Symplectic formalism and the covariant phase space on Scalar Electrodynamics
 M. E. Rubio ${ }^{1,2}$, O. Reula ${ }^{1,2}$

Junior scientist Andrejewski Days: 100 years of General Relativity

Begegnungsstätte Schloss Gollwitz Brandenburg an der Havel, Germany

April 2, 2015
${ }^{1}$ IFEG - CONICET
${ }^{2}$ Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
(5000) Córdoba, Argentina
${ }^{1}$ IFEG - CONICET
${ }^{2}$ Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
(5000) Córdoba, Argentina
${ }^{1}$ IFEG - CONICET
${ }^{2}$ Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
(5000) Córdoba, Argentina
${ }^{1}$ IFEG - CONICET
${ }^{2}$ Facultad de Matemática, Astronomía y Física
Universidad Nacional de Córdoba
(5000) Córdoba, Argentina

Outline

- PART I: The geometry of Classical Mechanics
- Symplectic formulation of Hamiltonian Mechanics
- Symmetries and conserved quantities
- PART II: Covariant phase space on field theories
- (Pre)-Symplectic structure and boundary conditions
- Symmetries and conserved quantities
- PART III: Scalar Electrodynamics
- Lagrangian, gauge symmetries and field equations
- Sympectic structure and boundary conditions
- Symmetries and conserved quantities
- PART I: The geometry of Classical Mechanics
- Symplectic formulation of Hamiltonian Mechanics
- Symmetries and conserved quantities
- PART II: Covariant phase space on field theories
- (Pre)-Symplectic structure and boundary conditions
- Symmetries and conserved quantities
- PART III: Scalar Electrodynamics
- Lagrangian, gauge symmetries and field equations
- Sympectic structure and boundary conditions
- Symmetries and conserved quantities
- PART I: The geometry of Classical Mechanics
- Symplectic formulation of Hamiltonian Mechanics
- Symmetries and conserved quantities
- PART II: Covariant phase space on field theories
- (Pre)-Symplectic structure and boundary conditions
- Symmetries and conserved quantities
- PART III: Scalar Electrodynamics
- Lagrangian, gauge symmetries and field equations
- Sympectic structure and boundary conditions
- Symmetries and conserved quantities

PART I

The geometry of Classical Mechanics

Symplectic formulation of Hamiltonian Mechanics

- Any classical system with n degrees of freedom is characterized by a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(q^{i}, \dot{q}^{i}, t\right),
$$

where the coordinates $q^{i}=q^{i}(t)$. We introduce n covectors given by

$$
p_{i}:=\frac{\partial \mathcal{L}}{\partial \dot{q}^{i}} .
$$

- Locally, the phase space Γ of the system is descripted by
- The Hamiltonian of the system is a smooth function on Γ,

and the dynamics of the system is descripted by

Symplectic formulation of Hamiltonian Mechanics

- Any classical system with n degrees of freedom is characterized by a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(q^{i}, \dot{q}^{i}, t\right),
$$

where the coordinates $q^{i}=q^{i}(t)$. We introduce n covectors given by

$$
p_{i}:=\frac{\partial \mathcal{L}}{\partial \dot{q}^{i}} .
$$

- Locally, the phase space Γ of the system is descripted by

$$
\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right), \quad i=1,2, \cdots, n
$$

- The Hamiltonian of the system is a smooth function on Γ

and the dynamics of the system is descripted by
- Any classical system with n degrees of freedom is characterized by a Lagrangian

$$
\mathcal{L}=\mathcal{L}\left(q^{i}, \dot{q}^{i}, t\right),
$$

where the coordinates $q^{i}=q^{i}(t)$. We introduce n covectors given by

$$
p_{i}:=\frac{\partial \mathcal{L}}{\partial \dot{q}^{i}} .
$$

- Locally, the phase space Γ of the system is descripted by

$$
\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right), \quad i=1,2, \cdots, n
$$

- The Hamiltonian of the system is a smooth function on Γ,

$$
\mathcal{H}: \Gamma \rightarrow \mathbb{R}, \quad \mathcal{H}:=p_{i} \dot{q}^{i}-\mathcal{L}
$$

and the dynamics of the system is descripted by

$$
\dot{q}^{i}=\frac{\partial \mathcal{H}}{\partial p_{i}}, \quad \dot{p}_{i}=-\frac{\partial \mathcal{H}}{\partial q^{i}} .
$$

Symplectic formulation of Hamiltonian Mechanics

- The phase space Γ seems to have some intrinsic geometrical structure related to the form of Hamilton equations.
- Let's introduce arbitrary coordinates

and thus,

Symplectic formulation of Hamiltonian Mechanics

- The phase space Γ seems to have some intrinsic geometrical structure related to the form of Hamilton equations.
- Let's introduce arbitrary coordinates $x^{\mu}\left(q^{i}, p_{i}\right)$, $\mu=1, \cdots, 2 n$ on Γ. The evolution in the new coordinates is

and thus,

- The phase space Γ seems to have some intrinsic geometrical structure related to the form of Hamilton equations.
- Let's introduce arbitrary coordinates $x^{\mu}\left(q^{i}, p_{i}\right)$, $\mu=1, \cdots, 2 n$ on Γ.The evolution in the new coordinates is

$$
\begin{aligned}
\dot{x}^{\mu} & =\frac{\partial x^{\mu}}{\partial q^{i}} \dot{q}^{i}+\frac{\partial x^{\mu}}{\partial p_{i}} \dot{p}_{i}=\frac{\partial x^{\mu}}{\partial q^{i}} \frac{\partial \mathcal{H}}{\partial p_{i}}-\frac{\partial x^{\mu}}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q^{i}} \\
& =\left(\frac{\partial x^{\mu}}{\partial q^{i}} \frac{\partial x^{\nu}}{\partial p_{i}}-\frac{\partial x^{\mu}}{\partial p_{i}} \frac{\partial x^{\nu}}{\partial q^{i}}\right) \frac{\partial \mathcal{H}}{\partial x^{\nu}}=\omega^{\mu \nu} \frac{\partial \mathcal{H}}{\partial x^{\nu}}
\end{aligned}
$$

and thus,

- The phase space Γ seems to have some intrinsic geometrical structure related to the form of Hamilton equations.
- Let's introduce arbitrary coordinates $x^{\mu}\left(q^{i}, p_{i}\right)$, $\mu=1, \cdots, 2 n$ on Γ.The evolution in the new coordinates is

$$
\begin{aligned}
\dot{x}^{\mu} & =\frac{\partial x^{\mu}}{\partial q^{i}} \dot{q}^{i}+\frac{\partial x^{\mu}}{\partial p_{i}} \dot{p}_{i}=\frac{\partial x^{\mu}}{\partial q^{i}} \frac{\partial \mathcal{H}}{\partial p_{i}}-\frac{\partial x^{\mu}}{\partial p_{i}} \frac{\partial \mathcal{H}}{\partial q^{i}} \\
& =\left(\frac{\partial x^{\mu}}{\partial q^{i}} \frac{\partial x^{\nu}}{\partial p_{i}}-\frac{\partial x^{\mu}}{\partial p_{i}} \frac{\partial x^{\nu}}{\partial q^{i}}\right) \frac{\partial \mathcal{H}}{\partial x^{\nu}}=\omega^{\mu \nu} \frac{\partial \mathcal{H}}{\partial x^{\nu}}
\end{aligned}
$$

and thus,

$$
\dot{x}^{\mu}=\omega^{\mu \nu} \frac{\partial \mathcal{H}}{\partial x^{\nu}}, \quad \omega^{\mu \nu}:=\left(\frac{\partial x^{\mu}}{\partial q^{i}} \frac{\partial x^{\nu}}{\partial p_{i}}-\frac{\partial x^{\mu}}{\partial p_{i}} \frac{\partial x^{\nu}}{\partial q^{i}}\right)=\left\{x^{\mu}, x^{\nu}\right\}
$$

Symplectic formulation of Hamiltonian Mechanics

- Properties of $\omega^{\mu \nu}$:

Symplectic formulation of Hamiltonian Mechanics

- Properties of $\omega^{\mu \nu}$:

$$
\begin{equation*}
\omega^{\mu \nu}=-\omega^{\nu \mu} ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\partial_{[\mu} \omega_{\nu \rho]}=0 \tag{3}
\end{equation*}
$$

Symplectic formulation of Hamiltonian Mechanics

- Properties of $\omega^{\mu \nu}$:

$$
\begin{align*}
\omega^{\mu \nu} & =-\omega^{\nu \mu} \tag{1}\\
\operatorname{det}\left(\omega^{\mu \nu}\right) & =\left|\frac{\partial x^{\mu}}{\partial\left(q^{i}, p_{j}\right)}\right|^{2} \neq 0 ; \tag{2}
\end{align*}
$$

and we return to Hamilton Equations.

- If $f: \Gamma \rightarrow \mathbb{R}$ and $q: \Gamma \rightarrow \mathbb{R}$, we redefine the Poisson bracket
$\{f, g\}$ in terms of ω :

Symplectic formulation of Hamiltonian Mechanics

- Properties of $\omega^{\mu \nu}$:

$$
\begin{gather*}
\omega^{\mu \nu}=-\omega^{\nu \mu} \tag{1}\\
\operatorname{det}\left(\omega^{\mu \nu}\right)=\left|\frac{\partial x^{\mu}}{\partial\left(q^{i}, p_{j}\right)}\right|^{2} \neq 0 ; \tag{2}\\
\partial_{[\mu} \omega_{\nu \rho]}=0 \tag{3}
\end{gather*}
$$

and we return to Hamilton Equations.

- If $f: \Gamma \rightarrow \mathbb{R}$ and $q: \Gamma \rightarrow \mathbb{R}$, we redefine the Poisson bracket
$\{f, g\}$ in terms of ω :

Symplectic formulation of Hamiltonian Mechanics

- Properties of $\omega^{\mu \nu}$:

$$
\begin{gather*}
\omega^{\mu \nu}=-\omega^{\nu \mu} \tag{1}\\
\operatorname{det}\left(\omega^{\mu \nu}\right)=\left|\frac{\partial x^{\mu}}{\partial\left(q^{i}, p_{j}\right)}\right|^{2} \neq 0 ; \tag{2}\\
\partial_{[\mu} \omega_{\nu \rho]}=0 \tag{3}
\end{gather*}
$$

- In particular, if $\left(x^{1}, \cdots, x^{2 n}\right)=\left(q^{1}, \cdots, q^{n}, p_{1}, \cdots, p_{n}\right)$,

$$
\omega^{\mu \nu}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1}_{n} \\
-\mathbf{1}_{n} & \mathbf{0}
\end{array}\right),
$$

and we return to Hamilton Equations.
$\{f, g\}$ in terms of $\omega:$

$$
\{f, g\}:=\omega^{\mu \nu} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}}
$$

Symplectic formulation of Hamiltonian Mechanics

- Properties of $\omega^{\mu \nu}$:

$$
\begin{gather*}
\omega^{\mu \nu}=-\omega^{\nu \mu} \tag{1}\\
\operatorname{det}\left(\omega^{\mu \nu}\right)=\left|\frac{\partial x^{\mu}}{\partial\left(q^{i}, p_{j}\right)}\right|^{2} \neq 0 ; \tag{2}\\
\partial_{[\mu} \omega_{\nu \rho]}=0 \tag{3}
\end{gather*}
$$

- In particular, if $\left(x^{1}, \cdots, x^{2 n}\right)=\left(q^{1}, \cdots, q^{n}, p_{1}, \cdots, p_{n}\right)$,

$$
\omega^{\mu \nu}=\left(\begin{array}{cc}
\mathbf{0} & \mathbf{1}_{n} \\
-\mathbf{1}_{n} & \mathbf{0}
\end{array}\right)
$$

and we return to Hamilton Equations.

