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Introduction

Equilibrium configurations play a fundamental role to understand any physical theory.

This is particularly important in Gravity because of the geometric nature of the field.

The aim of this course is to present some of the main results in this area of research.

The topic is vast and cannot be covered in a few hours.

I will restrict myself to the case of pure gravitation, i.e. vacuum spacetimes.

Even with this restriction, the presentation will by no means be exhaustive
=⇒ Many interesting results will be left out.

The hope is to give an idea of what the subject is about, what are the main techniques,
the difficulties and main results.
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Stationarity in Gravitation

In many physical theories there is a canonical notion of time.

Equilibrium there simply means: independent of time.

In General Relativity, there is no canonical notion of time.

The definition of “equilibrium state” needs to be formulated in geometric terms.

Require the metric to remain invariant under a suitable one-parameter isometry
group.

Recall that an isometry of a (pseudo-)Riemannian manifold (M, gM) is a diffeomorphism

Φ : M −→ M satisfying Φ⋆(gM) = gM.

A one-parameter isometry group is a differentiable map

Ψ : R×M −→ M
(s, p) −→ Ψ(s, p) := Ψs(p) satisfying

∀s, t ∈ R : (i) Ψs is a diffeomorphism , (ii) Ψs ◦Ψt = Ψs+t (iii) Ψs is an isometry .

(i) and (ii) define a one-parameter group of transformations: Generator ξ(p) = dΨs (p)
ds

∣∣∣
s=0
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If {Ψs} is a one parameter isometry group then

Ψ⋆
s (g

M) = gM =⇒ dΨ⋆
s (g

M)

ds
= 0 ⇐⇒ Lξg

M = 0.

Definition (Killing vector)

A Killing field is a vector field ξ satisfying Lξg
M = 0.

Given a complete vector field ξ the one-parameter group of transformations can be
reconstructed.

Recall: A vector field ξ ∈ X(M) is complete iff all their integral curves

γ : I = (a, b) ⊂ R −→ M, γ̇(s) = ξ(γ(s)) have maximal domain I = R

A non-complete ξ generates a local one-parameter group of transformations.

Theorem (Local one-parameter group of transformations)

Let (M, gM) be a (pseudo-)Riemannian manifold and ξ any vector field. For any point
p ∈ M, there exists an open set Up and a map

Ψ : (a, b)× Up −→ M

such that (i) Ψs := Ψ(s, ·) is a diffeomorphism onto the image, (ii) dΨs (q)
ds

∣∣∣
s=0

= ξ(q) and

(iii) Ψs ◦Ψt = Ψs+t for all points and values of s, t where this expression is defined.
If, moreover, ξ is a Killing vector then Ψ⋆

s (g
M) = 0. (Local isometry group).
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To talk about “equilibrium states” one still needs some relation of ξ with “time”.

Definition (Spacetime)

A spacetime (M, gM) is a smooth n-dimensional connected manifold (n ≥ 4) with a
smooth metric gM of Lorentzian signature {−,+, · · · ,+} and a time orientation.

Time orientation: Existence of a timelike vector field u, declared to be future.

Write gM(u, v) also by 〈u, v〉.
A causal vector v is future if 〈v , u〉 ≤ 0. v is past if −v is future.

The weakest possible notion of “equilibrium state” in General Relativity is

Definition (Time-independent)

A spacetime is (M, gM) time-independent if it admits a Killing vector ξ which is timelike
somewhere.

Aim: classify time-independent spacetimes satisfying suitable field equations: e.g..
vacuum, electrovacuum, Yang-Mills, scalar field, etc.

For many results, stronger notions of “equilibrium state” will be necessary.

Theory mostly developed in dimension n = 4. Less clear that any reasonable
classification exists in higher dimensions.
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Setup and notation

Given a spacetime (M, gM) denote by ∇ the Levi-Civita covariant derivative.

Curvature operator of ∇: RiemM(X ,Y )Z =
(
∇X∇Y −∇Y∇X −∇[X ,Y ]

)
Z .

Riemann tensor: RiemM(X ,Y ,Z ,W ) = 〈X ,RiemM(Z ,W )Y 〉
Ricci tensor, curvature scalar and Einstein tensor denoted: RicM, ScalM, EinM.

Einstein field equations:

EinM + ΛgM = χT .

Λ : cosmological constant, χ = 8πG
c4

= 8π, T : energy-momentum tensor,

Vacuum: T = 0,

Scalar field: Tsc = dΦ⊗ dΦ− 1
2
|dΦ|2gMgM.

Perfect fluid: Tpf = (ρ+ p) u ⊗ u + p gM, 〈u, u〉 = −1

Spacetime indices: α, β, γ, · · · = 0, , · · · n − 1.

Electromagnetic field: (TEM)αβ = FαµF
µ

β − 1
4
FµνF

µνgM
αβ , Fαβ two-form.

+ Equations for matter fields. E.g. in electrovacuum: dF = 0, divgMF = 0.

We will be mostly concerned with vacuum spacetimes RicM = 0.
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Basic properties of Killing vectors

G = {ξ ∈ X(M), ξ Killing vector field} endowed with [ , ] is a Lie algebra.

A Killing vector satisfies the Killing equations:

Lξg
M = 0 ⇐⇒ ∇αξβ +∇βξα = 0.

Imply for any ξ ∈ G: (i) Fξ ∈ G and F ∈ F(M) ⇐⇒ F = const.

(ii) ∇β∇µξν = RiemM
αβµνξ

α.
Consequences of (ii):

Fix p ∈ M and define ξ = gM(ξ, ·). The linear map

ϕ : G −→ TqM× Λ2(TpM)

ξ −→ (v = ξ|p,ω = dξ|p)
is an isomorphism onto its image Hp := ϕ(G).
dim G ≤ n(n+1)

2
and equality if and only if (M, gM) is of constant curvature k, i.e.

RiemM(X ,Y )Z = k (〈Y ,Z 〉X − 〈X ,Z 〉Y ) , k ∈ R.

Exercises:
(i) Prove that ϕ is an isomorphism (onto the image)

(ii) Prove that a spacetime is maximally symetric (dim(G) = n(n+1)
2

) if
and only if has constant curvature.
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Covariantly constant vectors

A particular case of Killing vector is a covariantly constant vector field.

Definition (Covariantly constant vector field)

A covariantly constant vector field is a vector field satisfying ∇αξβ = 0.

Theorem

The dimension of the vector space C = {ξ ∈ X(M) ξ covariantly constant } in any
(pseudo)-Riemannian space of dimension n is dim(C) ≤ n.
Moreover dim(C) = n if and only if (M, gM) is locally flat (RiemM = 0).

Exercises: (i) Prove the theorem.

(ii) Prove: If dim(C) = n − 1, then dim(C) = n.

Marc Mars (University of Salamanca) Rigidity results for stationary spacetimes April 2015 9 / 121



Hypersurface orthogonal Killing vectors

Definition (Integrable Killing vector)

A vector field ξ ∈ X(M) is integrable iff ξ ∧ dξ = 0 (ξ := gM(ξ, ·)).

By Fröbenius: the set of points M\{ξ 6= 0} is foliated by maximal, injectively immersed,
codimension-one submanifolds {Σa} satisfying ξ|TpΣa

= 0 for all Σa and p ∈ Σa.

Integrable (also called hypersurface orthogonal) Killing vectors play a very important
role in the classification of stationary spacetimes.

Definition (Time-invariant spacetime)

(M, gM) is time-invariant if it is time-independent and the corresponding Killing vector
ξ is integrable.

Name is motivated by the following result (exercise):

Let (M, gM) be time-invariant. For any p ∈ M with ξ|p timelike ∃ a neighbourhood
Up = (−a, a)× Σ of p with coordinates (t, x i ) (i , j = 1, · · · , n) such that

gM = −N2(x)dt2 + hij(x)dx
idx j , ξ = ∂t , t(p) = 0.

Note: The transformation (t, x) −→ (−t, x) is an isometry of Up leaving p invariant.
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Examples of time-independent spacetimes

Most fundamental example: Minkowski spacetime.

(M = R
n, η), η = −dt2 + dx2

1 + · · ·+ dx2
n−1

Has maximal number of Killings vectors and of covariantly constant fields.

ζ = ∂t : globally timelike, integrable, Killing vector

Boost ξ := x1∂t + t∂x1 is also a Killing vector.

Timelike in |x1| > |t|, spacelike in |x1| < |t|, null in |x1| = |t|.
In the region x1 > |t|, the coordinate change

t = X sinhT , x1 = X coshT , (X ,T ) ∈ R
+ × R

transforms the metric into static flat Kasner: M = R× R
+ × R

2,

gM = −X 2dT 2 + dX 2 + dx2
2 + · · · dx2

n , ξ = ∂T

This spacetime is extendible.

Static flat Kasner belongs to a larger family of, generarically inextendible, vacuum,
time-independent spacetimes: Static Kasner spacetimes:

M = R× R
+ × R

n−2, gM = −X 2α1dT 2 + dX 2 + X 2α2dx2
2 + · · ·+ X 2αndx2

n−1

n−1∑

i=1

αi = 1,

n−1∑

i=1

α2
i = 1
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Groups of isometries

One-parameter groups of isometries is a particular case of groups of isometries.

Definition (Group of transformations and isometries)

A Lie group G acts as a group of transformations on M iff there is smooth map
Φ : G ×M −→ M satisfying, for all h, h1, h2 ∈ G :

Φh(·) := Φ(h, ·) : M −→ M is a diffeomorhism, Φh1·h2 = Φh1 ◦ Φh2

The group is of isometries iff, in addition, Φh is isometry for all h ∈ G .

For p ∈ M, the orbit Op is the set {Φh(p) : h ∈ G} ⊂ M.

Definition (Spherical symmetry)

(Mn, gM) spherically symmetric if SO(n − 1) acts a group of isometries with spacelike,
codimension-two orbits (or points).

Area radius function r : M −→ R
+:

r =

( |Op|
ωn−2

) 1
n−2

, ωn area of the unit Sn−2 sphere.

r is smooth even at points where r = 0 (i.e. Op is a point).

Marc Mars (University of Salamanca) Rigidity results for stationary spacetimes April 2015 12 / 121



Schwarzschild and Kruskal spacetime

Fundamental result in General Relativity: spherically symmetric vacuum spacetimes
are classified by a real parameter.

Theorem (Schwarzschild, Birkhoff, Tangherlini)

Let (Mn, gM) be spherically symmetric and vacuum. Then X := {p ∈ M; |∇r |2 = 0}
has empty interior and ∃m ∈ R and local coordinates on M\X such that

g = −
(
1− 2m

rn−3

)2

dt2 +
dr 2

1− 2m
rn−3

+ r 2gSn−2 ,

Analog Newtonian result: the only spherical gravitational potential is Φ = −Gm
r
.

Besides spherically symmetric, the metric is time independent.

The spacetime is time-invariant: ξ = ∂t is hypersurface orthogonal.

Theorem (Kruskal)

Given m ∈ R there is a unique maximal spherically symmetric smooth vacuum spacetime
of mass m.

Maximal: cannot be extended to a larger spacetime with the same properties.

This spacetime is called Kruskal spacetime, denoted by (MKr, gKr).
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Properties of the Kruskal spacetime

Same qualitative properties in all dimensions n ≥ 4.

Explicit form depends on n. Restrict to n = 4 for definiteness:

For m 6= 0:
MKr = (U := c.c.{(u, v) ∈ R

2; sign(m)uv < 1})× S
2

gKr = −32m3

r
e−

r
2m du dv + r 2gS2 ,

r :U −→ R
+, uv = e

r
2m (1− r

2m
).

u, v ∈

u v

m > 0

m < 0

Singularity at uv = 1 (a curvature singularity).

Approaches Minkowski for large r . The spacetime is asymptotically flat.

The time-independent Killing vector is

ξ =
1

4m
(−u∂u + v∂v ) .

Global properties depend strongly of the sign of m.

m = 0: Maximal extension is Minkowski.

m < 0:
(i) Singularity at r = 0 visible to any observer: naked singularity.

(ii) Schwarzschild coordinates cover the whole manifold, i.e, X = ∅.
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Global properties of Kruskal with m > 0

(i) The set X = {|∇r |2 = 0} 6= ∅ and in fact X = {r = 2m}.
(ii) The Killing vector ξ satisfies 〈ξ, ξ〉 = 2m

r

(
1− r

2m

)
= 2m

r
e−

r
2m uv .

Timelike on {uv < 0}, spacelike on {uv > 0} and null on {uv = 0}.
Vanishes on {u = v = 0}: codimension-two spacelike surface: Bifurcation surface

{u = 0, v > 0} is a null hypersurface where ξ 6= 0, null and tangent: Killing horizon

Similarly for {u = 0, v < 0}, {u > 0, v = 0}, {u < 0, v = 0}:

Penrose diagram for m > 0:

There are two asymptotic regions.

