Asymptotically flat manifolds



Asymptotically flat manifolds

* Asymptotically flat manifolds are NOT the
same as compact, without boundary
manifolds.

e The fundamental difference is that the AF
manifolds have quantities at infinity’.

* |n particular, if the solution to the Einstein
equations is asymptotically flat in spacelike
directions, then there are two objects at
infinity that are (usually) finite.




Asymptotically flat manifolds

* |f we choose an asymptotically 3-cartesian
coordinate system, then we have

E =1/16Jt_<ﬁ(gl.j,j —gj].’l.)ds"
P = —1/8ﬂg>‘7t°%7dsi “
and > Ml=—1/8ﬂ'¢ﬂl]§jd5'i
* Where €' = (-y, +x, 0), or another of the

rotational Killing vectors. We could write the
linear momentum with one of the

translational Killing vectors.



Asymptotically flat spacetimes

 Something miraculous’ happens to these
expressions It looks as if the metric should be
g; = 0; + O(1/r) and =t = O(1/r?) to get finite
Imear momentum and st/ = O(1/r3) for finite
angular momentum. We can get by with
significantly slower falloff. In particular, we
only need g; =9, + O(1/r*/?), and m' = O(1/r3/?)
to get finite energy and linear momentum.
The situation with finite angular momentum
is slightly more complicated.



Asymptotically flat spacetimes

* The key point is that one should not think of
these expressions as surface integrals, but
rather as volume integrals, and use the
constraints to get rid of the terms which
appear to be divergent.

* The calculation for the momentum/angular
momentum is slightly easier than for the
energy.



Asymptotically flat

* Let us putin a translational Killing vector at
infinity. The linear momentum now becomes
PY=—1/ Sngﬁ nE ds,

* We need not assume that we make any
particular coordinate choice at infinity and we
do not make any assumptions about how we
continue the asymptotic Killing vector into the
interior. Let us turn the surface integral into a
volume integral.



Asymptotically flat spacetimes

We get Pl 81[98 & ds=-1/87 f (VA& +2'VE )y
The vacuum momentum constraint gets rid of

the first volume term (if we have sources, we
get [g/'€.dv, but we will ignore this).

V : (i)
Therefore we have P =-1/8x[a"V &, dv

For this to be finite we only need that n@® fall
off faster than r3/2and that V_ &, also fall off
faster than r3/2,



Asymptotically flat spacetimes

* |f we had a true translational Killing vector
such that  V.& -V,£”=0 then the volume
integral would vanish. In general, however, we
get that VE =£,-T5E . Near infinity, if we pick &,
=(1,0,0), thenE,, =0, and I'*,, = 0(r*/?) if the
metric falls off like rl/2, We also have that m@®
= 0(r3/2). Therefore the volume integral is
finite. Again, it looks as if the metric should

fall off like 1/r so as to give finite energy



Asymptotically flat

* However, we get that the metric need only fall
off like O(1/r¥/2) to give finite energy. The
constraints play an interesting role here.

* If we assume that g; = §; + O(1/r*/?) and mt (or
Ki) falls off like O(1/r32) then it appears that

the surface integrals diverge. However,
something ‘magical’ happens. If we look at

either gﬁ(gl.j,j — g )nds or gﬁn“”&anbds in



* isolation, it is clear that we need g; = 0; +

Asymptotically flat spacetimes

J

* O(1/r) and =@ = O(1/r2) to have finite surface integrals.
However, the constraints play a major role in the
calculation. It turns out that (g; ; — 8;; ; ) is what we get
when we write the energy as a volume integral. This is

t
t
t

ne linear’ part of the scalar curvature and if we use
ne Hamiltonian constraint to replace the linear part of

he scalar curvature with "g;; g " (we actually get

many terms but all of them are first-derivative
squared’ terms) and “K2K_, — K?' terms, we see that we
only need r/2 falloff in g; and r*?2 falloff in K@°.



Asymptotically flat spacetimes

 The angular momentum is slightly more
complicated. We get that we need that the
metric falls off like 1/r, while the extrinsic
curvature falls off like 1/r2. The 1/r falloff of
the metric is critical in the sense that if the
metric falls off faster than 1/r, we get that the
energy is zero, and if the 3-manifold is
complete and a vacuum solution to the
constraints, the space (and the spacetime)
must be flat.



Asymptotically flat manifolds

* The momentum and angular momentum are
much more flexible. If the extrinsic curvature falls
off faster than 1/r? we will have zero linear
momentum, while if the extrinsic curvature falls
off faster than 1/r3 th&'drigular momentum is
zero. If the linear momentum is zero we
immediately get that the energy is the mass. In
general we get that

o M = (EZ _ P2)1/2’
* the standard formula for special relativity.



Yamabe constant

 We can define the Yamabe constant for an
asymptotically flat manifold, just as we did for
a compact, without boundary, one. It is now
defined as o- inf [[(VO)+1/8R6]dy
Y hec [[6° "

 The only difference is that we now evaluate it
over functions of compact support, rather
than smooth functions.



Yamabe co

nstant

* The Yamabe constant is conformally invariant.

Further, manifolds which

are compact,

without boundary, can be conformally

rescaled to AF manifolds,

with a metric which

goes flat like 1/r. The Yamabe constants of

both manifolds are the sa
constant is closely relatec

me. The AF Yamabe

to the Sobolev
(VO) ]dv

inf
constant, S(g)= f

HEC |

J

r96 dv]1/3



Sobolev constant

* A major difference is that the Sobolev
constant is always positive while the Yamabe
constant can be negative, if the metric is far
away from flat space. We need to keep in
mind the distinction between AF spaces and
compact, without boundary, spaces. In the
compact, without boundary case, if the scalar
curvature is negative, the Yamabe constant is
negative. This is NOT true in the AF case.