- If $f: \Gamma \rightarrow \mathbb{R}$ and $g: \Gamma \rightarrow \mathbb{R}$, we redefine the Poisson bracket $\{f, g\}$ in terms of ω :

$$
\{f, g\}:=\omega^{\mu \nu} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}}
$$

Symplectic formulation of Hamiltonian Mechanics

- Fixing $g,\{f, g\}$ is a derivation on f along the vector

$$
X_{g}^{\mu}:=\omega^{\mu \nu} \frac{\partial g}{\partial x^{\nu}} .
$$

This vector field is called Hamiltonian vector field.

- The inverse of $\omega^{\mu \nu}$,
- A symplectic manifold is a pair (\mathcal{M}, ω) such that ω satisfies (1), (2) and (3)
- Note that (3) implies that $\omega_{\mu \nu}$ is a closed non degenerate 2-form
- Darboux's Theorem: Let (Γ, ω) be a symplectic manifold Then, for each point $p \in \Gamma$, there exists a neighbourhood of p and a chart $\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right)$ such that

Symplectic formulation of Hamiltonian Mechanics

- Fixing $g,\{f, g\}$ is a derivation on f along the vector

$$
X_{g}^{\mu}:=\omega^{\mu \nu} \frac{\partial g}{\partial x^{\nu}} .
$$

This vector field is called Hamiltonian vector field.

- The inverse of $\omega^{\mu \nu}, \omega_{\mu \nu}$ is called symplectic structure.
- A symplectic manifold is a pair

(1), (2) and (3)
- Note that (3) implies that $\omega_{\mu \nu}$ is a closed non degenerate 2-form
- Darboux's Theorem: Let (Γ, ω) be a symplectic manifold Then, for each point $p \in \Gamma$, there exists a neighbourhood of p and a chart $\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right)$ such that

Symplectic formulation of Hamiltonian Mechanics

- Fixing $g,\{f, g\}$ is a derivation on f along the vector

$$
X_{g}^{\mu}:=\omega^{\mu \nu} \frac{\partial g}{\partial x^{\nu}} .
$$

This vector field is called Hamiltonian vector field.

- The inverse of $\omega^{\mu \nu}, \omega_{\mu \nu}$ is called symplectic structure.
- A symplectic manifold is a pair (\mathcal{M}, ω) such that ω satisfies (1), (2) and (3).
- Note that (3) implies that $\omega_{\mu \nu}$ is a closed non degenerate 2-form
- Darboux's Theorem: Let (Γ, ω) be a symplectic manifold Then, for each point $p \in \Gamma$, there exists a neighbourhood of p and a chart $\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right)$ such that

Symplectic formulation of Hamiltonian Mechanics

- Fixing $g,\{f, g\}$ is a derivation on f along the vector

$$
X_{g}^{\mu}:=\omega^{\mu \nu} \frac{\partial g}{\partial x^{\nu}} .
$$

This vector field is called Hamiltonian vector field.

- The inverse of $\omega^{\mu \nu}, \omega_{\mu \nu}$ is called symplectic structure.
- A symplectic manifold is a pair (\mathcal{M}, ω) such that ω satisfies (1), (2) and (3).
- Note that (3) implies that $\omega_{\mu \nu}$ is a closed non degenerate 2-form.
- Darboux's Theorem: Let (Γ, ω) be a symplectic manifold Then, for each point $p \in \Gamma$, there exists a neighbourhood of p and a chart $\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right)$ such that

Symplectic formulation of Hamiltonian Mechanics

- Fixing $g,\{f, g\}$ is a derivation on f along the vector

$$
X_{g}^{\mu}:=\omega^{\mu \nu} \frac{\partial g}{\partial x^{\nu}}
$$

This vector field is called Hamiltonian vector field.

- The inverse of $\omega^{\mu \nu}, \omega_{\mu \nu}$ is called symplectic structure.
- A symplectic manifold is a pair (\mathcal{M}, ω) such that ω satisfies (1), (2) and (3).
- Note that (3) implies that $\omega_{\mu \nu}$ is a closed non degenerate 2-form.
- Darboux's Theorem: Let (Γ, ω) be a symplectic manifold. Then, for each point $p \in \Gamma$, there exists a neighbourhood of p and a chart $\left(\left\{q^{i}\right\},\left\{p_{i}\right\}\right)$ such that

$$
\omega=\mathrm{d} p_{i} \wedge \mathrm{~d} q^{i}=\mathrm{d}\left(p_{i} \mathrm{~d} q^{i}\right) .
$$

Symmetries and conserved quantities

- Symmetry? $\Phi: \Gamma \rightarrow \Gamma$ smooth and invertible, that takes a solution and produces another.

- If $\left\{\Phi_{s}\right\}_{s \in \mathbb{R}}$ is a monoparametric family of symmetries and $p \in \Gamma$, let's consider the curve $s \mapsto \gamma_{p}(s):=\Phi_{s}(p)$. The tangent vector

is called an infinitesimal transformation of Φ at p.
- The fields $X_{7 t}$ and $\&$ senerate a 2-dimensional submanifold on I, and must be coordinate vector fields:

Symmetries and conserved quantities

- Symmetry? $\Phi: \Gamma \rightarrow \Gamma$ smooth and invertible, that takes a solution and produces another.
- Solution? Curve $\gamma: I \subseteq \mathbb{R} \rightarrow \Gamma, t \mapsto \gamma(t)$ such that

$$
\dot{\gamma}=X_{\mathcal{H}}, \quad \dot{x}^{\mu}=\omega^{\mu \nu} \frac{\partial \mathcal{H}}{\partial x^{\nu}} .
$$

- If $\left\{\Phi_{s}\right\}_{s \in \mathbb{R}}$ is a monoparametric family of symmetries and $p \in \Gamma$, let's consider the curve $s \mapsto \gamma_{p}(s):=\Phi_{s}(p)$. The
tangent vector

is called an infinitesimal transformation of Φ at p.
- The fields $X_{\mathcal{H}}$ and ξ generate a 2-dimensional submanifold on Γ, and must be coordinate vector fields:

Symmetries and conserved quantities

- Symmetry? $\Phi: \Gamma \rightarrow \Gamma$ smooth and invertible, that takes a solution and produces another.
- Solution? Curve $\gamma: I \subseteq \mathbb{R} \rightarrow \Gamma, t \mapsto \gamma(t)$ such that

$$
\dot{\gamma}=X_{\mathcal{H}}, \quad \dot{x}^{\mu}=\omega^{\mu \nu} \frac{\partial \mathcal{H}}{\partial x^{\nu}} .
$$

- If $\left\{\Phi_{s}\right\}_{s \in \mathbb{R}}$ is a monoparametric family of symmetries and $p \in \Gamma$, let's consider the curve $s \mapsto \gamma_{p}(s):=\Phi_{s}(p)$. The tangent vector

$$
\xi:=\left.\frac{\mathrm{d} \Phi_{s}(p)}{\mathrm{d} s}\right|_{s=0}
$$

is called an infinitesimal transformation of Φ at p.
The fields $X_{\mathcal{H}}$ and ξ generate a 2 -dimen
I, and must be coordinate vector fields:

Symmetries and conserved quantities

- Symmetry? $\Phi: \Gamma \rightarrow \Gamma$ smooth and invertible, that takes a solution and produces another.
- Solution? Curve $\gamma: I \subseteq \mathbb{R} \rightarrow \Gamma, t \mapsto \gamma(t)$ such that

$$
\dot{\gamma}=X_{\mathcal{H}}, \quad \dot{x}^{\mu}=\omega^{\mu \nu} \frac{\partial \mathcal{H}}{\partial x^{\nu}} .
$$

- If $\left\{\Phi_{s}\right\}_{s \in \mathbb{R}}$ is a monoparametric family of symmetries and $p \in \Gamma$, let's consider the curve $s \mapsto \gamma_{p}(s):=\Phi_{s}(p)$. The tangent vector

$$
\xi:=\left.\frac{\mathrm{d} \Phi_{s}(p)}{\mathrm{d} s}\right|_{s=0}
$$

is called an infinitesimal transformation of Φ at p.

- The fields $X_{\mathcal{H}}$ and ξ generate a 2-dimensional submanifold on Γ, and must be coordinate vector fields:

$$
0=\left[\xi, X_{\mathcal{H}}\right]^{\mu}=X_{\xi(\mathcal{H})}^{\mu}+\left(£_{\xi} \omega^{\mu \nu}\right) \frac{\partial \mathcal{H}}{\partial x^{\nu}} \Rightarrow £_{\xi} \omega=0
$$

PART II

Covariant Phase Space on Field Theories

Covariant Phase Space on Field Theories

- Consider a smooth 4-dimensional lorentzian manifold \mathcal{M} with the topology of $\Sigma \times \mathbb{R}$ and $\Sigma \equiv \mathbb{R}^{3}$.
- \mathcal{M} is equipped with a stationary and globally hyperbolic metric $g_{a b}$ such that Cauchy surfaces are diffeomorphic to Σ.
- On this spacetime, consider a dynamical theory for a collection of fields $\phi^{\alpha}(x)$, where α labels the fields. We denote $\mathcal{F}:=\left\{\phi^{\alpha}: \mathcal{M} \rightarrow \mathcal{T}_{\mathcal{M}}^{(k, l)_{\alpha}} \mid \phi^{\alpha}\right.$ satisfy some boundary conditions $\}$
- \mathcal{F} has the structure of an infinite-dimensional manifold Functions on \mathcal{F} are functionals $f: \mathcal{F} \rightarrow \mathbb{R}$
- Dynamics is specified by some action \mathcal{S}_{V}, defined over any measurable region $V \subset \mathcal{M}$

Covariant Phase Space on Field Theories

- Consider a smooth 4-dimensional lorentzian manifold \mathcal{M} with the topology of $\Sigma \times \mathbb{R}$ and $\Sigma \equiv \mathbb{R}^{3}$.
- \mathcal{M} is equipped with a stationary and globally hyperbolic metric $g_{a b}$ such that Cauchy surfaces are diffeomorphic to Σ.
- On this spacetime, consider a dynamical theory for a collection of fields $\phi^{\alpha}(x)$, where α labels the fields. We denote $\mathcal{F}:=\left\{\phi^{a}: \mathcal{M} \rightarrow \mathcal{T}_{\mathcal{M}}^{\left(k^{2}\right)} \mid \phi^{a}\right.$ satisfy some boundary conditions $\}$
- \mathcal{F} has the structure of an infinite-dimensional manifold Functions on \mathcal{F} are functionals $f: \mathcal{F} \rightarrow \mathbb{R}$.
- Dynamics is specified by some action \mathcal{S}_{V}, defined over any measurable region $V \subset \mathcal{M}$:

Covariant Phase Space on Field Theories

- Consider a smooth 4-dimensional lorentzian manifold \mathcal{M} with the topology of $\Sigma \times \mathbb{R}$ and $\Sigma \equiv \mathbb{R}^{3}$.
- \mathcal{M} is equipped with a stationary and globally hyperbolic metric $g_{a b}$ such that Cauchy surfaces are diffeomorphic to Σ.
- On this spacetime, consider a dynamical theory for a collection of fields $\phi^{\alpha}(x)$, where α labels the fields. We denote
$\mathcal{F}:=\left\{\phi^{\alpha}: \mathcal{M} \rightarrow \mathcal{T}_{\mathcal{M}}^{(k, l)_{\alpha}} \mid \phi^{\alpha}\right.$ satisfy some boundary conditions $\}$.
- \mathcal{F} has the structure of an infinite-dimensional manifold.

