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Introduction To Inverse Mean Curvature Flow

Definition Of Inverse Mean Curvature Flow

• Let Mn be a smooth, n-dimensional Riemannian Manifold

• Let ϕ : [0,T )×M −→ Rn+1 be a smooth embedding for each
t ∈ [0,T ) where ϕ0(M) = M0 is the initial hypersurface

• Assume that ϕ satisfies the following equation

∂ϕ

∂t
(p, t) =

ν(p, t)

H(p, t)
(1)

where p ∈ M, t ∈ [0,T ) and ν(p, t) is the outward pointing unit
normal vector to ϕt(M). Note: H > 0

We say that Mt := ϕ(M, t) is a solution of IMCF.
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Introduction To Inverse Mean Curvature Flow

Star-shaped Hypersurfaces

We say that a hypersurface Mn ⊂ Rn+1 is star-shaped if it can be written
as a graph over a sphere Sn (w(x) = 〈ν, x〉 > 0 for all x ∈ Σ).
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Introduction To Inverse Mean Curvature Flow

Example: Sphere

Consider Sn
r0
⊂ Rn+1 and let Sn

r(t) be the corresponding solution of IMCF.

Then for x ∈ Sn
r(t) we have ν(x) = x ∈ Rn+1 and H(x) = n

r(t) .

So the IMCF equation becomes

dr

dt
=

r(t)

n

which has the solution

r(t) = r0e
t/n

defined on the time interval [0,∞).
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Introduction To Inverse Mean Curvature Flow

Convergence To The Sphere Under IMCF

Theorem (Gerhardt 1990)(Urbas 1990)

• Let Mn be a smooth, compact, n-dimensional Riemannian Manifold

• Let ϕ : [0,T )×M −→ Rn+1 be a smooth, embedded solution of
IMCF for t ∈ [0,T ).

• Assume that M0 is star-shaped with H > 0.

Then the rescaled embeddings ϕ̃(t) = e−t/nϕ(t) converge to a smooth

embedding ϕ̃∞ so that ϕ̃∞(M) = Sn
r∞ ⊂ Rn+1 where r∞ =

(
|M0|
|Sn|

)1/n
.
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Riemannian Penrose Inequality

Penrose Inequality
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Riemannian Penrose Inequality

Asymptotically Flat Ends

We say that a spacelike hypersurface M3 is an asymptotically flat end if

• ∃K ⊂ R3, compact, s.t. M is diffeomorphic to R3 \ K .

• The metric tensor g of M satisfies

|gij − δij | ≤
C

|x |
, |gij ,k | ≤

C

|x |2
, R̄c ≥ − Cg

|x |2

as |x | → ∞ and the derivatives are taken w.r.t the Euclidean metric δ.

• The scalar curvature R̄ of (M, g) satisfies

∫
M
|R̄|dµ <∞
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Riemannian Penrose Inequality

Riemannian Penrose Inequality

Theorem (Huisken, Ilmanen 2001) Let M be a complete, connected
3-manifold satisfying the following properties

• M has nonnegative scalar curvature.

• M is an asymptotically flat end with ADM mass m.

• ∂M is compact and consists of minimal surfaces, and M contains no
other compact minimal surfaces.

Then

m ≥
√
|Σ|
16π

where |Σ| is the area of any connected component of ∂M.

Equality holds iff M is isometric to one-half of the spatial Schwarzschild
manifold.
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Weak Solutions Of IMCF

Weak Solutions Of IMCF
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Weak Solutions Of IMCF

Why Are Weak Solutions Necessary?

Two Spheres:

Thin Torus:

B. Allen (UTK) Inverse Mean Curvature Flow And The Proof Of The Riemannian Penrose Inequality3/23/15 11 / 29



Weak Solutions Of IMCF

Why Are Weak Solutions Necessary?

