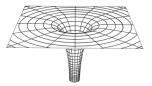
Inverse Mean Curvature Flow And The Proof Of The Riemannian Penrose Inequality

Brian Allen

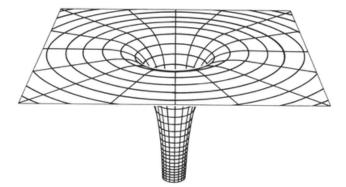
Advised by Dr. Alexandre Freire Department of Mathematics University of Tennessee, Knoxville

3/23/15



B. Allen (UTK)

Introduction To Inverse Mean Curvature Flow



• Let *Mⁿ* be a smooth, n-dimensional Riemannian Manifold

- Let *Mⁿ* be a smooth, n-dimensional Riemannian Manifold
- Let $\varphi : [0, T) \times M \longrightarrow \mathbb{R}^{n+1}$ be a smooth embedding for each $t \in [0, T)$ where $\varphi_0(M) = M_0$ is the initial hypersurface

- Let *Mⁿ* be a smooth, n-dimensional Riemannian Manifold
- Let $\varphi : [0, T) \times M \longrightarrow \mathbb{R}^{n+1}$ be a smooth embedding for each $t \in [0, T)$ where $\varphi_0(M) = M_0$ is the initial hypersurface
- Assume that φ satisfies the following equation

$$\frac{\partial \varphi}{\partial t}(p,t) = \frac{\nu(p,t)}{H(p,t)} \tag{1}$$

where $p \in M$, $t \in [0, T)$ and $\nu(p, t)$ is the outward pointing unit normal vector to $\varphi_t(M)$. Note: H > 0

- Let *Mⁿ* be a smooth, n-dimensional Riemannian Manifold
- Let $\varphi : [0, T) \times M \longrightarrow \mathbb{R}^{n+1}$ be a smooth embedding for each $t \in [0, T)$ where $\varphi_0(M) = M_0$ is the initial hypersurface
- Assume that φ satisfies the following equation

$$\frac{\partial \varphi}{\partial t}(p,t) = \frac{\nu(p,t)}{H(p,t)} \tag{1}$$

where $p \in M$, $t \in [0, T)$ and $\nu(p, t)$ is the outward pointing unit normal vector to $\varphi_t(M)$. Note: H > 0

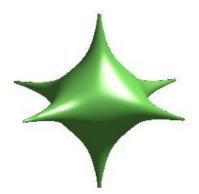
We say that $M_t := \varphi(M, t)$ is a solution of IMCF.

Star-shaped Hypersurfaces

We say that a hypersurface $M^n \subset \mathbb{R}^{n+1}$ is star-shaped if it can be written as a graph over a sphere S^n ($w(x) = \langle \nu, x \rangle > 0$ for all $x \in \Sigma$).

Star-shaped Hypersurfaces

We say that a hypersurface $M^n \subset \mathbb{R}^{n+1}$ is star-shaped if it can be written as a graph over a sphere S^n ($w(x) = \langle \nu, x \rangle > 0$ for all $x \in \Sigma$).



Consider $S_{r_0}^n \subset \mathbb{R}^{n+1}$ and let $S_{r(t)}^n$ be the corresponding solution of IMCF.

Consider $S_{r_0}^n \subset \mathbb{R}^{n+1}$ and let $S_{r(t)}^n$ be the corresponding solution of IMCF.

Then for $x \in S_{r(t)}^n$ we have $\nu(x) = x \in \mathbb{R}^{n+1}$ and $H(x) = \frac{n}{r(t)}$.

Consider $S_{r_0}^n \subset \mathbb{R}^{n+1}$ and let $S_{r(t)}^n$ be the corresponding solution of IMCF.

Then for $x \in S_{r(t)}^n$ we have $\nu(x) = x \in \mathbb{R}^{n+1}$ and $H(x) = \frac{n}{r(t)}$.

So the IMCF equation becomes

$$\frac{dr}{dt} = \frac{r(t)}{n}$$

Consider $S_{r_0}^n \subset \mathbb{R}^{n+1}$ and let $S_{r(t)}^n$ be the corresponding solution of IMCF.

Then for $x \in S_{r(t)}^n$ we have $\nu(x) = x \in \mathbb{R}^{n+1}$ and $H(x) = \frac{n}{r(t)}$.

So the IMCF equation becomes

$$\frac{dr}{dt} = \frac{r(t)}{n}$$

which has the solution

$$r(t) = r_0 e^{t/n}$$

defined on the time interval $[0,\infty)$.

B. Allen (UTK)

Theorem (Gerhardt 1990)(Urbas 1990)

• Let *Mⁿ* be a smooth, compact, n-dimensional Riemannian Manifold

Theorem (Gerhardt 1990)(Urbas 1990)

- Let M^n be a smooth, compact, n-dimensional Riemannian Manifold
- Let $\varphi : [0, T) \times M \longrightarrow \mathbb{R}^{n+1}$ be a smooth, embedded solution of IMCF for $t \in [0, T)$.