Functions on \mathcal{F} are functionals $f: \mathcal{F} \rightarrow \mathbb{R}$.

- Dynamics is specified by some action \mathcal{S}_{V}, defined over any measurable region $V \subset \mathcal{M}$

Covariant Phase Space on Field Theories

- Consider a smooth 4-dimensional lorentzian manifold \mathcal{M} with the topology of $\Sigma \times \mathbb{R}$ and $\Sigma \equiv \mathbb{R}^{3}$.
- \mathcal{M} is equipped with a stationary and globally hyperbolic metric $g_{a b}$ such that Cauchy surfaces are diffeomorphic to Σ.
- On this spacetime, consider a dynamical theory for a collection of fields $\phi^{\alpha}(x)$, where α labels the fields. We denote $\mathcal{F}:=\left\{\phi^{\alpha}: \mathcal{M} \rightarrow \mathcal{T}_{\mathcal{M}}^{(k, l)_{\alpha}} \mid \phi^{\alpha}\right.$ satisfy some boundary conditions $\}$.
- \mathcal{F} has the structure of an infinite-dimensional manifold. Functions on \mathcal{F} are functionals $f: \mathcal{F} \rightarrow \mathbb{R}$.
- Dynamics is specified by some action \mathcal{S}_{V}. defined over any measurable region $V \subset \mathcal{M}$

Covariant Phase Space on Field Theories

- Consider a smooth 4-dimensional lorentzian manifold \mathcal{M} with the topology of $\Sigma \times \mathbb{R}$ and $\Sigma \equiv \mathbb{R}^{3}$.
- \mathcal{M} is equipped with a stationary and globally hyperbolic metric $g_{a b}$ such that Cauchy surfaces are diffeomorphic to Σ.
- On this spacetime, consider a dynamical theory for a collection of fields $\phi^{\alpha}(x)$, where α labels the fields. We denote $\mathcal{F}:=\left\{\phi^{\alpha}: \mathcal{M} \rightarrow \mathcal{T}_{\mathcal{M}}^{(k, l)_{\alpha}} \mid \phi^{\alpha}\right.$ satisfy some boundary conditions $\}$.
- \mathcal{F} has the structure of an infinite-dimensional manifold. Functions on \mathcal{F} are functionals $f: \mathcal{F} \rightarrow \mathbb{R}$.
- Dynamics is specified by some action \mathcal{S}_{V}, defined over any measurable region $V \subset \mathcal{M}$:

$$
\mathcal{S}_{V}\left(\phi^{\alpha}\right)=\int_{V} \mathcal{L}\left(\phi^{\alpha}, \nabla_{a} \phi^{\alpha}, \nabla_{a} \nabla_{b} \phi^{\alpha}, \cdots\right) \mathrm{dV}
$$

Covariant Phase Space on Field Theories

- We require that \mathcal{S}_{V} be stationary under any variation $\delta \phi^{\alpha}$ such that $\left.\delta \phi^{\alpha}\right|_{\partial V}=0$.
- If \mathcal{L} contains terms which are pure divergences, then \mathcal{S}_{V} must have surface terms. For example, if the action is of first order, then $\mathcal{L}\left(\phi^{\alpha}, \nabla_{a} \phi^{\alpha}\right)$, and the variation is
- A general variation of \mathcal{S}_{V} will be of the form

- \mathcal{G}_{α} depends on derivatives up to second order of ϕ^{α}, and $F^{a}=0$ when $\delta \phi^{\alpha}=0$ at $\partial V \cdot$ so fields equations are
\square

Covariant Phase Space on Field Theories

- We require that \mathcal{S}_{V} be stationary under any variation $\delta \phi^{\alpha}$ such that $\left.\delta \phi^{\alpha}\right|_{\partial V}=0$.
- If \mathcal{L} contains terms which are pure divergences, then \mathcal{S}_{V} must have surface terms. For example, if the action is of first order, then $\mathcal{L}\left(\phi^{\alpha}, \nabla_{a} \phi^{\alpha}\right)$, and the variation is
- A general variation of \mathcal{S}_{V} will be of the form

- \mathcal{G}_{α} depends on derivatives up to second order of ϕ^{α}, and $F^{a}=0$ when $\delta \phi^{\alpha}=0$ at ∂V; so fields equations are
\square

Covariant Phase Space on Field Theories

- We require that \mathcal{S}_{V} be stationary under any variation $\delta \phi^{\alpha}$ such that $\left.\delta \phi^{\alpha}\right|_{\partial V}=0$.
- If \mathcal{L} contains terms which are pure divergences, then \mathcal{S}_{V} must have surface terms. For example, if the action is of first order, then $\mathcal{L}\left(\phi^{\alpha}, \nabla_{a} \phi^{\alpha}\right)$, and the variation is

$$
\mathrm{d} \mathcal{S}_{V}\left(\delta \phi^{\alpha}\right)=\int_{V}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\alpha}}-\nabla_{a} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}}\right) \delta \phi^{\alpha} \mathrm{dV}+\oint_{\partial V} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} \delta \phi^{\alpha} \mathrm{d} S_{a}
$$

- A general variation of \mathcal{S}_{V} will be of the form

> - \mathcal{G}_{α} depends on derivatives up to second order of ϕ^{α}, and so fields equations are

\square

Covariant Phase Space on Field Theories

- We require that \mathcal{S}_{V} be stationary under any variation $\delta \phi^{\alpha}$ such that $\left.\delta \phi^{\alpha}\right|_{\partial V}=0$.
- If \mathcal{L} contains terms which are pure divergences, then \mathcal{S}_{V} must have surface terms. For example, if the action is of first order, then $\mathcal{L}\left(\phi^{\alpha}, \nabla_{a} \phi^{\alpha}\right)$, and the variation is

$$
\mathrm{d} \mathcal{S}_{V}\left(\delta \phi^{\alpha}\right)=\int_{V}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\alpha}}-\nabla_{a} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}}\right) \delta \phi^{\alpha} \mathrm{dV}+\oint_{\partial V} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} \delta \phi^{\alpha} \mathrm{d} S_{a}
$$

- A general variation of \mathcal{S}_{V} will be of the form

$$
\mathrm{d} \mathcal{S}_{V}\left(\delta \phi^{\alpha}\right)=\int_{V} \mathcal{G}_{\alpha}(\phi) \delta \phi^{\alpha} \mathrm{dV}+\oint_{\partial V} F^{a}\left(\phi^{\alpha}, \delta \phi^{\alpha}\right) \mathrm{d} S_{a}
$$

- \mathcal{G}_{α} depends on derivatives up to second order of ϕ^{α}, and
so fields equations are
\square

Covariant Phase Space on Field Theories

- We require that \mathcal{S}_{V} be stationary under any variation $\delta \phi^{\alpha}$ such that $\left.\delta \phi^{\alpha}\right|_{\partial V}=0$.
- If \mathcal{L} contains terms which are pure divergences, then \mathcal{S}_{V} must have surface terms. For example, if the action is of first order, then $\mathcal{L}\left(\phi^{\alpha}, \nabla_{a} \phi^{\alpha}\right)$, and the variation is

$$
\mathrm{d} \mathcal{S}_{V}\left(\delta \phi^{\alpha}\right)=\int_{V}\left(\frac{\partial \mathcal{L}}{\partial \phi^{\alpha}}-\nabla_{a} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}}\right) \delta \phi^{\alpha} \mathrm{dV}+\oint_{\partial V} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} \delta \phi^{\alpha} \mathrm{d} S_{a}
$$

- A general variation of \mathcal{S}_{V} will be of the form

$$
\mathrm{d} \mathcal{S}_{V}\left(\delta \phi^{\alpha}\right)=\int_{V} \mathcal{G}_{\alpha}(\phi) \delta \phi^{\alpha} \mathrm{dV}+\oint_{\partial V} F^{a}\left(\phi^{\alpha}, \delta \phi^{\alpha}\right) \mathrm{d} S_{a} .
$$

- \mathcal{G}_{α} depends on derivatives up to second order of ϕ^{α}, and $F^{a}=0$ when $\delta \phi^{\alpha}=0$ at ∂V; so fields equations are

$$
\mathcal{G}_{\alpha}(\phi)=0
$$

Covariant Phase Space on Field Theories

- The covariant phase space of the theory is the submanifold $\Gamma \subset \mathcal{F}$ given by

$$
\Gamma=\left\{\phi^{\alpha} \in \mathcal{F} \mid \mathcal{G}_{\alpha}(\phi)=0\right\}
$$

- Given a Cauchy surface Σ, we define the potential 1-form θ_{Σ} on Γ as

where X is any vector field on Γ

Definition

The pre-symplectic structure of the theory is

- By construction, $\mathrm{d} \omega=0$.
- ω does not depend on the choice of Σ.

Covariant Phase Space on Field Theories

- The covariant phase space of the theory is the submanifold $\Gamma \subset \mathcal{F}$ given by

$$
\Gamma=\left\{\phi^{\alpha} \in \mathcal{F} \mid \mathcal{G}_{\alpha}(\phi)=0\right\}
$$

- Given a Cauchy surface Σ, we define the potential 1-form θ_{Σ} on Γ as

$$
\theta_{\Sigma}(X):=\int_{\Sigma} F^{a}(\phi, X) \mathrm{d} S_{a}
$$

where X is any vector field on Γ.

Definition

The pre-symplectic structure of the theory is

- By construction, $\mathrm{d} \omega=0$.
- ω does not depend on the choice of Σ.

Covariant Phase Space on Field Theories

- The covariant phase space of the theory is the submanifold $\Gamma \subset \mathcal{F}$ given by

$$
\Gamma=\left\{\phi^{\alpha} \in \mathcal{F} \mid \mathcal{G}_{\alpha}(\phi)=0\right\}
$$

- Given a Cauchy surface Σ, we define the potential 1-form θ_{Σ} on Γ as

$$
\theta_{\Sigma}(X):=\int_{\Sigma} F^{a}(\phi, X) \mathrm{d} S_{a}
$$

where X is any vector field on Γ.

Definition

The pre-symplectic structure of the theory is

$$
\omega_{\Sigma}(X, Y):=\mathrm{d} \theta_{\Sigma}(X, Y) .
$$

- By construction, $\mathrm{d} \omega=0$.
- ω does not depend on the choice of Σ.

Covariant Phase Space on Field Theories

- The covariant phase space of the theory is the submanifold $\Gamma \subset \mathcal{F}$ given by

$$
\Gamma=\left\{\phi^{\alpha} \in \mathcal{F} \mid \mathcal{G}_{\alpha}(\phi)=0\right\}
$$

- Given a Cauchy surface Σ, we define the potential 1-form θ_{Σ} on Γ as

$$
\theta_{\Sigma}(X):=\int_{\Sigma} F^{a}(\phi, X) \mathrm{d} S_{a}
$$

where X is any vector field on Γ.

Definition

The pre-symplectic structure of the theory is

$$
\omega_{\Sigma}(X, Y):=\mathrm{d} \theta_{\Sigma}(X, Y) .
$$

- By construction, $\mathrm{d} \omega=0$.
- ω does not depend on the choice of Σ.

