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Energy

I Energy is a central concept in Physics: it has many
forms, it is always conserved.

I The energy concept provides a deep link between
Physics and Mathematics.

Mathematical applications of the energy concept:

I Uniqueness of solutions.

I Existence of solutions.

I Weak solutions: natural Sobolev spaces.

I Calculus of variations

I Energy estimates for evolution equations: stability of solutions.

I Energy in General Relativity: the Yamabe problem.
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Physics vs Mathematics

I Physics:

I Using heuristic arguments, discover the mathematical formula
for the energy of a given theory. And then guess some of its
mathematically properties: positivity, conservation.

I Try to find physical interpretation and applications of
mathematical interesting energy definitions.

I Mathematics:

I Prove the properties or find counter examples. Discover new
connections between the energy and other mathematical
concepts. Find new appliactions of the energy concept to solve
other problems.

I Find new kind of energies, which are mathematically relevant.
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Energy in General Relativity

I The physical concept of energy in General Relativity is subtle.
It was not easy to discover the definition of total energy.

I Given the definition, to prove the positivity was remarkably
difficult.

I From the geometrical energy definition, without the physical
picture, it would be very hard even to conjecture that this
quantity should be positive.
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Plan of the lectures

I Part I: Energy in Electrodynamics.

I Part II: Energy in General Relativity. Definition, examples,
meaning of the positive energy theorems, proofs in simple
cases.

I Part III: Witten proof of the positive energy theorem.

I Part IV: Schoen-Yau proof of the positive energy theorem.
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Mechanics
F : force on a particle. F = ma: Newton’s Law.

Work:

W12 =

∫ 2

1
F · ds 1

2

Work and kinetic energy:∫ 2

1
F · ds =

∫ 2

1
m

dv

dt
· v dt =

m

2

∫ 2

1

d

dt
v 2 dt

=
m

2
(v 2(2)− v 2(1)).

We define the kinetic energy of the particle by

T =
1

2
mv 2,

and hence previous equation is given by

W12 = T (2)− T (1).

The work done by the external force is equal to the change
in the kinetic energy.
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Assume that the force F is the gradient of a potential

F = −∇Φ,

then
W12 = Φ(2)− Φ(1).

We define Φ to be the potential energy of the particule. The total
energy of the particle is given by

E = Φ + T .

It is conserved:

E(2) = E(1),
d

dt
E = 0.
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Electrostatic
Electrostatic equations (Gaussian units):

∇× E = 0, ∇ · E = 4πρ,

where E is the electric field and ρ is the charge density.
Potential:

E = −∇Φ, ∆Φ = −4πρ.

Electric force (definition of the electric field):

F = qE .

Work:

W12 =

∫ 2

1
F · ds = q(Φ(2)− Φ(1))

If we take the point 2 at infinity and we chose the constant in the
potential such that Φ(∞) = 0, then the work needed to bring a
charge q from infinity to the point x under the field E is given by

W = qΦ(x).
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Binding Energy
The work needed to place a density ρ on a external potential (i.e.
not produced by ρ) is given by

W =

∫
ρΦ.

We want to compute the work needed to assemble the charge
density ρ. Let ρ and Φ be the final charge density and potential
(produced by this density). Let λ ∈ [0, 1] a real number, and
consider the density λρ and corresponding potential λΦ. The work
needed to bring a δρ from infinity under the field λΦ is given by

δW =

∫
δρ(λΦ) =

∫
(δλ)ρ(λΦ).

Then, we deduce
dW

dλ
=

∫
λρΦ

Integrating we obtain the total work required to build the system

E =

∫ 1

0

dW

dλ
dλ =

∫
ρΦ

∫ 1

0
λdλ =

1

2

∫
ρΦ.
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Positivity of the binding energy

Consider ρ of compact support in the region U

E =
1

2

∫
U
ρΦ = − 1

8π

∫
U

Φ∆Φ

= − 1

8π

∫
U

(∇(Φ∇Φ)− |∇Φ|2

= − 1

8π

∮
∂U

Φ
∂Φ

∂n
+

1

8π

∫
U
|∇Φ|2

=
1

8π

∫
R3

|∇Φ|2

=
1

8π

∫
R3

|E |2.
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Application: uniqueness of solution in electrostatics
Consider the Dirichlet boundary problem

∆Φ = −4πρ in U, Φ = g in ∂U.

Assume we have two different solutions Φ1 and Φ2 with the same
source and boundary data. Then the difference Φ̄ = Φ2 − Φ1 is
solution of the homogeneous problem

∆Φ̄ = 0 in U, Φ̄ = 0 in ∂U.

Then,

0 =

∫
U

Φ̄∆Φ̄ =

∮
∂U

Φ̄
∂Φ̄

∂n
−
∫
U
|∇Φ̄|2.

That is

E(U) =

∮
∂U

Φ̄
∂Φ̄

∂n
.

By the boundary condition at ∂U we obtain E(U) = 0. Hence, Φ̄
is constant in U and by the boundary condition we deduce is zero.
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Electrodynamics
Maxwell equations (Gaussian units)

∇× E +
1

c

∂B

∂t
= 0, ∇ · E = 4πρ,

∇× B − 1

c

∂E

∂t
=

4π

c
J, ∇ · B = 0.

Energy density of the electromagnetic field:

e =
1

8π

(
|E |2 + |B|2

)
Energy conservation:

∂e

∂t
+∇ · S = −J · E ,

Poynting vector:

S =
c

4π
E × B.
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Lorentz force acting on a particle of charge q and velocity v :

F = q(E +
v

c
× B)

Work done by the force:

dW

dt
=

∫
F · v =

∫
J · E .

Energy conservation (non-covariant formulation):

d

dt
(W + E) =

∮
∂U

S · n
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Energy: covariant formulation

Maxwell equations (Geometric units c = 1):

∂µFµν = −4πJν , ∂[µFνλ] = 0.

Energy momentum tensor of the electromagnetic field

Tµν =
1

4π

(
FµλFν

λ − 1

4
gµνFλγFλγ

)
,

We assume Jµ = 0. Properties of Tµν :

Tµν = Tνµ, Tµ
µ = 0, ∂µTµν = 0.

T00 =
1

8π
(|E |2 + |B|2) = e, T0i =

1

4π
(E × B)i = Si

19 / 137



Let kµ be a Killing vector, i.e.

∂(νkµ) = 0.

Then, the vector Kµ defined by

Kµ = Tµνkν ,

is divergence free
∂µKµ = 0.
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Stokes Theorem on Lorentzian Manifolds
For a vector field Kµ we have the identity∫

Ω
∇µKµ =

∫
∂Ω

Kµnµ.

Both integrals are taken with respect to the induced volume form.
The vector nµ is the unit normal to ∂Ω and its direction depends
on the convention of the signature of the metric. For Lorentzian
metrics with signature (−,+,+,+) the vector nµ is the inward
directed unit normal to ∂Ω in case is spacelike and the outward
directed unit normal in case ∂Ω is timelike. If ∂Ω is null then we
take a past (future) directed null normal to ∂Ω if it is future (past)
boundary.

(picture from http://arxiv.org/abs/1110.2007, S. Aretakis) 21 / 137
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Energy conditions

Weak energy condition:

Tµνξ
µξν ≥ 0,

for all timelike vectors ξµ. Physical interpretation: Tµνξ
µξν is the

energy density measured by the observed ξµ and it should be
positive.
Dominant energy condition: For all future directed timelike
vector ξµ the vector −Tµ

νξ
ν should be future directed timelike or

null vector. Physical interpretation: −Tµ
νξ
ν is the energy

momentum current density. The dominant energy condition
implies that the speed of the energy flow is less or equal the speed
of light. Equivalent formulation:

Tµνξ
µkν ≥ 0,

for all future directed timelike or null vectors kµ and ξµ.
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Domains

Let U be a 3-dimensional spacelike domain with (timelike) normal
nµ we define the energy by

E(U) =

∫
U

Kµnµ.

Let C be a null or timelike 3-dimensional surface with (spacelike or
null) normal nµ, we define the flux by

F(C) =

∫
C

Kµnµ.
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Timelike cylinder

I U1 and U2 spacelike surfaces t = constant (green surfaces).

I C timelike cylinder (blue surface).

E(U2)− E(U1) = F(C)

The flux F(C) can have any sign: incoming or outgoing
radiation.
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Future domain of dependence

I U1 and U2 spacelike surfaces t = constant (green surfaces).