Theorem (Gerhardt 1990)(Urbas 1990)

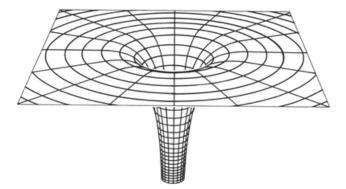
- Let M^n be a smooth, compact, n-dimensional Riemannian Manifold
- Let $\varphi : [0, T) \times M \longrightarrow \mathbb{R}^{n+1}$ be a smooth, embedded solution of IMCF for $t \in [0, T)$.
- Assume that M_0 is star-shaped with H > 0.

Theorem (Gerhardt 1990)(Urbas 1990)

- Let *Mⁿ* be a smooth, compact, n-dimensional Riemannian Manifold
- Let $\varphi : [0, T) \times M \longrightarrow \mathbb{R}^{n+1}$ be a smooth, embedded solution of IMCF for $t \in [0, T)$.
- Assume that M_0 is star-shaped with H > 0.

Then the rescaled embeddings $\tilde{\varphi}(t) = e^{-t/n}\varphi(t)$ converge to a smooth embedding $\tilde{\varphi}_{\infty}$ so that $\tilde{\varphi}_{\infty}(M) = S_{r_{\infty}}^{n} \subset \mathbb{R}^{n+1}$ where $r_{\infty} = \left(\frac{|M_{0}|}{|S^{n}|}\right)^{1/n}$.

Penrose Inequality



We say that a spacelike hypersurface M^3 is an **asymptotically flat end** if

We say that a spacelike hypersurface M^3 is an **asymptotically flat end** if

• $\exists K \subset \mathbb{R}^3$, compact, s.t. *M* is diffeomorphic to $\mathbb{R}^3 \setminus K$.

We say that a spacelike hypersurface M^3 is an asymptotically flat end if

- $\exists K \subset \mathbb{R}^3$, compact, s.t. *M* is diffeomorphic to $\mathbb{R}^3 \setminus K$.
- The metric tensor g of M satisfies

$$|g_{ij} - \delta_{ij}| \leq rac{\mathcal{C}}{|x|}, \ |g_{ij,k}| \leq rac{\mathcal{C}}{|x|^2}, \ ar{\mathcal{R}c} \geq -rac{\mathcal{Cg}}{|x|^2}$$

as $|x| \to \infty$ and the derivatives are taken w.r.t the Euclidean metric δ .

We say that a spacelike hypersurface M^3 is an asymptotically flat end if

- $\exists K \subset \mathbb{R}^3$, compact, s.t. *M* is diffeomorphic to $\mathbb{R}^3 \setminus K$.
- The metric tensor g of M satisfies

$$|g_{ij} - \delta_{ij}| \leq rac{C}{|x|}, \ |g_{ij,k}| \leq rac{C}{|x|^2}, \ ar{Rc} \geq -rac{Cg}{|x|^2}$$

as $|x| \to \infty$ and the derivatives are taken w.r.t the Euclidean metric δ .

• The scalar curvature \overline{R} of (M,g) satisfies

$$\int_{M} |\bar{R}| d\mu < \infty$$

B. Allen (UTK)

Theorem (Huisken, Ilmanen 2001) Let M be a complete, connected 3-manifold satisfying the following properties

Theorem (Huisken, Ilmanen 2001) Let M be a complete, connected 3-manifold satisfying the following properties

• *M* has nonnegative scalar curvature.

Theorem (Huisken, Ilmanen 2001) Let M be a complete, connected 3-manifold satisfying the following properties

- *M* has nonnegative scalar curvature.
- *M* is an asymptotically flat end with ADM mass *m*.

Theorem (Huisken, Ilmanen 2001) Let *M* be a complete, connected 3-manifold satisfying the following properties

- *M* has nonnegative scalar curvature.
- *M* is an asymptotically flat end with ADM mass *m*.
- ∂M is compact and consists of minimal surfaces, and M contains no other compact minimal surfaces.

Theorem (Huisken, Ilmanen 2001) Let M be a complete, connected 3-manifold satisfying the following properties

- *M* has nonnegative scalar curvature.
- *M* is an asymptotically flat end with ADM mass *m*.
- ∂M is compact and consists of minimal surfaces, and M contains no other compact minimal surfaces.

Then

$$m \ge \sqrt{rac{|\Sigma|}{16\pi}}$$

where $|\Sigma|$ is the area of any connected component of ∂M .

Theorem (Huisken, Ilmanen 2001) Let M be a complete, connected 3-manifold satisfying the following properties

- *M* has nonnegative scalar curvature.
- *M* is an asymptotically flat end with ADM mass *m*.
- ∂M is compact and consists of minimal surfaces, and M contains no other compact minimal surfaces.

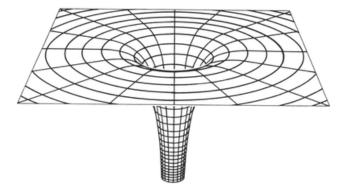
Then

$$m \ge \sqrt{rac{|\Sigma|}{16\pi}}$$

where $|\Sigma|$ is the area of any connected component of ∂M .