Two Spheres:

Thin Torus:

B. Allen (UTK) Inverse Mean Curvature Flow And The Proof Of The Riemannian Penrose Inequality3/23/15 11 / 29



Weak Solutions Of IMCF

Level Set Solutions I

Let u : Ω ⊂ M → R be a function which satisfies the following degenerate
elliptic PDE

div

(
∇u
|∇u|

)
= |∇u|

Then we let

Et := {u < t} Σt := ∂Et E+
t := int{u ≤ t} Σ+

t := ∂E+
t

So then if ∇u 6= 0 on Σt we have that

• div
(
∇u
|∇u|

)
= HΣ |∇u| is one over the speed

To get weak solutions the idea is to set Ω = M \ Ē0 and minimize a
certain functional.
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Weak Solutions Of IMCF

Level Set Solutions II

Then if we regularize the degenerate PDE we find

div

(
∇uε√

|∇uε|2 + ε2

)
=
√
|∇uε|2 + ε2 Σ̃ε

t := graph
(uε
ε
− t

ε

)

• Σ̃ε
t solves the degenerate PDE smoothly in Ω× R.

• Σ̃ε
t = {Uε = t} is a level set of Uε(x , z) := uε(x)− εz in Ω× R

• One can show, for a subsequence εi , that Σ̃εi
t → Σt × R as εi → 0.
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Weak Solutions Of IMCF

Variational Level Set Solutions

• Define weak solutions to be (self) minimizers of the following
functional

JKu (v) =

∫
K
|∇v |+ v |∇u|dx

for v locally Lipshcitz, K compact and {v 6= u} ⊂ K ⊂ Ω.

• One can show this is equivalent to Et minimizing

JKu (F ) = |∂∗F ∩ K | −
∫
F∩K
|∇u|dx

for F of locally finite perimeter where F∆Et ⊂ K .

• Bounded sequences of solutions defined in this way have a
compactness property.
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Weak Solutions Of IMCF

Geometric Characterization Of Weak Solutions I

Let Ω ⊂ M be open, then we say that E is a minimizing hull if E
minimizes area on the outside in Ω

|∂∗E ∩ K | ≤ |∂∗F ∩ K |

for any F s.t. E ⊂ F and F \ E ⊂⊂ Ω and any compact set K s.t
F \ E ⊂ K .

We say that E is a strictly minimizing hull if equality implies that
F ∩ Ω = E ∩ Ω a.e.

One can show for weak solutions of IMCF that

• For t > 0, Et is a minimizing hull in M.

• For t ≥ 0, E+
t is a strictly minimizing hull in M.

• For t ≥ 0, |∂Et | = |∂E+
t |, provided that E0 is a minimizing hull.
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Weak Solutions Of IMCF

Geometric Characterization Of Weak Solutions II

Hence the following (hueristic) geometric characterization of weak
solutions

• Et flows by the usual IMCF as long as Et is a striclty minimizing hull.

• When Et is not a strictly minimizing hull it jumps to E ′t , its strictly
minimizing hull, and continues.

* Picture source Huisken and Ilmanen
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Monotonicity Of Hawking Mass

The Hawking Mass of a 2-surfaces Σ is defined as

mH(Σ) :=
|Σ|1/2

(16π)3/2

(
16π −

∫
Σ
H2dσ

)

• If Σ is a minimal surface then mH(Σ) =
√
|Σ|
16π .

• mH(Σ) < 0 for hypersurfaces in (R3, δ) since
∫

Σ H2dσ ≥ 16π.

• mH(Br ) = m for coordinate spheres in the Schwarzschild metric
ds2 = 1

1− 2m
r

dr2 + r2dσ2, where r > 2m.

• mH(Σt) is non-decreasing along IMCF.

• This proof method was proposed by Geroch and further developed by
Jang and Wald when the flow remains smooth.
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Monotonicity Of Hawking Mass

Important Equations For Monotonicty

We will need the following evolution equations under IMCF

(
∂t −

1

H2
∆

)
H = −2

|∇H|2

H3
− |A|

2

H
− R̄c(ν, ν)

H

∂

∂t
dµt = dµt ⇒ |Σt | = |Σ0|et

As well as the following consequence of the Gauss equation

σΣ = σ̄Σ + λ1λ2 =
R̄

2
− R̄c(ν, ν) +

1

2
(H2 − |A|2)

Where σΣ is the sectional curvature of TxΣ in Σ or the Gauss curvature of
Σ, σ̄Σ is the sectional curvature of TxΣ in M, R̄ and R̄c(·, ·) are the scalar
and ricci curvature of M, and λ1, λ2 are the principal curvatures of Σ in M.
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Monotonicity Of Hawking Mass

Monotonicity Of Hawking Mass

∂

∂t

∫
Σt

H2dµt =

∫
Σt

−2H∆

(
1

H

)
− 2|A|2 − 2R̄c(ν, ν) + H2dµt

=

∫
Σt

−2
|∇H|2

H2
− |A|2 − R̄ + 2σΣdµt

= 4πχ(Σt) +

∫
Σt

−2
|∇H|2

H2
− 1

2
H2 − (λ1 − λ1)2 − R̄dµt

≤ 1

2

(
16π −

∫
Σt

H2dµt

)
where we need Σt connected, R̄ ≥ 0.

