Mass functional and mass-angular momenta inequality for $U(1)^2$ -invariant black holes

Aghil Alaee

Department of Mathematics and Statistics Memorial University of Newfoundland

Brandenburg an der Havel, Germany March 22nd to April 4th, 2015 (joint work with Dr. Hari K. Kunduri)

A D A D A D A

Aghil Alaee

Outline

Mass and symmetry

Review 4D mass-angular inequality

- Initial data for 5D BHs
- Main results
- Current and Future projects

э

<ロ> (日) (日) (日) (日) (日)

Outline

- Mass and symmetry
- Review 4D mass-angular inequality
- Initial data for 5D BHs
- Main results
- Current and Future projects

- Mass and symmetry
- Review 4D mass-angular inequality
- Initial data for 5D BHs
- Main results
- Current and Future projects

3

(人間) システン イラン

- Mass and symmetry
- Review 4D mass-angular inequality
- Initial data for 5D BHs
- Main results
- Current and Future projects

3

(人間) システン イラン

- Mass and symmetry
- Review 4D mass-angular inequality
- Initial data for 5D BHs
- Main results
- Current and Future projects

3

・ 同下 ・ ヨト ・ ヨト

Asymptotically flat and Constraint equation

- Assume (Σ, h) is smooth *n*-dimensional Riemannian manifold and C is a compact sub-manifold, (Σ, h) is AF if $\Sigma \setminus C$ is diffeomorphic to $\mathbb{R}^n \setminus B^n(0)$ for large r+fall-offs
- Consider spacetime (M,g) foliated by spacelike leaves (slices) (Σ, h_{ab}, K_{ab}) , where h_{ab} is induced metric on Σ and K_{ab} is extrinsic curvature tensor

< 回 > < 三 > < 三 >

Asymptotically flat and Constraint equation

• Assume (Σ, h) is smooth *n*-dimensional Riemannian manifold and *C* is a compact sub-manifold, (Σ, h) is AF if $\Sigma \setminus C$ is diffeomorphic to $\mathbb{R}^n \setminus B^n(0)$ for large r+fall-offs

• Vacuum Einstein equations equivalent to evolution equations for initial data (Σ, h_{ab}, K_{ab}) +2 constraint equations on Σ

$$R_{h} - K^{ab}K_{ab} + \operatorname{Tr}_{h}K = 0 \qquad \text{Hamiltonian Constraint}$$
(1)

$$\nabla^{b} [K_{ab} - (\operatorname{Tr}_{h}K)h_{ab}] = 0 \qquad \text{Momentum Constraint}$$
(2)

(日) (同) (三) (三) (三)

• In GR \implies mass has complicated quasi-local definition

• Komar mass \implies AF and stationary sp-t at spacelike infinity

ADM mass => AF sp-t and at spacelike infinity

$$M_{\rm ADM} = \frac{1}{16\pi} \lim_{r \to \infty} \oint_{S_r} \left(\partial_c h_{ac} - \partial_c h_{aa} \right) n^c dS$$

- Wang and Chrusciel-Herzlich mass \implies AH sp-t

イロト イポト イヨト イヨト

• In GR \implies mass has complicated quasi-local definition

• Komar mass \implies AF and stationary sp-t at spacelike infinity

 \bullet ADM mass \Longrightarrow AF sp-t and at spacelike infinity

$$M_{\rm ADM} = \frac{1}{16\pi} \lim_{r \to \infty} \oint_{S_r} \left(\partial_c h_{ac} - \partial_c h_{aa} \right) n^c dS$$

- Bondi-Sachs mass \implies AF sp-t and at null infinity= ADM for stationary sp-t
- Hawking mass => AF sp-t and is not necessarily positive
- Wang and Chrusciel-Herzlich mass \implies AH sp-t

• In GR \implies mass has complicated quasi-local definition

• Komar mass \implies AF and stationary sp-t at spacelike infinity

• ADM mass \Longrightarrow AF sp-t and at spacelike infinity

$$M_{\mathsf{ADM}} = \frac{1}{16\pi} \lim_{r \to \infty} \oint_{S_r} \left(\partial_c h_{ac} - \partial_c h_{aa} \right) n^c dS$$