Equality holds iff M is isometric to one-half of the spatial Schwarzschild manifold.

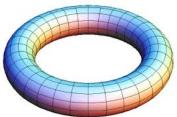
Weak Solutions Of IMCF



Why Are Weak Solutions Necessary?

Why Are Weak Solutions Necessary?

Thin Torus:



Let $u : \Omega \subset M \to \mathbb{R}$ be a function which satisfies the following degenerate elliptic PDE

$$\mathsf{div}\left(\frac{\nabla u}{|\nabla u|}\right) = |\nabla u|$$

Let $u : \Omega \subset M \to \mathbb{R}$ be a function which satisfies the following degenerate elliptic PDE

$$\mathsf{div}\left(\frac{\nabla u}{|\nabla u|}\right) = |\nabla u|$$

Then we let

$$E_t := \{u < t\}$$
 $\Sigma_t := \partial E_t$ $E_t^+ := int\{u \le t\}$ $\Sigma_t^+ := \partial E_t^+$

Let $u : \Omega \subset M \to \mathbb{R}$ be a function which satisfies the following degenerate elliptic PDE

$$\operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right) = |\nabla u|$$

Then we let

$$E_t := \{u < t\}$$
 $\Sigma_t := \partial E_t$ $E_t^+ := int\{u \le t\}$ $\Sigma_t^+ := \partial E_t^+$

So then if $\nabla u \neq 0$ on Σ_t we have that

• div
$$\left(rac{
abla u}{|
abla u|}
ight) = H_{\Sigma}$$
 $|
abla u|$ is one over the speed

Let $u : \Omega \subset M \to \mathbb{R}$ be a function which satisfies the following degenerate elliptic PDE

$$\mathsf{div}\left(\frac{\nabla u}{|\nabla u|}\right) = |\nabla u|$$

Then we let

$$E_t := \{u < t\} \quad \Sigma_t := \partial E_t \quad E_t^+ := \inf\{u \le t\} \quad \Sigma_t^+ := \partial E_t^+$$

So then if $\nabla u \neq 0$ on Σ_t we have that

• div
$$\left(rac{
abla u}{|
abla u|}
ight) = H_{\Sigma}$$
 $|
abla u|$ is one over the speed

To get weak solutions the idea is to set $\Omega = M \setminus \overline{E}_0$ and minimize a certain functional.

B. Allen (UTK)

Inverse Mean Curvature Flow And The Proof

3/23/15 12 / 29

Then if we regularize the degenerate PDE we find

$$\operatorname{div}\left(\frac{\nabla u_{\epsilon}}{\sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}}}\right) = \sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}} \qquad \tilde{\Sigma}_{t}^{\epsilon} := \operatorname{graph}\left(\frac{u_{\epsilon}}{\epsilon}-\frac{t}{\epsilon}\right)$$

Then if we regularize the degenerate PDE we find

$$\operatorname{div}\left(\frac{\nabla u_{\epsilon}}{\sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}}}\right) = \sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}} \qquad \tilde{\Sigma}_{t}^{\epsilon} := \operatorname{graph}\left(\frac{u_{\epsilon}}{\epsilon}-\frac{t}{\epsilon}\right)$$

• $\tilde{\Sigma}_t^{\epsilon}$ solves the degenerate PDE smoothly in $\Omega \times \mathbb{R}$.

Level Set Solutions II

Then if we regularize the degenerate PDE we find

$$\operatorname{div}\left(\frac{\nabla u_{\epsilon}}{\sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}}}\right) = \sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}} \qquad \tilde{\Sigma}_{t}^{\epsilon} := \operatorname{graph}\left(\frac{u_{\epsilon}}{\epsilon}-\frac{t}{\epsilon}\right)$$

• $\tilde{\Sigma}_t^{\epsilon}$ solves the degenerate PDE smoothly in $\Omega \times \mathbb{R}$.

•
$$\tilde{\Sigma}^{\epsilon}_t = \{U_{\epsilon} = t\}$$
 is a level set of $U_{\epsilon}(x,z) := u_{\epsilon}(x) - \epsilon z$ in $\Omega imes \mathbb{R}$

Level Set Solutions II

Then if we regularize the degenerate PDE we find

$$\operatorname{div}\left(\frac{\nabla u_{\epsilon}}{\sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}}}\right) = \sqrt{|\nabla u_{\epsilon}|^{2}+\epsilon^{2}} \qquad \tilde{\Sigma}_{t}^{\epsilon} := \operatorname{graph}\left(\frac{u_{\epsilon}}{\epsilon}-\frac{t}{\epsilon}\right)$$

• $\tilde{\Sigma}_t^{\epsilon}$ solves the degenerate PDE smoothly in $\Omega \times \mathbb{R}$.

