}}$
 - ► Lorentz invariance ⇒ diffeomorphism invariance → 2 helicity states!

 $\begin{aligned} h_{\mu\nu} / p^{\mu} h_{\mu\nu} &= h^{\mu}_{\ \mu} = 0 \quad (5? \text{ d.o.f.}) \\ h_{\mu\nu} &\to h_{\mu\nu} + \alpha_{\mu} p_{\nu} + \alpha_{\nu} p_{\mu} \qquad ; \quad \alpha^{\mu} p_{\mu} = 0 \end{aligned}$

- Equivalence theorem $\sum_i \kappa_i p_i^{\mu} = 0 \Rightarrow \kappa_i = \kappa$
- ► Many quantities can be computed in both frameworks.

Klein-Gordon equation

0.

Perturbative (Q)FT & Feynman diagrams

$$\begin{aligned} (\nabla^2 + m^2)\phi &= 0 \quad ; \quad \phi = e^{-ipx} \quad \text{with} \quad p^2 = m^2 \quad \text{(on-shell)} \\ \rightarrow \text{ it is linear:} \quad \phi_0 &= \int dp \, \delta(p^2 - m^2) \left[a(p) e^{-ipx} + a^*(p) e^{ipx} \right] \end{aligned}$$

Klein-Gordon equation

0.

Perturbative (Q)FT & Feynman diagrams

$$\begin{aligned} (\nabla^2 + m^2)\phi &= 0 \quad ; \quad \phi = e^{-ipx} \quad \text{with} \quad p^2 = m^2 \quad \text{(on-shell)} \\ \rightarrow \text{ it is linear:} \quad \phi_0 &= \int dp \, \delta(p^2 - m^2) \left[a(p) e^{-ipx} + a^*(p) e^{ipx} \right] \end{aligned}$$

Nonlinear equation

$$\begin{split} (\nabla^2 + m^2)\phi &= g\phi^3 \qquad ; \quad \phi = \sum_n g^n \phi_n \\ &\to \text{Green's function:} \quad (\nabla^2 + m^2) \, G(x,y) = \delta(x-y) \end{split}$$

Klein-Gordon equation

0.

Perturbative (Q)FT & Feynman diagrams

$$\begin{aligned} (\nabla^2 + m^2)\phi &= 0 \qquad ; \quad \phi = e^{-ipx} \quad \text{with} \quad p^2 = m^2 \quad \text{(on-shell)} \\ \rightarrow \text{ it is linear:} \qquad \phi_0 &= \int dp \, \delta(p^2 - m^2) \left[a(p) e^{-ipx} + a^*(p) e^{ipx} \right] \end{aligned}$$

Nonlinear equation

CAUSALITY

Outline	Perturbative (Q)FT & Feynman diagrams oo	Causality ●0	Journey through the shock	Higher-spin fix 00	Conclusions
	SΔΙ ΤΤΥ & OFT				

Not all local, Lorentz invariant lagrangians are consistent.

Adams, Arkani-Hamed, Dubovsky, Nicolis & Rattazzi '06

e.g. massless scalar field

$$\mathcal{L} = -\partial_{\mu}\phi \,\partial^{\mu}\phi + \frac{c}{\Lambda^4} \left(\partial_{\mu}\phi \,\partial^{\mu}\phi\right)^2 + \dots$$

Effective metric: $\phi = \phi_0 + \psi$, $\partial_\mu \phi_0 = C_\mu$

$$\underbrace{\left(\eta^{\mu\nu} - 4\frac{c}{\Lambda^4}C^{\mu}C^{\nu} + \ldots\right)}_{G^{\mu\nu}(\phi_0)}\partial_{\mu}\partial_{\nu}\psi + \ldots = 0$$

Outline	Perturbative (Q)FT & Feynman diagrams oo	Causality ●0	Journey through the shock	Higher-spin fix 00	Conclusions
CALIS	SALTTY & OFT				

Not all local, Lorentz invariant lagrangians are consistent.