Covariant Phase Space on Field Theories

- The covariant phase space of the theory is the submanifold $\Gamma \subset \mathcal{F}$ given by

$$
\Gamma=\left\{\phi^{\alpha} \in \mathcal{F} \mid \mathcal{G}_{\alpha}(\phi)=0\right\}
$$

- Given a Cauchy surface Σ, we define the potential 1-form θ_{Σ} on Γ as

$$
\theta_{\Sigma}(X):=\int_{\Sigma} F^{a}(\phi, X) \mathrm{d} S_{a}
$$

where X is any vector field on Γ.

Definition

The pre-symplectic structure of the theory is

$$
\omega_{\Sigma}(X, Y):=\mathrm{d} \theta_{\Sigma}(X, Y) .
$$

- By construction, $\mathrm{d} \omega=0$.
- ω does not depend on the choice of Σ.

(Pre)-Symplectic structure

- If V is bounded by two Cauchy surfaces Σ and Σ^{\prime} connected by some region $\mathcal{K}_{\infty} \subset i^{0}$, a variation $\mathrm{d} \mathcal{S}_{V}$ around a solution is

$$
i^{*} \mathrm{~d} \mathcal{S}_{V}=\theta_{\Sigma^{\prime}}-\theta_{\Sigma}+\theta_{\mathcal{K}_{\infty}}, \quad i: \Gamma \rightarrow \mathcal{F} .
$$

- Taking the exterior derivative, we get
- Choosing boundary conditions such that $\omega_{\mathcal{K}_{\infty}}=0, \omega$ is independent of the Cauchy surface.
- In general, ω is degenerate. If $X, X^{\prime} \in \operatorname{Ker}(\omega)$ $0=£_{X^{\prime}} \omega(X, Y)=\omega\left(£_{X^{\prime}} X, Y\right)+\omega\left(X, £_{X^{\prime}} Y\right)$
so $\operatorname{Ker}(\omega)$ is integrable and one can quotient Γ by the integral
manifolds of $\operatorname{Ker}(\omega)$ and obtain a non-degenerate symplectic structure defined on
$\Gamma /\{$ integral manifold of $\operatorname{Ker}(\omega)\}$

(Pre)-Symplectic structure

- If V is bounded by two Cauchy surfaces Σ and Σ^{\prime} connected by some region $\mathcal{K}_{\infty} \subset i^{0}$, a variation $\mathrm{d} \mathcal{S}_{V}$ around a solution is

$$
i^{*} \mathrm{~d} \mathcal{S}_{V}=\theta_{\Sigma^{\prime}}-\theta_{\Sigma}+\theta_{\mathcal{K}_{\infty}}, \quad i: \Gamma \rightarrow \mathcal{F}
$$

- Taking the exterior derivative, we get

$$
0=i^{*} \mathrm{~d}^{2} \mathcal{S}_{V}=\mathrm{d}\left(i^{*} \mathrm{~d} \mathcal{S}_{V}\right)=\omega_{\Sigma^{\prime}}-\omega_{\Sigma}+\omega_{\mathcal{K}_{\infty}}
$$

- Choosing boundary conditions such that $\omega_{\mathcal{K}_{\infty}}=0, \omega$ is independent of the Cauchy surface.
so $\operatorname{Ker}(\omega)$ is integrable and one can quotient Γ by the integral
manifolds of $\operatorname{Ker}(\omega)$ and obtain a non-degenerate symplectic structure defined on
$\Gamma /\{$ integral manifold of $\operatorname{Ker}(\omega)\}$

(Pre)-Symplectic structure

- If V is bounded by two Cauchy surfaces Σ and Σ^{\prime} connected by some region $\mathcal{K}_{\infty} \subset i^{0}$, a variation $\mathrm{d} \mathcal{S}_{V}$ around a solution is

$$
i^{*} \mathrm{~d} \mathcal{S}_{V}=\theta_{\Sigma^{\prime}}-\theta_{\Sigma}+\theta_{\mathcal{K}_{\infty}}, \quad i: \Gamma \rightarrow \mathcal{F}
$$

- Taking the exterior derivative, we get

$$
0=i^{*} \mathrm{~d}^{2} \mathcal{S}_{V}=\mathrm{d}\left(i^{*} \mathrm{~d} \mathcal{S}_{V}\right)=\omega_{\Sigma^{\prime}}-\omega_{\Sigma}+\omega_{\mathcal{K}_{\infty}}
$$

- Choosing boundary conditions such that $\omega_{\mathcal{K}_{\infty}}=0, \omega$ is independent of the Cauchy surface.
- In general, ω is degenerate. If $X, X^{\prime} \in \operatorname{Ker}(\omega)$,
so $\operatorname{Ker}(\omega)$ is integrable and one can quotient Γ by the integral
manifolds of $\operatorname{Ker}(\omega)$ and obtain a non-degenerate symplectic
structure defined on
$\Gamma /\{$ integral manifold of $\operatorname{Ker}(\omega)\}$

(Pre)-Symplectic structure

- If V is bounded by two Cauchy surfaces Σ and Σ^{\prime} connected by some region $\mathcal{K}_{\infty} \subset i^{0}$, a variation $\mathrm{d} \mathcal{S}_{V}$ around a solution is

$$
i^{*} \mathrm{~d} \mathcal{S}_{V}=\theta_{\Sigma^{\prime}}-\theta_{\Sigma}+\theta_{\mathcal{K}_{\infty}}, \quad i: \Gamma \rightarrow \mathcal{F}
$$

- Taking the exterior derivative, we get

$$
0=i^{*} \mathrm{~d}^{2} \mathcal{S}_{V}=\mathrm{d}\left(i^{*} \mathrm{~d} \mathcal{S}_{V}\right)=\omega_{\Sigma^{\prime}}-\omega_{\Sigma}+\omega_{\mathcal{K}_{\infty}}
$$

- Choosing boundary conditions such that $\omega_{\mathcal{K}_{\infty}}=0, \omega$ is independent of the Cauchy surface.
- In general, ω is degenerate. If $X, X^{\prime} \in \operatorname{Ker}(\omega)$,

$$
\begin{aligned}
0 & =£_{X^{\prime}} \omega(X, Y)=\omega\left(£_{X^{\prime}} X, Y\right)+\omega\left(X, £_{X^{\prime}} Y\right) \\
& =\omega\left(\left[X^{\prime}, X\right], Y\right) .
\end{aligned}
$$

so $\operatorname{Ker}(\omega)$ is integrable and one can quotient Γ by the integral
manifolds of $\operatorname{Ker}(\omega)$ and obtain a non-degenerate symplectic
structure defined on

(Pre)-Symplectic structure

- If V is bounded by two Cauchy surfaces Σ and Σ^{\prime} connected by some region $\mathcal{K}_{\infty} \subset i^{0}$, a variation $\mathrm{d} \mathcal{S}_{V}$ around a solution is

$$
i^{*} \mathrm{~d} \mathcal{S}_{V}=\theta_{\Sigma^{\prime}}-\theta_{\Sigma}+\theta_{\mathcal{K}_{\infty}}, \quad i: \Gamma \rightarrow \mathcal{F}
$$

- Taking the exterior derivative, we get

$$
0=i^{*} \mathrm{~d}^{2} \mathcal{S}_{V}=\mathrm{d}\left(i^{*} \mathrm{~d} \mathcal{S}_{V}\right)=\omega_{\Sigma^{\prime}}-\omega_{\Sigma}+\omega_{\mathcal{K}_{\infty}}
$$

- Choosing boundary conditions such that $\omega_{\mathcal{K}_{\infty}}=0, \omega$ is independent of the Cauchy surface.
- In general, ω is degenerate. If $X, X^{\prime} \in \operatorname{Ker}(\omega)$,

$$
\begin{aligned}
0 & =£_{X^{\prime}} \omega(X, Y)=\omega\left(£_{X^{\prime}} X, Y\right)+\omega\left(X, £_{X^{\prime}} Y\right) \\
& =\omega\left(\left[X^{\prime}, X\right], Y\right) .
\end{aligned}
$$

so $\operatorname{Ker}(\omega)$ is integrable and one can quotient Γ by the integral manifolds of $\operatorname{Ker}(\omega)$ and obtain a non-degenerate symplectic structure defined on
$\Gamma /\{$ integral manifold of $\operatorname{Ker}(\omega)\}$.

(Pre)-Symplectic structure

- If \mathcal{S}_{V} is of first order,

$$
\theta_{\Sigma}(X)=\int_{\Sigma} \frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} X^{\alpha} \mathrm{d} S_{a}
$$

(Pre)-Symplectic structure

- If \mathcal{S}_{V} is of first order,

$$
\theta_{\Sigma}(X)=\int_{\Sigma} \underbrace{\frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} X^{\alpha}}_{p \mathrm{~d} q} \mathrm{~d} S_{a}
$$

- By virtue of field equations,

(Pre)-Symplectic structure

- If \mathcal{S}_{V} is of first order,

$$
\begin{aligned}
& \theta_{\Sigma}(X)=\int_{\Sigma} \underbrace{\frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} X^{\alpha}}_{p \mathrm{~d} q} \mathrm{~d} S_{a} \\
& \omega(X, Y)=\int_{\Sigma}\left(\mathcal{J}_{1}^{a}+\mathcal{J}_{2}^{a}\right) \mathrm{d} S_{a}
\end{aligned}
$$

- By virtue of field equations,
$\nabla_{a}\left(\mathcal{J}_{1}^{a}+\mathcal{J}_{2}^{a}\right)=0$.

(Pre)-Symplectic structure

- If \mathcal{S}_{V} is of first order,

$$
\begin{gathered}
\theta_{\Sigma}(X)=\int_{\Sigma} \underbrace{\frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} X^{\alpha}}_{p \mathrm{~d} q} \mathrm{~d} S_{a} \\
\omega(X, Y)=\int_{\Sigma}\left(\mathcal{J}_{1}^{a}+\mathcal{J}_{2}^{a}\right) \mathrm{d} S_{a}, \\
\mathcal{J}_{1}^{a}:=\frac{\partial^{2} \mathcal{L}}{\partial \phi^{\beta} \partial \nabla_{a} \phi^{\alpha}}\left(Y^{\alpha} X^{\beta}-X^{\alpha} Y^{\beta}\right), \\
\mathcal{J}_{2}^{a}=\frac{\partial^{2} \mathcal{L}}{\partial \nabla_{b} \phi^{\beta} \partial \nabla_{a} \phi^{\alpha}}\left(Y^{\alpha} \nabla_{b} X^{\beta}-X^{\alpha} \nabla_{b} Y^{\beta}\right) .
\end{gathered}
$$

- By virtue of field equations,
$\nabla_{a}\left(\mathcal{J}_{1}^{a}+\mathcal{J}_{2}^{a}\right)=0$.