Causal curves starting at u > 0 cannot reach I
+
1

Exist points causally disconnected from infinity.

u v

I
+
1

I
−
1

I
+
2

I
−
2

i 01i 02

r = 0

r = 0

Black hole: Set of events that cannot be joined to I
+ by causal curves.

Event horizon H+: Boundary of the region causally disconnected from infinity.

Note: Killing vector ξ tangent to the event horizon (invariant under the isometry group).
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Null hypersurfaces

Definition (Null hypersurface)

A null hypersurface of (Mm, gM) is an injectively immersed hypersurface Ψ : N −→ M
such that h = Ψ⋆(gM) is degenerate everywhere.

For all p ∈ N , exists n 6= 0 ∈ TpN such that h(n, ·) = 0 (degeneration vector).

General properties (identify N and Φ(N ) for local facts):

(i) h(X ,X ) ≥ 0 for all X ∈ TpN .

(ii) The degeneration direction at each point is unique.

(iii) Ψ⋆(n) is a non-zero normal to the hypersurface.

Nn

(iv) For any p ∈ N , the spacetime geodesic at p with tangent vector n|p lies in N .

Definition (section of a null hypersurface)

A section of a null hypersurface N is an injectively immersed, codimension-two, spacelike
surface Φ : Σ −→ M such that

(a) Φ(Σ) ⊂ N
(b) Φ(Σ) intersects each null generator of N exactly once.
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Killing horizons

Definition (Killing prehorizon)

Let (M, gM) with a Killing vector ξ. A Killing prehorizon of ξ is a connected, null,
injectively immersed hypersurface Hξ such that ∀p ∈ Hξ, ξ|p 6= 0, null and tangent..

Locally, a Killing prehorizon is embedded. Globally it may
fail to be.

The surface gravity κξ of a Killing prehorizon Hξ is

defined by ∇ξξ
Hξ
= κξξ

A Killing prehorizon is degenerate of κξ = 0 and non-degenerate if κξ 6= 0.

Definition (Killing horizon)

A Killing horizon is an embedded Killing prehorizon

In the Kruskal spacetime there are four Killing horizons.

Each one with surface gravity: |κξ| = 1
4m

(sign depends on the horizon).
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Non-degenerate Killing prehorizons are automatically Killing horizons (Exercise:
prove this).

Killing prehorizons diffeomorphic to Σ× I , ξ tangent to I ⊂ R and Σ compact are
Killing horizons.

Lemma (Raćz & Wald)

Let Hξ be a Killing prehorizon for an integrable Killing vector. Then κξ is constant on
each arc-connected component of Hξ.

In the non-integrable case, a similar result holds under energy conditions.

A spacetime (M, gM) satisfies the Dominant energy condition if

EinM(u, v) ≥ 0, for all u, v ∈ TpM future directed and causal.

Lemma (e.g. Wald)

A Killing prehorizon on a spacetime satisfying the dominant energy condition has
constant surface gravity on each arc-connected component.

Both are consequence of the following identity:

X (κξ) = −RicM(X , ξ), ∀X ∈ X(Hξ)

Exercise: Show that this identity implies the previous results.
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Kerr spacetime

The Kruskal spacetime is a particular case of a fundamental class of vacuum spacetimes:
the Kerr family.

Each element identified by two real numbers m and a. Global properties depend on
their values.

When a 6= 0, no global chart exists. Useful to restrict to suitable open subsets.

Restrict to spacetime dimension four:

Exterior Kerr spacetime: Boyer-Lindquist coordinates.

Let

{
r+ := max{0,m} if |a| ≥ m

r+ := m +
√
m2 − a2 if |a| ≤ m

, MBL = R︸︷︷︸
t

× (r+,∞)︸ ︷︷ ︸
r

× S
2

︸︷︷︸
{θ,φ}

gM = −∆

ρ2

(
dt − a sin2 θdϕ

)2
+

sin2 θ

ρ2

(
adt − (r 2 + a2)dϕ

)2
+
ρ2

∆
dr 2 + ρ2dθ2

ρ2 := r 2 + a2 cos2 θ, ∆ := a2 − 2mr + r 2,

a = 0 corresponds to the Schwarzschild metric.

m = 0 corresponds to the Minkowski metric.

Admits generalization to higher dimensions: Myers-Perry spacetime.
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The exterior Kerr spacetime is not maximal.

The maximal extension is somewhat complicated.

Suffices to consider a partial extension:

Definition (Advanced extension of the Kerr spacetime)

For m, a ∈ R let Ma = R×
(
R

3 \ {x2 + y 2 ≤ a2, z = 0}
)
, with (x , y , z) Cartesian

coordinates in R
3. The advanced Kerr spacetime of mass m and specific angular

momentum a is the spacetime (Ma, g
M
m,a) with

gM
m,a = −dt2 + dx2 + dy 2 + dz2︸ ︷︷ ︸

η

+
2mr 3

r 4 + a2z2
ℓ⊗ ℓ,

where r : Ma −→ R
+ is defined by x2+y2

r2+a2
+ z2

r2
= 1 and

ℓ = dt +
r

r 2 + a2
(xdx + ydy) +

a

r 2 + a2
(ydx − xdy) +

zdz

r
.

x

y

z √
r2 + a2

r

Figure : S2

factor.

The ring z = 0, x2 + y 2 = a2 is a curvature singularity.

The metric extends smoothly to (z = 0, x2 + y 2 < a2).

The spacetime can still be extended across the disk.

m = 0 is explicitly the Minkowski metric.
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The spacetime is time-independent, with Killing vector ξ = ∂t .

In addition, it is axially symmetric.

Definition (Axial symmetry)

A spacetime (M, gM) is axially symmetric if

(i) SO(2) acts as a group of isometries Ψ : SO(2)×M −→ M.

(ii) The set of fixed points Ψ(α, p) = p, ∀α ∈ SO(2) is a codimension-two timelike
surface (axis of symmetry).

The generator of SO(2) in Kerr is η = x∂y − y∂x . Fixed points: {x = y = 0}.
Assume m ≥ 0.

Spacetime admits Killing horizons iff |a| ≤ m 6= 0.

There are two Killing horizons located at the hypersurfaces Hr+ = {r = r+} and
Hr− = {r = r−} where

r± := m ±
√

m2 − a2.

Topology: R× S
2, Killing vector generators: ξ± = ξ + a

2mr±
η. Surface gravity:

κ± =

√
m2 − a2

2m(m +
√
m2 − a2)

. Degenerate when |a| = m : Extreme Kerr
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Ergoregions

The Killing vector ξ = ∂t has norm 〈ξ, ξ〉 = −1 + 2mr3

r4+a2z2

Assume that 0 < |a| ≤ m

ξ is spacelike on (r−, r+) and in the regions

|z | < 2mr 3

a2

(
1− r

2m

)
, r ∈ (0, r−] ∪ [r+, 2m)

z

rr− r+

2m

The exterior Kerr spacetime corresponds to the domain r > r+

The time-independent Killing vector ξ is not timelike everywhere in this region.

The subset of {r > r+} where ξ is spacelike or null is called ergoregion.

In particular: ξ spacelike everywhere on each Killing horizon, except on the
intersection of the Killing horizon and the axis of symmetry where it is null.
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General properties of degenerate Killing horizons

Degenerate Killing prehorizons satisfy strong restrictions.

Assume that Hξ is a degenerate Killing horizon in a spacetime (Mn, gM) with cross
section S (i.e. Hξ = S × I , with ξ tangent to I ⊂ R).

Lemma (Moncrief & Isenberg (n = 4), Lewandowski, Pawlowski (n ≥ 3))

Let q be the (positive definite) induced metric of S. Then

Ricq(X ,Y ) = Ricg
M

(X ,Y ) + 2(∇q
X sξ)(Y ) + 2sξ(X )sξ(Y ), X ,Y ∈ X(S)

where sξ(X ) := − 1
2
〈ℓ,∇X ξ〉 and ℓ is the null normal to S satisfying 〈ℓ, ξ〉 = −2.

If ξ is integrable, then sξ is closed:

{ξ ∧ dξ = 0}+ {ξ non-zero } =⇒ dξ = V ∧ ξ

Taking exterior derivative

dV ∧ ξ = 0 =⇒ dV = A ∧ ξ

If Φ is the embeddding of S : sξ = Φ⋆(V), so

dsξ = dΦ⋆(V) = Φ⋆(dV) = Φ⋆(A ∧ ξ) = 0. �
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Degenerate spatially compact Killing horizons in vacuum spacetimes

Assuming that (M, gM) is vacuum, the geometry of S satisfies

Ricq(X ,Y ) = 2(∇q
X sξ)(Y ) + 2sξ(X )sξ(Y ), X ,Y ∈ X(S) (⋆)

It is an interesting problem to classify all compact Riemanian manifolds with this property.

In the static case, the cassification is complete when the section is compact.

Theorem (Chruściel, Reall, Tod)

Assume that sξ is closed and (S , q) compact and satisfying (⋆). Then sξ = 0 and q is
Ricci flat.

Sketch of proof: For simplicity assume sξ is exact: sξ = dF . Set Ψ = eF . Assume S
connected.

ΨRicq = 2HessqΨ.

For later use, let us consider the more general case:

ΨRicq = aHessqΨ, 0 6= a ∈ R

Take divergence, use ΨScalq = a∆qΨ and Bianchi divq(Ric
q) = 1

2
d(Scalq)

∇q
(
a (a − 1) |dΨ|2q +Ψ2Scalq

)
= 0 =⇒ a (a − 1) |dΨ|2q +Ψ2Scalq = C
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Since Scalq = aΨ−1∆qΨ, it follows

∆q (Ψ
a) = CΨa−2.

(S , q) compact and Riemannian =⇒ C = 0 and Ψ = const.

From the definitions: sξ = 0 and hence Ricq = 0. �

Exercise: Fill in the details of the proof.

Corollary (Non existence of generate vacuum horizons in n = 4)

There exists no degenerate integrable Killing horizons with cross sections of spherical
topology in vacuum four-dimensional spacetimes.

Corollary

If (Σ3, h) (h positive definite) is compact and admits a positive function N satisfying

NRich = HesshN

then h is locally flat (and hence its universal covering is (R3, gE )) and N is constant.
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Degenerate axially symmetric horizons

Axially symmetric, vacuum, degenerate horizons in four-dimensions with compact
cross-sections are rigid.

A degenerate Killing horizon Hξ is cyclically symmetric if (M, gM) admits a Killing
vector η with closed orbits, tangent to Hξ and spacelike away from zeroes.

Theorem (Hajicek, Lewandowski & Pawlowski)

Let Hξ be a degenerate, cyclically symmetric Killing horizon with a compact
cross-section S. If (M, gM) is four-dimensional and vacuum on Hξ then

(i) S is topologically S
2.

(ii) There exists a constant J > 0 and spherical-type coordinates {θ, φ} on S such that
induced metric h and connection one-form sξ read:

h = J

(
(1 + cos2 θ)2dθ2 +

4 sin2 θ

1 + cos2 θ
dφ2

)
, sξ = − cos θ sin θ

1 + cos2 θ
dθ +

2 sin2 θ

1 + cos2 θ
dφ

This geometry corresponds to the geometry of the event horizon of the extreme Kerr
spacetime with m = a =

√
J.

The idea of the proof is to use the isometry to reduce the problem to an ODE and solve
it.

This theorem can be extended to include a cosmological constant.
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Fixed points of Killing vectors I

Besides horizons, zeros of Killing vectors are also important to understand isometries.

Definition

A fixed point of a Killing vector is a point p ∈ M where ξ|p = 0.

For a non-trivial Killing vector ξ: if p is a fixed point then ω := dξ|p is non-zero.

Theorem (Structure of fixed points)

At a fixed point p of a Killing vector ξ let Wp := {v ∈ TpM;ω(v , ·) = 0}.
Then p lies in a smooth, totally geodesic embedded submanifold Sp such that
TpSp = Wp.

Holds for (M, gM) of arbitrary dimension and signature.

Dimension of Sp agrees with dimension of Wp. Causal character of Sp agrees with
causal character of Wp.
If dim (Wp) = 0 then Sp = {p}: isolated fixed point.
Codimension of Wp can only be even (and 6= 0)

Example 1:

In 3 dimensions, at any fixed point, Wp is necessarily one-dimensional.
The geodesic through p with tangent vector z ∈ Wp is a curve of fixed points: axis
of symmetry.
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Fixed points of Killing vectors (II)

Example 2:

Bifurcation surface in Kruskal m > 0: S = {u = 0, v = 0}. Let p ∈ S.

Killing vector: ξ = 1
4m

(−u∂u + v∂v ) ω|p = dξ|p = 4m
e
du ∧ dv .

Wp = {X ∈ TpM, tangent to the S
2 factor}: spacelike and codimension-two.