Adams, Arkani-Hamed, Dubovsky, Nicolis & Rattazzi '06

e.g. massless scalar field

$$\mathcal{L} = -\partial_{\mu}\phi \,\partial^{\mu}\phi + \frac{c}{\Lambda^4} \left(\partial_{\mu}\phi \,\partial^{\mu}\phi\right)^2 + \dots$$

Effective metric: $\phi = \phi_0 + \psi$, $\partial_\mu \phi_0 = C_\mu$

$$\underbrace{\left(\eta^{\mu\nu} - 4\frac{c}{\Lambda^4}C^{\mu}C^{\nu} + \ldots\right)}_{G^{\mu\nu}(\phi_0)}\partial_{\mu}\partial_{\nu}\psi + \ldots = 0$$

In order to avoid **causality violations**:

 $(c \ge 0)$

(and CTCs)

Assuming **analiticity** & **unitarity**:

$$\frac{c}{\Lambda^4} = \frac{2}{\pi} \int ds \, \frac{\sigma(s)}{s^2} \ge 0$$

QFT: global Lorentz symmetry (Lorentz inv. notion of causality) **Gravity**: less obvious

- ► just local Lorentz invariance
- locally $c_q > 1$ not necessarily leads to **CTCs**

Lorentz invariance still **asymptotic symmetry**

Gao & Wald '00

CAUSALITY & GRAVITY

QFT: global Lorentz symmetry (Lorentz inv. notion of causality) Gravity: less obvious

- just local Lorentz invariance
- ▶ locally $c_q > 1$ not necessarily leads to **CTCs**

Lorentz invariance still **asymptotic symmetry**

```
Gan & Wald '00
```

- \Rightarrow asymptotic causality
 - Null energy condition
 - Einsteins' equations

We can prove the positivity of mass in this way Penrose, Sorkin, Woolgan and can be generalised to asymptotically AdS spacetimes (holographic causality) Page, Surva, Woolgan Brigante et al.

JOURNEY THROUGH THE SHOCK

SHAPIRO TIME DELAY

4-*th* **classical test** of GR: light slowed down by the gravitational field of a massive body.

Simplified experiment: probe in the gravitational field of a highly energetic particle (**shock wave**)

$$ds^{2} = -du \, dv + \delta(u) \frac{h(x)}{h(x)} du^{2} + dx^{i} dx^{i} \qquad ; \quad h(|x|) = G_{N} \frac{|P_{u}|}{|x|^{d-4}}$$

SHAPIRO TIME DELAY

4-*th* **classical test** of GR: light slowed down by the gravitational field of a massive body.

Simplified experiment: probe in the gravitational field of a highly energetic particle (**shock wave**)

$$ds^{2} = -du \, dv + \delta(u) \frac{h(x)}{h(x)} du^{2} + dx^{i} dx^{i} \qquad ; \quad h(|x|) = G_{N} \frac{|P_{u}|}{|x|^{d-4}}$$

probe **delay**

 $\Delta v = h(b) > 0$

same as for a **scalar** field or **GR** (phase shift) $\delta = P_v \Delta v$

3-POINT FUNCTIONS

There is a equivalent description in terms of 3pt functions

The Mandelstam invariants:

$$s=P_uP_v$$
 , $\quad t=-q^2$

Forward limit, $s \gg t$

$$\mathcal{A}_{tree}(s,t) = \frac{s^2}{t}$$

There is a equivalent description in terms of 3pt functions

The Mandelstam invariants:

$$s = P_u P_v$$
 , $t = -q^2$

Forward limit, $s \gg t$

$$\mathcal{A}_{tree}(s,t) = \frac{s^2}{t} \quad ; \ \Delta v = G_N \frac{|P_u|}{b^{d-4}}$$

Eikonal approximation

(impact parameter representation)

$$\delta(s,b) = \frac{1}{s} \int d^{d-2} \boldsymbol{q} \, e^{i\boldsymbol{b}\cdot\boldsymbol{q}} \mathcal{A}_{tree}(s,-q^2) = G_N \frac{s}{b^{d-4}} \equiv -\boldsymbol{P}_v \Delta v$$