•
$$\tilde{\Sigma}^{\epsilon}_t = \{U_{\epsilon} = t\}$$
 is a level set of $U_{\epsilon}(x,z) := u_{\epsilon}(x) - \epsilon z$ in $\Omega imes \mathbb{R}$

• One can show, for a subsequence ϵ_i , that $\tilde{\Sigma}_t^{\epsilon_i} \to \Sigma_t \times \mathbb{R}$ as $\epsilon_i \to 0$.

Variational Level Set Solutions

• Define weak solutions to be (self) minimizers of the following functional

$$J_u^K(v) = \int_K |\nabla v| + v |\nabla u| dx$$

for v locally Lipshcitz, K compact and $\{v \neq u\} \subset K \subset \Omega$.

Variational Level Set Solutions

• Define weak solutions to be (self) minimizers of the following functional

$$J_u^K(v) = \int_K |\nabla v| + v |\nabla u| dx$$

for v locally Lipshcitz, K compact and $\{v \neq u\} \subset K \subset \Omega$.

• One can show this is equivalent to E_t minimizing

$$J_u^{\mathcal{K}}(F) = |\partial^* F \cap \mathcal{K}| - \int_{F \cap \mathcal{K}} |\nabla u| dx$$

for *F* of locally finite perimeter where $F\Delta E_t \subset K$.

Variational Level Set Solutions

• Define weak solutions to be (self) minimizers of the following functional

$$J_u^K(v) = \int_K |\nabla v| + v |\nabla u| dx$$

for v locally Lipshcitz, K compact and $\{v \neq u\} \subset K \subset \Omega$.

• One can show this is equivalent to E_t minimizing

$$J_u^K(F) = |\partial^* F \cap K| - \int_{F \cap K} |\nabla u| dx$$

for *F* of locally finite perimeter where $F\Delta E_t \subset K$.

• Bounded sequences of solutions defined in this way have a compactness property.

B. Allen (UTK)

Inverse Mean Curvature Flow And The Proof

Let $\Omega \subset M$ be open, then we say that E is a **minimizing hull** if E minimizes area on the outside in Ω

 $|\partial^* E \cap K| \le |\partial^* F \cap K|$

for any F s.t. $E \subset F$ and $F \setminus E \subset \subset \Omega$ and any compact set K s.t $F \setminus E \subset K$.

Let $\Omega \subset M$ be open, then we say that E is a **minimizing hull** if E minimizes area on the outside in Ω

 $|\partial^* E \cap K| \le |\partial^* F \cap K|$

for any *F* s.t. $E \subset F$ and $F \setminus E \subset \subset \Omega$ and any compact set *K* s.t $F \setminus E \subset K$.

We say that *E* is a **strictly minimizing hull** if equality implies that $F \cap \Omega = E \cap \Omega$ a.e.

Let $\Omega \subset M$ be open, then we say that E is a **minimizing hull** if E minimizes area on the outside in Ω

 $|\partial^* E \cap K| \le |\partial^* F \cap K|$

for any *F* s.t. $E \subset F$ and $F \setminus E \subset \subset \Omega$ and any compact set *K* s.t $F \setminus E \subset K$.

We say that *E* is a **strictly minimizing hull** if equality implies that $F \cap \Omega = E \cap \Omega$ a.e.

One can show for weak solutions of IMCF that

• For t > 0, E_t is a minimizing hull in M.

Let $\Omega \subset M$ be open, then we say that E is a **minimizing hull** if E minimizes area on the outside in Ω

 $|\partial^* E \cap K| \le |\partial^* F \cap K|$

for any *F* s.t. $E \subset F$ and $F \setminus E \subset \subset \Omega$ and any compact set *K* s.t $F \setminus E \subset K$.

We say that *E* is a **strictly minimizing hull** if equality implies that $F \cap \Omega = E \cap \Omega$ a.e.

One can show for weak solutions of IMCF that

- For t > 0, E_t is a minimizing hull in M.
- For $t \ge 0$, E_t^+ is a strictly minimizing hull in M.

Let $\Omega \subset M$ be open, then we say that E is a **minimizing hull** if E minimizes area on the outside in Ω

 $|\partial^* E \cap K| \le |\partial^* F \cap K|$

for any F s.t. $E \subset F$ and $F \setminus E \subset \subset \Omega$ and any compact set K s.t $F \setminus E \subset K$.

We say that *E* is a **strictly minimizing hull** if equality implies that $F \cap \Omega = E \cap \Omega$ a.e.

One can show for weak solutions of IMCF that

- For t > 0, E_t is a minimizing hull in M.
- For $t \ge 0$, E_t^+ is a strictly minimizing hull in M.
- For $t \ge 0$, $|\partial E_t| = |\partial E_t^+|$, provided that E_0 is a minimizing hull.

Hence the following (hueristic) geometric characterization of weak solutions

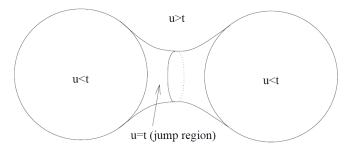
• E_t flows by the usual IMCF as long as E_t is a strictly minimizing hull.