I C timelike cylinder (blue surface).

E(U2)− E(U1) = F(C) ≤ 0

The flux F(C) ≤ 0 is always negative: radiation can escape but
can not enter the domain.
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Past domain of dependence

I U1 and U2 spacelike surfaces t = constant (green surfaces).

I C timelike cylinder (blue surface).

E(U2)− E(U1) = F(C) ≥ 0

The flux F(C) ≥ 0 is always positive: radiation can enter but it
can not escape.
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Conservation of energy

Assume that the initial data for the electromagnetic field has
compact support. Define the total energy by

E =
1

8π

∫
R3

|E |2 + |B|2

then, we have
d

dt
E = 0.
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Linear momentum

Given a plane t = constant we asociate a cartesian coordinates
system to it (t, x , y , z). In this coordinate system we compute the
following quantity

Pµ =

∫
R3

Tµνtν ,

where tν is the timelike normal to the plane. This quantity is a
vector in the following sense: if we have another plane
(t ′, x ′, y ′, z ′) and compute

P ′µ =

∫
R3

T ′µνt ′ν ,

then P ′µ and Pµ are related by a Lorentz transformation.
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To prove this non-trivial statement we compute, for a constant but
otherwise arbitrary vector ku

Pµkµ =

∫
R3

Tµνkµtν

Using the Gauss theorem we prove that

Pµkµ = P ′µk ′µ.

We define the invariant

M =
√
−PµPµ.
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Aplication: uniqueness of the Cauchy problem in
electrodynamics

Given initial data E and B en t = 0 the solution of Maxwell
equations is unique.
Proof: assume there are two solutions, then the difference has zero
initial data. Compute the energy, the energy is zero initially and,
by conservation, is zero for all time. Then the difference is zero.
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Aplication: stability for the wave equation
Wave equation:

�Φ = 0.

Energy for the wave equation

E =

∫
R3

Φ̇2 + |∇Φ|2

The energy is conserved
d

dt
E = 0.

If we take a time derivative to the wave equation we obtain

�Φ̇ = 0.

Then, the following energy is also conserved

E1 =

∫
R3

Φ̈2 + |∇Φ̇|2
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The solutions of the wave equation satisfies the following pointwise
estimate

|Φ| ≤ C (E + E1),

where C is a numerical constant that not depends on Φ.
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PART II
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Energy in General Relativity: introduction

I I will present an introduction and also an overview of some of
the most relevant results concerning positivity energy
theorems in General Relativity. These theorems provide the
answer to a long standing problem that has been proved
remarkably difficult to solve. They constitute one of the major
results in classical General Relativity and they uncover a deep
self-consistence of the theory.

I In this introduction I would like to present the theorems in a
complete form but with the least possible amount of technical
details, in such a way that you can have a rough idea of the
basic ingredients. In the following lectures I will discuss the
examples that illustrate the hypothesis of the theorems.
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Isolated systems in General Relativity

I An isolated system is an idealization in physics that assumes
that the sources are confined to a finite region and the fields
are weak far away from the sources. This kind of systems are
expected to have finite total energy. In General Relativity
there are several ways of defining isolated systems. For our
purpose the most appropriate definition is through initial
conditions for Einstein equations.

I The reasons for that are twofold:
I The notion of total energy has been discovered and formulated

using a Hamiltonian formulation of the theory which involves
the study of initial conditions.

I The proofs of the positive mass theorem are mainly given in
terms of initial conditions.
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Initial data set
Initial conditions for Einstein equations are characterized by initial
data set given by (S , hij ,Kij , µ, j

i ) where S is a connected
3-dimensional manifold, hij a (positive definite) Riemannian metric,
Kij a symmetric tensor field, µ a scalar field and j i a vector field on
S , such that the constraint equations

DjK
ij − D iK = −8πj i , (1)

R − KijK
ij + K 2 = 16πµ, (2)

are satisfied on S . Here D and R are the Levi-Civita connection
and scalar curvature associated with hij , and K = Kijh

ij . In these
equations the indices i , k, . . . are 3-dimensional indices, they are
raised and lowered with the metric hij and its inverse hij . The
matter fields are assumed to satisfy the dominant energy condition

µ ≥
√

j j jj . (3)
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Asymptotically flat initial data
The initial data model an isolated system if the fields are
weak far away from sources. This physical idea is captured in
the following definition of asymptotically flat initial data set.
Let BR be a ball of finite radius R in R3. The exterior region
U = R3 \ BR is called an end. On U we consider Cartesian
coordinates x i with their associated euclidean radius

r =
(∑3

i=1(x i )2
)1/2

and let δij be the euclidean metric

components with respect to x i . A 3-dimensional manifold S is
called Euclidean at infinity, if there exists a compact subset K of S
such that S \ K is the disjoint union of a finite number of ends Uk .
The initial data set (S , hij ,Kij , µ, j

i ) is called asymptotically flat if
S is Euclidean at infinity and at every end the metric hij and the
tensor Kij satisfy the following fall off conditions

hij = δij + γij , Kij = O(r−2), (4)

where γij = O(r−1), ∂kγij = O(r−2), ∂l∂kγij = O(r−3) and
∂kKij = O(r−3). These conditions are written in terms of
Cartesian coordinates x i attached at every end Uk . 37 / 137



Multiple ends

I At first sight it could appear that the notion of asymptotically
flat manifold with “multiple ends” Uk is a bit artificial.

I Certainly, the most important case is when S = R3, for which
this definition trivializes with K = BR and only one end
U = R3 \ BR . Initial data for standard configurations of
matter like stars or galaxies are modeled with S = R3. Also,
gravitational collapse can be described with this kind of data.

I However, initial conditions with multiple ends and non-trivial
interior K appear naturally in black hole initial data as we will
see. In particular, the initial data for the Schwarzschild black
hole has two asymptotic ends.

I On the other hand, this generalization does not imply any
essential difficulty in the proofs of the theorems.
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I Only fall off conditions on hij and Kij are imposed and not on
the matter fields µ and j i , however since they are coupled by
the constraint equations the fall off conditions on hij and Kij

impose also fall off conditions on (µ, j i ).

I Thesee fall off conditions are far from being the minimal
requirements for the validity of the theorems. This is a rather
delicate issue that have important consequences in the
definition of the energy. We will discuss this point in the
following lectures. We have chosen these particular fall off
conditions because they are simple to present and they
encompass a rich family of physical models.

39 / 137



Energy and linear momentum

For asymptotically flat initial data the expressions for the total
energy and linear momentum of the spacetime are called the ADM
energy and linear momentum. They are defined as integrals over
2-spheres at infinity at every end by the following formulas

E =
1

16π
lim
r→∞

∮
Sr

(∂jhij − ∂ihjj) s ids0.

Pi =
1

8π
lim
r→∞

∮
Sr

(Kik − Khik) skds0,

where s i is its exterior unit normal and ds0 is the surface element
of the 2-sphere with respect to the euclidean metric. We
emphasize that for every end Uk we have a corresponding energy
and linear momentum E(k),P

i
(k), which can have different values.
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I The quantities E and Pi are defined on the asymptotic ends
and they depend only on the asymptotic behaviour of the
fields hij and Kij . However, since hij and Kij satisfy the
constraint equations (1)–(2) and the dominant energy
condition (3) holds these quantities carry in fact information
of the whole initial conditions.

I The energy E and the linear momentum Pi are components of
a 4-vector Pa = (E ,Pi ) (indices a, b, c , . . . are 4-dimensional).
We will discuss this in the following lectures. The total mass
of the spacetime is defined by

M =
√

E 2 − PiPjδij .
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Positive energy theorem

Theorem
Let (S , hij ,Kij , µ, j

i ) be an asymptotically flat (with possible many
asymptotic ends), complete, initial data set, such that the
dominant energy condition holds. Then the energy and linear
momentum (E ,Pi ) satisfies

E ≥
√

PiPjδij ≥ 0.

at every end. Moreover, E = 0 at any end if and only if the initial
data correspond to the Minkowski space-time.
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I The word “complete” means that (S , hij) as Riemannian
manifold is complete. That is, no singularities are present on
the initial conditions. But the space-time can be singular since
singularities can developed from regular initial conditions, for
example in the gravitational collapse.