 P_v

 $\delta(s,b) = \frac{1}{s} \int d^{d-2} q \, e^{i \mathbf{b} \cdot q} \mathcal{A}_{tree}(s,-q^2)$ $= \frac{1}{s} \sum_{i} \mathcal{A}_3^i(q=\partial_b) \mathcal{A}_3^i(q=\partial_b) \frac{1}{b^{d-4}}$

Eikonal approximation & factorization

(massless pole)

3-POINT FUNCTIONS

 P_u

The

$$s = P_u P_v$$
 , $t = -q^2$

Forward limit, $s \gg t$

Journey through the shock

00000

.

$$\mathcal{A}_{tree}(s,t) = \frac{s^2}{t} \quad ; \, \Delta v = G_N \frac{|P_u|}{b^{d-4}}$$

Outline Perturbative (Q)FT & Feynman diagrams Causality Journey through the shock Higher-spin fix Conclusions 3-POINT FUNCTIONS II

No kinematic invariants: $(\mathbf{k}_1 + \mathbf{k}_2)^2 = \mathbf{k}_3^2 = 0$

Only a single **coupling** $\sqrt{G_N}$

Outline Perturbative (Q)FT & Feynman diagrams Causality Journey through the shock Higher-spin fix Conclusions 3-POINT FUNCTIONS II

No kinematic invariants: $(\mathbf{k}_1 + \mathbf{k}_2)^2 = \mathbf{k}_3^2 = 0$

Only a single **coupling** $\sqrt{G_N}$

With **spin**, we also have **polarization** vectors $\mathbf{k}_i \cdot \mathbf{\epsilon}_i = 0$; $\mathbf{\epsilon}_i \sim \mathbf{\epsilon}_i + \mathbf{k}_i$

Outline Perturbative (Q)FT & Feynman diagrams Causality Journey through the shock Higher-spin fix Conclusions 00 00 00 00 00 00 00

3-POINT FUNCTIONS II

No kinematic invariants: $(\mathbf{k}_1 + \mathbf{k}_2)^2 = \mathbf{k}_3^2 = 0$

Only a single **coupling** $\sqrt{G_N}$

With **spin**, we also have **polarization** vectors $\mathbf{k}_i \cdot \mathbf{\epsilon}_i = 0$; $\mathbf{\epsilon}_i \sim \mathbf{\epsilon}_i + \mathbf{k}_i$

$$A_0 = (\boldsymbol{\epsilon}_1 \cdot \boldsymbol{\epsilon}_2)(\boldsymbol{\epsilon}_3 \cdot \boldsymbol{k}_1) + \dots \sim E(F^2)$$

$$A_2 = (\boldsymbol{\epsilon}_1 \cdot \boldsymbol{k}_2)(\boldsymbol{\epsilon}_2 \cdot \boldsymbol{k}_3)(\boldsymbol{\epsilon}_3 \cdot \boldsymbol{k}_1) \sim E^3(F^3)$$

 Outline
 Perturbative (Q)FT & Feynman diagrams
 Causality
 Journey through the shock
 Higher-spin fix
 Conclusions

 00
 00
 00
 00
 00
 00

GRAVITY 3-POINT FUNCTIONS

$$G_0 = A_0 A_0 \qquad \frac{1}{G_N} R$$
$$G_2 = A_0 A_2 \qquad \frac{\alpha_2}{G_N} \mathcal{R}^2$$
$$G_4 = A_2 A_2 \qquad \frac{\alpha_4^2}{G_N} \mathcal{R}^3$$

 $\alpha_{2,4} \sim [L^2]$

extra terms **relevant** at distances $r \sim \sqrt{\|\alpha_{2,4}\|}$

Journey through the shock 000000 **GRAVITY 3-POINT FUNCTIONS** $G_0 = A_0 A_0 \qquad \frac{1}{G_N} R$ $G_2 = A_0 A_2 \qquad \frac{\alpha_2}{G_N} \mathcal{R}^2$ spin 2 $oldsymbol{\epsilon}_2,oldsymbol{k}_2$ $G_4 = A_2 A_2 \qquad \frac{\alpha_4^2}{G_N} \mathcal{R}^3$ $\alpha_{2,4} \sim [L^2]$ extra terms relevant at distances $r \sim \sqrt{\|\alpha_{2,4}\|}$ **Effective** field theory: $\alpha_{2,4} \sim l_p^2$ (strong coupling)