Hence the following (hueristic) geometric characterization of weak solutions

- E_t flows by the usual IMCF as long as E_t is a strictly minimizing hull.
- When E_t is not a strictly minimizing hull it jumps to E'_t , its strictly minimizing hull, and continues.

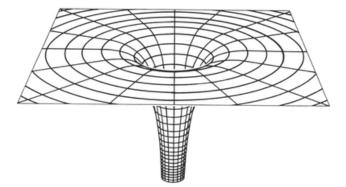
Hence the following (hueristic) geometric characterization of weak solutions

- E_t flows by the usual IMCF as long as E_t is a stricty minimizing hull.
- When E_t is not a strictly minimizing hull it jumps to E'_t , its strictly minimizing hull, and continues.



* Picture source Huisken and Ilmanen

B. Allen (UTK)



The Hawking Mass of a 2-surfaces $\boldsymbol{\Sigma}$ is defined as

$$m_{\mathcal{H}}(\Sigma) := rac{|\Sigma|^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} \mathcal{H}^2 d\sigma
ight)$$

$$m_{H}(\Sigma) := rac{|\Sigma|^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} H^2 d\sigma
ight)$$

• If Σ is a minimal surface then $m_H(\Sigma) = \sqrt{\frac{|\Sigma|}{16\pi}}$.

$$m_{H}(\Sigma) := rac{|\Sigma|^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} H^2 d\sigma
ight)$$

- If Σ is a minimal surface then $m_H(\Sigma) = \sqrt{\frac{|\Sigma|}{16\pi}}$.
- $m_H(\Sigma) < 0$ for hypersurfaces in (\mathbb{R}^3, δ) since $\int_{\Sigma} H^2 d\sigma \ge 16\pi$.

$$m_H(\Sigma) := rac{|\Sigma|^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} H^2 d\sigma
ight)$$

- If Σ is a minimal surface then $m_H(\Sigma) = \sqrt{\frac{|\Sigma|}{16\pi}}$.
- $m_H(\Sigma) < 0$ for hypersurfaces in (\mathbb{R}^3, δ) since $\int_{\Sigma} H^2 d\sigma \ge 16\pi$.
- $m_H(B_r) = m$ for coordinate spheres in the Schwarzschild metric $ds^2 = \frac{1}{1 \frac{2m}{r}} dr^2 + r^2 d\sigma^2$, where r > 2m.

$$m_{H}(\Sigma) := rac{|\Sigma|^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} H^2 d\sigma
ight)$$

- If Σ is a minimal surface then $m_H(\Sigma) = \sqrt{\frac{|\Sigma|}{16\pi}}$.
- $m_H(\Sigma) < 0$ for hypersurfaces in (\mathbb{R}^3, δ) since $\int_{\Sigma} H^2 d\sigma \ge 16\pi$.
- $m_H(B_r) = m$ for coordinate spheres in the Schwarzschild metric $ds^2 = \frac{1}{1 \frac{2m}{r}} dr^2 + r^2 d\sigma^2$, where r > 2m.
- $m_H(\Sigma_t)$ is non-decreasing along IMCF.

The Hawking Mass of a 2-surfaces $\boldsymbol{\Sigma}$ is defined as

$$m_{H}(\Sigma) := rac{|\Sigma|^{1/2}}{(16\pi)^{3/2}} \left(16\pi - \int_{\Sigma} H^{2}d\sigma
ight)$$

- If Σ is a minimal surface then $m_H(\Sigma) = \sqrt{\frac{|\Sigma|}{16\pi}}$.
- $m_H(\Sigma) < 0$ for hypersurfaces in (\mathbb{R}^3, δ) since $\int_{\Sigma} H^2 d\sigma \ge 16\pi$.
- $m_H(B_r) = m$ for coordinate spheres in the Schwarzschild metric $ds^2 = \frac{1}{1 \frac{2m}{r}} dr^2 + r^2 d\sigma^2$, where r > 2m.
- $m_H(\Sigma_t)$ is non-decreasing along IMCF.
- This proof method was proposed by Geroch and further developed by Jang and Wald when the flow remains smooth.

Important Equations For Monotonicty

We will need the following evolution equations under IMCF

$$\begin{pmatrix} \partial_t - \frac{1}{H^2} \Delta \end{pmatrix} H = -2 \frac{|\nabla H|^2}{H^3} - \frac{|A|^2}{H} - \frac{\bar{R}c(\nu,\nu)}{H} \\ \frac{\partial}{\partial t} d\mu_t = d\mu_t \quad \Rightarrow \quad |\Sigma_t| = |\Sigma_0|e^t$$

Important Equations For Monotonicty

We will need the following evolution equations under IMCF

$$\begin{pmatrix} \partial_t - \frac{1}{H^2} \Delta \end{pmatrix} H = -2 \frac{|\nabla H|^2}{H^3} - \frac{|A|^2}{H} - \frac{\bar{R}c(\nu,\nu)}{H} \\ \frac{\partial}{\partial t} d\mu_t = d\mu_t \quad \Rightarrow \quad |\Sigma_t| = |\Sigma_0|e^t$$