The vector X = ∂u or ∂v ∈ TpM satisfy

ω(X , ·) = −2λgM(X , ·), λ =
1

4m

The null geodesics γ(s) starting at S with tangent X generate a Killing horizon H
and ξ(γ(s)) = λsX (γ(s))

This is generally true:

Theorem

Let p be a fixed point of a Killing vector ξ. Let u ∈ TpM be an eigenvector of ω := dξ|p
with eigenvalue λ 6= 0 (i.e. satisfies ω(u) = −2λgM(u, ·)).
The affinely parametrized geodesic γu(s) starting at p with tangent vector u is such that:

ξ|γu(s) is tangent to γu(s) and in fact ξ|γu(s) = λs u(s).

If Sp is spacelike and u is null, then γu is a generator of a Killing horizon with
surface gravity κξ = λ.

Marc Mars (University of Salamanca) Rigidity results for stationary spacetimes April 2015 28 / 121



Further examples of time independent vacuum spacetimes

A large class of axially symmetric vacumm spacetimes admitting a timelike Killing vector
is the Weyl class:

M = R︸︷︷︸
t

× S
1

︸︷︷︸
φ

×U ⊂ (R+ × R︸ ︷︷ ︸
ρ,z

), gM = −e2Udt2 + e−2U
(
ρ2dφ2 + e2k

(
dρ2 + dz2

))

Field equations:

∆δU = 0, with δ = dρ2 + dz2 + ρ2dφ2 on U ∂φU = 0

dk = ρ
(
U2

ρ + Uz

)
dρ+ 2ρUρUzdz

Properties

Time-invariant: ξ = ∂t is timelike and integrable.

Includes the Schwarzschild spacetime M > 0

UM = Newtonian potential of a uniform rod of length 2M and total mass M

UM =
1

2
log

(
L(ρ, z)−M

L(ρ, z) +M

)
, L(ρ, z) :=

1

2

(√
ρ2 + (z +M)2 +

√
ρ2 + (z −M)2

)

ρ = 0, |z | > M is a regular axis of symmetry.

U → −∞ on the rod: ρ = 0 |z | ≤ M is a coordinate singularty.

Corresponds to the event horizon.
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Weyl class (II)

The Weyl class admits a superposition principle:

If U1,U2 are solutions, then U1 + U2 is a solution.

Are there other solutions besides Schwarzschild that admit smooth extensions?

E.g., consider two disjoint rods of mass Mi and length 2Mi .

It turns out that the metric at ρ = 0 between the rods is not
regular.

M1

M2

If η is the generator of an SO(2) and Z is the symmetry axis, then it must hold:

Elementary flatness lim
p→Z

〈dX , dX 〉
4X

= 1, X := 〈η, η〉.

Fails to be true for any superposition of Schwarschild rods [Weyl 1917].

Deficit angle interpreted as a strut that exerts a force to keep the back holes appart.

Natural to ask about uniqueness of Schwarzschild within the Weyl class.

Theorem (Müller zum Haagen & Seifert 1973, Gibbons 1974)

Under suitable technical assumptions, the Schwarzschild solution is the only spacetime
within the Weyl class that admitts a regular axis and a smooth extension across the
singularities of the potential U.
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Quotient formalism
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Quotient space

Let (M, gM) admit a Killing vector ξ.

Define an equivalence relation
p ∼ q ⇐⇒ { exists an integral curve of ξ connecting them}.
At any p ∈ M with ξ|p 6= 0, exists M ⊃ Up ∋ p such that

Qp := Up/ ∼ smooth manifold and
π : Up −→ Qp

q −→ q
is a submersion.

ker(π⋆|q) = {a ξ|q, a ∈ R}.
Assume that ξ|p is not null. Restricting Up, ξ non-null on Up.

Define the spaces

Fξ(Up) := {f ∈ F(Up) with Lξf = 0}
Xξ(Up) := {X ∈ X(Up) with LξX = 0 and 〈ξ,X 〉 = 0}

Elements of Xξ can be multiplied by elements in Fξ without leaving the space.

Xξ is a module over Fξ.
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Proposition

The following properties hold:

(i) The map π⋆ : Fξ(Up) −→ F(Qp) defined by π⋆(f )(q) = f (q) is well-defined (i.e.
independent of q ∈ q) and an isomorphism.

(ii) The map π⋆ : Xξ(Up) −→ X(Qp) defined by

π⋆(X )|q = π⋆|q(X |q)

is well-defined and also an isomorphism (in fact a module-isomorphism).

Vector fields Lie-constant along ξ and orthogonal to ξ can be transferred to the quotient.

The spacetime metric gM is Lie-constant along ξ:

Proposition (Quotient metric)

There exists a metric h on Qp such that

gM(X ,Y ) = h(π⋆(X ), π⋆(Y )) ∀X ,Y ∈ Xξ(Up)

If ξp timelike, then h is positive definite.
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The idea is to write down the field equations in (M, gM) in terms of objects defined
in the quotient.

Denote by D the covariant derivative w.r.t. h.

Let q be the projector orthogonal to ξ. In index notation:

qα
β := δαβ +

1

λ
ξαξβ , λ := −〈ξ, ξ〉. Properties : q(ξ) = 0, q ◦ q = q

Needed: relate derivatives with respect to D with diferential operations in the ambient
space.

Proposition

Let T
α1···αp

β1···βq
be a tensor on (M, gM) completeley orthogonal to ξ and Lie-constant along

ξ. Then

(DT )
γ1···γp

νδ1···δq := qµ
ν q

γ1
α1

· · · qγp
αqq

β1
δ1

· · · qβq

δq
∇µT

α1···αp

β1···βq

has the same properties and

D (π⋆(T )) = π⋆ (DT ) .

Exercise: Prove this.

We can transfer equations in the ambient space to equations in the quotient.
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The scalar λ = −〈ξ, ξ〉 satisfies Lξλ = 0. Descends to the quotient.

Define the tensor
ω̂αβ = qν

αq
ν
β∇µξν .

ω̂ descends to a a two-form in the quotient.

The following decomposition holds

∇αξβ = ω̂αβ − 1

2λ
ξα∇βλ+

1

2λ
ξβ∇αλ.

Combining with ∇α∇βξµ = RiemM
ραβµξ

ρ yields:

Proposition

Let ξ be a Killing vector nowhere null on Up. Then the following identities hold:

qβ
µq

α
ν ∇α∇βλ = −2ω̂ ρ

µ ω̂νρ +
1

2λ
∇µλ∇νλ+ 2RiemM

µρνσξ
ρξσ,

qαβqµ
γ∇αω̂βµ = − 1

2λ
ω̂αγ∇αλ− RicMδσξ

δqσ
γ ,

∇α

(
1

λ
ω̂βµ

)
qα
[ρq

β
σq

µ
δ] = 0
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Define alert RiemM
ξ := RiemM(·, ξ, ·, ξ). Symmetric, completely orthogonal to ξ

and Lie constant along ξ, hence descends to the quotient.

Define RicMξ
⊥

γ := RicMβσξ
βqσ

γ , orthogonal to ξ and Lie constant. It also
descends.

Theorem

Let V := +
√

|λ|. The following equations hold

DaDbλ = −2ω̂ c
a ω̂bc +

1

2λ
DaλDbλ+ 2π⋆(Riem

M
ξ)ab

Da (V ω̂
a
b) = −Vπ⋆(Ric

M
ξ
⊥)b

d

(
1

λ
ω̂

)
= 0.

Second equation involves tangential-normal component of Ricci.

First equation invovles tangential-normal-tangential-normal component of Riemann.
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Taking trace (in h) of the hessian equation:

∆hλ = −2|ω̂|2h +
1

2λ
|Dλ|2h + 2π⋆(Ric

M(ξ, ξ))

Relates tangential-tangential components of Ricci with objects in the quotient.

What about the remaining components of Riemann (and Ricci)?

They are related to the Riemann curvature of h.

Proposition

The following identity holds

Riemh
abcd +

2

λ
ω̂abω̂cd +

1

λ
(ω̂ac ω̂bd − ω̂ad ω̂bc) = π⋆(Riem

M⊥
)abcd

where RiemM⊥
µνγρ := qα

µq
β
ν q

γ
ρq

δ
σRiem

M
αβγδ

Proof: Use de Ricci identity in the quotient and relate with projected derivarives in the
ambient.

Exercise: Do this.
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When (M, gM) is orientable then the quotient is also orientable.

Volume forms can be related by π⋆.

Proposition

Let (M, gM) be oriented with volume form η. The (n − 1)−form
(ηξ)α2···αn := ηα1···αn

ξα1 descends to the quotient and satisfies

π⋆(ηξ) = Vη
h where ηh is the volume form of h.

All previous equations hold in any dimension, signature and sign of λ.

When n = 4, ω̂αβ can be replaced by a one-form called twist one-form.

Definition

Let (M4, gM) be four-dimensional with volume form ηαβµν . The twist one-form of a
Killing vector is

ωα := ηαβµνξ
β∇µξν .
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Properties:

(i) ωα is orthogonal to ξ and Lie constant along ξ.

(ii) Denote π⋆(ω) by the same symbol. Then

ωa = −ηh

abcω
bc

Proposition

In spacetime dimension four, the following itentities in the quotient hold

DaDbλ =
ǫ

2λ

(
|Dω|2hhab − ωaωb

)
+

1

2λ
DaλDbλ+ 2π⋆(Riem

M
ξ)ab

Daωb − Dbωa = −2Vηh
abcπ⋆(Ric

M
ξ
⊥)c

Da

(
1

V 3
ωa

)
= 0

Richab −
1

2λ
DaDbλ+

1

4λ2
DaλDbλ− ǫ

2λ2

(
|Dω|2hhab − ωaωb

)
= π⋆(Ric

M⊥
)ab

where RicM
⊥
αβ = qµ

αq
ν
βRic

M
µν and ǫ = sign(det(gM))

When RicM
⊥
ξ = 0, then the twist one-form is closed, hence locally exact. The local

potential is called twist potential.
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Conformal metric in the quotient

In terms of the metric h, the equation for Rich involves the Hessian of λ.

It is useful to use a conformally rescaled metric γ := V 2h.

Using the transformation law for ∇ and Riem under conformal rescalling:

Proposition

In spacetime dimesion n = 4, the following equations in the quotient hold

DaDbλ =
1

2λ

[(
|Dλ|2γ + ǫ|Dω|2γ

)
γab −

(
DaλDbλ+ ǫ ωaωb

)]
+ 2π⋆(Riem

M
ξ)ab

Daωb − Dbωa = −2(ηγ)abcπ⋆(Ric
M

ξ
⊥)c

Da

(
1

λ2
ωa

)
= 0

Ricγab −
1

2λ2

(
DaλDbλ− ǫ ωaωb

)
= π⋆(Ric

M⊥
)ab − sign(λ)

λ2
γab π⋆(Ric

M(ξ, ξ))

where ǫ = sign(det(gM)) and D is the covariant derivative of γ := V 2h.

The trace of the Hessian equation involves only the spacetime Ricci

∆γλ =
1

λ

(
|Dλ|2γ + ǫ|Dω|2γ

)
+

2

V 2
π⋆(Ric

M(ξ, ξ)), V 2 = |λ|.
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Harmonic map formulation

The Einstein vacuum field equations in the quotient have an interesting harmonic
map (wave map) structure.

Definition (harmonic map)

A harmonic (wave) map is a smoth map Ψ : (N, γ) −→ (M, g) satisfying the
Euler-Lagrange equations of the energy functional

E (Ψ) =

∫

M

1

2
γab(x)g ij(Ψ(x))

∂Ψi (x)

∂xa

∂Ψj(x)

∂xb
η
γ

The field equations are: ∆γΨ
i + Γg i

jk |Ψ(x)
∂Ψj

∂xa

∂Ψk

∂xb
γab(x) = 0.

Definition

A harmonic (wave) map Ψ : (N, γ) −→ (M, g) is called coupled to gravity if it satisfies

Ricγab(x) =
1

2
g ij(Ψ(x))

∂Ψi

∂xa

∂Ψj

∂xb

Exercise: Find a Lagrangian for the equations of a harmonic map coupled to gravity.
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Vacuum field equations as a harmonic (wave) map coupled to gravity

Consider the vacuum field equations with a non-null Killing vector.

The twist potential ω is closed.

Locally there exists a twist potential: ωa = Daω.

The field equations are

∆γλ =
1

λ

(
|Dλ|2γ + ǫ|Dω|2γ

)
, Da

(
1

λ2
ωa

)
= 0,

Ricγab =
1

2λ2

(
DaλDbλ− ǫDaωDbω

)

The map:

Ψ : (Qp, γ) −→
(
R

+ × R, g =
dλ2 − ǫdω2

λ2

)

x −→ (|λ|, ω)

is a harmonic (wave) map coupled to gravity.

For (M, gM) of Lorentzian signature ǫ = −1. The target space if H2.

