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MOTIVATION

▶ Understand classical field theories (weakly coupled)
▶ Consistency conditions on classical lagrangians

▶ unitarity
▶ Lorentz invariance

What is… ?

1. most general »pure gravity« theory?
(onlymassless gravitons)

2. most general »classical« gravity theory?
(possibly including massive higher spins)
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GEOMETRY VS. QFT

We can look at gravitational interactions in two complementary
ways

▶ Geometry
▶ QFT

→ GR is unique low energy theory for interacting spin 2
Weinberg '64

▶ Lorentz invariance⇒ diffeomorphism invariance
→ 2 helicity states!

hµν / pµhµν = hµ
µ = 0 (5? d.o.f.)

hµν → hµν + αµpν + ανpµ ; αµpµ = 0

▶ Equivalence theorem
∑

i κipµ
i = 0 ⇒ κi = κ

▶ Many quantities can be computed in both frameworks.
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FEYNMAN DIAGRAMS IN FIELD THEORY

Klein-Gordon equation

(∇2 + m2)ϕ = 0 ; ϕ = e−ipx with p2 = m2 (on-shell)

→ it is linear: ϕ0 =
∫
dp δ(p2 − m2)

[
a(p)e−ipx + a∗(p)eipx]

Nonlinear equation

(∇2 + m2)ϕ = gϕ3 ; ϕ =
∑

n gnϕn

→ Green's function: (∇2 + m2)G(x, y) = δ(x − y)

(propagator) G(x, y) =
∫ dk
(2π)d

e−ik(x−y)

−k2+m2 (off-shell)

(∇2 + m2)ϕ1 = ϕ30 ; ϕ1(x) =
∫
dy G(x, y)ϕ30(y)

(∇2+m2)ϕ2 = 3ϕ20ϕ1 ; ϕ2(x) = 3
∫
dy G(x, y)ϕ20(y)ϕ1(y)

... diagramatic expansion!
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CAUSALITY & QFT

Not all local, Lorentz invariant lagrangians are consistent.
Adams, Arkani-Hamed, Dubovsky, Nicolis & Rattazzi '06

e.g. massless scalar field

L = −∂µϕ∂µϕ+
c
Λ4

(∂µϕ∂
µϕ)2 + . . .

Effectivemetric: ϕ = ϕ0 + ψ, ∂µϕ0 = Cµ(
ηµν − 4

c
Λ4

CµCν + . . .
)

︸ ︷︷ ︸
Gµν(ϕ0)

∂µ∂νψ + . . . = 0

In order to avoid causality violations:
�� ��c ≥ 0 (and CTCs)

Assuming analiticity & unitarity: c
Λ4

=
2

π

∫
ds σ(s)s2 ≥ 0

8
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CAUSALITY & GRAVITY

QFT: global Lorentz symmetry (Lorentz inv. notion of causality)
Gravity: less obvious

▶ just local Lorentz invariance
▶ locally cg > 1 not necessarily leads to CTCs

Lorentz invariance still asymptotic symmetry Gao & Wald '00

⇒ asymptotic causality

▶ Null energy condition

▶ Einsteins' equations .

We can prove the positivity of mass in this way Penrose, Sorkin, Woolgar

and can be generalised to asymptotically AdS spacetimes
(holographic causality) Page, Surya, Woolgar

Brigante et al.
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SHAPIRO TIME DELAY

4-th classical test of GR: light slowed down by the gravitational
field of a massive body.

Simplified experiment: probe in the gravitational field of a highly
energetic particle (shock wave)

ds2 = −du dv + δ(u)h(x)du2 + dxidxi ; h(|x|) = GN
|Pu|
|x|d−4

.

probe delay

∆v = h(b) > 0

same as for a scalar field or
GR (phase shift) δ = Pv∆v

11
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3-POINT FUNCTIONS

There is a equivalent description in terms of 3pt functions

..

q

.
Pu

.
Pv

The Mandelstam invariants:

s = PuPv , t = −q2

Forward limit, s ≫ t

Atree(s, t) =
s2
t

; ∆v = GN
|Pu|
bd−4

Eikonal approximation

δ(s, b) =
1

s

∫
dd−2q eib·qAtree(s,−q2)

12
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s = PuPv , t = −q2

Forward limit, s ≫ t

Atree(s, t) =
s2
t ; ∆v = GN

|Pu|
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Forward limit, s ≫ t

Atree(s, t) =
s2
t ; ∆v = GN

|Pu|
bd−4

Eikonal approximation & factorization (massless pole)