I One remarkable aspect of this theorem is that it is non-trivial
even in the case where S = R3 and no matter fields
µ = j i = 0 are present. This correspond to the positivity of
the energy of the pure vacuum gravitational waves.
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Black holes

I For spacetimes with black holes there are spacelike surfaces
that touch the singularity. For that kind of initial conditions
this theorem does not apply.

I Physically it is expected that it should be possible to prove a
positivity energy theorem for black holes without assuming
anything about what happens inside the black hole. That is, it
should be possible to prove an extension of the positive energy
theorem for initial conditions with inner boundaries if the
boundary represents a black hole horizon. The following
theorem deals precisely with that problem.
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Positive energy theorem with black hole inner boundaries

Theorem
Let (S , hij ,Kij) be an asymptotically flat, complete, initial data set,
with S = R3 \ B, where B is a ball. Assume that the dominant
energy condition holds and and that ∂B is a black hole boundary.
Then the energy momentum E ,P i satisfies

E ≥
√

P iPi ≥ 0.

Moreover, E = 0 if and only if the initial data correspond to the
Minkowski space-time.

We will explain what are black hole inner boundary conditions in
the following lectures.
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Energy
I A remarkable feature of the asymptotic conditions is that they

imply that the total energy can be expressed exclusively in
terms of the Riemannian metric hij of the initial data (and the
linear momentum in terms of hij and the second fundamental
form Kij).

I Hence the notion of energy can be discussed in a pure
Riemannian setting, without mention the second fundamental
form.

I Moreover, as we will see, there is a natural corollary of the
positive energy theorem for Riemannian manifolds. This
corollary is relevant for several reasons. First, it provides a
simpler and relevant setting to prove the positive energy
theorem. Second, and more important, it has surprising
applications in other areas of mathematics. Finally, to deal
first with the Riemannian metric and then with the second
fundamental form to incorporate the linear momentum, reveal
the different mathematical structures behind the energy
concept. 46 / 137



Energy in Riemannian geometry

We have introduced the notion of an end U, the energy is defined
in terms of Riemannian metrics on U. To emphasize this important
point we isolate the notion of energy defined before in the
following definition.

Definition (Energy)

Let hij be a Riemannian metric on an end U given in the
coordinate system x i associated with U. The energy is defined by

E =
1

16π
lim
r→∞

∮
Sr

(∂jhij − ∂ihjj) s ids0.

Note that in this definition there is no mention to the constraint
equations. Also, the definition only involve an end U, there is no
assumptions on the interior of the manifold.
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I In the literature it is custom to call E the total mass and
denote it by m or M. In order to emphasize that E is in fact
the zero component of a four vector we prefer to call it energy
and reserve the name mass to the quantity M defined above.
When the linear momentum is zero, both quantities coincides.

I The definition of the total energy has three main ingredients:
the end U, the coordinate system x i and the Riemannian
metric hij . The metric is always assumed to be smooth on U,
we will deal with singular metrics but these singularities will
be in the interior region of the manifold and not on U.
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There exists two potentials problems with this definition:

1. The integral could be infinite.

2. The mass seems to depend on the particular coordinate
system x i .

Both problems are related with fall off conditions for the metric.
These conditions are probably sufficient to model most physically
relevant initial data. However, it is interesting to study the optimal
fall off conditions that are necessary to have a well defined notion
of energy and such that the energy is independent of the
coordinate system.
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To study this problem, we introduce first a general class of fall off
conditions as follows. Given an end U with coordinates x i , and an
arbitrary real number α, we say that the metric hij on U is
asymptotically flat of degree α if the components of the metric
with respect to these coordinates have the following fall off in U as
r →∞

hij = δij + γij , (5)

with γij = O(r−α), ∂kγij = O(r−α−1). The subtle point is to
determine the appropriate α decay.
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Take the euclidean metric δij in Cartesian coordinates x i and
consider coordinates y i defined by

y i =
ρ

r
x i , (6)

where ρ is defined by
r = ρ+ cρ1−α, (7)

for some constants c and α. Note that ρ =
(∑3

i=1(y i )2
)1/2

. The

components g ′ij of the euclidean metric in coordinates y i have the
following form

g ′ij = δij + γij , (8)

where γij satisfies the decay conditions (5) with the arbitrary α
prescribed in the coordinate definition (7). That is, the metric in
the new coordinate system y i is asymptotically flat of degree α.
The energy in the coordinates y i is

E =


∞, α < 1/2,

c2/8, α = 1/2,

0, α > 1/2.
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The example shows that if the energy has any chance to be
coordinate independent, then we should impose α > 1/2.

Theorem (Bartnik)

Let U be an end with a Riemannian metric hij such that is satisfies
the fall off conditions (5) with α > 1/2. Assume also that the
scalar curvature R is integrable in U, that is∫

U
|R| dv <∞.

Then the energy is unique and it is finite.

In this theorem unique means if we calculate the energy in any
coordinate system for which the metric satisfies the decay
conditions (5) with α > 1/2 we obtain the same result. This
theorem ensure that the energy is a geometrical invariant of the
Riemannian metric in the end U. Historically, this theorem was
proved after the positive energy theorems. In the original proofs of
the positive energy theorems different decay conditions for the
metric have been used.
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Positivity

It is clear that the energy can have any sign on U. The model
example is given by the initial data for the Schwarzschild black
hole, with metric on U given by

hij = ψ4δij ,

where ψ is the following function

ψ = 1 +
C

2r
,

with C an arbitrary constant. Computing the energy for this metric
we obtain E = C . The constant C can of course have any sign. It
is however important to emphasize that the previous theorem
asserts that the energy is well defined and it is an invariant of the
geometry of the end even when it is negative.
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To ensure the positivity of the energy we need to impose two
important conditions:

1. One is a local condition: the positivity of the local energy
given by the dominant energy condition.

2. The other is a global condition on the manifold: the manifold
should be complete or should have black hole boundaries.

54 / 137



Initial conditions with
Kij = 0, (9)

are called time symmetric initial data. That is, time symmetric
initial data are characterized only by a Riemannian metric hij .
Conversely, any Riemannian metric can be interpreted as a time
symmetric initial data. However, an arbitrary metric will not satisfy
the dominant energy condition. The dominant energy conditions
implies

R ≥ 0. (10)

Only metrics that satisfy (10) can be interpreted as time symmetric
initial data for which the dominant energy condition holds.
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And hence we obtain the following corollary of the previous
theorem:

Corollary (Riemannian positive mass theorem)

Let (S , hij) be a complete, asymptotically flat, Riemannian
manifold. Assume that the scalar curvature is non-negative (i.e.
condition (10)). Then the energy is non-negative at every end and
it is zero at one end if an only if the metric is flat.

The interesting mathematical aspect of this corollary is that there
is no mention to the constraint equations, the second fundamental
form or the matter fields. This theorem is a result in pure
Riemannian geometry.

56 / 137



Examples

We begin with the case with one asymptotic end and trivial
topology, namely S = R3. For arbitrary functions ψ, metrics of the
form hij = ψ4δij are called conformally flat, they provide a very rich
family of initial conditions which have many interesting
applications. The scalar curvature for this class of metrics is given
by

R = −8ψ−5∆ψ,

where ∆ is the euclidean Laplacian. If ψ satisfies the fall off
conditions

ψ = 1 + u, u = O(r−1), ∂ku = O(r−2),

then the energy for this class of metric is given by

E = − 1

2π
lim
r→∞

∮
Sr
∂rψ ds0.
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For ψ given by ψ = 1 + C
2r we obtain R = 0, and then the metric

satisfies the local condition R ≥ 0 for any choice of the constant
C . However, this metric can not be extended to R3 since the
function ψ is singular at r = 0 and hence, as expected, the
corollary does not apply to this case.
Let us try to prescribe a function with the same decay (and hence
identical energy) but such that it is regular at r = 0. For example

ψ = 1 +
C

2
√

r 2 + C 2
.

We obtain again that E = C . For any value of C the function ψ is
strictly positive and bounded on R3 and hence the metric is
smooth on R3. That is, it satisfies the completeness assumption in
corollary. We compute the scalar curvature

R = 12ψ−5 C 3

(r 2 + C 2)5/2
.