It follows that et/2
(

16π −
∫

Σt
H2dµt

)
is non-decreasing.

Then from |Σt |1/2 = |Σ0|1/2et/2 we see mH(Σt) is non-decreasing.
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Monotonicity Of Hawking Mass

Weak Monotonicity

Heuristically we expect the following when a surface jumps

∫
∂E+

t

H2dµt ≤
∫
∂Et

H2dµt |∂E+
t | = |∂Et |

which informally implies that monotonicity carries over to the weak case.

To do this rigorously you consider Σ̃ε
t , the smooth translating solutions of

IMCF in M × R for which the calculation above holds.

Then weak montonicty follows, with some work, by taking a limit as ε→ 0.
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Asymptotic Analysis

Asymptotic Analysis
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Asymptotic Analysis

Weak Convergence To A Sphere

Remember the definition of the ADM mass

m := lim
r→∞

1

16π

∫
∂Br (0)

(gij ,i − gii ,j)ν
jdµ

For any surface Σ ⊂ Rn+1 we define the eccnetricity

θ(Σ) := R(Σ)/r(Σ)

where [r(Σ),R(Σ)] is the smallest interval such that N is contained in the
annulus B̄R \ Br .

Then one can show that θ(Σti )→ 1 as ti →∞ for a subsequence ti .

This follows from rescaling and the estimate |∇u(x)| ≤ C
|x | for all |x | ≥ R0.
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Asymptotic Analysis

Asymptotic Comparison Of Hawking And ADM Mass

• Let M be an asymptotically flat manifold

• Let (Et)t≥t0 be a family of precompact sets weakly solving IMCF in
M.

Then

(√
|Σ0|
16π

= mH(Σ0)

)
≤ lim

t→∞
mH(Σt) ≤ mADM(M)

where the part in parenthesis is only true for minimal surfaces Σ0.
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Asymptotic Analysis

Proof Of Asymptotic Comparison I

Let r(t) be s.t. |Σt | = 4πr2 then a previous slide implies that

1

r(t)
Σt → ∂B1(0) in C 1 as t →∞ (2)

This implies, with some work, L2 convergence of H to the corresponding
quanitity of a sphere.

Consider g , the metric of M and the corresponding quantities H,A, ν, dµ
and δ, the metric of Rn+1 and the corresponding quantities H̄, Ā, ν̄, d µ̄.

Obtain expressions for the following quantities

H − H̄ dµ− d µ̄

in terms of pij = gij − δij .
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Asymptotic Analysis

Proof Of Asymptotic Comparison II

H − H̄ = −hikpklhljAij +
1

2
Hν iν jpij − hij∇ipjlν

l +
1

2
hij∇lpijν

l

± C |p||∇p| ± C |p|2|A|

H̄2(dµ− d µ̄) =

(
1

2
H2hijpij ± |p|2|A|2 ± C |∇p|2

)
dµ

where h is the metric of Σt .

Rewrite part of mH(Σt) in the following way

∫
Σt

H2dµt =

∫
Σt

H̄2d µ̄t + H̄2(dµt − d µ̄t) + 2H(H − H̄)− (H − H̄)2dµt
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Asymptotic Analysis

Proof Of Asymptotic Comparison III

Use the inequality for R3 that implies∫
Σ
H̄2d µ̄ ≥ 16π

to cancel the 16π that shows up in mH(Σt).

Then using the relation

∇p = ∇̄p ± C |p||∇p|

one can write mH(Σt) in the following way

32πmH(Σt) ≤ 2

∫
Σt

(gij ,i − gii ,j)ν
jdµt + ε(t)

where ε(t) represents the error and ε(t)→ 0.
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Asymptotic Analysis

The End!

Questions?
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