The result holds both for ξ timelike (harmonic map) or ξ spacelike (wave map).
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Axially symmetric, time independent spacetimes

Recall: Axially symmetry is an SO(2) isometry action

Ψ : SO(2)×M −→ M

with two-dimensional and timelike axis of symmetry: A
The Killing generator ζ of SO(2) has S1 orbits.

There exists a neighbourhood U of A such that ζ is spacelike in U \ A.

Elementary flatness holds at the axis:

lim
p→A

〈dX , dX 〉
4X

= 1, X = 〈ζ, ζ〉

Important result concerning axially symmetric and time-independent spacetimes:

Theorem (Carter, 1970)

Let (M4, gM) be a axially symmetric with generator ζ. Assume that (M, gM) admits a
Killing vector ξ which is timelike somewhere on A. Then

[ξ, ζ] = 0

Admits generalization to arbitrary dimension.
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Orthogonal transitivity

Time-independent, axially symmetric spacetimes admit an orthogonal splitting.

Theorem (Kundt, Trümper (1966), Papapetrou (1966))

Let (M4, gM) be admit two commuting Killing vectors ξ and ζ. Then

∇µ

(
ηαβγδξ

αζβ∇γξδ
)
= 2ηαβγµ(Ric

M
ξ)

αξβζγ

∇µ

(
ηαβγδζ

αξβ∇γζδ
)
= 2ηαβγµ(Ric

M
ζ)

αζβξγ

where RicMξ := RicM(ξ, ·) and RicMζ := RicM(ζ, ·).

A matter model is said to satisfy the circularity condition if

RicMξ,Ric
M

ζ ∈ span{ξ, ζ}
Examples:

Vacuum.

Perfect fluid with velocity vector u ∈ span{ξ, ζ}.
Electromagnetic field satisfying LξF = LζF = 0 and electric current Jα := ∇βF

αβ :

J = span{ξ, ζ} in particular, electrovacuum
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Time-independent axially symmetric spacetimes

Axially symmetric, time-independent spacetimes satisfying

(i) The circularity condition.

(ii) The time-independent Killing ξ is timelike somewhere on A
have the properties:

(a) The time-independent and axial Killings commute [ξ, ζ] = 0.

(b) ξ ∧ ζ ∧ dξ = 0 and ξ ∧ ζ ∧ dζ = 0

Define Op := span {ξ|p, ζ|p}, O⊥
p := orthogonal space to Op.

Consider the subset M̃ := {p ∈ M;Op two-dimensional and timelike}.
The distributions {O} and {O⊥} are both integrable on M̃. By Fröbenius:

For all p ∈ M̃, ∃ two injectively immersed, maximal, codim-two surfaces Tp, Sp:

Tp is timelike and Sp is spacelike and orthogonal to Tp.

The spacetime Einstein tensor can be fully written in terms of the geometry of Sp.
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Weyl coordinates (I)

Define on M̃ ρ :=
√

〈ξ, ζ〉2 − 〈ξ, ξ〈〉ζ, ζ〉.
Write η1 = ξ and η2 = ζ. The following equations holds:

∆qρ =
1

ρ
RicM(ζA, ζB)〈ζC , ζD〉ǫAC ǫBD ǫAB Levi-Civita symbol.

Assume vacuum and dρ 6= 0 everywhere on a simply connnected domain Ŝp.

Equation ∆qρ = 0 can be rewritten as

d(⋆qdρ) = 0.

Define dz = ⋆qdρ. Since dz 6= 0: {ρ, z} and global coordinates on Ŝp.

The coordinates {ρ, z} are called Weyl coordinates. The metric q on Ŝp is necessarily

q = e2k
(
dρ2 + dz2

)
, k(ρ, z)

There exists a spacetime neighbourhood Up of p of the form Up = I × S
1 × Ŝp and

coordinates {t, φ, ρ, z} such that

ξ = ∂t ζ = ∂φ

Choosing metric coefficients depends on the causal character of ξ and/or ζ.
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Weyl coordinates (II)

If λ > 0, it is natural to write the metric as

gM = −λ (dt + Adφ)2 +
ρ2

λ
dφ2 +

e2k

λ

(
dρ2 + dz2

)
, λ(ρ, z) > 0 and A(ρ, z).

This choice breaks down at ergoregions. Unsuitable choice.

If the spacetime is causal (admits no closed causal curves) the orbits of ζ are
spacelike away from the axis.

Hence X := 〈ζ, ζ〉 > 0 on Sp.

The spacetime metric in Up can be written as

gM = X (dφ+ Adt)2 − ρ2

X
dt2 +

e2k

X

(
dρ2 + dz2

)
, X (ρ, z) > 0 and A(ρ, z).

The twist one-form ω of ζ is

ωρ = −X 2

ρ
∂zA, ωz =

X 2

ρ
∂ρA

In vacuum ω = dω. Knowledge of ω determines A except for an (irrelevant) additive
constant.
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Field equations of time-independent, axially symmetric vacuum spacetimes

The vacuum field equations for X , ω are:

(
∂ρρ +

1

ρ
∂ρ + ∂zz

)
X =

1

X

(
(∂ρX )2 + (∂zX )2 − (∂ρω)

2 − (∂z ω)
2
)

(
∂ρρ +

1

ρ
∂ρ + ∂zz

)
ω =

1

X
(∂ρX∂ρω + ∂zX∂zω)

k can be obtained by a line-integral once {X , ω} are known.

The Laplacian in the flat metric gE = dρ2 + dz2 + ρ2dφ2 acting on functions F (ρ, z)
is

∆gE F =

(
∂ρρ +

1

ρ
∂ρ + ∂zz

)
F

The equations for (X , ω) can be written as a map Ψ : Ŝp → R
+ × R

It is in fact a harmonic map, in the following sense:
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Harmonic map formulation

Theorem (Ernst)

Let (M4, gM) be a time-independent, axially symmetric vacuum spacetime, with
corresponding Killing vectors ξ and η.

Assume (M, gM) to be causal and let p ∈ M be any point where span{ξ|p, ζ|p} is
two-dimensional and timelike. Let ρ :=

√
−〈ξ, ξ〉〈ζ, ζ〉+ 〈ξ, ζ〉2 satisfy dρ|p 6= 0.

Then ∃ a neighbourhood Up ≃ I × S
1 × Ŝp of p, where Ŝp is a domain of R+ × R

coordinated by (ρ, z).

Let X := 〈ζ, ζ〉 and ω the twist potential of ζ.

The vacuum field equations are equivalent to the map

Ψ :
(
Ŝp × S

1, gE = dρ2 + dz2 + ρ2dφ2
)
−→

(
H

2,
dX 2 + dω2

X 2

)

with Ψ being harmonic and satisfying ∂φΨ = 0.

An important issue is under which conditions is this harmonic map formulation is
global.
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Properties of harmonic maps

The uniqueness theorem for stationary, axially symmetric black holes is based on the
harmonic map formulation of the problem.

Strategy:

Show that a black hole with these properties is defined by a PDE with boundary
data that agrees (in a suitable sense) to the data of the Kerr spacetime.

Use PDE techniques to prove that this elliptic boundary value problem has a unique
solution.

Core of the proof: the distance function in hyperbolic space has a positive semi-definite
hessian.

In turn, this relies on the fact that H2 is negatively curved.

Start with general properties of harmonic maps

Let Ψ : (N , h) −→ (K, g) be a C 2 map.

Denote the corresponding covariant derivatives by ∇h and ∇g .

The Hessian of Ψ is defined as

(HessΨ)Aij = ∇h
i ∇h

j Ψ
A + Γg A

BC |Ψ
∂ΨB

∂x i

∂ΨC

∂x j

The Hessian is a tensor both in N and in K in the sense that, for any X ,Y ∈ X(N ),

Hess(X (p),Y (p)) ∈ TΨ(p)K, for all p ∈ N .
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A map Ψ : (N , h) −→ (K, g) is a harmonic map if

∆Ψ = 0, where ∆Ψ = trh(HessΨ).

Consider a function f : K → R.

It is useful to determine the Hessian and Laplacian of the composed function
f ◦Ψ : N → R

Lemma

The following identity holds for any C 2 Ψ : (N , h) −→ (K, g) and f : K → R

Hessh (f ◦Ψ)ij = (Hessg Ψ)Aij ∂Af +
(
∇g

A∇g
B f
) ∂ΨA

∂x i

∂ΨB

∂x j

Exercise: Prove this.

Taking trace on N and assuming Ψ harmonic

∆h (f ◦Ψ) = hij
(
∇g

A∇g
B f
) ∂ΨA

∂x i

∂ΨB

∂x j
≥ 0 if Hessg f positive semi-definite
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Properties of the distance function

The idea to show uniqueness of the harmonic map problem is to show that the
distance between the two solutions vanishes.

Given two harmomic maps Ψ1 and Ψ2. The distance between the maps is
dist(Ψ1,Ψ2) = supp∈N (distg (Ψ1(p),Ψ2(p))).

Necessary to know properties of the distance function in the target.

The distance between two points is the infimum of the lengths of all smooth curves
joining the two points.

In general the distance function is not smooth everywhere.

Cartan-Hadamard Theorem: The distance function dist(p, q) is smooth at
p 6= q for complete, simply connected manifolds with non-positive curvature.

Morever:

Proposition

Let (K, g) be a Riemannian manifold with non-positive curvature. Let distgp := distg (p, q)
and assume that distgp is C 2 on Bp(R) \ p (ball of radius R from p). Then

Hessg (dist
g
p) ≥ 0.
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Hyperbolic space is complete, simply connected and with constant negative

curvature. Hence HessH2(distH
2

) ≥ 0 and

∆
gH

2 distH
2

(Ψ1(x),Ψ2(x)) ≥ 0 Ψi : (N , h) −→
(
H

2, gH
2
)

A uniqueness theorem for harmonic maps follows immediately

Theorem

Let (N, h) be a compact Riemannian manifold with smooth boundary. If two C 2

harmonic maps Ψi : (N , h) −→
(
H

2, gH
2
)
satisfy

Ψ1|∂N = Ψ1|∂N then Ψ1 = Ψ2.

Proof. The function F (x) := dist2
H2(Ψ1(x),Ψ2(x)) is smooth everywhere, non-negative

and satisfies ∆
gH

2F ≥ 0.

The maximum principle implies that F cannot have an interior maximum unless
F = const.

Since F |∂N = 0 and it is everywhere non-negative =⇒ F = 0 everywhere and
Ψ1(x) = Ψ2(x) for all x ∈ N .
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The uniqueness problem for black holes is much more difficult because
(N = R

3 \ Z, gE ) and Ψ diverges on the z-axis Z.

This could be addressed by making sure that the behaviour near the axis (and at
infinity) of the harmonic maps is sufficiently similar.

Unclear whether the behaviour near of the axis of any black hole solution is a
priori sufficiently similar to the behaviour of the Kerr near the axis.

This difficulty has been solved by using a stronger version of the maximum principle.

Proposition (Chruściel, Li, Weinstein)

Let f ∈ C 0(R3 \ Z) satisfy ∆gE f ≥ 0 in R
3 \ Z in the distributional sense.

If lim
x∈R3\Z,|x|→∞

f (x) = 0 and supx∈R\Z f ≤ ∞ then f ≡ 0 on R
3 \ Z.

Corollary (Uniqueness of Harmonic Map)

Let ΨA :
(
R

3 \ Z, gE = dρ2 + dz2 + ρ2dϕ2
)
−→

(
H

2, gH = dX2+dω2

X2

)
(A = 1, 2) be two

harmonic maps satisfying

lim
x∈R3\Z,|x|→∞

f (x) = 0 and supx∈R\Z f ≤ ∞

where f (x) = distH2 (Ψ1(x),Ψ2(x)). Then Ψ1 = Ψ2.
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Global Properties of stationary spacetimes
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Stationary and static spacetime

So far, most of the considerations have been purely local.

For global results, stronger conditions are required.

Definition

A spacetime (M, gM) is stationary if it admits a Killing vector with complete integral
curves which are timelike on a subset ∅ 6= U ⊂ M.

“Stationary” is clearly stronger than “time-independent”.

(M, gM) strictly stationary: stationary and U = M.

(M, gM) is static: stationary + associated Killing vector ξ is integrable

(M, gM) strictly static: static and U = M.

Theorem (Global structure theorem for strictly stationary (M, g) [Harris, 1992])

A strictly stationary chronological spacetime is of the form M = R× S with ξ translation
along the R factor.

Chronological: there are no closed timelike curves.

The quotient N = M/ ∼ is a smooth manifold.
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Conformal compactification of Euclidean space

Consider Euclidean space (R3 \ {0}, gE ) and define the conformal metric

ĥ = Ω2gE , Ω =
1

|x |2gE
on R

3 \ {0}.

