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The problems

Problem (Model geom. properties by non-geom. assumptions)
(AE) manifolds model (time slices of) isolated gravitating systems.

=⇒ A geometric property (being such a system) is modeled by a coordinate
assumption (possessing an (AE) chart).

Problem (Dependence on coordinates)
If we define physical quantities (mass, linear momentum, . . . ) for
(AE) manifolds using coordinates, then we have to prove that they do not
depend on the chosen coordinate system (or behave correctly under change
of coordinates).
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Asymptotically Euclidean manifolds

Definition (Asymptotically Euclidean manifolds)
Let (M, g) be a Riemannian manifold and ε > 0, η ..= ε+ 1/2.

($ ..= ε+ 5/2).

A chart x : M \ K → R3 \ B1(0) is called asymptotically Euclidean

(hyperbolic)

if K ⊆ M is a compact set and

g − δ = O
(
r−η
)
, δ∇−∇ = O

(
r−1−η),

Ric = O
(
r−2−η), S = O

(
r−3−ε),

}
(AE)

where r ..= |x |

g − hg = O
(
e−$ r), h∇−∇ = O

(
e−$ r),

Ric + 2 hg = O
(
e−$ r), S + 6 = O

(
e−(3+ε) r

)
,

 (AH)

where r ..= |x |, hg ..= dr2 + sinh (r)2 Ω.

If there exists an asymptotically Euclidean (hyperbolic) chart x for (M, g), then
(M, g) is called asymptotically Euclidean (hyperbolic).
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CMC foliations

Definition (CMC foliation)

Let (M
3
, g) be a Riemannian manifold and M ..= {σΣ}σ be a family of closed

hypersurfaces. M is called CMC foliation of M (outside of some compact set),
if

each surface σΣ has constant mean curvature σH ≡ H (S2
σ(0); rg):

σH ≡ 2
σ

(AE) resp. σH ≡ 2 cosh(σ)

sinh(σ)
(AH)

the surfaces σΣ cover M outside of a compact set, i. e. M \
⋃

σ
σΣ is

compact;
the surfaces σΣ are pairwise disjoint.
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CMC foliation – Euclidean case

Euclidean setting: (M = R3, g = δ)

Here, the coordinate spheres σΣ ..= S2
σ(0) give a CMC foliation.

Not unique!
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CMC foliation – Schwarzschildean case

Spatial Schwarzschild solution (M ..= R3 \ B m
2

(0), g) with mass m 6= 0,

g =

(
1 +

m
2|x |

)4

δ

Figure: Schwarzschild as Flamm’s paraboloid

There exists a unique CMC foliation {σΣ = S2
R(σ)(0)}σ.
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Existence of the CMC foliation

Theorem ([Huisken and Yau, 1996], [Metzger, 2007],
[Huang, 2010], [Eichmair and Metzger, 2012],
[N., 2014a])

If (M, g) is asymptotically Euclidean with non-vanishing mass, then there
exists a unique, stable CMC foliation {σΣ}σ>σ0 .

Theorem ([Neves and Tian, 2009], [Neves and Tian, 2010],
[N., ’tbp])

If (M, g) is asymptotically hyperbolic with positive mass, then there exists a
unique, stable CMC foliation {σΣ}σ>σ0 .
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Some words on regularity

Remark ((AE)-setting)

all surfaces σΣ are smooth spheres;

σΣ approaches the round sphere, i. e. there is a parametrization such that

σg = σ2 (Ω + O2(σ−
1
2−ε));

the infinitesimal distance (lapse) function between the leaves of {σΣ}σ at
σΣ is 1 + O(σ−ε) and is in general not 1 + O(σ−

1
2−ε);

=⇒
 

σΣ

x dµ = O(σ1−ε) and there are examples for which this rate is

exactly satisfied, [Cederbaum and N., 2014].

can be

but

in general
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Back to geometry

1 We start by a physical property (being an isolated system);

2 It is modeled by a coordinate assumption (being asymptotically flat);
3 And this implies a geometric property (existence of a CMC foliation);

Question
Can the second step be skipped, i. e. can asymptotic to the Euclidean
(hyperbolic) space be characterized geometrically by the existence of a
suitable CMC foliation?
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Geometric characterization of asymptotically flatness

Theorem ((AE) case [N., 2014])
(M, g) is asymptotically flat if it possesses a foliation by stable
CMC hypersurfaces σΣ with mean curvature σH ≡ 2/σ (for σ > σ0) and
non-vanishing total mass lim mH(σΣ) 6= 0 such that Ric|

σΣ decays sufficiently
as σ →∞.