As well as the following consequence of the Gauss equation

$$\sigma_{\Sigma} = \bar{\sigma}_{\Sigma} + \lambda_1 \lambda_2 = \frac{\bar{R}}{2} - \bar{Rc}(\nu, \nu) + \frac{1}{2}(H^2 - |A|^2)$$

Where σ_{Σ} is the sectional curvature of $T_{x}\Sigma$ in Σ or the Gauss curvature of Σ , $\bar{\sigma}_{\Sigma}$ is the sectional curvature of $T_{x}\Sigma$ in M, \bar{R} and $\bar{R}c(\cdot, \cdot)$ are the scalar and ricci curvature of M, and λ_{1}, λ_{2} are the principal curvatures of Σ in M.

$$\frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t = \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{Rc}(\nu,\nu) + H^2 d\mu_t$$

$$\begin{split} \frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t &= \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{R}c(\nu,\nu) + H^2 d\mu_t \\ &= \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - |A|^2 - \bar{R} + 2\sigma_{\Sigma} d\mu_t \end{split}$$

$$\begin{split} \frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t &= \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{R}c(\nu,\nu) + H^2 d\mu_t \\ &= \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - |A|^2 - \bar{R} + 2\sigma_{\Sigma}d\mu_t \\ &= 4\pi\chi(\Sigma_t) + \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - \frac{1}{2}H^2 - (\lambda_1 - \lambda_1)^2 - \bar{R}d\mu_t \end{split}$$

$$\begin{split} \frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t &= \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{R}c(\nu,\nu) + H^2 d\mu_t \\ &= \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - |A|^2 - \bar{R} + 2\sigma_{\Sigma}d\mu_t \\ &= 4\pi\chi(\Sigma_t) + \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - \frac{1}{2}H^2 - (\lambda_1 - \lambda_1)^2 - \bar{R}d\mu_t \\ &\leq \frac{1}{2} \left(16\pi - \int_{\Sigma_t} H^2 d\mu_t\right) \end{split}$$

$$\begin{split} \frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t &= \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{R}c(\nu,\nu) + H^2 d\mu_t \\ &= \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - |A|^2 - \bar{R} + 2\sigma_{\Sigma}d\mu_t \\ &= 4\pi\chi(\Sigma_t) + \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - \frac{1}{2}H^2 - (\lambda_1 - \lambda_1)^2 - \bar{R}d\mu_t \\ &\leq \frac{1}{2} \left(16\pi - \int_{\Sigma_t} H^2 d\mu_t\right) \end{split}$$

where we need Σ_t connected, $\bar{R} \ge 0$.

$$\begin{split} \frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t &= \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{R}c(\nu,\nu) + H^2 d\mu_t \\ &= \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - |A|^2 - \bar{R} + 2\sigma_{\Sigma}d\mu_t \\ &= 4\pi\chi(\Sigma_t) + \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - \frac{1}{2}H^2 - (\lambda_1 - \lambda_1)^2 - \bar{R}d\mu_t \\ &\leq \frac{1}{2} \left(16\pi - \int_{\Sigma_t} H^2 d\mu_t\right) \end{split}$$

where we need Σ_t connected, $\bar{R} \ge 0$.

It follows that
$$e^{t/2} \left(16\pi - \int_{\Sigma_t} H^2 d\mu_t \right)$$
 is non-decreasing.

$$\begin{split} \frac{\partial}{\partial t} \int_{\Sigma_t} H^2 d\mu_t &= \int_{\Sigma_t} -2H\Delta\left(\frac{1}{H}\right) - 2|A|^2 - 2\bar{R}c(\nu,\nu) + H^2 d\mu_t \\ &= \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - |A|^2 - \bar{R} + 2\sigma_{\Sigma}d\mu_t \\ &= 4\pi\chi(\Sigma_t) + \int_{\Sigma_t} -2\frac{|\nabla H|^2}{H^2} - \frac{1}{2}H^2 - (\lambda_1 - \lambda_1)^2 - \bar{R}d\mu_t \\ &\leq \frac{1}{2} \left(16\pi - \int_{\Sigma_t} H^2 d\mu_t\right) \end{split}$$

where we need Σ_t connected, $\bar{R} \ge 0$.

It follows that
$$e^{t/2} \left(16\pi - \int_{\Sigma_t} H^2 d\mu_t \right)$$
 is non-decreasing.

Then from $|\Sigma_t|^{1/2} = |\Sigma_0|^{1/2} e^{t/2}$ we see $m_H(\Sigma_t)$ is non-decreasing.

Weak Monotonicity

Heuristically we expect the following when a surface jumps

$$\int_{\partial E_t^+} H^2 d\mu_t \leq \int_{\partial E_t} H^2 d\mu_t \quad |\partial E_t^+| = |\partial E_t|$$

which informally implies that monotonicity carries over to the weak case.