We have R ≥ 0 if and only if C ≥ 0. Also, in this example the
mass is zero if and only if the metric is flat.
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Other interesting examples can be constructed with conformally
flat metrics as follows. Let ψ be a solution of the Poisson equation

∆ψ = −2πµ̃, (11)

that satisfies the decay conditions, where µ̃ is a non-negative
function of compact support in R3. Solution of (11) can be easily
constructed using the Green function of the Laplacian. The scalar
curvature of the associated conformal metric will be non-negative
and the function µ̃ is related to the matter density µ by

µ =
R

16π
= µ̃ψ−5. (12)

Note that we can not prescribe, in this example, exactly the matter
density µ, we prescribe a conformal rescaling of µ. However, it is
enough to control de support of µ. The support of µ represents
the localization of the matter sources. Outside the matter sources
the scalar curvature (for time symmetric data) is zero.
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Proof of the positive energy theorem for conformally flat
metrics

For conformally flat metrics in R3 there is a very simple proof of
corollary 5. We write the equation for R as

R

8
= −∂ i

(
∂iψ

ψ5

)
− 5
|∂ψ|2

ψ6
.

Integrating this equation in R3, using for the first term in the
right-hand side the Gauss theorem, the condition ψ → 1 as r →∞
and the expression for the energy we finally obtain

E =
1

2π

∫
R3

(
R

8
+ 5
|∂ψ|2

ψ6

)
dv0,

where dv0 is the flat volume element. This formula proves that for
conformally flat metrics we have E ≥ 0 if R ≥ 0 and E = 0 if and
only if hij = δij . This proof easily generalize for conformally flat
maximal initial data.
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Proof of the positive energy theorem for axially symmetric
metrics

Asymptotically flat initial conditions in R3 with no matter sources
(i.e. µ = j i = 0) represent pure gravitational waves. They are
conceptually important because they describe the dynamic of pure
vacuum, independent of any matter model. Note that in that case
the dominant energy condition is trivially satisfied.
In the previous examples the only solution with pure vacuum
R = 0 in R3 is the flat metric, because we obtain ∆ψ = 0 and the
decay condition implies ψ = 1. In order to construct pure waves
initial data we allow for more general kind of conformal metrics, let
hij be given by

h = eσ
[
e−2q(dρ2 + dz2) + ρ2dϕ2

]
,

where (ρ, z , ϕ) are cylindrical coordinates in R3 and the functions
q and σ depend only on (ρ, z). That is, the metric hij is axially
symmetric.
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The scalar curvature is given by

− 1

8
Re(σ−2q) =

1

4
∆σ +

1

16
|∂σ|2 − 1

4
∆2q, (13)

where ∆, as before, is the 3-dimensional flat Laplacian and ∆2 is
the 2-dimensional Laplacian in cylindrical coordinates given by

∆2q = ∂2
ρq + ∂2

z q. (14)

If we impose R = 0, equation (13) reduce to

∆ψ − 1

4
∆2q = 0, (15)

where ψ4 = eσ. To construct metrics of the this form that satisfies
R = 0 a function q is prescribed and then the linear equation (15)
is solved for ψ.
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In order to be smooth at the axis the metric should satisfies q = 0
at ρ = 0. For simplicity we also impose a strong fall off condition
on q at infinity, namely q = O(r−2), ∂iq = O(r−2). For σ we
impose σ = O(r−1) and ∂iσ = O(r−2). Using these decay
assumptions is straightforward to check that the energy of the
metric@ is given by

E = − 1

8π
lim
r→∞

∮
Sr
∂rσ ds0. (16)

By Gauss theorem, using that q = 0 at the axis and the fall off
condition of q at infinity we obtain that∫

R3

∆2q dv0 = 0. (17)

Integrating equation (13) in R3, using (17) and using the
expression (16) for the energy we obtain

E =
1

8π

∫
R3

(
1

2
|∂σ|2 + Reσ−2q

)
dv0. (18)

That is, R ≥ 0 implies E ≥ 0.
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In particular for vacuum R = 0, we have

E =
1

16π

∫
R3

|∂σ|2 dv0. (19)

This positivity proof can be extended in many ways.
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Multiples ends
Take out a point in R3, the manifold S = R3 \ {0} is asymptotic
Euclidean with two ends, which we denote by U0 and U1. In effect,
let B2 and B1 be two balls centered at the origin with radius 2 and
1 respectively. Define K be the annulus centered at the origin
B2 \ B1. Then S \ K has two components U0 and U1, where
U0 = R3 \ B2 and U1 = B1 \ {0}. The set U0 is clearly an end.
The set U1 is also an end since the a ball minus a point is
diffeomorphic to R3 minus a ball. This can be explicitly seen using
Cartesian coordinates centered at the origin x i , then the map given
by the inversion

y i = r−2x i , (20)

provide the diffeomorphism between R3 \ B1 and B1 \ {0}.

~

S

1

~

S

2
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In the same way R3 minus a finite number N of points ik is an
Euclidean manifold with N + 1 ends. For each ik take a small ball
Bk of radius r(k), centered at ik , where r(k) is small enough such
that Bk does not contain any other ik ′ with k ′ 6= k . Take BR , with
large R, such that BR contains all points ik . The compact set K is
given by K = BR \

∑N
k=1 Bk and the open sets Uk are given by

Bk \ ik , for 1 ≤ k ≤ N, and U0 is given by R3 \ BR .

~

S

1

~

S

2

~

S

3
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Another example is a torus T3 minus a point i0. Take a small ball
B centered at i0. Then the manifold is asymptotic euclidean with
K = T3 \ B and only one end U = B \ i0. This is an example of an
Euclidean manifold with one asymptotic end but non-trivial K.

~

S




More generally, given any compact manifold, if we subtract a finite
number of points we get an asymptotically Euclidean manifold
with multiple ends. Note that the topology of the compact core K
can be very complicated.
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Let us consider now Riemannian metrics on these asymptotic
euclidean manifolds. Consider the manifold S = R3 \ {0} and the
metric given by

hij = ψ4δij , ψ = 1 +
C

2r

The function ψ is smooth on S for any value of the constant C ,
however if C < 0 then ψ vanished at r = −2/C and hence the
metric is not defined at those points. That is, the metric hij is
smooth on S only when C ≥ 0. We have seen that S has two
asymptotic ends, let us check that the metric hij is asymptotically
flat at both ends U0 and U1. On U0, the metric in the coordinates
x i is clearly asymptotically flat. But note that in this coordinates
the metric is not asymptotically flat at the end U1 (which, in these
coordinates is represented by a neighborhood of r = 0), in fact the
components of the metric are singular at r = 0.
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We use the following coordinate transformation

y i =

(
C

2

)2 1

r 2
x i , ρ =

(
C

2

)2 1

r
.

In terms of this coordinates the metric has the form

h′ij =

(
1 +

C

2ρ

)4

δij .

Note that we have two energies, one for each end, the two are
equal and given by the constant C . In this example the positivity
of the mass is enforced purely by the global requirement of
completeness of the metric (the energy condition is satisfied for
arbitrary C ). It is this condition that fails when C < 0. In that
case the metric is defined on a manifold with boundary
S = R3 \B−2/C , and the metric vanished at the boundary ∂B−2/C .
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In the previous example the energies at the different ends are
equal. It is straightforward to construct an example for which the
two energies are different. Consider the following function

ψ = 1 +
C

2r
+ g , (21)

where g is a smooth function on R3 such that g = O(r−2) as
r →∞ and g(0) = a. Making the same calculation we get that
the energy at one end is E0 = C (here we use the decay conditions
on g , otherwise the function g will contribute to the energy at that
end). But at the other end the components of the metric in the
coordinates y i are given by

h′ij =

(
1 +

C (1 + g)

2ρ

)4

δij , (22)

and hence we have that

E1 = C (1 + a). (23)
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Note that in order to satisfy the energy condition (10) g (and
hence a) can not be arbitrary, we must impose the following
condition on g

∆g ≤ 0. (24)

Using (24), the decay assumption on g and the maximum principle
for the Laplacian it is easy to prove that g ≥ 0 and then a ≥ 0.
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Consider the manifold S = R3 \ {i1}, {i2} with three asymptotic
ends. And consider the function given by

ψ = 1 +
C1

2r1
+

C2

2r2
. (25)

where r1 and r2 are the euclidean radius centered at the points i1
and i2 respectively, and C1 and C2 are constant. Note that
∆ψ = 0 and hence the metric defined by hij = ψ4δij has R = 0.
As before, only when C1,C2 ≥ 0 the metric is smooth on S . Also,
using a similar calculation as in the case of two ends it is not
difficult to check that the metric is asymptotically flat on the three
ends. Moreover, the energies of the different ends are given by

E0 = C1 + C2, E1 = C1 +
C1C2

L
, E2 = C2 +

C1C2

L
, (26)

where L be the euclidean distance between i1 and i2. We see that
they are all positive and, in general, different. These initial
conditions model a head on collision of two black holes and
they have been extensively used in numerical simulations of
black hole collisions
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Wormhole
Consider the metric on the compact manifold S = S1× S2 given by

γ = dµ2 + (dθ2 + sin2 θdϕ2),

where the coordinates ranges are −π < µ ≤ π, and the sections
µ = const are 2-spheres. Let hij be given by

hij = ψ4γij

where the function ψ is

ψ =
n=∞∑
n=−∞

[cosh(µ+ 2nπ)]−1/2.