(Pre)-Symplectic structure

- If \mathcal{S}_{V} is of first order,

$$
\begin{gathered}
\theta_{\Sigma}(X)=\int_{\Sigma} \underbrace{\frac{\partial \mathcal{L}}{\partial \nabla_{a} \phi^{\alpha}} X^{\alpha}}_{p \mathrm{~d} q} \mathrm{~d} S_{a} \\
\omega(X, Y)=\int_{\Sigma}\left(\mathcal{J}_{1}^{a}+\mathcal{J}_{2}^{a}\right) \mathrm{d} S_{a}, \\
\mathcal{J}_{1}^{a}:=\frac{\partial^{2} \mathcal{L}}{\partial \phi^{\beta} \partial \nabla_{a} \phi^{\alpha}}\left(Y^{\alpha} X^{\beta}-X^{\alpha} Y^{\beta}\right), \\
\mathcal{J}_{2}^{a}=\frac{\partial^{2} \mathcal{L}}{\partial \nabla_{b} \phi^{\beta} \partial \nabla_{a} \phi^{\alpha}}\left(Y^{\alpha} \nabla_{b} X^{\beta}-X^{\alpha} \nabla_{b} Y^{\beta}\right) .
\end{gathered}
$$

- By virtue of field equations,

$$
\nabla_{a}\left(\mathcal{J}_{1}^{a}+\mathcal{J}_{2}^{a}\right)=0
$$

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

$$
\theta_{\xi}(X):=\omega(\xi, X) .
$$

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

$$
£_{\xi} \omega=(\mathrm{d} \omega)(\xi, \cdot, \cdot)+\mathrm{d}(\omega(\xi, \cdot))
$$

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

$$
£_{\xi} \omega=(\mathrm{d} \omega)(\xi, \cdot, \cdot)+\mathrm{d}(\omega(\xi, \cdot))=\mathrm{d}(\omega(\xi, \cdot)),
$$

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

$$
£_{\xi} \omega=(\mathrm{d} \omega)(\xi, \cdot, \cdot)+\mathrm{d}(\omega(\xi, \cdot))=\mathrm{d}(\omega(\xi, \cdot)),
$$

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

$$
\theta_{\xi}(X):=\omega(\xi, X)
$$

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

$$
£_{\xi} \omega=(\mathrm{d} \omega)(\xi, \cdot, \cdot)+\mathrm{d}(\omega(\xi, \cdot))=\mathrm{d}(\omega(\xi, \cdot)),
$$

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

$$
\theta_{\xi}(X):=\omega(\xi, X)
$$

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

$$
\mathrm{d} \mathcal{C}_{\xi}=\theta_{\xi} .
$$

- If $\xi \in \operatorname{Ker}(\omega)$, then ξ is an infinitesimal symmetry.

Symmetries and conserved quantities

- A smooth vector field on $\Gamma, \xi: \Gamma \rightarrow T \Gamma$ is called an infinitesimal canonical transformation if

$$
£_{\xi} \omega=0
$$

- Is there some conserved quantity associated with ξ ?

$$
£_{\xi} \omega=(\mathrm{d} \omega)(\xi, \cdot, \cdot)+\mathrm{d}(\omega(\xi, \cdot))=\mathrm{d}(\omega(\xi, \cdot)),
$$

Thus, if ξ is an infinitesimal canonical transf., there exists a locally closed one form

$$
\theta_{\xi}(X):=\omega(\xi, X)
$$

- Thus, there also exists a scalar function (the conserved quantity) \mathcal{C}_{ξ} such that

$$
\mathrm{d} \mathcal{C}_{\xi}=\theta_{\xi} .
$$

- If $\xi \in \operatorname{Ker}(\omega)$, then ξ is an infinitesimal symmetry.

PART III

Scalar Electrodynamics

Scalar Electrodynamics (SED)

- Consider a complex scalar field Φ with mass m and charge e, and a Maxwell field $F_{a b}:=2 \partial_{[a} A_{b]}$ in \mathcal{M}.
- The Lagrangian of the theory takes the form

where
- \mathcal{L} is invariant under

Scalar Electrodynamics (SED)

- Consider a complex scalar field Φ with mass m and charge e, and a Maxwell field $F_{a b}:=2 \partial_{[a} A_{b]}$ in \mathcal{M}.
- The Lagrangian of the theory takes the form

$$
\mathcal{L}\left(\Phi, A_{a}\right)=\left(\mathcal{D}_{a} \Phi\right)\left(\mathcal{D}^{a} \Phi\right)^{*}-m^{2}|\Phi|^{2}-\frac{1}{4} F_{a b} F^{a b}
$$

where

- \mathcal{L} is invariant under

Scalar Electrodynamics (SED)

- Consider a complex scalar field Φ with mass m and charge e, and a Maxwell field $F_{a b}:=2 \partial_{[a} A_{b]}$ in \mathcal{M}.
- The Lagrangian of the theory takes the form

$$
\mathcal{L}\left(\Phi, A_{a}\right)=\left(\mathcal{D}_{a} \Phi\right)\left(\mathcal{D}^{a} \Phi\right)^{*}-m^{2}|\Phi|^{2}-\frac{1}{4} F_{a b} F^{a b}
$$

where

$$
\mathcal{D}_{a} \Phi=\left(\nabla_{a}+i e A_{a}\right) \Phi, \quad\left(D^{a} \Phi\right)^{*}=\left(\nabla^{a}-i e A^{a}\right) \Phi^{*} .
$$

- \mathcal{L} is invariant under

Scalar Electrodynamics (SED)

- Consider a complex scalar field Φ with mass m and charge e, and a Maxwell field $F_{a b}:=2 \partial_{[a} A_{b]}$ in \mathcal{M}.
- The Lagrangian of the theory takes the form

$$
\mathcal{L}\left(\Phi, A_{a}\right)=\left(\mathcal{D}_{a} \Phi\right)\left(\mathcal{D}^{a} \Phi\right)^{*}-m^{2}|\Phi|^{2}-\frac{1}{4} F_{a b} F^{a b}
$$

where

$$
\mathcal{D}_{a} \Phi=\left(\nabla_{a}+i e A_{a}\right) \Phi, \quad\left(D^{a} \Phi\right)^{*}=\left(\nabla^{a}-i e A^{a}\right) \Phi^{*} .
$$

- \mathcal{L} is invariant under

$$
\binom{\Phi}{A_{a}} \mapsto\binom{e^{-i e \lambda} \Phi}{A_{a}+\nabla_{a} \lambda}, \quad \lambda: \mathcal{M} \rightarrow \mathbb{R}
$$

- Field Equations:

$$
\begin{gathered}
\square \Phi+\left[m^{2}-e^{2} A^{a} A_{a}+i e \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a}\right] \Phi=0, \\
\nabla_{c} \nabla^{d} A^{c}-\square A^{d}=i e\left[\Phi \nabla^{a} \Phi^{*}-\Phi^{*} \nabla^{a} \Phi\right]+2 e^{2} \Phi \Phi^{*} A^{a} .
\end{gathered}
$$

- The covariant phase space is, thus,

- Since the action $\mathcal{S}=\int \sqrt{-g} d^{4} x \mathcal{L}$ is of first order, the symplectic structure takes the form

where Σ is any Cauchy surface in \mathcal{M} with boundary $\partial \Sigma$.
- Field Equations:

$$
\begin{gathered}
\square \Phi+\left[m^{2}-e^{2} A^{a} A_{a}+i e \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a}\right] \Phi=0, \\
\nabla_{c} \nabla^{d} A^{c}-\square A^{d}=i e\left[\Phi \nabla^{a} \Phi^{*}-\Phi^{*} \nabla^{a} \Phi\right]+2 e^{2} \Phi \Phi^{*} A^{a} .
\end{gathered}
$$

- The covariant phase space is, thus,

$$
\Gamma=\left\{\phi^{\alpha}:=\left(\Phi, A_{a}\right) \mid \Phi \text { and } A_{a} \text { satisfy field eq. }\right\} .
$$

- Since the action $\mathcal{S}=\int \sqrt{-g} d^{4} x \mathcal{L}$ is of first order, the symplectic structure takes the form

where Σ is any Cauchy surface in \mathcal{M} with boundary $\partial \Sigma$.
- Field Equations:

$$
\begin{gathered}
\square \Phi+\left[m^{2}-e^{2} A^{a} A_{a}+i e \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a}\right] \Phi=0, \\
\nabla_{c} \nabla^{d} A^{c}-\square A^{d}=i e\left[\Phi \nabla^{a} \Phi^{*}-\Phi^{*} \nabla^{a} \Phi\right]+2 e^{2} \Phi \Phi^{*} A^{a} .
\end{gathered}
$$

- The covariant phase space is, thus,

$$
\Gamma=\left\{\phi^{\alpha}:=\left(\Phi, A_{a}\right) \mid \Phi \text { and } A_{a} \text { satisfy field eq. }\right\} .
$$

- Since the action $\mathcal{S}=\int \sqrt{-g} d^{4} x \mathcal{L}$ is of first order, the symplectic structure takes the form

$$
\omega(X, Y)=\int_{\Sigma} \mathcal{J}_{1}^{a}(X, Y) d S_{a}+\int_{\Sigma} \mathcal{J}_{2}^{a}(X, Y) d S_{a}
$$

where Σ is any Cauchy surface in \mathcal{M} with boundary $\partial \Sigma$.

- X and Y are solutions to linearized field equations around some solution ϕ^{α} :

$$
X^{\alpha}=\delta \phi^{\alpha}=\left(\delta \Phi, \delta A_{a}\right):=\left(\Psi, \alpha_{a}\right)
$$

- Let's take $X=\left(\Psi_{1}, \alpha_{a}^{1}\right)$ and $Y=\left(\Psi_{2}, \alpha_{a}^{2}\right)$. The currents of ω are

and
$\mathcal{J}_{2}^{a}(X, Y)=\Psi_{2} \nabla^{a} \Psi_{1}^{*}-\Psi_{1} \nabla^{a} \Psi_{2}^{*}+\Psi_{2}^{*} \nabla^{a} \Psi_{1}-\Psi_{1}^{*} \nabla^{a} \Psi_{2}+\alpha_{2}^{b} \nabla_{b} \alpha_{1}^{a}$

- X and Y are solutions to linearized field equations around some solution ϕ^{α} :

$$
X^{\alpha}=\delta \phi^{\alpha}=\left(\delta \Phi, \delta A_{a}\right):=\left(\Psi, \alpha_{a}\right)
$$

- Let's take $X=\left(\Psi_{1}, \alpha_{a}^{1}\right)$ and $Y=\left(\Psi_{2}, \alpha_{a}^{2}\right)$. The currents of ω are

$$
\begin{gathered}
\mathcal{J}_{1}^{a}(X, Y)=2 i e A^{a}\left(\Psi_{1} \Psi_{2}^{*}-\Psi_{2} \Psi_{1}^{*}\right)+i e \Phi\left(\Psi_{2}^{*} \alpha_{1}^{a}-\Phi_{1}^{*} \alpha_{2}^{a}\right) \\
-i e \Phi^{*}\left(\Psi_{2} \alpha_{1}^{a}-\Psi_{1} \alpha_{2}^{a}\right)
\end{gathered}
$$

and

- X and Y are solutions to linearized field equations around some solution ϕ^{α} :

$$
X^{\alpha}=\delta \phi^{\alpha}=\left(\delta \Phi, \delta A_{a}\right):=\left(\Psi, \alpha_{a}\right)
$$

- Let's take $X=\left(\Psi_{1}, \alpha_{a}^{1}\right)$ and $Y=\left(\Psi_{2}, \alpha_{a}^{2}\right)$. The currents of ω are

$$
\begin{gathered}
\mathcal{J}_{1}^{a}(X, Y)=2 i e A^{a}\left(\Psi_{1} \Psi_{2}^{*}-\Psi_{2} \Psi_{1}^{*}\right)+i e \Phi\left(\Psi_{2}^{*} \alpha_{1}^{a}-\Phi_{1}^{*} \alpha_{2}^{a}\right) \\
-i e \Phi^{*}\left(\Psi_{2} \alpha_{1}^{a}-\Psi_{1} \alpha_{2}^{a}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
\mathcal{J}_{2}^{a}(X, Y)= & \Psi_{2} \nabla^{a} \Psi_{1}^{*}-\Psi_{1} \nabla^{a} \Psi_{2}^{*}+\Psi_{2}^{*} \nabla^{a} \Psi_{1}-\Psi_{1}^{*} \nabla^{a} \Psi_{2}+\alpha_{2}^{b} \nabla_{b} \alpha_{1}^{a} \\
& -\alpha_{1}^{b} \nabla_{b} \alpha_{2}^{a}-\alpha_{2}^{b} \nabla^{a} \alpha_{b}^{1}+\alpha_{1}^{b} \nabla^{a} \alpha_{b}^{2} .
\end{aligned}
$$

Linearized problem and infinitesimal gauge transformation

- Explicitly, the perturbations (Ψ, α_{a}) satisfy

$$
\begin{gathered}
{\left[\square+m^{2}-e^{2} A^{a} A_{a}+i e \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a}\right] \Psi=\left[2 e^{2} A^{a} \alpha_{a}\right.} \\
\left.-i e \nabla_{a} \alpha^{a}-2 i e \alpha^{a} \nabla_{a}\right] \Phi
\end{gathered}
$$

- In particular, the infinitesimal gauge tranformation

satisfies the equations above trivially if we assume that ∇_{a} is torsion free.