- Bondi-Sachs mass \implies AF sp-t and at null infinity= ADM for stationary sp-t
- Hawking mass => AF sp-t and is not necessarily positive
- Wang and Chrusciel-Herzlich mass \implies AH sp-t

< ロ > < 同 > < 回 > < 回 > < 回 > <

• In GR \implies mass has complicated quasi-local definition

• Komar mass \implies AF and stationary sp-t at spacelike infinity

• ADM mass \Longrightarrow AF sp-t and at spacelike infinity

$$M_{\mathsf{ADM}} = \frac{1}{16\pi} \lim_{r \to \infty} \oint_{S_r} \left(\partial_c h_{ac} - \partial_c h_{aa} \right) n^c dS$$

- $\bullet~$ Bondi-Sachs mass \Longrightarrow AF sp-t and at null infinity= ADM for stationary sp-t
- Hawking mass \Rightarrow AF sp-t and is not necessarily positive
- Wang and Chrusciel-Herzlich mass \Longrightarrow AH sp-t

Aghil Alaee

イロト 不得下 イヨト イヨト 二日

• In GR \implies mass has complicated quasi-local definition

• Komar mass \implies AF and stationary sp-t at spacelike infinity

• ADM mass \Longrightarrow AF sp-t and at spacelike infinity

$$M_{\mathsf{ADM}} = rac{1}{16\pi} \lim_{r o \infty} \oint_{S_r} \left(\partial_c h_{ac} - \partial_c h_{aa}
ight) n^c dS$$

- Bondi-Sachs mass \implies AF sp-t and at null infinity= ADM for stationary sp-t
- $\bullet\,$ Hawking mass \Longrightarrow AF sp-t and is not necessarily positive
- Wang and Chrusciel-Herzlich mass \implies AH sp-t

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• In GR \implies mass has complicated quasi-local definition

• Komar mass \implies AF and stationary sp-t at spacelike infinity

• ADM mass \Longrightarrow AF sp-t and at spacelike infinity

$$M_{\mathsf{ADM}} = \frac{1}{16\pi} \lim_{r \to \infty} \oint_{S_r} \left(\partial_c h_{ac} - \partial_c h_{aa} \right) n^c dS$$

- Bondi-Sachs mass \implies AF sp-t and at null infinity= ADM for stationary sp-t
- Hawking mass \implies AF sp-t and is not necessarily positive
- Wang and Chrusciel-Herzlich mass \Longrightarrow AH sp-t

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• An D dimensional initial data (Σ, h_{ab}, K_{ab}) is called axisymmetric if there exist D-2 rotational KVFs ϕ^i which generates $U(1)^{D-2}$ isometry group on Riemannian manifold Σ and

$$\mathcal{L}_{\phi^i} h_{ab} = \mathcal{L}_{\phi^i} K_{ab} = 0$$

An initial data (Σ, h_{ab}, K_{ab}) is $t - \phi^i$ symmetric if

э

• An D dimensional initial data (Σ, h_{ab}, K_{ab}) is called axisymmetric if there exist D-2 rotational KVFs ϕ^i which generates $U(1)^{D-2}$ isometry group on Riemannian manifold Σ and

$$\mathcal{L}_{\phi^i} h_{ab} = \mathcal{L}_{\phi^i} K_{ab} = 0$$

An initial data (Σ, h_{ab}, K_{ab}) is t − φ^{*} symmetric if
 φ⁴ are KVFs generator of U(1)^{D−2} isometry group

3

・ロト ・四ト ・ヨト・

• An D dimensional initial data (Σ, h_{ab}, K_{ab}) is called axisymmetric if there exist D-2 rotational KVFs ϕ^i which generates $U(1)^{D-2}$ isometry group on Riemannian manifold Σ and

$$\mathcal{L}_{\phi^i} h_{ab} = \mathcal{L}_{\phi^i} K_{ab} = 0$$

- An initial data (Σ, h_{ab}, K_{ab}) is $t \phi^i$ symmetric if
 - φⁱ are KVFs generator of U(1)^{D-2} isometry group

 φⁱ → -φⁱ is a diffeomorphism which preserves h_{ab} but reverses the sign of K_{ab}