A sequence of points diverging at infinity in R
3 \ {0} is a Cauchy sequence in

(R3 \ {0}, ĥ)
Infinity is compactified to a point Λ

The coordinate transformation x̂ = x
|x|2gE

makes:

Ω = |x̂ |2
ĥ

ĥ = δijdx̂
idx̂ j

The conformal factor Ω satisfies

Ω|Λ = 0, dΩ|Λ = 0, HessĥΩ|Λ = 2ĥ

The idea is to define asymptotic flatness using a conformal compatification to a
point.
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Asymptotically flat four-end

Definition (Stationary asymptotically flat 4-end)

A vacuum chronological stationary spacetime (M, gM) with stationary Killing ξ has a
stationary asymptotically flat four-end iff

(i) There is a connected component M∞ of the subset M+ := {p ∈ M, λ(p) > 0}
such that the quotient N∞ = M∞/ ∼ is diffemorphic to R

3 \ B(a).

(ii) There exists a manifold N∞ ≃ B(b) and a diffeomorphism

Ψ : N∞ −→ N∞ \ {Λ}, where Λ is the center of the ball B(b).

(iii) N∞
admits a Riemannian metric ĥ and a function Ω ∈ C∞(N∞

,R+) satisfying,

Ω|Λ = 0, dΩ|Λ = 0, HessĥΩ|Λ = 2ĥ

such that Ψ : (N∞, h) −→ (N∞ \ {Λ},Ω−2ĥ) is an isometry.

(iv) There exists smooth functions λ̃, ω̃ in N∞
such that

λ− 1 = Ψ⋆(
√
Ω (λ̃− 1)), ω = Ψ⋆(

√
Ω ω̃).

Global structure theorem: M∞ = R×N∞ with ξ translation along the R.

M∞ admits spacelike cross section Σ∞.
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A Riemannian manifold (N∞, h) satisfying (ii) and (iii) is called Asymptotically
Euclidean in the sense of conformal compatification.

The manifold N∞ is simply connected: twist potential ω exists globally.

The definition requires, in particular λ→ 1 and ω → 0 at infinity.

Loosely speaking. Asymptotically flat four-end states that the metric h in Cartesian
coordinates {x} of N∞ ≃ R

3 \ B(a) is, with r := |x |:

hij = δij +
1

r
h
(1)
ij +

1

r 2
h
(2)
ij + · · · Ω =

1

r 2
+ O(

1

r 3
)

λ = 1 +
1

r
λ(1) +

1

r 2
λ(2) + · · · , ω =

1

r
ω(1) +

1

r 2
ω(2) + · · · .

Write this as ω = O∞
(
1
r

)
and λ = 1 + O∞

(
1
r

)
.

An analogous definition exists in higher dimensions. We will refer to asymptotically flat
n-end in this case.
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Rigidity of strictly stationary spacetimes
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Asymptotic flatness is motivated by the physical expectation that the gravitational
field far away from the sources should approach a state of gravitational field where
effect of sources and of propagating degrees of freedom is negligigle.

Generally taken for granted that Minkowski is the only spacetime with these
properties.

As noticed by M. Anderson, this relies on the expectation

The only vacuum spacetime wich is stationary everwhere and complete is the
Minkowski spacetime.

Stationary everywhere: No gravitational waves or black holes.

Complete: No singularities

Is such a result true?

Lichnerowicz (1955) proved this result assuming asymptotic flatness.
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Theorem (Lichnerowicz, 1955)

Let (M4, gM) is strictly stationary, chronological, complete, vacuum spacetime. Assume

(i) (M, gM) has an asymptotically flat four-end (M∞, gM).

(ii) (M\M∞)/ ∼ is compact.

Then (M, gM) is isometric to the Minkowski spacetime.

“Vacuum and complete” encode the property that there are no sources.

“Chronological” needed to apply the global structure theorem.

Conditions (i) and (ii) mean that that the quotient N = M/ ∼ is N = C ∪ R
3.

Outside a compact set, the spacetime approaches the Minkowski spacetime.
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Rigidity of strictly stationary spacetimes

Theorem (Anderson, 2000)

Let (M4, gM) be a geodesically complete, chronological, strictly stationary, vacuum
spacetime. Then (M, gM) is either the Minkowski spacetime (M1,3, η) or a quotient of
this spacetime by a discrete group of isometries commuting with a time translation
t −→ t + c, c ∈ R.

In physical terms one can state this theorem as

There are no gravitational solitons, i.e. non-trivial gravitational field with no sources
and in equilibrium.

Other non-linear physical theories do admit such states, so this is a highly non-trivial
statement about General Relativity.

Justifies the condition that far away from the sources, the field approaches
Minkowski.

This theorem is specific to four-dimensions. Many parts of the argument are only valid in
this dimension.
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Theorem: Sketch pf proof (I)

(M, gM) geodesically complete implies (N , h) is complete.

Passing to the universal cover, assume Σ simply connected =⇒ ω = dω.

In the conformal metric γ = λh we have a harmonic map coupled to gravity

Ψ : (N , γ) −→
(
H

2,
dλ2 + dω2

λ

)
Ernst map

For any harmonic map Ψ : (N , γ) → (Σ, g) the Bochner identity holds

Define the energy density

e(Ψ) :=
1

2

∂ΨA

∂x i

∂ΨB

∂x j
γ ij(x)gAB(Ψ(x))

If Ψ is a harmonic map:

∆γe(ψ) = ||HessΨ||2 + Ricijγ
∂ΨA

∂x i

∂ΨB

∂x j
gAB(Ψ)− Riemg

ABCD

∂ΨA

∂x i

∂ΨB

∂x j

∂ΨC

∂xk

∂ΨD

∂x l
γ ikγ jl
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Theorem: Sketch of proof (II)

For the Ernst map:

g = gH, metric in the hyperbolic plane.

The Ricci tensor of the domain is (because we have a harmonic map coupled to
gravity):

Ricγij =
1

2
gH

AB(Ψ(x))
∂ΨA

∂x i

∂ΨB

∂x j

gH has constant curvature = −1:

RiemgH

ABCD = −
(
gH

ACg
H

BD − gH

ADg
H

BC

)

The Bochner indentity gives:

∆γe(Ψ) = ||HessΨ||2 + 2|Ricγ |2γ + γ ikγ jl (AikAjl − AilAjk) ≥ 0 (⋆) (1)

where Aij := 〈Vi ,Vj〉gH , V A
i =

∂ΨA

∂x i

Exercise: Show that the last term is non-negative.

Thus: e(Ψ) is subharmonic.
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Theorem: Sketch pf proof (III)

We are assuming (N , h) is complete

6=⇒ (N , γ) complete as λ may approach zero. Argument splits in two cases:

(a) (N , γ) complete

(b) (N , γ) non-complete.

We only discuss case (a) with the additional condition |Ricγ | bounded.
We have Scalγ ≤ C and Scalγ = e(Ψ) ≥ 0.

Take a maximizing sequence {xn} such that Scalγ(xn) → supNScalγ ≤ C .

Scalγ approaches its suppremum and (N , γ) is complete + Ricγ bounded:

∆γ(Scal
γ)|xn must approach zero.

However ∆γe(Ψ) is a sum of non-negative terms, among which there is |Ricγ |2.

|Ricγ(xn)|γ −→ 0

Hence also Scalγ(xn) −→ 0. But we approached the suppremum. It follows

Scalγ = 0 contradiction. �
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Rigidity of stationary black hole spacetimes
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Black hole region

Black holes can be defined in non-stationary, asymptotically flat spacetimes.

We adapt the definition to the stationary case.

Let (M, gM) be a stationary spacetime with stationary Killing ξ.

Since the orbits of ξ are complete, there exist a one-parameter group of isometries:

Ψ : R×M −→ M
(t0, p) −→ Ψ(t0, p) := Ψt0(p), Ψ⋆

t0(g
M) = gM

Recall the definition of timelike future of a point

Definition (Cronological future of a point)

Let (M, gM) be a spacetime and p ∈ M. The future of p is

I+(p) := {q ∈ M; exists a future directed timelike curve from p to q}

I+(p) is open.

For Ω ⊂ M: I+(Ω) = ∪p∈ΩI
+(p).

I−(p) and I−(Ω) are defined similarly.
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Black hole region and domain of outer communications

Definition (Black hole region)

Let (Mn, gM) be a stationary spacetime with an asymptotically flat n-end (M∞, gM).
The black hole region of M∞ is the closed set

B+ = M\ I−(M∞)

The white hole region defined analogously.

Definition (Domain of outer communications)

Let (Mn, gM) be a stationary spacetime with an asymptotically flat n-end (M∞, gM).
The domain of outer communications (D.O.C) of the asymptotic end M∞ is

〈〈M∞〉〉 := I+(M∞) ∩ I−(M∞)

Obviously 〈〈M∞〉〉 = M\ (B+ ∪ B−)

The domain of outer communication in the Kerr spacetime is

If |a| ≤ m: {r ≥ r+}.
If |a| > m: The whole spacetime.
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The D.O.C is the set of events that can send signals to the asymptotic region and
also receive signals from infinity.

The black hole region is the set of points that cannot send signals to infinity.

Definition (Stationary black hole spacetime)

A stationary black hole spacetime is a stationary spacetime with an asymptotically flat
n-end and B+ 6= ∅.

The future event horizon of a black hole spacetime is H+ = ∂B+.

This notion can be defined in more general setups than stationary spacetimes.

Properties:

In a general setup, H+ is a Lipschitz null hypersurface ruled by null geodesics (not
smooth in general).

A future null geodesic γ which is tangent to H at one point p = γ(s0) remains fully
contained in H+ for s ≥ s0 (not true in general for s < s0).

Stationary black holes have been studied under additional global restrictions

Ongoing effort to lift as many such global assumptions as possible
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I+ regularity

A convenient set of global assumptions is encoded in the following definition
[Chruściel & Lopes Costa]

Definition (I+ regular stationary black hole)

A stationary black hole spacetime is I+-regular is the following three-conditions are
satisfies

(i) The domain of outer communications 〈〈M∞〉〉 is globally hyperbolic.

(ii) 〈〈M∞〉〉 contains a spacelike acausal hypersurface Σ containing an asymptotically
flat end Σ∞ where the stationary Killing vector is timelike.

(iii) The closure Σ satisfies:

(iii.a) Σ \ Σ∞ is compact.

(iii.b) ∂Σ is a topological manifold satisfying ∂Σ ⊂ ∂〈〈M∞〉〉 ∩ I+(M∞) and
intersecting each generator of 〈〈M∞〉〉 ∩ I+(M∞) precisely once.

Several notions still need definition.

Pictorically, the definition means:

I
+
1

I
−
1

H+H−I
+
2

I
−
2

i 01i 02

r = 0

r = 0

D.O.C

Σ
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Definition (Globally hyperbolic)

A spacetime (M, gM) is globally hyperbolic if it admits a Cauchy hypersurface, i.e. a
topological hypersurface Σ such that any inextendible future directed curve in (M, gM)
intersects Σ exactly once.

By a result of Bernal & Sánchez, Σ can be chosen spacelike and smooth.

A globally hyperbolic spacetime (M, gM) is diffemorphic to Σ× R.

Definition (Acausal hypersurface)

A hypersurface Σ in a spacetime (M, gM) is acausal if no future directed causal curve
intersects Σ twice.
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Definition (Asymptotically flat end)

An asymptotically flat end is a spacelike hypersurface Σ∞ diffeomorphic to R
n−1 \ B1,

which, in the Euclidean coordinates x , satisfies

gij − δij = O2

(
1

|x |n−3

)
, Kij = O2

(
1

|x |n−2

)
, ρ, |J| = O(|x |−p), p > n − 2.

where g is the induced metric, K the second fundamental form, ρ := EinM(ν, ν) and
J := −EinM(ν, ·), where ν is the unit normal to Σ∞.

The notation f (x i ) = Ok(rα), k ∈ N, means f (x i ) = O(rα), ∂j f (x
i ) = O(rα−1) and

so on for all derivatives up to and including the kth ones.

Definition

An spacelike hypersurface Σn−1 (possibly with boundary) is asymptotically flat if there is
a compact set K such that Σ \ K is a finite union of asymptotically flat ends.
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Condition (i), (ii) and (iii .a) in the definition of I+ regularity state that

〈〈M∞〉〉 admits an asymptotically flat hypersurface.

The stationary Killing vector is timelike in the asymptotic end.

Note that our definition of stationary black hole requires that ξ
approaches a time-translation near infinity.

This is for presentation purposes only. It can shown under very general
circumstances.

Condition (iii .b) is a condition on the future event horizon E+ := ∂〈〈M∞〉〉 ∩ I+(M∞)

It states that E+ has compact cross sections.

The hypersurface Σ is generally not a Cauchy surface of
〈〈M∞〉〉.
Cauchy surfaces of 〈〈M∞〉〉 need not be of the form

ΣCauchy = K ∪ Σ∞, K compact

For instance:
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Condition (i), (ii) and (iii .a) in the definition of I+ regularity state that

〈〈M∞〉〉 admits an asymptotically flat hypersurface.

