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PART I

The geometry of Classical Mechanics
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Symplectic formulation of Hamiltonian Mechanics

Any classical system with n degrees of freedom is
characterized by a Lagrangian

L = L(qi, q̇i, t),

where the coordinates qi = qi(t). We introduce n covectors
given by

pi :=
∂L
∂q̇i

.

Locally, the phase space Γ of the system is descripted by(
{qi}, {pi}

)
, i = 1, 2, · · · , n.

The Hamiltonian of the system is a smooth function on Γ,

H : Γ→ R, H := piq̇
i − L,

and the dynamics of the system is descripted by

q̇i =
∂H
∂pi

, ṗi = −∂H
∂qi

.
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Symplectic formulation of Hamiltonian Mechanics

The phase space Γ seems to have some intrinsic geometrical
structure related to the form of Hamilton equations.

Let’s introduce arbitrary coordinates xµ(qi, pi),
µ = 1, · · · , 2n on Γ.The evolution in the new coordinates is

ẋµ =
∂xµ

∂qi
q̇i +

∂xµ

∂pi
ṗi =

∂xµ

∂qi
∂H
∂pi
− ∂xµ

∂pi

∂H
∂qi

=

(
∂xµ

∂qi
∂xν

∂pi
− ∂xµ

∂pi

∂xν

∂qi

)
∂H
∂xν

= ωµν
∂H
∂xν

;

and thus,

ẋµ = ωµν
∂H
∂xν

, ωµν :=

(
∂xµ

∂qi
∂xν

∂pi
− ∂xµ

∂pi

∂xν

∂qi

)
= {xµ, xν}.
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ṗi =

∂xµ

∂qi
∂H
∂pi
− ∂xµ

∂pi

∂H
∂qi

=

(
∂xµ

∂qi
∂xν

∂pi
− ∂xµ

∂pi

∂xν

∂qi

)
∂H
∂xν

= ωµν
∂H
∂xν

;

and thus,

ẋµ = ωµν
∂H
∂xν

, ωµν :=

(
∂xµ

∂qi
∂xν

∂pi
− ∂xµ

∂pi

∂xν

∂qi

)
= {xµ, xν}.

Marcelo Rubio SF and CPS on SED



Symplectic formulation of Hamiltonian Mechanics

The phase space Γ seems to have some intrinsic geometrical
structure related to the form of Hamilton equations.

Let’s introduce arbitrary coordinates xµ(qi, pi),
µ = 1, · · · , 2n on Γ.The evolution in the new coordinates is
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Symplectic formulation of Hamiltonian Mechanics

Properties of ωµν :
ωµν = −ωνµ ; (1)

det(ωµν) =

∣∣∣∣ ∂xµ

∂(qi, pj)

∣∣∣∣2 6= 0 ; (2)

∂[µωνρ] = 0. (3)

In particular, if (x1, · · · , x2n) = (q1, · · · , qn, p1, · · · , pn),

ωµν =

(
0 1n
−1n 0

)
,

and we return to Hamilton Equations.
If f : Γ→ R and g : Γ→ R, we redefine the Poisson bracket
{f, g} in terms of ω:

{f, g} := ωµν
∂f

∂xµ
∂g

∂xν
.
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Symplectic formulation of Hamiltonian Mechanics

Fixing g, {f, g} is a derivation on f along the vector

Xµ
g := ωµν

∂g

∂xν
.

This vector field is called Hamiltonian vector field.

The inverse of ωµν , ωµν is called symplectic structure.

A symplectic manifold is a pair (M, ω) such that ω satisfies
(1), (2) and (3).

Note that (3) implies that ωµν is a closed non degenerate
2-form.

Darboux’s Theorem: Let (Γ, ω) be a symplectic manifold.
Then, for each point p ∈ Γ, there exists a neighbourhood of p
and a chart

(
{qi}, {pi}

)
such that

ω = dpi ∧ dqi = d
(
pidq

i
)
.
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Symmetries and conserved quantities

Symmetry? Φ : Γ→ Γ smooth and invertible, that takes a
solution and produces another.

Solution? Curve γ : I ⊆ R→ Γ, t 7→ γ(t) such that

γ̇ = XH, ẋµ = ωµν
∂H
∂xν

.

If {Φs}s∈R is a monoparametric family of symmetries and
p ∈ Γ, let’s consider the curve s 7→ γp(s) := Φs(p). The
tangent vector

ξ :=
dΦs(p)

ds

∣∣∣∣
s=0

is called an infinitesimal transformation of Φ at p.