Yamabe constant

* The function which minimizes the Yamabe
functional satisfies ~ -V°u+1/8Ru=Au’

 where A is a constant. The relationship between
AandYis Y = )L[fu6dv]2/3

* |f we are dealing with a compact manifold
everything is straightforward. The function u
which minimizes the Yamabe functional is
everywhere positive. If we have that the manifold
is AF, A is constant, but w goes to zero at infinity.



Yamabe constant

* The Yamabe constant is a conformal invariant.
Let us conformally transform a metric g on a
manifold M by some positive function ¢, i.e.,
g’; = ¢*g;. Given that the scalar curvature R

transformsas R'=¢R-8¢°V’¢

e it is easy to show that (with 8" = 0/¢)
f (VO +1/8R6"™)dv' = f (V) +1/8R6*|dv

° and f@'6dV'=fH6dV



Yamabe constant

Thus it immediately follows that

Y(M, g') =Y(M, g
The metric g’,, = u*g,, satisfies R” = 8\, which is
obviously constant. If we are given a manifold
with R = R,, a constant, then the minimizing
equation is clearly satisfied by u = constant. In
turn, we get  Y=/8R[[dv"=1/8R V"
In particular the sign of the Yamabe constant is

determined by the sign of the scalar curvature
one can transform to.



Yamabe constant

* One case where the Yamabe constant is easily
evaluated is for a 2-sphere with constant
scalar curvature. In this case we get Y =
3(m?/4)%3. This is a special number. It is the
Sobolev constant of flat space. Rick Schoen’s
completion of the Yamabe theorem consisted
of showing that the Yamabe constant was
strictly less than 3(m2/4)%/3: except when the
space is conformally flat. In this case it equals

3(m2/4)%/3.



Yamabe constant

 There are a number of things we can say
about the sign of the Yamabe constant for
compact manifolds. If we have a manifold
with non-positive scalar curvature, we can use
0 = 1 and immediately get YsV'”3fRdv< 0. The
only situation we need be careful is whenR =
0 everywhere. On the other hand if R is
everywhere non-negative we get



Yamabe constant

* Then we get f [(VO) +1/8R6'ldv>0 for every test-
function. This implies that Y is greater than or
equal to zero. Thus, on a compact manifold,
the global sign of the scalar curvature is a

conformal invariant. We know that
R|=¢—4R_8¢—5v2¢

* Multiply by ¢°, and integrate, which gives

[¢'Rdv'= [ [9R-8V'9ldv= [ gRdy



Yamabe constant

 We cannot have R’ positive and R negative (or
vice versa). This argument does NOT work for
AF manifolds. In the AF case, it only works one
way, we can have a manifold with everywhere
negative scalar curvature, but with positive
Yamabe constant, but a manifold with
everywhere positive scalar curvature must
have positive Yamabe constant. In particular,
an AF manifold with zero scalar curvature
must have positive Yamabe constant.



Yamabe constant

* |f we have an AF manifold with everywhere
small but negative scalar curvature, it will
have positive Yamabe constant and we can
conformally transform it into an AF manifold
with positive scalar curvature. We must have
the scalar curvature significantly negative to
prevent this. If we can solve §V’&-RE=(E—1

* with & >0, we will get an AF manifold with g’_,
= E*g,, which has R’ = 0.



Yamabe constant

* This obviously works if R >0, but evenif R<0
(and R small) it still holds. This manifold has Y
>0, even though we can set it, on an
asymptotically flat manifold, with R = 0.
Therefore, R = 0 on an AF manifold has
positive Yamabe constant, while R=0o0n a
compact manifold has zero Yamabe constant.



Yamabe constant

* Flat space, where the Sobolev constant equals
3(m2/4)?/* and compact without boundary
conformally flat space, which has Y = 3(rt2/4)%/3
are intimately related. The conformal
transformation g, = u*9,,, with u= 1)

* Where a is any constant, transforms flat space
to a compact, without boundary sphere. The

function u satisfies Vy+3° =0 and is the
minimizing function for the Sobolev constant.
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Yamabe function

* Rick Schoen considered a compact manifold
with positive scalar curvature and looked at
the Green function of the operator 8V~* — R,
i.e., a solution G to 8V'-RC=0(x-x). It is easy to
show that C > 0. Let us assume the opposite.
Let us assume that C < 0 on some subset M’ of
M. We will assume that M’ does not contain

Xo-



Yamabe constant

We assume C = 0 on 0M’. We multiply the
equation above by C and integrate over M’.

We get f(gg‘vzg_Rgz)dv -0 . We know that we
get M

g[S ENE.AS =0

Because C vanisheson 0 M" and V &is
regular.



Yamabe constant

 Therefore we get that f[8N§)2+R§2]dv=O. This
makes no sense. " Therefore we can
assume that C > 0. This means that we can use
C as a conformal factor and (M, g’) = (M, C?g)
can be regarded as an asymptotically flat
manifold. Further, since 8v¢-R:=0
everywhere except at x,, the ‘point at infinity’,

(M, g’) is an asymptotically flat manifold with
R =0.



Yamabe constant

* This, of course, shows that an asymptotically
flat manifold with R = 0 has strictly positive
Yamabe constant.