• An D dimensional initial data (Σ, h_{ab}, K_{ab}) is called axisymmetric if there exist D-2 rotational KVFs ϕ^i which generates $U(1)^{D-2}$ isometry group on Riemannian manifold Σ and

$$\mathcal{L}_{\phi^i} h_{ab} = \mathcal{L}_{\phi^i} K_{ab} = 0$$

- An initial data (Σ, h_{ab}, K_{ab}) is $t \phi^i$ symmetric if
 - ${\small \textcircled{0}} \ \phi^i \ {\rm are} \ {\rm KVFs} \ {\rm generator} \ {\rm of} \ U(1)^{D-2} \ {\rm isometry} \ {\rm group}$

) $\phi^i \to -\phi^i$ is a diffeomorphism which preserves h_{ab} but reverses the sign of K_{ab}

• An D dimensional initial data (Σ, h_{ab}, K_{ab}) is called axisymmetric if there exist D-2 rotational KVFs ϕ^i which generates $U(1)^{D-2}$ isometry group on Riemannian manifold Σ and

$$\mathcal{L}_{\phi^i} h_{ab} = \mathcal{L}_{\phi^i} K_{ab} = 0$$

- An initial data (Σ, h_{ab}, K_{ab}) is $t \phi^i$ symmetric if
 - ${\small \textcircled{0}} \ \phi^i \ {\rm are} \ {\rm KVFs} \ {\rm generator} \ {\rm of} \ U(1)^{D-2} \ {\rm isometry} \ {\rm group}$
 - ${\bf Q}~\phi^i\to -\phi^i$ is a diffeomorphism which preserves h_{ab} but reverses the sign of K_{ab}

• Dain ('05) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi$ symmetric, maximal, AF data in vacuum with two ends and rescaling

$$h_{ab} = e^{4v} \ ilde{h}_{ab} \qquad ilde{h}_{ab} = e^{2q} \left(d\rho^2 + dz^2 \right) + \rho^2 \, d\phi^2 \longleftarrow$$
 2 functions

then

(1) \bar{K}_{ab} can be represented by an scalar Y

positive definite mass functional is

$$\mathcal{M}(v,Y) = \frac{1}{32\pi} \int_{\mathbb{R}^3} \left(16 (\mathsf{d}v)^2 + \rho^{-4} e^{-8v} (\mathsf{d}Y)^2 \right) \mathsf{d}\mu_0 \ge 0$$

3 $\mathcal M$ evaluates ADM mass of these class

]) mass of any axisymmetric data $\geq \mathcal{M} \geq 0$

) critical points of ${\mathcal M}$ are stationary sp-t

イロト イポト イヨト イヨト

• Dain ('05) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi$ symmetric, maximal, AF data in vacuum with two ends and rescaling

$$h_{ab} = e^{4v} \tilde{h}_{ab}$$
 $\tilde{h}_{ab} = e^{2q} \left(d\rho^2 + dz^2 \right) + \rho^2 d\phi^2 \longleftarrow$ 2 functions

then

(1) \bar{K}_{ab} can be represented by an scalar Y

2 positive definite mass functional is

$$\mathcal{M}(v,Y) = \frac{1}{32\pi} \int_{\mathbb{R}^3} \left(16 (\mathsf{d}v)^2 + \rho^{-4} e^{-8v} (\mathsf{d}Y)^2 \right) \mathsf{d}\mu_0 \ge 0$$

3 $\mathcal M$ evaluates ADM mass of these class

) critical points of ${\mathcal M}$ are stationary sp-t

イロト 不得下 イヨト イヨト

• Dain ('05) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi$ symmetric, maximal, AF data in vacuum with two ends and rescaling

$$h_{ab} = e^{4v} \tilde{h}_{ab}$$
 $\tilde{h}_{ab} = e^{2q} \left(d\rho^2 + dz^2 \right) + \rho^2 d\phi^2 \longleftarrow$ 2 functions

then

(1) \bar{K}_{ab} can be represented by an scalar Y

2 positive definite mass functional is

$$\mathcal{M}(v,Y) = \frac{1}{32\pi} \int_{\mathbb{R}^3} \left(16 (\mathsf{d}v)^2 + \rho^{-4} e^{-8v} (\mathsf{d}Y)^2 \right) \mathsf{d}\mu_0 \ge 0$$