The stationary Killing vector is timelike in the asymptotic end.

Note that our definition of stationary black hole requires that ξ
approaches a time-translation near infinity.

This is for presentation purposes only. It can shown under very general
circumstances.

Condition (iii .b) is a condition on the future event horizon E+ := ∂〈〈M∞〉〉 ∩ I+(M∞)

It states that E+ has compact cross sections.

The hypersurface Σ is generally not a Cauchy surface of
〈〈M∞〉〉.
Cauchy surfaces of 〈〈M∞〉〉 need not be of the form

ΣCauchy = K ∪ Σ∞, K compact

For instance:

I
+

I
−

H+

H−

i 0

r = 0

r = 0

D.O.C

ΣCauchy
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Consequences of I+ regularity

The definition of I+ regularity is useful in order to obtain global properties of the
black hole spacetime.

The proofs make fundamental use of causality theory.

We make no attempt to explain the proofs. Details can be found in [Chruściel &

Lopes Costa] and references therein.

The condition of 〈〈M∞〉〉 globally hyperbolic guarantees that 〈〈M∞〉〉 is simply
connected under a very mild energy condition.

A spacetime (M, gM) satisfies the null energy condition iff

Eing (k, k) ≥ 0, ∀p ∈ M and ∀k ∈ TpM null.

Theorem (Galloway, Chruściel & Wald)

Let (M, gM) be a stationary black hole spacetime. If the domain of outer
communications is globally hyperbolic and satisfies the null energy condition then it is
simply connected.

This theorem also holds without stationarity, for a suitable definition of domain of
outer communications [Galloway 1995].
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Corollary (Topology of event horizon)

In I+ regular, stationary four-dimensional black hole spacetimes satisfying the null energy
condition, cross sections of E+ have spherical topology.

I+ regularity is also used to show regularity of the event horizon.

Theorem (Smoothness of the event horizon)

Let (Mn, gM) be a stationary black hole spacetime satisfying the regularity condidition
I+ and the null energy condition. Let E+

0 be a connected component of E+

(i) [Chruściel & Lopes Costa] There exists a compact Lipschitz hypersurface S0 of E+
0

transverse both to the stationary Killing vector ξ and to the generators of E+
0 and

which meeets every generator of E+
0 precisely once. In particular, ∪t∈RΦt(S0) = E+

0 .

(ii) [Chruściel, Delay, Galloway, Howard]. If (M, gM) is vacuum at large distances in the
asymptotic region then S0 and E+

0 are smooth (analytic if the spacetime is).
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Hawking rigidity theorem

At present, a fundamental step of the classification of stationary black holes is the
claim: rotating black holes are axisymmetric, known as Hawking rigidity theorem.

A rotating black hole spacetime is defined by the property that the stationary Killing
vector ξ is not-tangent to the generators of E+.

The Hawking rigidity theorem procceds in several steps: Local step

Theorem (Hawking rigidity near H [Hawking n = 4, Hollands, Ishibashi, Wald n ≥ 4)

Let (Mn, gM) be an analytic spacetime with an analytic null hypersurface H such that

(i) M admits a complete Killing vector ξ tangent to H.

(ii) H admits a compact cross section S transverse to ξ.
Define u : H → R by ξ(u) = 1 and u|S = 0.

(iii) The average surface gravity 〈κξ〉 = −1
2|S|
∫
S
〈k,∇ℓℓ〉ηS is nonzero, where ℓ is the null

generator of H satisfying ℓ(u) = 1 and k is ⊥ to S, null and with 〈ℓ, k〉|H = −2.

Then there is a neighbourhood U of H and a Killing vector η on U which is null,
non-zero and tangent to H (i.e. H is a Killing horizon for η).
In fact, if ξ is not tangent to the generators of H then there exists N ≥ 1 Killing vectors
ζ(A), commuting with each other and with ξ, with 2π orbits, and constants Ω(A) such that

η = ξ +Ω(1)ζ(1) + · · ·+Ω(N)ζ(N).
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In spacetime dimension n = 4 condition (iii) can be replaced by the condition that S has
spherical topology.

Idea of the proof: ξ, being non-tangent to the generators and transverse to the
cross-section, transforms generators into generators which at the same time
“advancing” along H.

Since S is compact, a given generator becomes transformed into another one
infinitely close after advancing sufficiently far along the isometry group.

Since ξ is Killing, it does not change any geometric property.

This gives enough information to show that the generator η of H (with a suitable
choice of scale) satisfies

LX · · · LXLξg
M|H = 0, X ∈ X(M)

Analicity of the spacetime and of H is then used to show that η
is a Killing vector in a neighbourhood of H.
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Hawing rigidity theorem, global part

Passing from the local stament to a global statement in the domain of outer
communications was justified by Hawking using analytic continuation.

However, as noticed by Chruściel, analytic continuation alone is not sufficient to
reach this conclusion.

Theorem (Hawking rigidity: global part [Chruściel & Lopes Costa, Hollands et al])

Let (Mn, gM) be a stationary black hole spacetime with stationary Killing vector ξ and
assume that (M, gM) satisfies the I+-regularity condition.
Assume further that on one connected component S0 of Σ ⊂ E+ we have that either

(i) The average surface gravity 〈κξ〉|S0 6= 0, or

(ii) the stationary flow is periodic in the space of generators of the connected
component E+

0 of E+ containing S0

and ξ is non-everywhere tangent to the generators of E+
0 .

Then there exist N ≥ 1 complete, independent, Killing vector ζ(A) on 〈〈M∞〉〉 with 2π−
periodic orbits, commuting with each other and with ξ and costants Ω(A) such that

η := ξ +Ω(1)ζ(1) + · · ·+Ω(N)ζ(N).

is null, non-zero and tangent to E+
0
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Stationary and axially symmetric black holes
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Stationary and axially symmetric black holes: global properties

The Hawking rigidity theorem makes the study of stationary and axially symmetric black
holes of fundamental interest.

The Weyl coordinates happen to be global in this case

Theorem (Interior structure theorem)

Let (M4, gM) be a stationary and axially symmetric, vacuum I+-regular black hole. Let
ξ the generator of the stationary isometry and ζ the generator of the SO(2) isometry and
denote by A the axis of symmetry. Then the following properties hold:

(i) 〈〈M∞〉〉 \ A is diffeomorphic to R× S
1 × R

+ × R.

(ii) In the coordinates {t, φ, ρ, z} defined by this diffeomorfism: ξ = ∂t and ζ = ∂φ.

(iii) The metric on 〈〈M∞〉〉 \ A takes the 2 + 2 form

gM = −ρ
2

X
dt2 + X (dφ+ Adt)2 +

e2k

X

(
dρ2 + dz2

)
.

Detailed proof in [Chruściel & Lopes Costa] building on work of several other authors.
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Theorem (Boundary structure theorem, [Chruściel & Lopes Costa])

Assume that all connected components of E+ have non-zero average surface gravity.

Then the quotient Q := 〈〈M∞〉〉/(R×SO(2)) is a smooth manifold with boundary and:

(i) Q ≃ [0,∞]× R with corresponding coordinates {ρ, z}.
(ii) There exists m disjoint compact intervals Ii = [c−i , c

+
i ] such that:

The portion of the axis A in 〈〈M∞〉〉 projects onto {0} × (R \ ∪i int(Ii )).

Each connected component E+
0 projects onto an interval {0} × Ii .

(iii) log( X
ρ2
) and ω are smooth functions of ρ2 and z on near {0} × (R \ ∪i Ii ).

(iv) ω is constant on each connected component of {0} × (R \ ∪i Ii ).

(v) X and ω are smooth functions of ρ, z near {0} × (−c+i , c
+
i ), for all i .

(vi) Near each point c±i : X =
ρ2f±

i
(ρ,z)

z−c±
i

±
√

(z−c±
i

)2+ρ2
with f ±i positive and bounded and

ω = ω±
i +

ω̂(ρ, z)

(
a±i ρ+

√
2(z − c±i ±

√
(z − c±i )2 + ρ2)O((z − c±i )2 + ρ2)

)2

2

(
z − c±i ±

√
(z − c±i )2 + ρ2

)

where ω±
i and a±i > 0 are constant and ω̂(ρ, z) is a bounded function.
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Denote by ωa (a = 0, · · · ,m) the constant values of ω on each connnected
component of {0} × (R \ ∪i Ii ).

Definition (Axis data)

The collection of m disjoint intervals Ii = [c−i , c
+
i ] (i = 1, · · ·m) and of constants ωa are

called axis data.

The points ρ = 0, z = c±i correspond to the two points where the connected
component E+

i of the horizon intersects the axis of symmetry.

The detailed behaviour of X and ω near those points is necessary to show that two
harmonic maps with the same axis data lie at finite distance from each other.

Theorem (Chruściel & Lopes Costa)

Let ΨA :
(
R

3 \ Z, gE = dρ2 + dz2 + ρ2dϕ2
)
−→

(
H

2, gH = dX2+dω2

X2

)
(A = 1, 2) be two

harmonic maps corresponding to two four-dimensional, stationary and axially symetric
vacuum I+-regular black holes (MA, g

M
A ).

If the axis data of both spacetimes agree, then

sup
p∈R3

(distH2(Ψ1(p),Ψ2(p))) <∞
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The Kerr spacetime of mass m and specific angular momentum |a| < m corresponds
to the axis data:

I = [−µ, µ], ω|{0}×[µ,+∞) = 8ma ω|{0}×(−∞,−µ] = 0, µ = +
√

m2 − a2.

Note that a global shift of the intervals Ii is irrelevant due to the freedom
z → z + const in the definition of z .

Also ω is defined up to an additive constant, so the value of ω on one of the
components of the axis (say {0} × [c+m ,∞)) can be specified freely.

An interesting question is whether for any axis data there exists a harmonic map with the
behaviour prescribed by the boundary structure theorem.

Theorem (Existence, Weinstein)

Given any axis data there exists a unique harmonic map

Ψ :
(
R

3 \ Z, gE = dρ2 + dz2 + ρ2dϕ2
)
−→

(
H

2, gH = dX2+dω2

X2

)
fulfulling the axis data

conditions and satisfying

distH2(Ψ,Ψm,a) −→ 0 for
√
ρ2 + z2 −→ ∞

where Ψm,a is the harmonic map corresponding to the Kerr spacetime with parameters
{m, a} defined is a specific manner from the axis data.
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Not known whether these maps lead to stationary and axially symmetric black hole
spacetimes.

A vacuum, stationary and axially symmetric spacetime does exist.

However, not known whether it has singularities at the axis of symmetry.

The spacetimes corresponding to these harmonic maps are called Weinstein
spacetimes.

Combining the various ingredients:

The Interior structure theorem.

The Boundary structure theorem.

The Existence theorem.

The Uniqueness theorem for harmonic maps

Ψ :
(
R

3 \ Z, gE
)
−→

(
H

2, gH =
dX 2 + dω2

X 2

)
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Theorem (Uniqueness theorem for stationary axially symmetric black holes)

Let (M4, gM) be a vacuum, stationary and axially symmetric, I+-regular black hole
spacetime.

If the event horizon is connected and has non-zero average surface gravity then 〈〈M∞〉〉
is isometric to the exterior of a Kerr black hole spacetime.

If the event horizon has more than one connected component and each component has
non-zero average surface gravity, then either the spacetime does not exist or else
〈〈M∞〉〉 is isometric to one of the Weinstein spacetimes.

In this form, the theorem has been formulated and proved by Chrúsciel and Lopes
Costa, building on work by many authors:

Carter, Robinson, Hawking, Mazur, Bunting, Weinstein, Galloway, etc.
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Non-rotating black hole spacetimes
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The Hawking rigidity theorem splits the analysis in rotating and non-rotating black
holes (under analiticity).

Non-rotating black holes can be reduced to static black holes under suitable
conditions

We consider first when and how the non-rotating case reduces to the static
one.

Uniqueness of the static black black holes is then discussed (in a more general
setting).
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Killing Initial data set

Recall the fundamental definition of initial data set:

Definition (Initial data set)

An initial data set is a triple (Σm, g ,K ), m ≥ 3, where (Σ, g) is a Riemannian manifold,
K a symmetric two-tensor. The matter content is the scalar ρ and one-form J:

2ρ := Scal(g)− |K 2|g + (trgK )2, J := −divg (K − (trgK ) g)

(Σ, g ,K ) is embedded in (M, gM) with embedding Φ : Σ → (M, gM) if
g = Φ⋆(gM) and K is the extrinsic curvature with respect to a unit normal ν.

From Gauss and Codazzi: ρ
Σ
= EinM(ν, ν), J = −Φ⋆(EinM(ν, ·))

Definition (Killing initial data (KID))

(Σ; g ,K ;N,Y ; T ) is said to be a Killing initial data if (Σm, g ,K ) is initial data and the
scalar N, vector field Y and symmetric tensor T satisfy the Killing initial data equation:

LY g = −2NK ,

LYK = −HessgN + N (Ric + trg (K )K − 2K ◦ K )− N

(
T − 1

m − 1
(trgT − ρ)g

)
.
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N (lapse) and Y (shift) correspond to the normal and tangential components of the
Killing vector at Σ.

