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Kasner spacetimes

Kasner spacetimes are vacuum solutions!

Definition (Kasner spacetimes)

Kasner spacetimes are vacuum solutions

M := R+ × R3,

g := −dt2 +
3∑

j=1

t2pj (dx j )2,

such that
∑3

j=1 p2
j =

∑3
j=1 pj = 1.
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The wave equation �ϕ = 0

Definition

(M, g) Lorentz manifold.

The d’Alembert operator � := −div(grad(·)).
The (scalar) wave equation: �ϕ = 0.

Remark

The wave equation �ϕ = 0 in

Minkowski space:
(
∂2

∂t2 −
∑3

j=1
∂2

(∂x j )2

)
ϕ = 0.

Kasner spacetimes:
(
∂2

∂t2 + 1
t
∂
∂t −

∑3
j=1

1
t2pj

∂2

(∂x j )2

)
ϕ = 0.
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The Cauchy problem in Kasner spacetimes

For a fixed t0 ∈ R+ and given ψ1, ψ2 ∈ C∞c ({t0} × R3), solve ∂2

∂t2
+

1
t
∂

∂t
−

3∑
j=1

1

t2pj

∂2

(∂x j )2

ϕ = 0,

ϕ
∣∣
{t0}×R3 = ψ1,

∂

∂t
ϕ
∣∣
{t0}×R3 = ψ2.

There exists a unique solution to this problem.
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Fourier decomposition of the solution

For (t , x) ∈ R+ × R3,

ϕ(t , x) =
∫
R3
αω(t)e−2πix·ωdω,

where αω : R+ → C solves the ODE:

α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

3∑
j=1

ω2
j

t2pj
= 0, ∀t ∈ R+,

αω(t0) =
∫
R3
ψ1(x)e2πiω·x dx , α′ω(t0) =

∫
R3
ϕ2(x)e2πiω·x dx .
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Definition

Call αω for ω ∈ R3 a mode of the wave equation if

α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

3∑
j=1

ω2
j

t2pj
= 0, ∀t ∈ R+.

Remark

If ω = 0, then

αω(t) = α′ω(t0) ln
(

t
t0

)
t0 + αω(t0).
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Axisymmetric Kasner spacetimes

3∑
j=1

pj =
3∑

j=1

pj
2 = 1,

R+ × R3,−dt2 +
3∑

j=1

t2pj (dx j )2


Definition

Axisymmetric Kasner spacetimes: two pj are equal.

Lemma

The two posibilities:

flat Kasner: {p1, p2, p3} = {1, 0, 0}

non-flat axisymmetric Kasner: {p1, p2, p3} =
{
−

1
3
,

2
3
,

2
3

}
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In flat Kasner spacetimes

⇒ α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

(
ω1

2

t2
+ ω2

2 + ω2
3

)
= 0, ∀t ∈ R+

Theorem (explicit solution)

Assume: flat Kasner spacetime with p1 = 1, p2 = p3 = 0.
Then

ω1 6= 0, ω2 = ω3 = 0:

αω(t) = c1e2πiω1 ln(t) + c2e−2πiω1 ln(t),

ω2
2 + ω3

2 6= 0:

αω(t) = c1J2iπω1

(
2πt
√
ω2

2 + ω2
3

)
+ c2Y2iπω1

(
2πt
√
ω2

2 + ω2
3

)
,

where c1, c2 ∈ C are constants depending on the initial data and ω.
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The mode solution when ω2
2 + ω3

2 6= 0 in Kasner spacetimes:

αω(t) =c1J2iπω1

(
2πt
√
ω2

2 + ω2
3

)
+ c2Y2iπω1

(
2πt
√
ω2

2 + ω2
3

)
=c̃1Re

(
J2iπω1

(
2πt
√
ω2

2 + ω2
3

))
+ c̃2Re

(
Y2iπω1

(
2πt
√
ω2

2 + ω2
3

))
Plot of the case when ω1 =

√
ω2

2 + ω3
2 = 1

2π .
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Axisymmetric non-flat Kasner spacetimes

α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

(
t2/3ω1

2 +
ω2

2 + ω2
3

t4/3

)
= 0, ∀t ∈ R+

Theorem (explicit solution)

Assume: axisymmetric non-flat spacetime.
Then the mode αω can be given explicitly in terms of so called ‘Heun biconfluent‘
functions.
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The small time asymptotic behaviour

α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

3∑
j=1

ω2
j

t2pj
= 0, ∀t ∈ R+

Theorem (close to Big Bang)

Non-flat Kasner spacetime:

αω(t)− (c1 ln(t) + c2)→ 0, as t → 0.

Flat Kasner spacetime: (p1 = 1, p2 = p3 = 0)
ω1 6= 0:

αω(t)−
(

c1e2πiω1 ln(t) + c2e−2πiω1 ln(t)
)
→ 0, as t → 0.