Weakly coupled gravity: $\alpha_{2,4} \gg l_p^2$ Overall coupling G_N very small (all three very small) *e.g.* string theory $q_s \rightarrow 0$, $\alpha_{2,4} \sim \alpha'$

WEAKLY COUPLED GRAVITY THEORIES

Consider a general gravity theory

$$\frac{1}{16\pi G_N} \int d^d x \sqrt{-g} \left(R + \frac{\alpha_2 \mathcal{R}^2}{\alpha_4^2 \mathcal{R}^3} + \ldots \right)$$

and compute the time delay (for a scalar source)

$$\Delta v = \left(1 + \frac{\alpha_2}{\epsilon} (\epsilon \cdot \partial_b)^2 + \frac{\alpha_4^2}{\epsilon} (\epsilon \cdot \partial_b)^4\right) \frac{G_N ||P_u||}{b^{d-4}}$$
$$= \left(1 \pm \frac{\alpha_2}{b^2} \pm \frac{\alpha_4^2}{b^4}\right) \frac{G_N ||P_u||}{b^{d-4}}$$

Depending on the **polarization** we can propagate **faster than light** as seen from infinity.

Violates asymptotic causality

In **AdS**, it corresponds to a violation in the **boundary theory**.

Depending on the **polarization** we can propagate **faster than light** as seen from infinity.

Violates asymptotic causality Gao & Wald '00

In **AdS**, it corresponds to a violation in the **boundary theory**.

Indication for the existence of **CTCs**

HIGHER-SPIN FIX

Adding more external particles does not help

Graviton contribution grows like

 $s = P_u P_v$

Contribution from **spin** J particles grows like s^{J-1}

Graviton contribution grows like

 $s = P_u P_v$

Contribution from **spin** J particles grows like s^{J-1}

$$\qquad \qquad J \ge 2 \qquad ; \quad m_J^2 \lesssim \frac{1}{\alpha_{2,4}}$$

Massive **spin two** does not help

Massive **higher spins** have problems with analyticity \Rightarrow we need an **infinite** number!

Graviton contribution grows like

 $s = P_u P_v$

Contribution from **spin** J particles grows like s^{J-1}

$$J \ge 2$$
 ; $m_J^2 \lesssim \frac{1}{\alpha_{2,4}}$

Massive **spin two** does not help

Massive **higher spins** have problems with analyticity \Rightarrow we need an **infinite** number! \rightarrow **it works for strings!!**

Amati, Ciafaloni, Veneziano '88

EXTENDED GRAVITON AND 3-POINT FUNCTIONS

If the **graviton is extended** different *pieces* suffer different time delays:

Higher-spin fix

 $\varepsilon \sim l_s$

$$\frac{1}{2} \left[\delta(b+\varepsilon) + \delta(b-\varepsilon) \right] \approx \delta(b) + \frac{\varepsilon^2}{2} \partial_b^2 \delta(b)$$

from where:

$$\left(\alpha_2 \sim l_s^2\right)$$

 \sim typical length of the string

CONCLUSIONS

Corrections of the graviton 3-point function imply a violation of causality

- Corrections of the graviton 3-point function imply a violation of causality
- May signal the existence of **new higher spin particles** and a structure similar to string theory

- Corrections of the graviton 3-point function imply a violation of causality
- May signal the existence of **new higher spin particles** and a structure similar to string theory
- Graviton 3-point functions are encoded in the non-gaussianities of the gravity wave spectrum – string-like theory during inflation?

- Corrections of the graviton 3-point function imply a violation of causality
- May signal the existence of **new higher spin particles** and a structure similar to string theory
- Graviton 3-point functions are encoded in the non-gaussianities of the gravity wave spectrum – string-like theory during inflation?

Danke schön!!