$\textcircled{O} \mathcal{M} \text{ evaluates ADM mass of these class}$

- ${f 0}$ mass of any axisymmetric data $\geq {\cal M} \geq 0$
- ${f 5}$ critical points of ${\cal M}$ are stationary sp-t

イロト 不得下 イヨト イヨト

• Dain ('05) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi$ symmetric, maximal, AF data in vacuum with two ends and rescaling

$$h_{ab} = e^{4v} \tilde{h}_{ab}$$
 $\tilde{h}_{ab} = e^{2q} \left(d\rho^2 + dz^2 \right) + \rho^2 d\phi^2 \longleftarrow$ 2 functions

then

(1) \bar{K}_{ab} can be represented by an scalar Y

2 positive definite mass functional is

$$\mathcal{M}(v,Y) = \frac{1}{32\pi} \int_{\mathbb{R}^3} \left(16 (\mathsf{d}v)^2 + \rho^{-4} e^{-8v} (\mathsf{d}Y)^2 \right) \mathsf{d}\mu_0 \ge 0$$

M evaluates ADM mass of these class
mass of any axisymmetric data > M > 0

 ${}^{\circ}$ critical points of ${\cal M}$ are stationary sp-t

- 4 同 6 4 日 6 4 日 6

• Dain ('05) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi$ symmetric, maximal, AF data in vacuum with two ends and rescaling

$$h_{ab} = e^{4v} \tilde{h}_{ab}$$
 $\tilde{h}_{ab} = e^{2q} \left(d\rho^2 + dz^2 \right) + \rho^2 d\phi^2 \longleftarrow$ 2 functions

then

(1) \bar{K}_{ab} can be represented by an scalar Y

2 positive definite mass functional is

$$\mathcal{M}(v,Y) = \frac{1}{32\pi} \int_{\mathbb{R}^3} \left(16 (\mathsf{d}v)^2 + \rho^{-4} e^{-8v} (\mathsf{d}Y)^2 \right) \mathsf{d}\mu_0 \ge 0$$

- $\textcircled{O} \mathcal{M} \text{ evaluates ADM mass of these class}$
- mass of any axisymmetric data $\geq \mathcal{M} \geq 0$
- **(5)** critical points of \mathcal{M} are stationary sp-t

< 回 > < 三 > < 三 >

Fundamental assumptions

3

イロト イポト イヨト イヨト

Orbit space of 3D initial data of BHs

• Σ with isometry group U(1): $\frac{\Sigma}{U(1)} \cong \mathcal{B}$ orbit space which

• B is, two dimensional manifold with boundary, homemoriphic to upper-half plane.

• Orbit space of data is unique!!!

- 4 回 ト - 4 回 ト

Orbit space of 3D initial data of BHs

• Σ with isometry group $U(1)\colon \frac{\Sigma}{U(1)}\cong \mathcal{B}$ orbit space which

• B is, two dimensional manifold with boundary, homemoriphic to upper-half plane.

• Orbit space of data is *unique*!!!

- 4 回 ト 4 回 ト 4 回 ト

Orbit space of 3D initial data of BHs

- Σ with isometry group $U(1)\colon \, \frac{\Sigma}{U(1)}\cong \mathcal{B}$ orbit space which
- B is, two dimensional manifold with boundary, homemoriphic to upper-half plane.

Orbit space of data is unique!!!

イロト 不得下 イヨト イヨト

Results of Dain's mass functional

 $\bullet~$ Let (Σ,h,K) be a vacuum, AF, maximal, initial data set with appropriate decay. Then

 $m \ge \sqrt{J} = m_{\text{ex}}$ (Dain [local-'06,global-'07]) (3)

Moreover, the equality holds if and only if the data are a slice of the extreme Kerr spacetime.

- $\bullet~({\rm Dain~'08})~{\cal M}$ is a conserved quantity under axisymmetric evolution of Einstein equations.
- (Dain '14) Axisymmetric linear gravitational perturbations of the extreme Kerr black hole is stable.

an we prove similar inequalities in higher dimensions?