The fields XH and ξ generate a 2-dimensional submanifold on
Γ, and must be coordinate vector fields:

0 = [ξ,XH]µ = Xµ
ξ(H) + (£ξω

µν)
∂H
∂xν

⇒ £ξ ω = 0
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PART II

Covariant Phase Space on Field Theories
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Covariant Phase Space on Field Theories

Consider a smooth 4-dimensional lorentzian manifold M with
the topology of Σ× R and Σ ≡ R3.

M is equipped with a stationary and globally hyperbolic
metric gab such that Cauchy surfaces are diffeomorphic to Σ.

On this spacetime, consider a dynamical theory for a collection
of fields φα(x), where α labels the fields. We denote

F := {φα :M→ T (k,l)α
M | φα satisfy some boundary conditions}.

F has the structure of an infinite-dimensional manifold.
Functions on F are functionals f : F → R.

Dynamics is specified by some action SV , defined over any
measurable region V ⊂M:

SV (φα) =

∫
V
L (φα,∇aφα,∇a∇bφα, · · · ) dV.
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Covariant Phase Space on Field Theories

We require that SV be stationary under any variation δφα

such that δφα|∂V = 0.

If L contains terms which are pure divergences, then SV must
have surface terms. For example, if the action is of first order,
then L(φα,∇aφα), and the variation is

dSV (δφα) =

∫
V

(
∂L
∂φα

−∇a
∂L

∂∇aφα

)
δφα dV+

∮
∂V

∂L
∂∇aφα

δφα dSa.

A general variation of SV will be of the form

dSV (δφα) =

∫
V
Gα(φ)δφαdV +

∮
∂V
F a(φα, δφα)dSa.

Gα depends on derivatives up to second order of φα, and
F a = 0 when δφα = 0 at ∂V ; so fields equations are

Gα(φ) = 0

Marcelo Rubio SF and CPS on SED
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F a = 0 when δφα = 0 at ∂V ; so fields equations are

Gα(φ) = 0
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Covariant Phase Space on Field Theories

The covariant phase space of the theory is the submanifold
Γ ⊂ F given by

Γ = {φα ∈ F | Gα(φ) = 0}.

Given a Cauchy surface Σ, we define the potential 1-form θΣ

on Γ as

θΣ(X) :=

∫
Σ
F a(φ,X)dSa,

where X is any vector field on Γ.

Definition

The pre-symplectic structure of the theory is

ωΣ(X,Y ) := dθΣ(X,Y ).

By construction, dω = 0.

ω does not depend on the choice of Σ.
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(Pre)–Symplectic structure

If V is bounded by two Cauchy surfaces Σ and Σ′ connected
by some region K∞ ⊂ i0, a variation dSV around a solution is

i∗dSV = θΣ′ − θΣ + θK∞ , i : Γ→ F .

Taking the exterior derivative, we get

0 = i∗d2SV = d (i∗dSV ) = ωΣ′ − ωΣ + ωK∞ .

Choosing boundary conditions such that ωK∞ = 0, ω is
independent of the Cauchy surface.
In general, ω is degenerate. If X,X ′ ∈ Ker(ω),

0 = £X′ω(X,Y ) = ω (£X′X,Y ) + ω (X,£X′Y )

= ω
(
[X ′, X], Y

)
.

so Ker(ω) is integrable and one can quotient Γ by the integral
manifolds of Ker(ω) and obtain a non-degenerate symplectic
structure defined on

Γ/{integral manifold of Ker(ω)}.
Marcelo Rubio SF and CPS on SED
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(Pre)–Symplectic structure

If SV is of first order,

θΣ(X) =

∫
Σ

∂L
∂∇aφα

XαdSa,
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(Pre)–Symplectic structure

If SV is of first order,

θΣ(X) =

∫
Σ

∂L
∂∇aφα

Xα︸ ︷︷ ︸
p dq

dSa,

ω(X,Y ) =

∫
Σ

(J a1 + J a2 ) dSa,

J a1 :=
∂2L

∂φβ∂∇aφα
(
Y αXβ −XαY β

)
,

J a2 =
∂2L

∂∇bφβ∂∇aφα
(
Y α∇bXβ −Xα∇bY β

)
.

By virtue of field equations,

∇a (J a1 + J a2 ) = 0.
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Symmetries and conserved quantities

A smooth vector field on Γ, ξ : Γ→ TΓ is called an
infinitesimal canonical transformation if

£ξ ω = 0

Is there some conserved quantity associated with ξ?

£ξ ω = (dω) (ξ, ·, ·) + d (ω(ξ, ·)) = d (ω(ξ, ·)) ,

Thus, if ξ is an infinitesimal canonical transf., there exists a
locally closed one form

θξ(X) := ω(ξ,X).