Linearized problem and infinitesimal gauge transformation

- Explicitly, the perturbations (Ψ, α_{a}) satisfy

$$
\begin{gathered}
{\left[\square+m^{2}-e^{2} A^{a} A_{a}+i e \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a}\right] \Psi=\left[2 e^{2} A^{a} \alpha_{a}\right.} \\
\left.-i e \nabla_{a} \alpha^{a}-2 i e \alpha^{a} \nabla_{a}\right] \Phi
\end{gathered}
$$

$$
\nabla_{b} \nabla^{a} \alpha^{b}-\square \alpha^{a}=i e\left[\Phi \nabla^{a} \Psi^{*}+\Psi \nabla^{a} \Phi^{*}-\Phi^{*} \nabla^{a} \Psi-\Psi^{*} \nabla^{a} \Phi\right]
$$

$$
+2 e^{2}\left[\Phi \Phi^{*} \alpha^{a}+\Phi \Psi^{*} A^{a}+\Psi \Phi^{*} A^{a}\right] .
$$

- In particular, the infinitesimal gauge tranformation
satisfies the equations above trivially if we assume that ∇_{a} is torsion free.

Linearized problem and infinitesimal gauge transformation

- Explicitly, the perturbations (Ψ, α_{a}) satisfy

$$
\begin{gathered}
{\left[\square+m^{2}-e^{2} A^{a} A_{a}+i e \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a}\right] \Psi=\left[2 e^{2} A^{a} \alpha_{a}\right.} \\
\left.-i e \nabla_{a} \alpha^{a}-2 i e \alpha^{a} \nabla_{a}\right] \Phi ; \\
\nabla_{b} \nabla^{a} \alpha^{b}-\square \alpha^{a}= \\
+2 e\left[\Phi \nabla^{a} \Psi^{*}+\Psi \nabla^{a} \Phi^{*}-\Phi^{*} \nabla^{a} \Psi-\Psi^{*} \nabla^{a} \Phi\right] \\
+2 e^{2}\left[\Phi \Phi^{*} \alpha^{a}+\Phi \Psi^{*} A^{a}+\Psi \Phi^{*} A^{a}\right] .
\end{gathered}
$$

- In particular, the infinitesimal gauge tranformation

$$
X_{G}:=\left(-i e \lambda \Phi, \nabla_{a} \lambda\right),
$$

satisfies the equations above trivially if we assume that ∇_{a} is torsion free.

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} a^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,
- The conserved quantity $\mathcal{C}_{X_{G}}$ is such that

that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} a^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,
- The conserved quantity $\mathcal{C}_{X_{G}}$ is such that

that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(d \omega)\left(X_{G} \cdot \cdot\right)+d\left(\omega\left(X_{G} \cdot\right)\right)=0 .
$$

- The conserved quantity $C_{X_{G}}$ is such that

that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(\mathrm{d} \omega)\left(X_{G}, \cdot, \cdot\right)+\mathrm{d}\left(\omega\left(X_{G}, \cdot\right)\right)=0 .
$$

- The conserved quantity $C_{X_{G}}$ is such that
that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(\mathrm{d} \omega)\left(X_{G}, \cdot, \cdot\right)+\mathrm{d}\left(\omega\left(X_{G}, \cdot\right)\right)
$$

- The conserved quantity $C_{X_{G}}$ is such that
that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(\mathrm{d} \omega)\left(X_{G}, \cdot, \cdot\right)+\mathrm{d}\left(\omega\left(X_{G}, \cdot\right)\right)=0
$$

- The conserved quantity $C_{X_{G}}$ is such that
that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(\mathrm{d} \omega)\left(X_{G}, \cdot, \cdot\right)+\mathrm{d}\left(\omega\left(X_{G}, \cdot\right)\right)=0
$$

- The conserved quantity $\mathcal{C}_{X_{G}}$ is such that
$\mathrm{d} \mathcal{C}_{X_{G}}(Y)=\omega\left(X_{G}, Y\right)$
that is, the electromagnetic charge when $\lambda \rightarrow 1$.

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(\mathrm{d} \omega)\left(X_{G}, \cdot, \cdot\right)+\mathrm{d}\left(\omega\left(X_{G}, \cdot\right)\right)=0
$$

- The conserved quantity $\mathcal{C}_{X_{G}}$ is such that

$$
\mathrm{d} \mathcal{C}_{X_{G}}(Y)=\omega\left(X_{G}, Y\right) \quad \Rightarrow \quad \mathcal{C}_{X_{G}}(A)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} A_{b]} t^{a} n^{b} d S
$$

that is, the electromagnetic charge when $\lambda \rightarrow 1$

Kernel of ω

- Computing $\omega\left(X_{G}, Y\right)$ and integrating by parts, we obtain

$$
\omega\left(X_{G}, Y\right)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} \alpha_{b]}^{2} t^{a} n^{b} d S
$$

where the integral is over Σ, with time-like normal n^{a} and t^{a} is spacelike normal to $\partial \Sigma$. If $\lambda \rightarrow 0$ at $\partial \Sigma \subset i^{0}, X_{G} \in \operatorname{Ker}(\omega)$.

- Quiz: Does $\operatorname{Ker}(\omega)$ include all local symmetries of the theory? Answer: No! Explicitly,

$$
£_{X_{G}} \omega=(\mathrm{d} \omega)\left(X_{G}, \cdot, \cdot\right)+\mathrm{d}\left(\omega\left(X_{G}, \cdot\right)\right)=0
$$

- The conserved quantity $\mathcal{C}_{X_{G}}$ is such that
$\mathrm{d} \mathcal{C}_{X_{G}}(Y)=\omega\left(X_{G}, Y\right) \quad \Rightarrow \quad \mathcal{C}_{X_{G}}(A)=2 \oint_{\partial \Sigma} \lambda \nabla_{[a} A_{b]} t^{a} n^{b} d S$,
that is, the electromagnetic charge when $\lambda \rightarrow 1$.

Electromagnetic flux at \mathscr{I}^{+}

Particular case: $m=0$

- What happens at null infinity? We consider the conformal
transformation
where $\tilde{g}_{a b}$ represents the physical metric, and $g_{a b}$ the unphysical one.
- $\Omega=0$ represents null infinity, $\mathscr{S}^{ \pm}$. Since $F_{a b}$ is conformally invariant, it must be
- Putting $\tilde{\Phi}=\Omega^{-1} \Phi$, the first field equation becomes

Electromagnetic flux at \mathscr{I}^{+}

Particular case: $m=0$

- What happens at null infinity? We consider the conformal transformation

$$
\tilde{g}_{a b}=\Omega^{2} g_{a b}, \quad \Omega: \tilde{\mathcal{M}} \rightarrow \mathbb{R}, \quad \Omega>0,
$$

where $\tilde{g}_{a b}$ represents the physical metric, and $g_{a b}$ the unphysical one.
invariant, it must be

- Putting $\tilde{\Phi}=\Omega^{-1} \Phi$, the first field equation becomes

Electromagnetic flux at \mathscr{I}^{+}

Particular case: $m=0$

- What happens at null infinity? We consider the conformal transformation

$$
\tilde{g}_{a b}=\Omega^{2} g_{a b}, \quad \Omega: \tilde{\mathcal{M}} \rightarrow \mathbb{R}, \quad \Omega>0,
$$

where $\tilde{g}_{a b}$ represents the physical metric, and $g_{a b}$ the unphysical one.

- $\Omega=0$ represents null infinity, $\mathscr{I}^{ \pm}$. Since $F_{a b}$ is conformally invariant, it must be

$$
\tilde{A}_{a}=A_{a}, \quad \tilde{A}^{a}=\Omega^{-2} A^{a} .
$$

- Putting $\tilde{\Phi}=\Omega^{-1} \Phi$, the first field equation becomes

Particular case: $m=0$

- What happens at null infinity? We consider the conformal transformation

$$
\tilde{g}_{a b}=\Omega^{2} g_{a b}, \quad \Omega: \tilde{\mathcal{M}} \rightarrow \mathbb{R}, \quad \Omega>0
$$

where $\tilde{g}_{a b}$ represents the physical metric, and $g_{a b}$ the unphysical one.

- $\Omega=0$ represents null infinity, $\mathscr{I}^{ \pm}$. Since $F_{a b}$ is conformally invariant, it must be

$$
\tilde{A}_{a}=A_{a}, \quad \tilde{A}^{a}=\Omega^{-2} A^{a} .
$$

- Putting $\tilde{\Phi}=\Omega^{-1} \Phi$, the first field equation becomes

$$
\begin{gathered}
\square \Phi-e^{2} A^{a} A_{a} \Phi+i e \Phi \nabla_{a} A^{a}+2 i e A^{a} \nabla_{a} \Phi= \\
\Omega^{2} \tilde{\Phi} \tilde{g}^{a b} \tilde{\nabla}_{a} \tilde{\nabla}_{b} \Omega-2 \Omega \tilde{\Phi} \tilde{g}^{a b} \tilde{\nabla}_{a} \Omega \tilde{\nabla}_{b} \Omega
\end{gathered}
$$

How does $\tilde{\omega}(\tilde{X}, \tilde{Y})$ change?

- The volume element in the physical picture is

$$
d \tilde{S}_{a}=\tilde{t}_{a} d \tilde{S}=\tilde{t}_{a}|\tilde{h}|^{1 / 2} d^{3} \tilde{x}, \quad \tilde{t}^{a} \tilde{t}_{a}=-1, \quad h_{a b}=\left.g_{a b}\right|_{\Sigma}
$$

- Under the transformation $\tilde{h}_{a b}=\Omega^{2} h_{a b}$, and taking $t^{a} t_{a}=-1$,

- By direct calculation, it can be shown that

- Thus, if the integration is over space-like Cauchy surfaces, the symplectic structure results conformally invariant.

How does $\tilde{\omega}(\tilde{X}, \tilde{Y})$ change?