Weak Monotonicity

Heuristically we expect the following when a surface jumps

$$\int_{\partial E_t^+} H^2 d\mu_t \leq \int_{\partial E_t} H^2 d\mu_t \quad |\partial E_t^+| = |\partial E_t|$$

which informally implies that monotonicity carries over to the weak case.

To do this rigorously you consider $\tilde{\Sigma}_t^{\epsilon}$, the smooth translating solutions of IMCF in $M \times \mathbb{R}$ for which the calculation above holds.

Weak Monotonicity

Heuristically we expect the following when a surface jumps

$$\int_{\partial E_t^+} H^2 d\mu_t \leq \int_{\partial E_t} H^2 d\mu_t \quad |\partial E_t^+| = |\partial E_t|$$

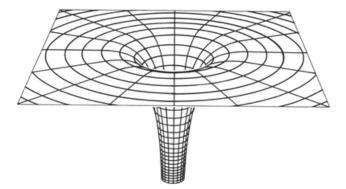
which informally implies that monotonicity carries over to the weak case.

To do this rigorously you consider $\tilde{\Sigma}_t^{\epsilon}$, the smooth translating solutions of IMCF in $M \times \mathbb{R}$ for which the calculation above holds.

Then weak montonicty follows, with some work, by taking a limit as $\epsilon \rightarrow 0$.

B. Allen (UTK)

Asymptotic Analysis



Weak Convergence To A Sphere

Remember the definition of the ADM mass

$$m:=\lim_{r o\infty}rac{1}{16\pi}\int_{\partial B_r(0)}(g_{ij,i}-g_{ii,j})
u^jd\mu$$

Weak Convergence To A Sphere

Remember the definition of the ADM mass

$$m:=\lim_{r o\infty}rac{1}{16\pi}\int_{\partial B_r(0)}(g_{ij,i}-g_{ii,j})
u^jd\mu$$

For any surface $\Sigma \subset \mathbb{R}^{n+1}$ we define the eccnetricity

$$\theta(\Sigma) := R(\Sigma)/r(\Sigma)$$

where $[r(\Sigma), R(\Sigma)]$ is the smallest interval such that N is contained in the annulus $\overline{B}_R \setminus B_r$.

Weak Convergence To A Sphere

Remember the definition of the ADM mass

$$m:=\lim_{r o\infty}rac{1}{16\pi}\int_{\partial B_r(0)}(g_{ij,i}-g_{ii,j})
u^jd\mu$$

For any surface $\Sigma \subset \mathbb{R}^{n+1}$ we define the eccnetricity

$$\theta(\Sigma) := R(\Sigma)/r(\Sigma)$$

where $[r(\Sigma), R(\Sigma)]$ is the smallest interval such that N is contained in the annulus $\overline{B}_R \setminus B_r$.

Then one can show that $\theta(\Sigma_{t_i}) \to 1$ as $t_i \to \infty$ for a subsequence t_i .

Weak Convergence To A Sphere

Remember the definition of the ADM mass

$$m:=\lim_{r o\infty}rac{1}{16\pi}\int_{\partial B_r(0)}(g_{ij,i}-g_{ii,j})
u^jd\mu$$

For any surface $\Sigma \subset \mathbb{R}^{n+1}$ we define the eccnetricity

$$\theta(\Sigma) := R(\Sigma)/r(\Sigma)$$

where $[r(\Sigma), R(\Sigma)]$ is the smallest interval such that N is contained in the annulus $\overline{B}_R \setminus B_r$.

Then one can show that $\theta(\Sigma_{t_i}) \to 1$ as $t_i \to \infty$ for a subsequence t_i .

This follows from rescaling and the estimate $|\nabla u(x)| \leq \frac{C}{|x|}$ for all $|x| \geq R_0$.

Asymptotic Comparison Of Hawking And ADM Mass

- Let *M* be an asymptotically flat manifold
- Let (E_t)_{t≥t0} be a family of precompact sets weakly solving IMCF in M.

Asymptotic Comparison Of Hawking And ADM Mass

- Let *M* be an asymptotically flat manifold
- Let (E_t)_{t≥t0} be a family of precompact sets weakly solving IMCF in M.

Then

$$\left(\sqrt{\frac{|\Sigma_0|}{16\pi}} = m_H(\Sigma_0)\right) \leq \lim_{t \to \infty} m_H(\Sigma_t) \leq m_{ADM}(M)$$

where the part in parenthesis is only true for minimal surfaces Σ_0 .

B. Allen (UTK)

Proof Of Asymptotic Comparison I

Let r(t) be s.t. $|\Sigma_t| = 4\pi r^2$ then a previous slide implies that

$$\frac{1}{r(t)}\Sigma_t \to \partial B_1(0) \text{ in } C^1 \text{ as } t \to \infty$$
(2)

This implies, with some work, L^2 convergence of H to the corresponding quantity of a sphere.

Proof Of Asymptotic Comparison I

Let r(t) be s.t. $|\Sigma_t| = 4\pi r^2$ then a previous slide implies that

$$\frac{1}{r(t)}\Sigma_t \to \partial B_1(0) \text{ in } C^1 \text{ as } t \to \infty$$
(2)

This implies, with some work, L^2 convergence of H to the corresponding quantity of a sphere.