This function blows up at µ = 0. Hence, the metric hij is defined
on S minus the point µ = 0. We have seen that this is an
asymptotic euclidean manifold with one asymptotic end. The
function ψ is chosen in such a way that the scalar of hij curvature
vanished. The energy is given by the positive function

E = 4
∞∑
n=1

(sinh(nπ))−1.
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Reissner-Nördstrom black hole initial data
Metric given by hij = ψ4δij , with

ψ =
1

2r

√
(q + 2r + C )(−q + 2r + C ),

where C and q are constant. The scalar curvature of this metric is
given by

R =
2q2

ψ8r 4
.

Which is non-negative for any value of the constants. When
C > |q|, then the metric is asymptotically flat with two ends U0

and U1 . The energy on both ends is given by E = C . The positive
energy theorem applies to this case. If C < |q| then the metric is
singular, there is only one end U0 and the energy on that end is
given by C . Note that in this case it is still possible to have
positive energy 0 < C < |q|, but the positive energy theorem does
not apply because is a singular metric. The borderline case C = |q|
represents the extreme black hole. The metric is asymptotically flat
only at the end U0, on the other end is asymptotically cylindrical.
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Black hole boundaries
Black hole boundaries are defined in terms of marginally trapped
surfaces. A marginally trapped surface is a closed 2-surface such
that the outgoing null expansion Θ+ vanishes. If such surface is
embedded on a space-like 3-dimensional surface, then the
expansion Θ+ can be written in terms of the initial conditions as
follows

Θ+ = H − Kijs
i s j + K ,

where
H = Di s

i ,

is the mean curvature of the surface. Here s i is the unit normal
vector to the surface. For time symmetric initial data, condition
Θ+ = 0 reduces to

H = 0.

Surfaces that satisfies this condition are called minimal surfaces,
because this condition is satisfied if and only if the first variation of
the area of the surface vanishes.
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Riemannian positive mass theorem for black holes

Corollary

Let (S , hij) be a complete, asymptotically flat, Riemannian
manifold with compact boundary. Assume that the scalar
curvature is non-negative and that the boundary is a minimal
surface. Then the energy is non-negative and it is zero at one end
if and only if the metric is flat.
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Let as give a very simple example that illustrate this theorem.
Consider the function ψ = 1 + C/2r . It is well known that the
surface r = C/2 is a minimal surface (it represents the intersection
of the Schwarzschild black hole event horizon with the spacelike
surface t = constant in Schwarzschild coordinates). To verify, that
we compute H for the 2-surfaces r = constant for the metric
hij = ψ4δij . The unit normal vector is given by

s i = ψ−2

(
∂

∂r

)i

.

Then we have

H = Di s
i =

4

ψ3

(
∂rψ +

ψ

2r

)
.

The condition H = 0 is equivalent to

0 = ∂rψ +
ψ

2r
=

1

2r
− C

4r 2
,

and hence for r = C/2 we have a minimal surface. Note that C
must be positive in order to have a minimal surface.
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Previously we have discussed this example in the complete
manifold, without boundaries, R3 \ {0}. We can also consider the
same metric but in the manifold with boundary R3 \ BC/2. Since
we have seen that ∂BC/2 is a minimal surface, then corollary for
black holes applies to that case. To emphasize the scope of this
corollary, we slightly extend this example in the following form.
Consider ψ given by

ψ = (1 +
C

2r
)χ(r),

where χ(r) is a function such that is χ = 1 for r > C/2 and
arbitrary for r < C/2. Corollary applies to this case since again the
boundary is a minimal surface. Note that inside the minimal
surface the function χ is arbitrary, in particular it can blows up and
it does not need to satisfies the energy condition. The positive
mass theorem for complete manifolds without boundaries certainly
does not apply to this case.
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Linear Momentum

The total mass

M =
√

E 2 − P iP jδij

represents the total amount of energy of the space-time.

I The first basic question we need to address is in what sense
M is independent of the choice of initial conditions that
describe the same space-time.

I That is, given a fixed space-time we can take different
space-like surfaces on it, on each surface we can calculate the
initial data set and hence we have a corresponding M, do we
get the same result?

I We will see that the answer of that question strongly depend
on the fall off conditions.
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To illustrate that, let us consider the Schwarzschild space-time. We
recall that in the following examples the space-time is fixed and we
only chose different space-like surfaces on it. The space-time
metric is given in Schwarzschild coordinates (t, rs , θ, φ) by

ds2 = −
(

1− 2C

rs

)
dt2 +

(
1− 2C

rs

)−1

dr 2
s + r 2

s (dθ2 + sin2 θdφ2).

These coordinates are singular at rs = 2C and hence they do not
reveal the global structure of the surfaces t = constant. The most
direct way to see that these surfaces are complete 3-dimensional
manifolds is using the isotropical radius r defined by

rs = r

(
1 +

C

2r

)2

.

In isotropic coordinates the line element is given by

ds2 = −

(
1− C

2r

1 + C
2r

)2

dt2 +

(
1 +

C

2r

)4

(dr 2 + dθ2 + r 2 sin2 θdφ2).
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The initial data on the slice t = constant are given by

hij =

(
1 +

C

2r

)4

δij , Kij = 0.

These are the time symmetric initial data previously studied. The
linear momentum of these data is obviously zero, then the total
mass M is equal to the energy E calculated in the previous section
and we obtain the expected result M = C .
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We take another foliation of space-like surfaces. We write the
metric in the Gullstrand – Painlevé coordinates (tgp, rs , θ, φ. We
obtain

ds2 = −(1− 2C

rs
)dt2

gp +2

√
2C

rs
dtgpdrs +dr 2

s + r 2
s dθ2 + r 2

s sin2 θdφ2.

The slices tgp = constant in these coordinates have the following
initial data

hij = δij , Kij =

√
2m

r
3/2
s

(
δij −

3

2
si sj

)
,

where s i is the radial unit normal vector with respect to the flat
metric δij . We see that the intrinsic metric is flat and hence the
energy E is clearly zero. The linear momentum is also zero,
because if we calculate the integral at an sphere of finite radius
(note that the limit is in danger to diverge because the radial
dependence of Kij) the angular variables integrate to zero. And
hence we obtain that for these surfaces the total mass M is zero.
What happens is that the second fundamental form does not
satisfy the decay condition since it falls off like O(r−3/2).
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Lorentz transformation

Let (x , y , z) be the associated Cartesian coordinates of the
isotropical coordinates (r , θ, φ), that is

x = r cosφ sin θ, y = r sinφ cos θ, z = r cos θ.

We consider the Schwarzschild line element written in terms of the
coordinates (t, x , y , z) and we perform the following change of
coordinates which represents a boost in the z direction

t̂ = γ−1(t − vz),

ẑ = γ−1(−vt + ẑ),

x̂ = x ,

ŷ = y ,

where v is a constant and γ =
√

1− v 2. Consider a surface
t̂ = constant in these coordinates.
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The intrinsic metric is given by

h = ψ4(dx̂2 + dŷ 2) + γ−2(−N2v 2 + ψ4)dẑ2,

where

ψ = 1 +
C

2r
, N =

1− C
2r

1 + C
2r

.

The radius r is given by

r =
√

x2 + y 2 + z2 =
√

x̂2 + ŷ 2 + γ−2(v t̂ + ẑ)2.

The metric h is asymptotically flat in the coordinates (x̂ , ŷ , ẑ).
The energy of this metric and we obtain

E = γ−1C .

To obtain the linear momentum we need to compute the second
fundamental form of the slice. After a long calculation we obtain

Px = 0, Py = 0, Pz = vCγ−1.

Using (??) and (??) we obtain

M =
√

E 2 − P iP jδij = C .
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Proofs

I The first general proof of the positive energy theorem was
done by Schoen and Yau.