Thus, there also exists a scalar function (the conserved
quantity) Cξ such that

dCξ = θξ.

If ξ ∈ Ker(ω), then ξ is an infinitesimal symmetry.
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PART III

Scalar Electrodynamics
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Scalar Electrodynamics (SED)

Consider a complex scalar field Φ with mass m and charge e,
and a Maxwell field Fab := 2∂[aAb] in M.

The Lagrangian of the theory takes the form

L(Φ, Aa) = (DaΦ) (DaΦ)∗ −m2|Φ|2 − 1

4
FabF

ab,

where

DaΦ = (∇a + ieAa) Φ, (DaΦ)∗ = (∇a − ieAa) Φ∗.

L is invariant under(
Φ
Aa

)
7→
(

e−ieλΦ
Aa +∇aλ

)
, λ :M→ R.
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Field equations and Symplectic structure

Field Equations:

2Φ +
[
m2 − e2AaAa + ie∇aAa + 2ieAa∇a

]
Φ = 0,

∇c∇dAc −2Ad = ie [Φ∇aΦ∗ − Φ∗∇aΦ] + 2e2ΦΦ∗Aa.

The covariant phase space is, thus,

Γ = {φα := (Φ, Aa)|Φ and Aa satisfy field eq.}.

Since the action S =
∫ √
−g d4x L is of first order, the

symplectic structure takes the form

ω(X,Y ) =

∫
Σ
J a1 (X,Y )dSa +

∫
Σ
J a2 (X,Y )dSa,

where Σ is any Cauchy surface in M with boundary ∂Σ.
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Field equations and Symplectic structure

X and Y are solutions to linearized field equations around
some solution φα:

Xα = δφα = (δΦ, δAa) := (Ψ, αa).

Let’s take X = (Ψ1, α
1
a) and Y = (Ψ2, α

2
a). The currents of

ω are

J a1 (X,Y ) = 2ieAa (Ψ1Ψ∗2 −Ψ2Ψ∗1) + ieΦ (Ψ∗2α
a
1 − Φ∗1α

a
2)

−ieΦ∗ (Ψ2α
a
1 −Ψ1α

a
2) ,

and

J a2 (X,Y ) = Ψ2∇aΨ∗1−Ψ1∇aΨ∗2+Ψ∗2∇aΨ1−Ψ∗1∇aΨ2+αb2∇bαa1

−αb1∇bαa2 − αb2∇aα1
b + αb1∇aα2

b .
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Linearized problem and infinitesimal gauge transformation

Explicitly, the perturbations (Ψ, αa) satisfy[
2 +m2 − e2AaAa + ie∇aAa + 2ieAa∇a

]
Ψ =

[
2e2Aaαa

−ie∇aαa − 2ieαa∇a] Φ;

∇b∇aαb −2αa = ie [Φ∇aΨ∗ + Ψ∇aΦ∗ − Φ∗∇aΨ−Ψ∗∇aΦ]

+2e2 [ΦΦ∗αa + ΦΨ∗Aa + ΨΦ∗Aa] .

In particular, the infinitesimal gauge tranformation

XG := (−ieλΦ,∇aλ) ,

satisfies the equations above trivially if we assume that ∇a is
torsion free.
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Kernel of ω

Computing ω (XG, Y ) and integrating by parts, we obtain

ω(XG, Y ) = 2

∮
∂Σ
λ∇[aα

2
b]t
anbdS,

where the integral is over Σ, with time-like normal na and ta is
spacelike normal to ∂Σ. If λ→ 0 at ∂Σ ⊂ i0, XG ∈ Ker(ω).

Quiz: Does Ker(ω) include all local symmetries of the theory?
Answer: No! Explicitly,

£XGω = (dω)(XG, ·, ·) + d(ω(XG, ·)) = 0.

The conserved quantity CXG is such that

dCXG(Y ) = ω(XG, Y ) ⇒ CXG(A) = 2

∮
∂Σ
λ∇[aAb]t

anbdS,

that is, the electromagnetic charge when λ→ 1.
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Electromagnetic flux at I +

Particular case: m = 0

What happens at null infinity? We consider the conformal
transformation

g̃ab = Ω2gab, Ω : M̃ → R, Ω > 0,

where g̃ab represents the physical metric, and gab the
unphysical one.

Ω = 0 represents null infinity, I ±. Since Fab is conformally
invariant, it must be

Ãa = Aa, Ãa = Ω−2Aa.