- The volume element in the physical picture is

$$
d \tilde{S}_{a}=\tilde{t}_{a} d \tilde{S}=\tilde{t}_{a}|\tilde{h}|^{1 / 2} d^{3} \tilde{x}, \quad \tilde{t}^{a} \tilde{t}_{a}=-1, \quad h_{a b}=\left.g_{a b}\right|_{\Sigma}
$$

- Under the transformation $\tilde{h}_{a b}=\Omega^{2} h_{a b}$, and taking $t^{a} t_{a}=-1$,

$$
\tilde{h}=\Omega^{6} h \quad \Rightarrow \quad|\tilde{h}|^{1 / 2}=\Omega^{3}|h|^{1 / 2}
$$

- By direct calculation, it can be shown that

- Thus, if the integration is over space-like Cauchy surfaces, the symplectic structure results conformally invariant.

How does $\tilde{\omega}(\tilde{X}, \tilde{Y})$ change?

- The volume element in the physical picture is

$$
d \tilde{S}_{a}=\tilde{t}_{a} d \tilde{S}=\tilde{t}_{a}|\tilde{h}|^{1 / 2} d^{3} \tilde{x}, \quad \tilde{t}^{a} \tilde{t}_{a}=-1, \quad h_{a b}=\left.g_{a b}\right|_{\Sigma}
$$

- Under the transformation $\tilde{h}_{a b}=\Omega^{2} h_{a b}$, and taking $t^{a} t_{a}=-1$,

$$
\begin{aligned}
\tilde{h}=\Omega^{6} h & \Rightarrow|\tilde{h}|^{1 / 2}=\Omega^{3}|h|^{1 / 2} \\
\tilde{t}_{a}=\Omega t_{a}, & \Rightarrow d \tilde{S}_{a}=\Omega^{4} d S_{a}
\end{aligned}
$$

- By direct calculation, it can be shown that

- Thus, if the integration is over space-like Cauchy surfaces, the symplectic structure results conformally invariant.

How does $\tilde{\omega}(\tilde{X}, \tilde{Y})$ change?

- The volume element in the physical picture is

$$
d \tilde{S}_{a}=\tilde{t}_{a} d \tilde{S}=\tilde{t}_{a}|\tilde{h}|^{1 / 2} d^{3} \tilde{x}, \quad \tilde{t}^{a} \tilde{t}_{a}=-1, \quad h_{a b}=g_{a b} \mid \Sigma
$$

- Under the transformation $\tilde{h}_{a b}=\Omega^{2} h_{a b}$, and taking $t^{a} t_{a}=-1$,

$$
\begin{aligned}
\tilde{h}=\Omega^{6} h & \Rightarrow \quad|\tilde{h}|^{1 / 2}=\Omega^{3}|h|^{1 / 2} \\
\tilde{t}_{a}=\Omega t_{a}, & \Rightarrow d \tilde{S}_{a}=\Omega^{4} d S_{a}
\end{aligned}
$$

- By direct calculation, it can be shown that

$$
\tilde{\mathcal{J}}_{j}^{a}(\tilde{X}, \tilde{Y})=\Omega^{-4} \mathcal{J}_{j}^{a}(X, Y) ; \quad j=1,2
$$

- Thus, if the integration is over space-like Cauchy surfaces, the symplectic structure results conformally invariant.

How does $\tilde{\omega}(\tilde{X}, \tilde{Y})$ change?

- The volume element in the physical picture is

$$
d \tilde{S}_{a}=\tilde{t}_{a} d \tilde{S}=\tilde{t}_{a}|\tilde{h}|^{1 / 2} d^{3} \tilde{x}, \quad \tilde{t}^{a} \tilde{t}_{a}=-1, \quad h_{a b}=\left.g_{a b}\right|_{\Sigma}
$$

- Under the transformation $\tilde{h}_{a b}=\Omega^{2} h_{a b}$, and taking $t^{a} t_{a}=-1$,

$$
\begin{aligned}
\tilde{h}=\Omega^{6} h & \Rightarrow \quad|\tilde{h}|^{1 / 2}=\Omega^{3}|h|^{1 / 2} \\
\tilde{t}_{a}=\Omega t_{a}, & \Rightarrow d \tilde{S}_{a}=\Omega^{4} d S_{a}
\end{aligned}
$$

- By direct calculation, it can be shown that

$$
\tilde{\mathcal{J}}_{j}^{a}(\tilde{X}, \tilde{Y})=\Omega^{-4} \mathcal{J}_{j}^{a}(X, Y) ; \quad j=1,2
$$

- Thus, if the integration is over space-like Cauchy surfaces, the symplectic structure results conformally invariant.

$$
\tilde{\omega}(\tilde{X}, \tilde{Y})=\omega(X, Y)
$$

Conformal Symplectic structure

Conformal Symplectic structure

- ω does not depend on the Cauchy surface. In particular, one can take
$\Sigma^{*}:=\Sigma^{\prime} \cup \Delta, \Delta:=S^{2} \times I, I \subset \mathbb{R}$.
- $\nabla^{a} \mathcal{J}_{a}=0$ on \mathcal{M}.
- Charge flux:

Conformal Symplectic structure

- ω does not depend on the Cauchy surface. In particular, one can take

$$
\Sigma^{*}:=\Sigma^{\prime} \cup \Delta, \Delta:=S^{2} \times I, I \subset \mathbb{R}
$$

- $\nabla^{a} \mathcal{J}_{a}=0$ on \mathcal{M}.
- Charge flux:

Conformal Symplectic structure

- ω does not depend on the Cauchy surface. In particular, one can take

$$
\Sigma^{*}:=\Sigma^{\prime} \cup \Delta, \Delta:=S^{2} \times I, I \subset \mathbb{R}
$$

- $\nabla^{a} \mathcal{J}_{a}=0$ on \mathcal{M}.
- Charge flux:

$$
\int_{\Delta} \mathcal{J}^{a}\left(X_{G}, Y\right) d S_{a}=\left.\mathrm{d} \mathcal{Q}\right|_{i^{0}}(Y)-\left.\mathrm{d} \mathcal{Q}\right|_{\mathcal{C}}(Y)
$$

Global Symetries

- Let k^{a} be a Killing vector field in the spacetime background $\left(\mathcal{M}, g_{a b}\right)$. Then,

$$
£_{k} g_{a b}=0 .
$$

- If $\left(\Phi, A_{a}\right) \in \Gamma$, the perturbation

$$
X^{\alpha}=\left(\dot{\Phi}, \dot{A}_{a}\right):=\left(£_{k} \Phi, £_{k} A_{a}\right)
$$

satisfies the linearized SED equations, using the fact that $£$ conmutes with ∇_{a} along the Killing field.

- $£_{X} \omega=0 \Rightarrow X$ is a symmetry
- The conserved quantity \mathcal{C} associated with this symmetry is such that

Global Symetries

- Let k^{a} be a Killing vector field in the spacetime background $\left(\mathcal{M}, g_{a b}\right)$. Then,

$$
£_{k} g_{a b}=0 .
$$

- If $\left(\Phi, A_{a}\right) \in \Gamma$, the perturbation

$$
X^{\alpha}=\left(\dot{\Phi}, \dot{A}_{a}\right):=\left(£_{k} \Phi, £_{k} A_{a}\right)
$$

satisfies the linearized SED equations, using the fact that $£$ conmutes with ∇_{a} along the Killing field.

- The conserved quantity \mathcal{C} associated with this symmetry is such that

Global Symetries

- Let k^{a} be a Killing vector field in the spacetime background $\left(\mathcal{M}, g_{a b}\right)$. Then,

$$
£_{k} g_{a b}=0 .
$$

- If $\left(\Phi, A_{a}\right) \in \Gamma$, the perturbation

$$
X^{\alpha}=\left(\dot{\Phi}, \dot{A}_{a}\right):=\left(£_{k} \Phi, £_{k} A_{a}\right)
$$

satisfies the linearized SED equations, using the fact that $£$ conmutes with ∇_{a} along the Killing field.

- $£_{X} \omega=0$
- The conserved quantity C associated with this symmetry is such that

Global Symetries

- Let k^{a} be a Killing vector field in the spacetime background $\left(\mathcal{M}, g_{a b}\right)$. Then,

$$
£_{k} g_{a b}=0 .
$$

- If $\left(\Phi, A_{a}\right) \in \Gamma$, the perturbation

$$
X^{\alpha}=\left(\dot{\Phi}, \dot{A}_{a}\right):=\left(£_{k} \Phi, £_{k} A_{a}\right)
$$

satisfies the linearized SED equations, using the fact that $£$ conmutes with ∇_{a} along the Killing field.

- $£_{X} \omega=0 \Rightarrow X$ is a symmetry.
- The conserved quantity \mathcal{C} associated with this symmetry is such that

Global Symetries

- Let k^{a} be a Killing vector field in the spacetime background $\left(\mathcal{M}, g_{a b}\right)$. Then,

$$
£_{k} g_{a b}=0 .
$$

- If $\left(\Phi, A_{a}\right) \in \Gamma$, the perturbation

$$
X^{\alpha}=\left(\dot{\Phi}, \dot{A}_{a}\right):=\left(£_{k} \Phi, £_{k} A_{a}\right)
$$

satisfies the linearized SED equations, using the fact that $£$ conmutes with ∇_{a} along the Killing field.

- $£_{X} \omega=0 \Rightarrow X$ is a symmetry.
- The conserved quantity \mathcal{C} associated with this symmetry is such that

$$
\begin{aligned}
& \mathrm{dC}(\Psi, \alpha)=\int_{\Sigma}\left[2 e \operatorname{lm}\left\{2 \Psi \dot{\Phi}^{*} A^{a}-2 \dot{\Phi} \Psi^{*} A^{a}+\Phi \dot{\Phi}^{*} \alpha^{a}-\Phi \Psi^{*} \dot{A}^{a}\right\}+\right. \\
& \left.+2 \operatorname{Re}\left\{\Psi \nabla^{a} \dot{\Phi}^{*}-\dot{\Phi} \nabla^{a} \Psi^{*}\right\}+[\alpha, \dot{A}]^{a}+\dot{A}^{b} \nabla^{a} \alpha_{b}-\alpha^{b} \nabla^{a} \dot{A}_{b}\right] \mathrm{d} S_{a}
\end{aligned}
$$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,
- The energy-momentum tensor associated with \mathcal{L} is

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is $\mathcal{E}(\Phi)=-\int_{\Sigma} T_{a b} k^{a} k^{b} d^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}-m^{2} \Phi^{2}\right] \mathrm{d}^{3} x$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,

$$
\mathcal{L}=\nabla^{a} \Phi \nabla_{a} \Phi-m^{2} \Phi^{2},
$$

- The energy-momentum tensor associated with \mathcal{L} is

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is $\mathcal{E}(\Phi)=-\int_{\Sigma} T_{a b} k^{a} k^{b} d^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}-m^{2} \Phi^{2}\right] \mathrm{d}^{3} x$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,

$$
\mathcal{L}=\nabla^{a} \Phi \nabla_{a} \Phi-m^{2} \Phi^{2}, \quad \square \Phi+m^{2} \Phi=0
$$

- The energy-momentum tensor associated with \mathcal{L} is

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is $\mathcal{E}(\Phi)=-\int_{\Sigma} T_{a b} k^{a} k^{b} d^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}-m^{2} \Phi^{2}\right] \mathrm{d}^{3} x$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,

$$
\mathcal{L}=\nabla^{a} \Phi \nabla_{a} \Phi-m^{2} \Phi^{2}, \quad \square \Phi+m^{2} \Phi=0, \quad(+,-,-,-) .
$$