I Shortly after it was followed by a proof by Witten using
completely different methods.

I The proof of the Penrose inequality done by Huisken and
Illmanen also provide a new proof of the positive energy
theorem (which is based on an idea of Geroch)

The simpler of all these proofs is, by far, Witten’s one. Also it
resembles other positivity proofs in physics: the total energy is
written as a positive definite integral in the space.
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Witten proof

I This proof uses, in an essential way, spinors.

I The proof uses only spinors defined on the spacelike surface,
however it is more transparent to begin with spinor fields in
the spacetime and then, at the very end, to restrict them to
the spacelike surface. Also, this way of constructing the proof
easily generalize to the proof of the positivity of the energy at
null infinity (Bondi mass)

I Let (M, gab) be a four dimensional Lorenzian manifold with
connection ∇a. In this part we use the signature (+−−−) to
be consistent with the literature on spinors. Unfortunately this
signature gives a negative sign to the Riemannian metrics on
spacelike surfaces used in the previous sections.

I Let λA be an spinor field in the spacetime, the spin connection
is denoted by ∇AA′ , and we use the standard notation
a = AA′ to identify spinor indices with tensorial indices.
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Spinors
I A spinor at a point x of spacetime is an ordered pair of

complex numbers associated with an orthonormal basis of the
tangent space Vx which transforms in a specified way under a
continuous change of basis.

I The most unusual aspect of this transformation law is that a
spinor changes sign when the basis completes a rotation of 2π
radians about a fixed axis and thereby returns to its original
configuration.

I Thus, the numerical values of a spinor in a given orthonormal
basis cannot be directly physically measurable since it has two
possible distinct values in that basis.

I However, real bilinear products of spinors and complex
conjugate spinors may be identified with ordinary vectors and
thus have a direct physical interpretation.

I Every null vector can be expressed as the tensor product of a
spinor and its complex conjugate. In this sense, a spinor may
be viewed as a square root of a null vector,
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The concept of spinors can be divided in three levels:

1. Algebraic structure.

2. Relation with ordinary vectors.

3. Spinor fields on a manifold.
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Algebraic structure

I W : 2-dimensional vector space over the complex numbers.
We denote by λA an element of W . This complex vector has
components λA = (λ0, λ1).

I W ∗: dual of W . Denote by vA an element of W ∗. The
complex number given by the linear map vA acting on a vector
λA is denoted by vAλ

A.

I W̄ : complex conjugate of W . Denote by λA
′

and element of
W̄ .

I W̄ ∗: complex conjugate of W ∗. Denote by λA′ and element
of W̄ ∗.
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A tensor, T , of type (k , l ; k ′, l ′) over W is defined as a multilinear
map

T : W ∗ × · · ·W ∗︸ ︷︷ ︸
k

×W × · · ·W︸ ︷︷ ︸
l

× W̄ ∗ × · · · W̄ ∗︸ ︷︷ ︸
k ′

× W̄ × · · · W̄︸ ︷︷ ︸
l ′

7−→ C.

Let εAB a an antisymmetric tensor

εAB = −εBA.

The vector space of such tensors is 1-dimensional.

The pair (W , εAB) is called spinor space.
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I A linear map L : W →W is represented by a tensor LA
B

(2× 2 matrix).

I SL(2,C) is the group of linear maps of W into itself (2× 2
matrices) which have unit determinant.

I The condition that L ∈ SL(2,C) is equivalent to

LA
CLB

DεAB = εCD ,

which states that εAB is preserved under the action of
LA

B .
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Spinors and Vectors
The tensors of type (1, 0; 1, 0) comprise a 4-dimensional (complex)
vector space Y . Let oA ιA be a basis of W such that

oAι
A = εABoAιB = 1.

Then, the tensors

tAA
′

=
1√
2

(
oAōA′ + ιAῑA

′
)
, xAA′ =

1√
2

(
oAῑA

′
+ ιAōA′

)
yAA′ =

i√
2

(
oAῑA

′ − ιAōA′
)
, zAA′ =

i√
2

(
oAōA′ − ιAῑA′

)
,

comprise a basis of Y .
The element of Y which are taken into themselves under complex
conjugation are called real.
These basis is real. The element of Y that can be written as real
linear combination of this basis form a real 4-dimensional vector
space V .
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The tensor
gAA′BB′ = εAB ε̄A′B′

is the Lorentz metric on V with signature (+−−−).
Associated with each map LA

B ∈ SL(2,C) is the map λ : V → V

λAA
′
BB′ = LA

B L̄A′
B′

is a Lorentz transformation on V that preserves the metric

λAA
′
CC ′λ

BB′
DD′gAA′BB′ = gCC ′DD′ .
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It is useful to express some of the above relations in basis
components oA, ιA

εAB = oAιB − ιAoB =

(
0 1
−1 0

)
The components of an SL(2,C) transformation LA

B are

L =

(
a b
c d

)
with

ad − cb = 1.

The basis is given by

tAA
′

=
1√
2

(
1 0
0 1

)
, xAA′ =

1√
2

(
0 1
1 0

)
yAA′ =

1√
2

(
0 −i
i 0

)
, zAA′ =

1√
2

(
1 0
0 −1

)
.
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An arbitrary vector vAA′ ∈ V can be written as

vAA′ = t tAA
′

+ x xAA′ + y yAA′ + z zAA′ ,

and thus its components with respect to the basis oA, ιA are

v =
1√
2

(
t + z x + iy
x − iy t − z

)
The transformation of vAA′ induced by L is given by(

t ′ + z ′ x ′ + iy ′

x ′ − iy ′ t ′ − z ′

)
=

(
a b
c d

)(
t + z x + iy
x − iy t − z

)(
ā b̄
c̄ d̄

)
which is equivalent to the Lorentz transformation

x ′µ = λµνxν ,

where xµ = (t, x , y , x).
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The real tensors of type (1, 0; 1, 0) over W form a 4-dimensional
real vector space V . Let ta, xa, ya, za be an orthonormal basis field
in Minkowski spacetime. Let oA, ιA be a basis of W satisfying the
above relation with ta, xa, ya, za. We define the linear map σ
which takes elements of V and gives ordinary vectors in the
tangent space Vx :

σaAA′ = tatAA′ − xaxAA′ − yayAA′ − zazAA′ .
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Explicit representation of the Lorentz transformation

For the spin matrix

L =

(
α β
γ δ

)
, det L = 1.

the corresponding Lorentz transformation is given by 1/2 of the
following matrix
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Rotations
Consider the following monoparametric family of spin rotations

L(s) =

(
e

is
2 0

0 e
−is

2

)
, det L = 1.

For s = 0 we have the identity, for s = 2π we have

L(2π) =

(
−1 0
0 −1

)
That is, the spinor ιA is transformed to −ιA.
Note, however, that the corresponding Lorentz transformation is
given by 

1 0 0 0
0 cos s sin s 0
0 − sin s cos s 0
0 0 0 1


That is, for s = 2π we have the identity.
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Spinor fields

I Derivatives of spinors fields ψA in Minkowski are the ordinary
partial derivatives of ψA with respect to a global inertial
coordinates of Minkowski

∂ΛΛ′ψ
Γ = σµΛΛ′

∂ψΓ

∂xµ

I In curved spacetimes, let assume that we have a tetrad
globally defined. With respect to this tetrad, we can associate
a spin basis oA, ιA.

I The covariant derivative translate naturally in a operator
∇AA′ acting on spinor fields. We can define this operator
requiring that: i) is additive, real, commutes with contractions
and satisfies Leibnitz rule under outer products and ii)
annihiles εAB and σaBB′ .
There exists one and only one ∇AA′
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Computing ∇AA′λB : spin coefficients
Consider a spin basis oA, ιA associated with a null tetrad in the
spacetime

lAA
′

= ιAῑA
′

nAA′ = oAōA′ mAA′ = ιAōA′ m̄AA′ = oAῑA
′

And arbitrary spinor field can be decomposed in

λB = λ0oB + λ1ι
B ,

where λ0 and λ1 are functions. The derivative ∇AA′ on functions
is the partial derivative. In order to compute ∇AA′λ

B , by Leibnitz,
we only need to compute terms of the form ∇AA′o

B . This spinors,
has components of the form

oBoAōA′∇AA′oBoB .