Putting Φ̃ = Ω−1Φ, the first field equation becomes

2Φ− e2AaAaΦ + ieΦ∇aAa + 2ieAa∇aΦ =

Ω2Φ̃g̃ab∇̃a∇̃bΩ− 2ΩΦ̃g̃ab∇̃aΩ∇̃bΩ.
Marcelo Rubio SF and CPS on SED
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How does ω̃(X̃, Ỹ ) change?

The volume element in the physical picture is

dS̃a = t̃adS̃ = t̃a|h̃|1/2 d3x̃, t̃at̃a = −1, hab = gab|Σ.

Under the transformation h̃ab = Ω2hab, and taking tata = −1,

h̃ = Ω6h ⇒ |h̃|1/2 = Ω3|h|1/2;

t̃a = Ωta, ⇒ dS̃a = Ω4dSa

By direct calculation, it can be shown that

J̃ aj (X̃, Ỹ ) = Ω−4J aj (X,Y ); j = 1, 2.

Thus, if the integration is over space-like Cauchy surfaces, the
symplectic structure results conformally invariant.

ω̃(X̃, Ỹ ) = ω(X,Y )
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Conformal Symplectic structure

ω does not depend on the Cauchy
surface. In particular, one can
take

Σ∗ := Σ′∪∆, ∆ := S2×I, I ⊂ R.

∇aJa = 0 on M.

Charge flux:∫
∆
J a(XG, Y )dSa = dQ|i0(Y )−dQ|C(Y )
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Global Symetries

Let ka be a Killing vector field in the spacetime background
(M, gab). Then,

£k gab = 0.

If (Φ, Aa) ∈ Γ, the perturbation

Xα = (Φ̇, Ȧa) := (£k Φ,£k Aa)

satisfies the linearized SED equations, using the fact that £
conmutes with ∇a along the Killing field.

£X ω = 0 ⇒ X is a symmetry.

The conserved quantity C associated with this symmetry is
such that

dC (Ψ, α) =

∫
Σ

[
2e Im

{
2ΨΦ̇∗Aa − 2Φ̇Ψ∗Aa + ΦΦ̇∗αa − ΦΨ∗Ȧa

}
+

+ 2 Re
{

Ψ∇aΦ̇∗ − Φ̇∇aΨ∗
}

+
[
α, Ȧ

]a
+ Ȧb∇aαb − αb∇aȦb

]
dSa.
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}
+

+ 2 Re
{

Ψ∇aΦ̇∗ − Φ̇∇aΨ∗
}

+
[
α, Ȧ
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+ Ȧb∇aαb − αb∇aȦb
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Example: Klein Gordon Equation

Setting Fab = 0 and Φ = Φ∗,

L = ∇aΦ∇aΦ−m2Φ2, 2Φ +m2Φ = 0, (+,−,−,−).

The energy-momentum tensor associated with L is

Tab = 2∇aΦ∇bΦ− gab
(
∇cΦ∇cΦ−m2Φ2

)
.

Taking (t, ~x) coordinates such that ka = (∂t)
a with kaka = 1,

the energy over a t = t0 space-like slice, Σ, is

E(Φ) = −
∫

Σ
Tabk

akb d3x =

∫
Σ

[
∇cΦ∇cΦ− 2Φ̇2 −m2Φ2

]
d3x

= −
∫
t=t0

[
Φ̇2 + |~∇Φ|2 +m2Φ2

]
d3x.
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Example: Klein Gordon Equation

The differential of energy is

dE(Ψ) =
dE(Φ + sΨ)

ds

∣∣∣∣
s=0

= −2

∫
Σ

[
Φ̇Ψ̇ + ~∇Φ · ~∇Ψ +m2ΦΨ

]
d3x

= −2

∫
Σ

[Φ̇Ψ̇−Ψ∇2Φ +m2ΦΨ︸ ︷︷ ︸
=−ΨΦ̈

] d3x

= 2

∫
Σ

[
ΨΦ̈− Φ̇Ψ̇

]
d3x.

Using the symplectic formalism,

dE(Ψ) = ω(Φ̇,Ψ) = 2

∫
Σ

[
Ψ∇aΦ̇− Φ̇∇aΨ

]
kad3x

= 2

∫
Σ

[
ΨΦ̈− Φ̇Ψ̇

]
d3x.
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Final Remarks and future work

We presented a covariant formulation to describe the
dynamics of field theories, a notion of covariant phase space
and a symplectic structure.

We have seen how this covariant framework can be used to
derive eventually usefull results in field theories.

As future perspectives, we want to obtain some general results
in general relativity, using this covariant framework,
particularly in vacuum spacetimes, as for example:

give a correct and general definition of angular momentum at
null infinity;

study all the transformations that leave ω invariant, and see if
this transformations belong to the BMS group of symmetries
or not.
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Thank you for your attention!
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