- The energy-momentum tensor associated with \mathcal{L} is

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is $\mathcal{E}(\Phi)=-\int_{\Sigma} T_{a b} k^{a} k^{b} d^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}-m^{2} \Phi^{2}\right] \mathrm{d}^{3} x$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,

$$
\mathcal{L}=\nabla^{a} \Phi \nabla_{a} \Phi-m^{2} \Phi^{2}, \quad \square \Phi+m^{2} \Phi=0, \quad(+,-,-,-) .
$$

- The energy-momentum tensor associated with \mathcal{L} is

$$
T_{a b}=2 \nabla_{a} \Phi \nabla_{b} \Phi-g_{a b}\left(\nabla^{c} \Phi \nabla_{c} \Phi-m^{2} \Phi^{2}\right) .
$$

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is $\mathcal{E}(\Phi)=-\int_{\Sigma} T_{a b} k^{a} k^{b} d^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}\right.$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,

$$
\mathcal{L}=\nabla^{a} \Phi \nabla_{a} \Phi-m^{2} \Phi^{2}, \quad \square \Phi+m^{2} \Phi=0, \quad(+,-,-,-) .
$$

- The energy-momentum tensor associated with \mathcal{L} is

$$
T_{a b}=2 \nabla_{a} \Phi \nabla_{b} \Phi-g_{a b}\left(\nabla^{c} \Phi \nabla_{c} \Phi-m^{2} \Phi^{2}\right) .
$$

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is

$$
\mathcal{E}(\Phi)=-\int_{\Sigma} T_{a b} k^{a} k^{b} \mathrm{~d}^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}-m^{2} \Phi^{2}\right] \mathrm{d}^{3} x
$$

Example: Klein Gordon Equation

- Setting $F_{a b}=0$ and $\Phi=\Phi^{*}$,

$$
\mathcal{L}=\nabla^{a} \Phi \nabla_{a} \Phi-m^{2} \Phi^{2}, \quad \square \Phi+m^{2} \Phi=0, \quad(+,-,-,-)
$$

- The energy-momentum tensor associated with \mathcal{L} is

$$
T_{a b}=2 \nabla_{a} \Phi \nabla_{b} \Phi-g_{a b}\left(\nabla^{c} \Phi \nabla_{c} \Phi-m^{2} \Phi^{2}\right) .
$$

- Taking (t, \vec{x}) coordinates such that $k^{a}=\left(\partial_{t}\right)^{a}$ with $k^{a} k_{a}=1$, the energy over a $t=t_{0}$ space-like slice, Σ, is

$$
\begin{aligned}
\mathcal{E}(\Phi) & =-\int_{\Sigma} T_{a b} k^{a} k^{b} \mathrm{~d}^{3} x=\int_{\Sigma}\left[\nabla^{c} \Phi \nabla_{c} \Phi-2 \dot{\Phi}^{2}-m^{2} \Phi^{2}\right] \mathrm{d}^{3} x \\
& =-\int_{t=t_{0}}\left[\dot{\Phi}^{2}+|\vec{\nabla} \Phi|^{2}+m^{2} \Phi^{2}\right] \mathrm{d}^{3} x
\end{aligned}
$$

Example: Klein Gordon Equation

- The differential of energy is

$$
\mathrm{d} \mathcal{E}(\Psi)=\left.\frac{\mathrm{d} \mathcal{E}(\Phi+s \Psi)}{\mathrm{d} s}\right|_{s=0}=-2 \int_{\Sigma}\left[\dot{\Phi} \dot{\Psi}+\vec{\nabla} \Phi \cdot \vec{\nabla} \Psi+m^{2} \Phi \Psi\right] \mathrm{d}^{3} x
$$

- Using the symplectic formalism,

Example: Klein Gordon Equation

- The differential of energy is

$$
\begin{aligned}
\mathrm{d} \mathcal{E}(\Psi) & =\left.\frac{\mathrm{d} \mathcal{E}(\Phi+s \Psi)}{\mathrm{d} s}\right|_{s=0}=-2 \int_{\Sigma}\left[\dot{\Phi} \dot{\Psi}+\vec{\nabla} \Phi \cdot \vec{\nabla} \Psi+m^{2} \Phi \Psi\right] \mathrm{d}^{3} x \\
& =-2 \int_{\Sigma}[\dot{\Phi} \dot{\Psi} \underbrace{-\Psi \nabla^{2} \Phi+m^{2} \Phi \Psi}_{=-\Psi \ddot{\Phi}}] \mathrm{d}^{3} x
\end{aligned}
$$

- Using the symplectic formalism,

Example: Klein Gordon Equation

- The differential of energy is

$$
\begin{aligned}
\mathrm{d} \mathcal{E}(\Psi) & =\left.\frac{\mathrm{d} \mathcal{E}(\Phi+s \Psi)}{\mathrm{d} s}\right|_{s=0}=-2 \int_{\Sigma}\left[\dot{\Phi} \dot{\Psi}+\vec{\nabla} \Phi \cdot \vec{\nabla} \Psi+m^{2} \Phi \Psi\right] \mathrm{d}^{3} x \\
& =-2 \int_{\Sigma}[\dot{\Phi} \dot{\Psi} \underbrace{-\Psi \nabla^{2} \Phi+m^{2} \Phi \Psi}_{=-\Psi \ddot{\Phi}}] \mathrm{d}^{3} x \\
& =2 \int_{\Sigma}[\Psi \ddot{\Phi}-\dot{\Phi} \dot{\Psi}] \mathrm{d}^{3} x
\end{aligned}
$$

- Using the symplectic formalism,

Example: Klein Gordon Equation

- The differential of energy is

$$
\begin{aligned}
\mathrm{d} \mathcal{E}(\Psi) & =\left.\frac{\mathrm{d} \mathcal{E}(\Phi+s \Psi)}{\mathrm{d} s}\right|_{s=0}=-2 \int_{\Sigma}\left[\dot{\Phi} \dot{\Psi}+\vec{\nabla} \Phi \cdot \vec{\nabla} \Psi+m^{2} \Phi \Psi\right] \mathrm{d}^{3} x \\
& =-2 \int_{\Sigma}[\dot{\Phi} \dot{\Psi} \underbrace{-\Psi \nabla^{2} \Phi+m^{2} \Phi \Psi}_{=-\Psi \ddot{\Phi}}] \mathrm{d}^{3} x \\
& =2 \int_{\Sigma}[\Psi \ddot{\Phi}-\dot{\Phi} \dot{\Psi}] \mathrm{d}^{3} x
\end{aligned}
$$

- Using the symplectic formalism,

Example: Klein Gordon Equation

- The differential of energy is

$$
\begin{aligned}
\mathrm{d} \mathcal{E}(\Psi) & =\left.\frac{\mathrm{d} \mathcal{E}(\Phi+s \Psi)}{\mathrm{d} s}\right|_{s=0}=-2 \int_{\Sigma}\left[\dot{\Phi} \dot{\Psi}+\vec{\nabla} \Phi \cdot \vec{\nabla} \Psi+m^{2} \Phi \Psi\right] \mathrm{d}^{3} x \\
& =-2 \int_{\Sigma}[\dot{\Phi} \dot{\Psi} \underbrace{-\Psi \nabla^{2} \Phi+m^{2} \Phi \Psi}_{=-\Psi \ddot{\Phi}}] \mathrm{d}^{3} x \\
& =2 \int_{\Sigma}[\Psi \ddot{\Phi}-\dot{\Phi} \dot{\Psi}] \mathrm{d}^{3} x
\end{aligned}
$$

- Using the symplectic formalism,

$$
\mathrm{d} \mathcal{E}(\Psi)=\omega(\dot{\Phi}, \Psi)=2 \int_{\Sigma}\left[\Psi \nabla^{a} \dot{\Phi}-\dot{\Phi} \nabla^{a} \Psi\right] k_{a} \mathrm{~d}^{3} x
$$

Example: Klein Gordon Equation

- The differential of energy is

$$
\begin{aligned}
\mathrm{d} \mathcal{E}(\Psi) & =\left.\frac{\mathrm{d} \mathcal{E}(\Phi+s \Psi)}{\mathrm{d} s}\right|_{s=0}=-2 \int_{\Sigma}\left[\dot{\Phi} \dot{\Psi}+\vec{\nabla} \Phi \cdot \vec{\nabla} \Psi+m^{2} \Phi \Psi\right] \mathrm{d}^{3} x \\
& =-2 \int_{\Sigma}[\dot{\Phi} \dot{\Psi} \underbrace{-\Psi \nabla^{2} \Phi+m^{2} \Phi \Psi}_{=-\Psi \ddot{\Phi}}] \mathrm{d}^{3} x \\
& =2 \int_{\Sigma}[\Psi \ddot{\Phi}-\dot{\Phi} \dot{\Psi}] \mathrm{d}^{3} x
\end{aligned}
$$

- Using the symplectic formalism,

$$
\begin{aligned}
\mathrm{d} \mathcal{E}(\Psi) & =\omega(\dot{\Phi}, \Psi)=2 \int_{\Sigma}\left[\Psi \nabla^{a} \dot{\Phi}-\dot{\Phi} \nabla^{a} \Psi\right] k_{a} \mathrm{~d}^{3} x \\
& =2 \int_{\Sigma}[\Psi \ddot{\Phi}-\dot{\Phi} \dot{\Psi}] \mathrm{d}^{3} x
\end{aligned}
$$

- We presented a covariant formulation to describe the dynamics of field theories, a notion of covariant phase space and a symplectic structure.
- We have seen how this covariant framework can be used to derive eventually usefull results in field theories.
- As future perspectives, we want to obtain some general results in general relativity, using this covariant framework, particularly in vacuum spacetimes, as for example:
- give a correct and general definition of angular momentum at null infinity;
- study all the transformations that leave ω invariant, and see if this transformations belong to the BMS group of symmetries or not.
- We presented a covariant formulation to describe the dynamics of field theories, a notion of covariant phase space and a symplectic structure.
- We have seen how this covariant framework can be used to derive eventually usefull results in field theories.
- As future perspectives, we want to obtain some general results in general relativity, using this covariant framework, particularly in vacuum spacetimes, as for example:
- give a correct and general definition of angular momentum at null infinity;
- study all the transformations that leave ω invariant, and see if this transformations belong to the BMS group of symmetries or not.
- We presented a covariant formulation to describe the dynamics of field theories, a notion of covariant phase space and a symplectic structure.
- We have seen how this covariant framework can be used to derive eventually usefull results in field theories.
- As future perspectives, we want to obtain some general results in general relativity, using this covariant framework, particularly in vacuum spacetimes, as for example:
- give a correct and general definition of angular momentum at null infinity;
- study all the transformations that leave ω invariant, and see if this transformations belong to the BMS group of symmetries or not.
- We presented a covariant formulation to describe the dynamics of field theories, a notion of covariant phase space and a symplectic structure.
- We have seen how this covariant framework can be used to derive eventually usefull results in field theories.
- As future perspectives, we want to obtain some general results in general relativity, using this covariant framework, particularly in vacuum spacetimes, as for example:
- give a correct and general definition of angular momentum at null infinity;
- study all the transformations that leave ω invariant, and see if this transformations belong to the BMS group of symmetries or not.
- We presented a covariant formulation to describe the dynamics of field theories, a notion of covariant phase space and a symplectic structure.
- We have seen how this covariant framework can be used to derive eventually usefull results in field theories.
- As future perspectives, we want to obtain some general results in general relativity, using this covariant framework, particularly in vacuum spacetimes, as for example:
- give a correct and general definition of angular momentum at null infinity;
- study all the transformations that leave ω invariant, and see if this transformations belong to the BMS group of symmetries or not.

Thank you for your attention!