These functions are called the spin coefficients, and they are
calculated using the tetrad and the standard covariant derivative
∇a:

oBoAōA′∇AA′oB = mbla∇alb.
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The Nester-Witten form
The proof of the positive energy theorem is based on the
remarkable properties of a 2-form Ω called the Nester-Witten form
defined as follows. The computations of this section involve
integration on different kind of surfaces and hence it is convenient
to use differential forms instead of ordinary tensors. We will denote
them with boldface and no indices.
Consider the following complex tensor

Ωab = −i λ̄B′∇AA′λB .

From this tensor we construct the complex 2-form Ω by

Ω = Ω[ab].

Explicitly we have

Ω =
i

2

(
λ̄A′∇BB′λA − λ̄B′∇AA′λB

)
.
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I The forms used in the following are always tensor fields
(usually complex) but they are constructed out of spinors, as
in the case of Ω.

I The spinor λA has an associated (future directed) null vector
ξa given by

ξa = λAλ̄A
′
.

I Note that the Ω can not be written in terms of
derivatives of pure tensors fields like ξa and ∇a.
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The strategy of the proof is the following. Consider the exterior
derivative dΩ (which is a 3-form) and integrate it on a spacelike,
asymptotically flat, 3-surface S . Using Stoke’s theorem we obtain∑

k

lim
r→∞

∮
Sr

Ω =

∫
S

dΩ. (27)

We are assuming that S is an asymptotically euclidean manifold
with k asymptotic ends Uk . The 2-form Ω has two important
properties:

1. The left hand side of (27) gives is the total energy-momentum
of a prescribed asymptotic end.

2. The second is that the integrand of the right hand side is
non-negative.

Both properties depend on the way in which the spinor field
λA is prescribed.
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The boundary integral is real

The integrand in the left hand side is complex. But the imaginary
part of Ω is given by

Ω− Ω̄ = i∇[aξb] = i dξ, (28)

where, to be consistent with our notation, we write ξ for the the
1-form ξa. That is, the imaginary part is the exterior derivative of
a 1-form and hence its integral over a closed 2-surface is zero.
Hence the boundary integral is always real, for arbitrary spinors λA.
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Fall off conditions on the spinor

To prove the desired property, we need to impose fall off conditions
on the spinor λA. Fix one arbitrary end k (from now on we will
always work on that end, and hence we suppress the label k). Let
λ̊A be an arbitrary constant spinor, we require that the spinor λA

satisfies on that end

λA = λ̊A + γA, γA = O(r−1).

We also assume that the partial derivatives of γA are O(r−2) and
we require that λA decays to zero at every other end.
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The boundary integral is the energy-momentum

The idea is to prove that at the chosen end we have

Paξ̊
a =

1

8π
lim
r→∞

∮
Sr

Ω,

where Pa = (E ,Pi ), is the energy momentum defined previously
and ξ̊a is the constant null vector determined by the constant
spinor λ̊A by

ξ̊a = λ̊A˚̄λA
′
.

Note that the boundary integral determines both the energy and
the linear momentum of the end.
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The most important step is to prove that the value of the integral
depends only on the constant spinor λ̊A and not on γA. We
emphasize that a naive counting of the fall behaviour of the
different terms in Ω does not prove this result.
We write Ω as

Ω = Ω̊ + Γ,

where
Ω̊ab = −i˚̄λB′∇AA′ λ̊B , Ω̊ = Ω̊[ab],

and

Γab = −i
(

˚̄λB′∇AA′γB + γ̄B′∇AA′ λ̊B + γ̄B′∇AA′γB

)
, Γ = Γ[ab].

That is, Ω̊ depends only on λ̊A.
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We would like to prove that Γ = O(r−3) and hence it does not
contribute to the integral at infinity. Consider the third term. The
covariant derivative ∇AA′γB has two terms, the first one contains
partial derivatives of γB which, by assumption, are O(r−2). The
second term contains products of γB and the connections
coefficients of the space-time metric gab evaluated at the
asymptotic end of the spacelike surface S . These coefficients are
first derivatives of gab, they can be written as first derivatives of
the intrinsic Riemannian metric and the second fundamental form
of the surfaces and hence, by assumption they are O(r−2). We
conclude that ∇AA′γB = O(r−2) and hence γ̄B′∇AA′γB = O(r−3).
We proceed in a similar way for the second term: since λ̊A is
constant the covariant derivative ∇AA′ λ̊B contains connection
coefficients times constants and hence we have ∇AA′ λ̊B = O(r−2),
and then γ̄B′∇AA′ λ̊B = O(r−3).
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But using the same argument we obtain that the first term is
O(r−2) and then it can contribute to the integral. But we can
re-write Γab as follows

Γab = −i
(
∇BB′(γA

˚̄λA′)− γA∇BB′ λ̊A + γ̄B′∇AA′ λ̊B + γ̄B′∇AA′γB

)
.

The first term, which is the problematic one, contribute to Γ with
the derivative of a 1-form, and hence it integrate to zero over a
closed 2-surface. The new second term is clearly O(r−3). We have
proved that

lim
r→∞

∮
Sr

Ω = lim
r→∞

∮
Sr

Ω̊.

Note that Ω̊ is O(r−2) and hence the integral converges. Also, the
asymptotic value of Ω̊ at infinity contain a combination of first
derivative of the intrinsic metric and the second fundamental form
of the surface S multiplied by the constants λ̊A. It can be proved,
essentially by an explicit calculation, that this combination is
precisely Paξ

a
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We turn to the second property of Ω. Recall that the exterior
derivative of a p-form is given by

dΩ = (p + 1)∇[aΩb1···bp ].

We have
dΩ = α + β,

where α and β are the following 3-forms

αabc = −i λ̄C ′∇a∇bλC , α = α[abc],

and
βabc = −i∇aλ̄C ′∇bλC β = β[abc].

That is, α has second derivatives of the spinor λA and β has
squares of first derivatives of λA.
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The 3-form α
We compute first α. There is a commutator of covariant
derivatives and hence we can replace it by the curvature tensor.
However, what is surprising is that precisely the Einstein
tensor appears.
To see this, is easier to work with the dual of α defined by

∗α =
1

3!
εabcdα

abc .

We use the conmutator relations

2∇[a∇b]λC = −εA′B′XABC
EλE − εABΦA′B′C

EλE ,

where XABCD and ΦA′B′CD are the curvature spinors. These
spinors are defined in terms of the Riemann tensor
Rabcd = RAA′BB′CC”DD” by

XABCD =
1

4
RAX ′B

X ′
CY ′D

Y ′ , ΦABC ′D′ =
1

4
RAX ′B

X ′
YC ′

Y
D′ .
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The Einstein tensor is given by

Gab = −6Λgab − Φab,

where Λ is given by

Λ =
1

6
XAB

AB .

We also use the identities

XABC
B = 3ΛεAC ,

and
εabcd = i (εAC εBDεA′D′εB′C ′ − εADεBC εA′C ′εB′D′) .

And then we obtain

∗α = − 1

2 · 3!
ξeG ef , (29)

and hence

α = − 1

2 · 3!
ξeG ef εfabc . (30)

The expressions (29) and (30) are pure tensorial expressions.
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The 3-form β
To compute β we proceed in a similar form. We work first with
the dual

∗β =
1

3!
εabcdβ

bcd .

It is important to split the covariant derivative ∇a into its
temporal and spatial component. Let ta denote the unit timelike
normal to the surface S and hab is the intrinsic metric of the
surface. We define the spatial Da derivative as

Da = ha
b∇b.

Note that Da is not the covariant derivative D of the intrinsic
metric h used previously, they are related by the equation

DABλC = DABλC +
1√
2
πABC

DλD ,

where πABCD = π(AB)(CD) is the spinor representation of the
second fundamental fundamental form of the surface. We have

∇a = Da − tatb∇b.
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We replace the derivative ∇a by Da in the definition of β, we
obtain

∗β = −i
1

3!
εabcd

(
Dbλ̄C

′DdλC
)

+ Wa,

where

Wa = i
1

3!
εabcd

(
tbt f∇f λ̄

C ′DdλC + td t f∇f λ
CDbλ̄C

′
)
.

Note that Wa satisfies
taWa = 0.
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Using the identity for ε we obtain

− iεabcdDbλ̄C
′DdλC = Dbλ̄B

′DBA′λA −Dbλ̄A′DAB′λB .