δ(s, b) =
1

s
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i
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3(q = ∂b)Ai
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3-POINT FUNCTIONS II

..

spin 0

.

k2

.
k3

.

k1

No kinematic invariants:
(k1 + k2)

2 = k2
3 = 0

Only a single coupling
√

GN

With spin, we also have
polarization vectors
ki · ϵi = 0 ; ϵi ∼ ϵi + ki

A0 = (ϵ1 · ϵ2)(ϵ3 · k1) + . . . ∼ E (F2)

A2 = (ϵ1 · k2)(ϵ2 · k3)(ϵ3 · k1) ∼ E3 (F3)

13
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GRAVITY 3-POINT FUNCTIONS

..

spin 2

.

ϵ2, k2

.
ϵ3, k3

.

ϵ1, k1

G0 = A0A0
1

GN
R

G2 = A0A2
α2
GN

R2

G4 = A2A2
α2
4

GN
R3

α2,4 ∼ [L2]

extra terms relevant at
distances r ∼

√
∥α2,4∥

Effective field theory: α2,4 ∼ l2p (strong coupling)

Weakly coupled gravity: α2,4 ≫ l2p
Overall coupling GN very small (all three very small)

e.g. string theory gs → 0 , α2,4 ∼ α′

14



Outline
. .
Perturbative (Q)FT & Feynman diagrams

. .
Causality

. . . . . .
Journey through the shock

. .
Higher-spin fix Conclusions

GRAVITY 3-POINT FUNCTIONS

..

spin 2

.

ϵ2, k2

.
ϵ3, k3

.

ϵ1, k1

G0 = A0A0
1

GN
R

G2 = A0A2
α2
GN

R2

G4 = A2A2
α2
4

GN
R3

α2,4 ∼ [L2]

extra terms relevant at
distances r ∼

√
∥α2,4∥

Effective field theory: α2,4 ∼ l2p (strong coupling)

Weakly coupled gravity: α2,4 ≫ l2p
Overall coupling GN very small (all three very small)

e.g. string theory gs → 0 , α2,4 ∼ α′

14



Outline
. .
Perturbative (Q)FT & Feynman diagrams

. .
Causality

. . . . . .
Journey through the shock

. .
Higher-spin fix Conclusions

WEAKLY COUPLED GRAVITY THEORIES

Consider a general gravity theory

1

16πGN

∫
ddx

√
−g

(
R + α2R2 + α2

4R3 + . . .
)

and compute the time delay (for a scalar source)

∆v =
(
1 + α2(ϵ · ∂b)

2 + α2
4(ϵ · ∂b)

4
) GN∥Pu∥

bd−4

=

(
1± α2

b2 ± α2
4

b4

)
GN∥Pu∥

bd−4
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SHAPIRO TIME DELAY

Depending on the polarization we can propagate faster than
light as seen from infinity.

..

∆v > 0

.

∆v < 0

Violates asymptotic causality
Gao & Wald '00

In AdS, it corresponds to a
violation in the boundary
theory.

Indication for the existence of
CTCs

16
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CORRECTING THE PROBLEM

..
Pu

.

? →

.
Pv

Adding more external
particles does not help

Graviton contribution grows
like

s = PuPv

Contribution from spin J
particles grows like sJ−1�



�
	J ≥ 2 ; m2

J ≲ 1
α2,4

Massive spin two does not help

Massive higher spins have problems with analyticity
⇒ we need an infinite number! → it works for strings!!

Amati, Ciafaloni, Veneziano '88

18
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EXTENDED GRAVITON AND 3-POINT FUNCTIONS

.. ε

If the graviton is extended
different pieces suffer different
time delays:

ε ∼ ls

1

2
[δ(b + ε) + δ(b − ε)] ≈ δ(b) + ε2

2
∂2bδ(b)

from where:
�� ��α2 ∼ l2s ∼ typical length of the string

19
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CONCLUSIONS & OPEN QUESTIONS

▶ Corrections of the graviton 3-point function imply a
violation of causality

▶ May signal the existence of new higher spin particles and a
structure similar to string theory

▶ Graviton 3-point functions are encoded in the
non-gaussianities of the gravity wave spectrum --
string-like theory during inflation?

Danke schön!!

21
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