Concerning T :

Proposition

Let (Σ; g ,K ;N,Y ; T ) be a KID embedded in a spacetime with embedding Φ and assume

that (M, gM) admits a Killing vector ξ satisfying ξ
Σ
= Nν + Y . Then T = Φ⋆(EinM).

A KID is vacuum iff ρ = J = T = 0.

Theorem

Let (Σ; g ,K ;N,Y ; T ) be vacuum Killing initial data embedded in a spacetime (M, gM).
Then the spacetime admits a Killing vector ξ and

ξ
Σ
= Nν + Y .

Similar results holds for other matter models, e.g. for electrovacuum.

On a Killing initial data we define λ := N2 − |Y |2g and call it square norm of the Killing.
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Asymptotically flat KID

Definition (Asymptotically flat KID end)

A Killing initial data (Σm; g ,K ;N,Y ; T ) is a stationary asymptotically flat end if
(Σ, g ,K ) is asymptotically flat and

N − N∞ = O2

(
1

|x |m−2

)
, Yi − Y∞ i = O2

(
1

|x |m−2

)
,

where N∞, Y∞ i are constants satisfying N∞ > |Y∞|δ.

The definition of asymptotic flatness is analogous to the general case:

Definition (Asymptotically flat KID)

A KID (Σm; g ,K ;N,Y ; T ) (possibly with boundary) is asymptotically flat if there is a
compact set K such that Σ\K is a finite union of stationary asymptotically flat KID ends.
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Staticity theorem

The staticity theorem (i.e. that non-rotating black holes are static) proceeds in two
steps:

Step (i): show that the black hole admits an asymptotically flat maximal
hypersurface.

Recall: Maximal means that has vanishing mean curvature
(trK = 0).

Step (ii): show that ξ is hypersurface orthogonal and timelike in 〈〈M∞〉〉
To be precise: A black hole is called non-rotating if the stationary Killing ξ is tangent to
the null generators of E+ on each one of its connected components.

Theorem (Staticity theorem, step (i), Chruściel & Lopes Costa)

Let (Mn, gM) be a vacuum, I+-regular, stationary and non-rotating black hole
spacetime. Assume that each connected component of E+ is non-degenerate and that
〈〈M∞〉〉 contains no non-embedded Killing prehorizons.

Then, there exists another vacuum stationary black hole spacetime (M′, gM′, ξ′) with
〈〈M′∞, gM′, ξ′〉〉 isometric to 〈〈M∞, gM, ξ〉〉 which admits a maximal asymptotically
flat Cauchy hypersurface Σ′ with smooth boundary ∂Σ′ satisfying ξ′|∂Σ′ = 0
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Theorem (Staticity theorem, step (ii), Sudarsky & Wald)

Let (Σm; g ,K ;N,Y ; T ) be an asymptotically flat KID with smooth compact boundary
∂Σ where N = Y = 0. Assume that

(i) trgK = 0 (“maximal”)

(ii) The energy flux J vanishes.

(ii) The energy-type inequality (m − 2)ρ+ trgT ≥ 0 holds.

Then the KID is time-symmetric, N > 0 in int(Σ) and, after possibly a refefinition of
Killing, Y = 0.

Thus, the Killing vector is timelike and hypersurface orthogonal outside the horizon ∂Σ.
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Proof of the staticity theorem, step (ii)

Taking trace to the Hessian equation for N and using the Hamiltonian constraint:

∆gN + Y (trgK ) = N

(
|K |2g +

1

m − 1
((m − 2)ρ+ trgT )

)

Under the energy assumption, the equation is (−∆g + c)N = 0, c ≥ 0

Lemma (Hopf Maximum principle)

For C 2 solutions of (−∆g + c)N = 0, c ≥ 0 N cannot attain a non-positive minimum on
Σ unless N is constant.

Since N −→ N∞ > 0 at ∞ and N|∂Σ = 0, it follows N > 0 in int(Σ).

The momentum constraint is divg (K − (trgK )g) = divgK = 0.

Using ∇g
i Yj +∇g

j Yi = −2NKij :

∇g
i

(
K ijYi

)
= −N|K |2g .

Integrate on Σ and use that K → 0 at infinity and N = 0 at ∂Σ.
∫

Σ

N|K |2ηg = 0 =⇒ K = 0.

(Σ : g ,K = 0;N,Y = 0, ρ, J = 0, T ) is a Killing initial data with N > 0 in int(Σ).

Marc Mars (University of Salamanca) Rigidity results for stationary spacetimes April 2015 94 / 121



Rigidity of static, asymptotically flat Killing initial data
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In the static case it makes sense to study rigidity of stationary black holes by studying
rigidity of asymptotically flat Killing initial data with integrable Killing vector.

Studying rigidity at the Killing initial data level gives much stronger results, as no
global in time assumptions on the spacetime are made.

First step: transfer the condition of ξ being hypersurface orthogonal to the initial data
level.

The condition of integrable Killing vector can be transferred to the data:

Definition (Integrable KID)

A KID (Σ; g ,K ;N,Y ; T ) is integrable iff satisfies the staticity equations

NdY + 2Y ∧ Z = 0,

Y ∧ dY = 0,

where Z := dN + K (Y , · ) and
Y := g(Y , ·).

The staticity equations imply (recall λ = N2 − |Y |2g )
λdY + Y ∧ dλ = 0.

λ does not change sign on any integral manifold of Y⊥

Definition

An asymptotically flat KID is static if (Σ; g ,K ;N,Y ; T ) is integrable.
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Asymptotics in the vacuum case

For vacuum data, asymptotic decay can be improved (staticity not assumed). Define first
orbit and conformal metric.

Definition (Orbit and conformal metric)

Consider a KID (Σ; g ,K ;N,Y ; T ). On any open set U ⊂ Σ where λ > 0, h := g + Y⊗Y
λ

.

is a Riemannian metric, called orbit metric. The conformal metric is γ := λ
1

m−2 h.

Theorem (Schwarzsch. decay Beig & Simon, Kennefick & Ó Murchadha, Beig & Chruściel)

Let (Σm; g ,K ;N,Y ; T ) be a vacuum asymptotically flat KID and let λ∞ := N2
∞ − |Y∞|2

(necessarily positive). Then, there is a constant M such that

λ− λ∞

(
1 +

2M

|x |m−2

)
= O2

(
1

|x |m−1

)
, λ

1
m−2 hij − δij = O2

(
1

|x |m−1

)
.

In particular, if Y∞ = 0 and N∞ = 1 then

N − 1 +
M

|x |m−2
= O2

(
1

|x |m−1

)
, gij −

(
1 +

2M

(m − 2)|x |m−2

)
δij = O2

(
1

|x |m−1

)
.

The constant M is precisely the ADM mass of the data.
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Bunting and Massood-ul-Alam uniqueness theorem

Uniqueness for static vacuum black holes was first studied by Israel, by studing the
level sets of V =

√
λ.

Besides technical assumptions (removed later by Müller zum Hagen) the method
needs connected horizon.

A major breakthrough was made by Bunting and Masood-ul-Alam, who removed the
connectedness condition.

Very elegant proof based on a clever application of the positive energy
theorem.

Works directly at the the initial data level.

Originally in dimension 3 + 1, but the proof extends to all dimensions for
which the positive energy theorem holds

Definition

A manifold Σm (without boundary) containing an asymptotic region Σ∞ ≃ R
m \ B(1) is

of positive energy type if it admits no complete and non-flat metric g with Scalg ≥ 0 and
which, on Σ∞, is asymptotically Euclidean and has vanishing ADM energy.

By the Positive Energy Theorem: manifolds Σm = K ∪ Σ∞ with 3 ≤ m ≤ 7 are of
positive energy type.
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Notation: A KID (Σ; g ,K ;N,Y ; T ) is called time symmetric if Y = K = 0.

Theorem (Bunting & Masood-al-Alam (m = 3))

Let (Σm, h,N), (3 ≤ m ≤ 7) by a time-symmetric, vacuum, asymptotically flat Killing
initial data set with compact boundary. Assume:

(i) N|∂Σ = 0.

(ii) N|int(Σ)
> 0.

Then there exists M > 0 such that (Σ, h,N) is isometric to the t = 0 slice of the
Schwarzschild spacetime of mass M.

The t = 0 slice of Schwarzschild is the time symmetric KID

ΣSch = R
m \ B

((
M

2

) 1
m−2

)
, gSch =

(
1 +

M

2|x |m−2

) 4
m−2

gE , NSch =
1− M

2|x|m−2

1 + M
2|x|m−2

.
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Proof of the Bunting and Masood-al-Alam theorem

The field equations are, since K = Y = 0

NRich = HesshN, ∆hN = 0, N|∂Σ = 0, N > 0 on int(Σ)

|∇hN|2h|∂Σ is a non-zero constant.

Constancy is immediate. If zero, then N = 0, ∇hN = 0 on ∂Σ, which implies
N ≡ 0 on Σ −→ Contradiction.

The boundary ∂Σ is totally geodesic:

∇hN is a non-zero normal and HesshN = 0 on ∂Σ.

By the maximum principle: 0 < N < 1.

Consider the two conformal metrics h± = Ω
4

m−2
± h where Ω± = 1±N

2
.

The transformation law for curvature scalar and the field equation imply Scalh± = 0.

By the asymptotics of N and h:

The space (Σ, h+) is asymptotically flat with vanishing mass.

The space (Σ, h−) admits a one point compactification of infinity.
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Λ

(Σ, h)

(Σ, h+)
(Σ, h−)

∂Σ

∂Σ

n+

n−

Glue them together
across the boundary

The metrics h± agree on ∂Σ.

n±: unit normal vectors to ∂Σ in h± (n+ inwards, n− outwards)

n+(Ω+)
∂Σ
= n−(Ω−) =⇒ K+|∂Σ = K−

∂Σ

The manifold Σ̂ after gluing has C 1,1 metric ĥ. The positive energy theorem still applies.

Asymptotically flat manifold with Scalĥ = 0 and MADM = 0 =⇒ (Σ̂ = R
m, ĥ = gE ).
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The properties of Rich+ imply

HessgE

(
1 + N

1− N

) 2
m−2

= 2F (N)|∇N|2gE gE F > 0

N cannot be constant =⇒ |∇N|2gE =
c

F (N)
, c ∈ R

+

Set M = 2c−
m−2
2 > 0. It follows 1+N

1−N
= 2

M
(x2

1 + · · · x2
m)

m−2
2

N =
1− M

2|x|m−2

1 + M
2|x|m−2

= NSch,

h = Ω
− 4

m−2
+ gE =

(
1 +

M

2|x |m−2

) 4
m−2

gE = gSch
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Horizons in static KID

This theorem goes a long way of proving uniqueness of static vacuum black holes.

Not sufficient by itself because of the potential existence of Killing prehorizons.

In a static, KID (Σm; g ,K ;N,Y ; T ), Y ∧ dY = 0: By Fröbenius:

Any p ∈ Σ with Y |p 6= 0 lies in a unique (maximal) integral manifold Np of {Y⊥}.

Properties:

(i) Np is an injectively immersed, arc-connected, codimension-one submanifold.

(ii) Y is normal to Np

(iii) λ|Np does not change sign (remains zero if vanishes at one point)

A horizon HJ is an integrable manifold Np where λ vanishes.

κJ := 1
2|Y |2Y (λ) is constant on each horizon (∼ surface gravity ).

If κJ 6= 0 then HJ is embedded.

If HJ contains a fixed point (i.e. a point p where N|p = Y |p = 0), then
κJ 6= 0.

If κJ = 0, then HJ may be not embedded (∼ Killing prehorizon).
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Consider a static, asymptotically flat KID (Σm; g ,K ;N,Y ; T ). Define

ΣT := connected component of {p ∈ Σ;λ(p) > 0} containing the asymptotically flat end.

Points in the topological boundary ∂tΣ are either fixed points or lie on horizons.

Fixed points or non-degenerate horizons are fine.

Theorem (Chruściel)

For any p ∈ ∂tΣT not lying on a degenerate horizon there exists a neighbourhood Up and
a differentiable structure on Up := ΣT ∩ Up such that

(i) Up is a smooth manifold-with-boundary.

(ii) (Up, h,K = 0,N =
√
λ,Y = 0) is static KID, where h is the orbit metric.

Since N|∂Up
= 0 and N|int(Up)

> 0, these points are well-adapted to the Bunting

and Masood-ul-Alam theorem.
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Degenerate horizons can be excluded in general assuming only a very mild energy
condition

Theorem (M., Reiris)

Let (Σm; g ,K ;N,Y ; T ) be an asymptotically flat, static, Killing initial data set satisfying
the null energy condition. If Σ has boundary, assume that ΣT ∩ ∂Σ = ∅.
Then, each arc-connected component of ∂tΣT \ {Y = 0} is an embedded, compact
manifold.