= DC ′B λ̄
C ′DB

A′λA +DCB′λ
CDB′

Aλ̄A′ −DbλADbλ̄A′ ,

where in the second line we have used the spinorial identity

εABεCD + εBC εAD + εCAεBD = 0.

Combining we finally obtain

∗β = DC ′B λ̄
C ′DB

A′λA +DCB′λ
CDB′

Aλ̄A′ −DbλADbλ̄A′ + Wa.
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We are in position now to perform the integral∫
S

dΩ =∫
S

(
4πTabξ

b +DC ′B λ̄
C ′DB

A′λA +DCB′λ
CDB′

Aλ̄A′ −DbλADbλ̄A′
)

ta,

where we have used Einstein equations

Gab = 8πTab,

to replace the Einstein tensor by the energy-momentum tensor.
Note that the term Wa in does not appear in the integral because
it is orthogonal to ta.
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Assume that the spinor λA has the fall-off behaviour presented
above we finally obtain the famous Witten identity

8πPaξ̊
a =∫

S

(
4πTabξ

b +DC ′B λ̄
C ′DB

A′λA +DCB′λ
CDB′

Aλ̄A′ −DbλADbλ̄A′
)

ta.

If we assume that the energy-momentum tensor Tab satisfies the
dominant energy condition then we have

Tabξ
atb ≥ 0,

and hence the first term in the integrand is non-negative. The last
term is also non-negative since it involves the contraction with the
Riemannian metric (which is negative definite) and the timelike
vector tAA

′
. To handle the second and third term we impose on λA

the following equation which is called the Sen-Witten equation

DABλ
A = 0.
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Let us assume for the moment that there is a solution of this
equation with the appropriate fall-off behaviour Then, we obtain

Paξ̊
a ≥ 0.

But the constant null vector ξ̊a is arbitrary, hence it follows that Pa

should be timelike or null.
To prove the rigidity part of theorem the key ingredient is that
E = 0 implies, by the previous identity, that the spinor satisfies the
equation

DABλC = 0,

that is, it is covariant constant in the whole manifold. From this
equation it can be deduced that the initial data on the surface
correspond to the Minkowski space-time.
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Schoen-Yau proof

I The proof is considerable more complicated than Witten proof
and it aplies completely different methods.

I The proof is divided in two parts:

1. Proof of the Riemannian positive mass theorem
2. Proof for general (i.e. non-time symmetrical) initial data.

We will discuss only the Riemannian theorem.

I Main technique: properties of minimal surfaces in Riemannian
manifolds.
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Minimal surfaces

I Consider a 2-surface on a 3-dimensional Riemannian manifold
(S , hij), with unit normal vector ni .

I The surface is minimal if its mean curvature H = Din
i

vanished.

I This is equivalent to say that the area of the surface is an
extremum under variations.
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Examples of minimal surfaces in R3

Helicoid: (x1, x2, x3) = (t cos s, t sin s, s).
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Catenoid: revolve a cosh(z/a) around the z axis.
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Costa minimal surface 1982:
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Stable minimal surfaces

I A minimal surface Σ is stable if its area is a local minimum
under variations.

I This is equivalent to the following important condition∫
S

(R − K +
1

2
||A||2)f 2 ≤

∫
S
||∇f ||2

for all functions f with compact support in the surface Σ. In
this equation R is the scalar curvature of the Riemannian
manifold S , hij , K is the Gaussian curvature of the surface Σ,
A is the second fundamental form of Σ.
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The Plateau problem

Given a closed curve Γ, find a minimal surface with boundary Γ.
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Riemannian positive mass theorem

gij =

(
1 +

M

2r

)4

δij + hij , hij = O(r−2). (31)

Theorem
Let g be an asymptotically flat metric that satisfies (31) on a
3-manifold N. If R ≥ 0 on N, then the total mass M is
nonnegative.

The proof is by contradiction and it involves three steps :

1. Making a conformal rescaling we can assume that R > 0
outside a compact set.

2. Use the the assumption M < 0 to prove the existence of a
complete area minimizing surface.

3. Use the stablity equation of the surface to show a
contradiction with R ≥ 0.
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Basic setting

For simplicity, we will assume that the manifold has only one end
N0. Let x1, x2, x3 asymptotically flat coordinates on N0. These
coordinates describe N0 on R3 \ Bσ0(0) where Bσ0(0) = {|x | < σ0}
and r = |x | denotes the Euclidean length.
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Step 1: R > 0 outside a big ball

Using the fall off of the metric we calculate

∆
1

r
=

M

r 4
+ O(r−5).

Then, it follows that there is a number σ > σ0 so that

∆
1

r
< 0 for r ≥ σ > σ0.

Let t0 = −M/(8σ0) and define the function

ζ(t) =

{
t t < t0

3
2 t0 t > 2t0

with ζ ′(t) ≥ 0 and ζ ′′(t) ≤ 0.
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Define ϕ : N → R by

ϕ =

{
1 + 3

2 t0 on N \ N0

1 + ζ(−M
4r ) on N0

Note that
∆ϕ < 0, for r > σ

Define a new metric by the conformal rescaling

g̃ = ϕ4g .

The asymptotic expansion of this metric is given by

g̃ =

(
1− M

4r

)4(
1 +

M

2r

)4

+ O(r−2)
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And hence the metric has mass given by

M̃ = M/2 < 0.

The scalar curvature is give by

R̃ = ϕ−5 (−8∆ϕ+ Rϕ)

since ∆ϕ < 0 for r > σ, we obtain

R̃ > 0

for r > σ.
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Step 2: Construction of the minimal surface

Using the assumption M < 0 we will prove the existence of a
complete area minimizing surface S properly imbedded in N
such that it lies between two Euclidean 2-planes in the
3-space defined by x1, x2, x3 in the end N0.

I Let σ > 2σ0 and let Cσ be the circle of Euclidean radius σ
centered at 0 in the x1, x2 plane. Then, there exists a smooth
imbedded oriented surface of least area among all competing
surfaces having boundary the curve Cσ.

I We wish to extract a sequence σi →∞ so that Sσi converges
to the required surface S .

131 / 137



Barriers

I The danger is that the sequence does not converges
because the surfaces Sσ escape to infinity in the x3

direction.

I We will prove that there exist a height h such that Sσ ⊂ Eh

for all σ where

Eh = {x ∈ R3 : |x3| ≤ h}

I To prove this we use the assumption M < 0.
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I Let h̄ be the maximum for x3 in Sσ. Assume that h̄ is
sufficiently large.

I We compute the Laplacian intrinsic to Sσ, using the
asymptotic fall off of the metric we obtain

∆Sx3 = −2
M

r 3
h̄ + O(r−3),

where we have used that the surface is minimal: i.e. its the
mean curvature is zero.

I Using the assumption M < 0 we obtain

∆Sx3 > 0

I But this contradict the assumption that h̄ is a maximum of x3

(for a maximum we have ∆Sx3 ≤ 0.)
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Regularity of S

I It can be proved that the surface S is regular.

I We have assumed that the space dimension is 3. Schoen and
Yau proved the analogous results through dimension seven;
the restriction on dimension comes from the regularity theory
of area-minimizing hypersurfaces.
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Step 3: The minimal surface S can not exists if R ≥ 0,
stability equation

I Let A denotes the second fundamental form of S in N.

I Rij the Ricci tensor of (N, g)

I ν i the unit normal vector of S in N

The surface S is stable, that is∫
S

(Rijν
iν j + ||A||2)f 2 ≤

∫
S
||∇f ||2 (32)

for any C 2 function f with compact support on S . This inequality
can be written as∫

S
(R − K +

1

2
||A||2)f 2 ≤

∫
S
||∇f ||2 (33)

where K is the Gaussian curvature of S .

135 / 137



Test functions

Chosing appropriate test functions f , from the inequality (33) we
deduce ∫

S
R ≤

∫
S

K (34)

Since R ≥ 0 by hypothesis and R > 0 on N \ N0 we finally obtain

0 <

∫
S

K
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Contradiction (Sketch)

We claim that ∫
S

K ≤ 0.

The Gauss-Bonnet theorem for the surfaces Sσ gives∫
Sσ

K = 2π −
∫
∂Sσ

κ,

where κ is the geodesic curvature of the boundary ∂Sσ.
For σ large, ∂Sσ is a circle that lies in the asymptoticall flat region
of N and hence we can expect that it geodesic curvature approach
the one of euclidean circle, namely

lim
σ→∞

∫
∂Sσ

κ = 2π.
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