Consider g, the metric of M and the corresponding quantities $H, A, \nu, d\mu$ and δ , the metric of \mathbb{R}^{n+1} and the corresponding quantities $\overline{H}, \overline{A}, \overline{\nu}, d\overline{\mu}$.

Proof Of Asymptotic Comparison I

Let r(t) be s.t. $|\Sigma_t| = 4\pi r^2$ then a previous slide implies that

$$\frac{1}{r(t)}\Sigma_t \to \partial B_1(0) \text{ in } C^1 \text{ as } t \to \infty$$
(2)

This implies, with some work, L^2 convergence of H to the corresponding quantity of a sphere.

Consider g, the metric of M and the corresponding quantities $H, A, \nu, d\mu$ and δ , the metric of \mathbb{R}^{n+1} and the corresponding quantities $\overline{H}, \overline{A}, \overline{\nu}, d\overline{\mu}$.

Obtain expressions for the following quantities

$$H-ar{H}$$
 $d\mu-dar{\mu}$

in terms of $p_{ij} = g_{ij} - \delta_{ij}$.

Proof Of Asymptotic Comparison II

$$H - \bar{H} = -h^{ik} p_{kl} h^{lj} A_{ij} + \frac{1}{2} H \nu^i \nu^j p_{ij} - h^{ij} \nabla_i p_{jl} \nu^l + \frac{1}{2} h^{ij} \nabla_l p_{ij} \nu^l$$

$$\pm C |p| |\nabla p| \pm C |p|^2 |A|$$

$$ar{H}^2(d\mu-dar{\mu})=\left(rac{1}{2}H^2h^{ij}p_{ij}\pm|p|^2|A|^2\pm C|
abla p|^2
ight)d\mu$$

where *h* is the metric of Σ_t .

Proof Of Asymptotic Comparison II

$$H - \bar{H} = -h^{ik} p_{kl} h^{lj} A_{ij} + \frac{1}{2} H \nu^i \nu^j p_{ij} - h^{ij} \nabla_i p_{jl} \nu^l + \frac{1}{2} h^{ij} \nabla_l p_{ij} \nu^l$$

$$\pm C |p| |\nabla p| \pm C |p|^2 |A|$$

$$ar{H}^2(d\mu-dar{\mu})=\left(rac{1}{2}H^2h^{ij}p_{ij}\pm|p|^2|A|^2\pm C|
abla p|^2
ight)d\mu$$

where *h* is the metric of Σ_t .

Rewrite part of $m_H(\Sigma_t)$ in the following way

$$\int_{\Sigma_t} H^2 d\mu_t = \int_{\Sigma_t} \bar{H}^2 d\bar{\mu}_t + \bar{H}^2 (d\mu_t - d\bar{\mu}_t) + 2H(H - \bar{H}) - (H - \bar{H})^2 d\mu_t$$

B. Allen (UTK)

Inverse Mean Curvature Flow And The Proof

3/23/15 26 / 29

Proof Of Asymptotic Comparison III

Use the inequality for \mathbb{R}^3 that implies

$$\int_{\Sigma} \bar{H}^2 d\bar{\mu} \ge 16\pi$$

to cancel the 16π that shows up in $m_H(\Sigma_t)$.

Proof Of Asymptotic Comparison III

Use the inequality for \mathbb{R}^3 that implies

$$\int_{\Sigma} \bar{H}^2 d\bar{\mu} \ge 16\pi$$

to cancel the 16π that shows up in $m_H(\Sigma_t)$.

Then using the relation

$$\nabla p = \bar{\nabla} p \pm C |p| |\nabla p|$$

Proof Of Asymptotic Comparison III

Use the inequality for \mathbb{R}^3 that implies

$$\int_{\Sigma} \bar{H}^2 d\bar{\mu} \ge 16\pi$$

to cancel the 16π that shows up in $m_H(\Sigma_t)$.

Then using the relation

$$abla p = ar{
abla} p \pm C|p||
abla p|$$

one can write $m_H(\Sigma_t)$ in the following way

$$32\pi m_{H}(\Sigma_{t}) \leq 2 \int_{\Sigma_{t}} (g_{ij,i} - g_{ii,j}) \nu^{j} d\mu_{t} + \epsilon(t)$$

where $\epsilon(t)$ represents the error and $\epsilon(t)
ightarrow 0$.

B. Allen (UTK)

The End!

Questions?

B. Allen (UTK)

Inverse Mean Curvature Flow And The Proof

3/23/15 28 / 29

References

- C. Gerhardt, *Flow of nonconvex hypersurfaces into spheres*, J. Differential Geom. 32, 299-314 (1990)
- G. Huisken and T. Ilmanen, *The inverse mean curvature flow and the Riemannian Penrose inequality*, J. Differential Geom. **59** (2001) 353-438
- J. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z. 205, 355-372 (1990)