Thus (ΣT , h,K = 0,N =
√
λ,Y = 0) is an asymptotically flat initial data set

satisfying all hypotheses of the Bunting and Masood-ul-Alam theorem.

The only requirement to apply the theorem is to make sure that ΣT does not
intersect ∂Σ.

In particular holds for I+-regular black holes.

Putting the results together:

Theorem (Uniqueness theorem for static black holes)

Let (Mn, gM), (4 ≤ n ≤ 8) be a vacuum, static I+-regular black hole spacetime.

Then 〈〈M∞〉〉 is isometric to the domain of outer communications of a Schwarzschild
spacetime of mass M > 0.

Rigidity can be proved under much weaker global assumptions.
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Definition (Weakly outer trapped domain)

Consider an initial data set (Σ, g ,K ). A domain Σ+ is called weakly outer trapped if

∂tΣ+ is smooth.

The mean curvature H w.r.t the inward normal satisfies H + tr∂tΣ+K ≤ 0.

Theorem (M. , Reiris)

Let (Σm; g ,K ;N,Y ; T ) (m ≤ 3 ≤ 7) be a static, asymptotically flat, vacuum KID.
Assume that int(Σ) contains an asymptotically flat weakly outer trapped domain. Then
there exists M > 0 such that (ΣT , g ,K ,N,Y ) can be embedded in the domain of outer
communications of the Schwarzschild spacetime of mass M.

This theorem applies to any matter model for which a Bunting and Masood-ul-Alam
static uniqueness proof exists.

Generalizes to the non-time symmetric case and to any dimension a previous
theorem by Miao:

Theorem (Miao)

Let (Σ3, g ,N) be a time-symmetric, static, vacuum, asymptotically flat KID. Assume ∂Σ
is the outermost minimal surface Then there exists M > 0 such that (Σ, g ,N) is
isometric to (ΣSch, gSch,NSch) of mass M.
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Uniqueness of static spacetimes with a photon sphere

In Schwarzschild all null geodesics starting at {r = 3M} with ṙ = 0 initially stay at
{r = 3M}. Note N2 = −〈ξ, ξ〉 is constant on {r = 3M}.

Are there other static, asymptotically flat vacuum spacetimes with a photon sphere?

Definition (Photon surface)

Let (M, gM) be a static spacetime of the form (M = R× Σm, gM = −N2dt2 + h). An
embedded timelike hypersurface T is an photon surface if and only if any null geodesic
initially tangent to T remains tangent to T .

Definition (Photon sphere)

A photon sphere is a photon surface T satisfying N|T = N0 constant.

Photon spheres make static vacuum solutions rigid

Theorem (Cederbaum)

Let (R× Σ3, gM = −N2dt2 + h), where (Σ, h,N) is an asymptotically flat vacuum KID
with inner boundary ∂Σ. If T := R× ∂Σm is a photon sphere and N has nowhere
vanishing gradient, then (M, gM) is isometric to the region outside {r = 3M} of
Schwarzshild spacetime of mass M = 1√

3H
, where H is the mean curvature of T .
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Rigidity of stationary black holes

Let us return to the back hole setting.

Combining:

The Hawking rigidity theorem,

The Uniqueness theorem of stationary and axially
symmetric black holes.

The Uniqueness theorem of static black holes.

Theorem (Rigidity of stationary black holes)

Let (M4, gM) be a vacuum, analytic, I+-regular black hole spacetime. Assume that the
event horizon E+ is connected and has non-zero average surface gravity.

Then 〈〈M∞〉〉 is isometric to a exterior Kerr spacetime.
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Black hole rigidity without analyticity
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The classification stationary black holes via the stationary and axially symmetric and
static cases relies on Hawking rigidity theorem.

This requires analyticity.

This assumption is unjustified: Strong a priori restriction on the spacetime

Important long standing problem: Remove the analyticity assumption.

Interesting progress in the last few years (Ionescu, Klainerman, Alexakis).

Main ingredients of the new approach:

A tensorial characterization of the Kerr metric among stationary vacuum spacetimes.

Uniqueness results of ill-posed wave-type equations.
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Local characterization of the Kerr metric

Self-dual Killing two-form Fαβ ≡ ∇αξβ + i
2
ηαβγµ∇γξµ. Square: F2 := FαβFαβ .

Ernst one-form: σµ = 2ξαFαµ

In vacuum σµ = ∂µσ locally (Ernst potential). Defined up to an additive constant.

Self-dual Weyl tensor: Cαβγδ = Cαβγδ +
i
2
ηγδρσC

ρσ
αβ .

The canonical metric: Iαβγδ ≡ (gαγ gβδ − gαδ gβγ + i ηαβγδ)/4

Theorem (M.)

Let (M, gM) be a vacuum spacetime with a Killing field ξ. If the additive constant in σ
can be chosen so that the tensor

Sαβγδ ≡ Cαβγδ +
6

1− σ

(
FαβFγδ − 1

3
F2Iαβγδ

)

vanishes identically and ∃p ∈ M where 0 6= F2(1− σ)−4 ∈ R, then (M, gM) is locally
isometric to a Kerr spacetime.

If (M, gM) is asymptotically flat and ξ is timelike at infinity, the condition on
F2(1− σ)−4 is automatically satisfied.

Theorem inspired on an earlier characterization of Kerr on the quotient manifold
near infinity due to Simon.
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New approaches for a uniqueness theorem

Suggests a possible strategy to uniqueness −→ Show that Sαβγδ ≡ 0 in any
asymptotically, flat, stationary black hole.

Accomplished in a particular (but relevant) case.

Theorem (Ionescu, Klainerman, 2007)

Let (M, gM) be an asymptotically flat vacuum black hole spacetime satisfying

(i) (M, gM) admits a complete Killing vector ξ which is timelike at infinity.

(ii) The black hole and white hole event horizons, H+ and H−, intersect on a smooth
surface S0 with S

2 topology.

(iii) H+ and H− are smooth null hypersurfaces in some neighbourhood of S0. Their null
expansions vanish and ξ is not identically zero on S0.

(iv) There exists a real constant M neq0 such that the self-dual two-form Fµν and the
Ernst potential σ associated to ξ satisfy

−4M2F2 S0= (1− σ)4, Re(2(1− σ)−1) > 1 somewhere on S0

Then (M, gM) is isometric to a Kerr spacetime with ADM mass M and angular
momentum |J| < M2.
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Ionescu & Klainerman Theorem

Conditions (ii) and (iii) mean basically that the
horizon is non-degenerate, rotating and connected.

J−(I+)

J+(I−)

S0

Condition (iv) is an a priori restriction on the spacetime with no physical
justification. Needed for the proof.

Basic steps of the argument:

Combining the technical assumption 4M2FαβFαβ S0= (1− σ)4 with the Bianchi
identities and the properties of H± =⇒

Sαβµν |H± = 0

In one could show that Sαβµν vanishes everywhere, the result would follow.

Does the tensor S satisfy any useful identities?
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Ionescu & Klainerman Theorem (II)

Combining the Bianchi identities, the vacuum field equations and the Killing
equations:

∆gMSαβγδ = A µνρσ
αβγδ (S)Sµνρσ + B µνρσκ

αβγδ (S)∇κSµνσκ

LξSαβγδ = P µνρσ
αβγδ (S)Sµνρσ (in fact with P = 0).

Wave type equations on a domain of the form:

Ill posed problem: Existence does not hold

However, we only need uniqueness!

The characteristic initial value problem implies
Sαβµν = 0 in regions I and II .

Required: a unique continuation result.

Domain of

Outer

Communications

The authors prove this fact using so-called Carleman estimates.
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Carleman estimates

Let Σ be a smooth timelike hypersurface defined by f (i.e.
f = 0 and df 6= 0 on Σ).

m the unit normal pointing towards f > 0.

Assume Σ is pseudo-convex: The second fundamental form
K of Σ along m satisfies

K (X ,X ) < 0, X null and tangent to Σ

Σ

f < 0

f > 0X

Carleman estimate: There exists a constant C > 0 such that for any φ of compact
support and ∀λ > C ,

λ||e−λf φ||L2 + ||e−λf∇φ||L2 ≤ Cλ−1/2||e−λf∆gMφ||L2

Consequence:

If φ = 0 on {f < 0} and ∆gMφ = 0 everywhere =⇒ φ = 0 in a neighbourhood of Σ.

The boundary “ ” is neither timelike nor smooth, but it can be approximated by such
hypersurfaces.

Exploiting the Carleman estimate, Ionescu and Klainerman show Sαβµν = 0
everywhere =⇒ Kerr metric.
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Alexakis, Ionescu & Klainerman Theorem

Alternative approach to prove uniqueness: Show that the axial Killing vector exists
without assuming analyticity.

Main idea:

Hawking argument proves (without assuming analyticity) that there is a vector field
ζ on H+ ∪H− satisfying LℓLℓ · · · LℓLζg

M|H+∪H− = 0.

Analyticity is invoked to imply that ζ extends to a Killing everywhere.

Can one still show that ζ extends without assuming analyticity?

The Killing equations in vacuum imply ∆gMζ = 0 for
any Killing.

The characteristic initial value problem allows to
extend ζ to regions I and II

Ill posed PDE in the domain of outer
communications.

ζ
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The Killing equations in vacuum imply ∆gMζ = 0 for
any Killing.

The characteristic initial value problem allows to
extend ζ to regions I and II

Ill posed PDE in the domain of outer
communications.

Extend ζ by Lie dragging along the null geodesics
generated by ℓ

ζζ

ℓ
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Alternative approach to prove uniqueness: Show that the axial Killing vector exists
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Main idea:

Hawking argument proves (without assuming analyticity) that there is a vector field
ζ on H+ ∪H− satisfying LℓLℓ · · · LℓLζg

M|H+∪H− = 0.

Analyticity is invoked to imply that ζ extends to a Killing everywhere.

Can one still show that ζ extends without assuming analyticity?

The Killing equations in vacuum imply ∆gMζ = 0 for
any Killing.

The characteristic initial value problem allows to
extend ζ to regions I and II

Ill posed PDE in the domain of outer
communications.

Extend ζ by Lie dragging along the null geodesics
generated by ℓ

Prove (somehow) that ζ is still a Killing...

ζζ

ℓ

ζ

ℓ
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Alexakis, Ionescu & Klainerman Theorem (II)

Method: prove a unique continuation theorem for vacuum metrics.

Theorem (Alexakis, 2008)

Let g (4)′ be a vacuum Lorentzian metric on a neighbourhood U of the bifurcation surface
S0 in (M, gM). Assume

gM = g (4)′ in the regions I and II .

The null geodesics with tangent ℓ are also geodesics in g (4)′.

Then gM = g (4)′ on a neighbourhood U ′ ⊂ U of S0

Proof relies on Carleman estimates.

Consequence (Alexakis, Ionescu & Klainerman (2008)): ζ is a Killing vector in U ′

(apply the theorem to M and to Φ⋆
t (g

M), with {Φt} the local group of
diffeomorphism of ζ).

Does ζ extend as a Killing vector to the whole domain of outer communications?

Not known in general. However, it does if (M, gM) is a priori close to Kerr.
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Alexakis et al Theorem

Theorem (Alexakis, Ionescu & Klainerman, 2008)

With the same assumption as in the previous uniqueness theorem, replace condition (iv)
by

(iv)’ The exists a small constant ǫ such that |(1− σ)S| ≤ ǫ.

Then (M, gM) isometric to a Kerr spacetime with ADM mass M and angular
momentum |J| < M2.

If (M, gM) close the Kerr a priori (S is small everywhere) then, it is in fact Kerr
(i.e. there are no black holes in a neighbourhood of Kerr).

Result extended to disconnected (non-degenerate) horizon by Wong and Yu (and
extended also to electrovacuum).

Marc Mars (University of Salamanca) Rigidity results for stationary spacetimes April 2015 118 / 121



Outlook

I have concentrated in four-dimensional spacetimes and vacuum.

The main open problems for vacuum, 4-d are:

(i) Remove as many global conditions on the black hole as possible.

(ii) Remove the analiticity condition.

(iii) Settle down the multicomponent black hole case.

(iv) Remove the non-degenerate condition on the horizon.

Many of the results in vacuum have been extended to electrovacuum.

Other matter models have been studied in detail only in the static case.

Uniqueness does not always holds, cf. Bartnik and Mckinnon solutions.

In static vacuum there has been recent activity trying to:

Remove the a priori condition of asymptotic flatness (Reiris)

Make no positivity assumption on the lapse N near infinity (Miao, Tam).

In higher dimensions, stationary spacetimes have much more freedom and much less
is known.
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P.T. Chruściel, J. Lopes Costa, “On uniqueness of stationary vacuum black holes”,
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