Idea
Construct ‘geometric’ spherical coordinates satisfying (AE) resp. (AH) using
the CMC foliation, i. e. choose ‘good’ coordinates (σϕ, σϑ) : σΣ→ S2

σ for each
σ and define three-dimensional coordinates (r , (ϕ, ϑ)) : M→ (σ0 ;∞)× S2 by

r |
σΣ: ≡ σ, (ϕ, ϑ)|

σΣ
..= (σϕ, σϑ).
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Main problem of this idea

Problem (The radial direction)
Infinitesimal distance (lapse) function between the leaves of {S2

σ}σ is constant
1, i. e. δ(∂r , ∂r ) ≡ 1. But, in the above construction

g(∂r , ∂r )|
σΣ = lapse function between the leaves of {σ′Σ}σ′ = 1 + O

(
σ−ε

)
.

(in general)
======⇒ g − δ = O(r−ε) and not g − δ = O(r−

1
2−ε) in this chart.

We already know that this idea cannot work. The chart has to allow the image

=⇒ choose the centers of the spheres more carefully
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Choosing the centers

Question
How do we choose the centers? In other words, how can we characterize the
‘slip off’ of the spheres (without using asymptotic flatness)?

Idea
We use the lapse function, i. e. u ..= g(∂σϕ, ν) where ϕ is any parametrization
of the foliation.
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Understanding the lapse function

Let ϕ : (−η ; η)× S2
r (0)→ R3 be smooth with ϕ(0, ·) = id |S2

r (0).

=⇒ The (Euclidean) lapse function is u ..= δ(∂ηϕ,
δν).

Take the Fourier series:

u = u0 1 +
3∑

i=1

ui x i +
∞∑
i=4

ui f i =.. u∗ + ut + ud .

Three parts: rescaling part, translating part, and deforming part of u.

Geometric characterization (for η = 0):

u∗ ≡ u0 =

 
S2

r (0)

u dH 2, ∆ ut =
−2
r2 ut , u = u∗ + ut + ud .
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Geometric characterization (for η = 0):

u∗ ≡ u0 =

 
S2

r (0)

u dH 2, ∆ ut =
−2
r2 ut , u = u∗ + ut + ud .
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Choosing the centers

1 Choose a complete orthogonal system {σfi}∞i=1 of L2(σΣ) of
eigenfunctions of the Laplace operator, i. e. σ∆ σfi = −σλi σfi with
σλi ≤ σλi+1 and sup |σfi | = 1;

2 choose it smoothly depending on σ;

3 write the lapse function σu as

σu = σu∗ + σut + σud = σu∗ +
3∑

i=1
σui

σfi + σud ;

4 fix some σ1 and define the centers σz ..=

(ˆ σ

σ1

ςui dς
)3

i=1
.
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Optimizing the coordinates

Problem
We cannot choose the coordinates of one σΣ independently of the ones for
the other surfaces {ςΣ}ς , as their σ-derivative has to satisfy some decay
assumption.
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Final step

Idea
Do not choose coordinates (e. g. conformally) mapping σΣ to some Euclidean
sphere, i. e. x(σΣ) = S2

σ(σz), but choose ‘geometric’ functions h1, h2, h3 on σΣ

as the components of the chart, i. e. x i |Σ ..= hi . Then prove that these depend
regulary enough on σ and map σΣ to a surfaces near to a Euclidean sphere.

Recall
there exists a complete L2(σΣ)-orthogonal system {σf i}i by
eigenfunctions of the Laplace operator (with ‖σf i‖L∞(σΣ) ≡ 1);
σ → σf is sufficiently regular;

in the Euclidean setting, f i =
x i

r
.

The coordinates are

x : M→ R3 : p 7→ σ(p)
(
σf 1, σf 2, σf 3)+ z(σ(p)),

where p ∈ σ(p)Σ and σz is the center of σΣ as defined before.
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The (AH) setting

Differences (in the (AH) setting)

Problem
1 The chart image x(σΣ) of σΣ cannot be chosen independently of the

other images {x(ςΣ)}ς , as isometries of the hyperbolic space are more
complicated.

2 We only have σg = sinh (σ)2 (Ω + O(e−( 1
2 +ε)σ)), i. e. σΣ is not

sufficiently round to be the preimage of a hyperbolic sphere (in
general), as this preimage has to satisfy
g = sinh (σ)2 (Ω + O(e−( 5

2 +ε)σ)).

3 Error terms are of the form O(e−η σ), i. e. we do not loose decay rate by
integrating.
=⇒We can choose the coordinates at infinity (for σΣ as σ →∞) and
‘integrate’ to get the rest of the coordinates [work in progress]. Note
that fixing the coordinates at infinity fixes the isometry of the hyperbolic
space.

Thank you for your attention!
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