ω1 = 0:
αω(t)− (c1 ln(t) + c2)→ 0, as t → 0.

The c1, c2 ∈ C depend on ω, p and initial data.

Oliver Lindblad Petersen On the wave equation in Kasner spacetimes



Background
Results

The explicit solutions in axisymmetric Kasner spacetimes
Asymptotic behaviour of the modes
Application: cosmological redshift

Asymptotic behaviour of the modes

Rewrite the equation!

Lemma

The change of variables

s(t) := ln(t)⇒ βω(s) = αω(exp(s)),

translates

α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

3∑
j=1

ω2
j

t2pj
= 0, ∀t ∈ R+

into

β′′ω(s) + βω(s)4π2
3∑

j=1

ωj
2e(2−2pj )s = 0,

where βω : R→ C.
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The large time asymptotic behaviour

α′′ω(t) +
α′ω(t)

t
+ αω(t)4π2

3∑
j=1

ω2
j

t2pj
= 0, ∀t ∈ R+

Theorem (large times)

Assume: Kasner spacetime and ω 6= 0 ∈ R3. Then

αω(t)

 3∑
j=1

ωj
2t2−2pj

1/4

−
[

c1e
2πi

∫ t
t0

fω(u)du
+ c2e

−2πi
∫ t

t0
fω(u)du

]
→ 0,

as t →∞, where fω(t) :=
(∑3

j=1
ωj

2

t2pj

)1/2
. In particular

|αω(t)| ≤
|c1|+ |c2|+ 1(∑3
j=1 ωj

2t2−2pj
)1/4

for large times. The c1, c2 ∈ C depend on ω, p and initial data.
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The definition of cosmological redshift

Observer: ∂t

Light ray: γ : (a, b)→ M

γ(s0) = (t0, x0) ∈ {t0} × R3

γ′(s0) =

 3∑
j=1

t02pj vj , v

 ∈ T(t0,x0)
R+ × R3

Definition (Redshift of the lightlike geodesic γ.)

Assumption: γ(sp) = p and γ(sq) = q
Assumption: wavelength given by λγ : (a, b)→ R+

Define the redshift as

zγ(p, q) :=
λγ(sq)− λγ(sp)

λγ(sp)
=
λγ(sq)

λγ(sp)
− 1.
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The first notion of wavelength

Definition (The usual definition of wavelength)

The usual wavelength of γ is

λγ(s) : =
h

Eγ(s)
.

h := the Planck constant, Eγ := the energy of γ

Wavelength:

λγ(s) =
h

Eγ(s)
=

h
g (γ′(s), ∂t )

=
h(∑3

j=1 vj
2
(

t0
t(s)

)2pj
)1/2

⇒ Cosmological redshift in Kasner spacetimes:

zγ(p, q) =


∑3

j=1 vj
2
(

t0
t(sp)

)2pj

∑3
j=1 vj

2
(

t0
t(sq)

)2pj


1/2

− 1,
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The second notion of wavelength in Kasner spacetimes

Recall: ϕ(t , x) =
∫
R3
αω(t)e−2πix·ωdω ⇐ Superposition of plane waves!

Choose: ωγ :=
(

t02p1 v1, t02p2 v2, t02p3 v3

)
.

Recall: For large times, i.e. t →∞:

αωγ (t)

 3∑
j=1

ωγ j
2t2−2pj

1/4

−
[

c1e
2πi

∫ t
t0

fωγ (u)du
+ c2e

−2πi
∫ t

t0
fωγ (u)du

]
→ 0.

Definition (The large time wavelength)

The large time wavelength of γ is

λLT
γ (s) :=

1
fωγ (t(s))

.
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The usual notion of redshift coincides with the new one

fωγ (t) :=

 3∑
j=1

ωγ j
2

t2pj

1/2

ωγ :=
(

t02p1 v1, t02p2 v2, t02p3 v3

)
⇒λLT

γ (s) :=
1

fωγ (t(s))
=

1(∑3
j=1 vj

2
(

t0
t(s)

)2pj
)1/2

.

Theorem (Redshift in Kasner spacetimes)

The redshift obtained by using the large time wavelength coincides with the usual
notion of the cosmological redshift and equals

zγ(p, q) =


∑3

j=1 vj
2
(

t0
t(sp)

)2pj

∑3
j=1 vj

2
(

t0
t(sq)

)2pj


1/2

− 1,

where t : J → R+ is the time coordinate of γ.

Oliver Lindblad Petersen On the wave equation in Kasner spacetimes



Background
Results

The explicit solutions in axisymmetric Kasner spacetimes
Asymptotic behaviour of the modes
Application: cosmological redshift

Thank you!

Questions?
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