3

イロト 不得 トイヨト イヨト

Results of Dain's mass functional

 $\bullet~$ Let (Σ,h,K) be a vacuum, AF, maximal, initial data set with appropriate decay. Then

$$m \ge \sqrt{J} = m_{\text{ex}}$$
 (Dain [local-'06,global-'07]) (3)

Moreover, the equality holds if and only if the data are a slice of the extreme Kerr spacetime.

- (Dain '08) ${\cal M}$ is a conserved quantity under axisymmetric evolution of Einstein equations.
- (Dain '14) Axisymmetric linear gravitational perturbations of the extreme Kerr black hole is stable.

Can we prove similar inequalities in higher dimensions?

イロト イポト イヨト イヨト

Results of Dain's mass functional

 $\bullet~$ Let (Σ,h,K) be a vacuum, AF, maximal, initial data set with appropriate decay. Then

$$m \ge \sqrt{J} = m_{\text{ex}}$$
 (Dain [local-'06,global-'07]) (3)

Moreover, the equality holds if and only if the data are a slice of the extreme Kerr spacetime.

- (Dain '08) \mathcal{M} is a conserved quantity under axisymmetric evolution of Einstein equations.
- (Dain '14) Axisymmetric linear gravitational perturbations of the extreme Kerr black hole is stable.

Can we prove similar inequalities in higher dimensions?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・
Results of Dain's mass functional

 $\bullet~$ Let (Σ,h,K) be a vacuum, AF, maximal, initial data set with appropriate decay. Then

$$m \ge \sqrt{J} = m_{\text{ex}}$$
 (Dain [local-'06,global-'07]) (3)

Moreover, the equality holds if and only if the data are a slice of the extreme Kerr spacetime.

- (Dain '08) \mathcal{M} is a conserved quantity under axisymmetric evolution of Einstein equations.
- (Dain '14) Axisymmetric linear gravitational perturbations of the extreme Kerr black hole is stable.

Can we prove similar inequalities in higher dimensions?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Results of Dain's mass functional

 $\bullet~$ Let (Σ,h,K) be a vacuum, AF, maximal, initial data set with appropriate decay. Then

$$m \ge \sqrt{J} = m_{\text{ex}}$$
 (Dain [local-'06,global-'07]) (3)

Moreover, the equality holds if and only if the data are a slice of the extreme Kerr spacetime.

- (Dain '08) \mathcal{M} is a conserved quantity under axisymmetric evolution of Einstein equations.
- (Dain '14) Axisymmetric linear gravitational perturbations of the extreme Kerr black hole is stable.

Can we prove similar inequalities in higher dimensions?

- One of the restriction of Dain's method is existence of $U(1)^{D-2}$ -isometry on D-dimensional initial data (Why?)
- $\bullet~$ If we have an n-dimensional sp-t with $U(1)^{n-3}\mbox{-isometry group}\Longrightarrow$ only for n=4,5 sp-t is AF
- We only consider D = 4 dimensional initial data (Σ, h, K)
- Is there any uniqueness theorem for 5D sp-t which represent the minimum mass?

3

・ロト ・四ト ・ヨト ・ヨト

- One of the restriction of Dain's method is existence of $U(1)^{D-2}$ -isometry on D-dimensional initial data (Why?)
- $\bullet~$ If we have an n-dimensional sp-t with $U(1)^{n-3}\text{-isometry group}\Longrightarrow$ only for n=4,5 sp-t is AF
- We only consider D = 4 dimensional initial data (Σ, h, K)
- Is there any uniqueness theorem for 5D sp-t which represent the minimum mass?

3

(日) (同) (三) (三) (三)

- One of the restriction of Dain's method is existence of $U(1)^{D-2}$ -isometry on D-dimensional initial data (Why?)
- $\bullet~$ If we have an n-dimensional sp-t with $U(1)^{n-3}\mbox{-isometry group}\Longrightarrow$ only for n=4,5 sp-t is AF
- We only consider D = 4 dimensional initial data (Σ, h, K)
- Is there any uniqueness theorem for 5D sp-t which represent the minimum mass?

イロト 不得 トイヨト イヨト 二日

- One of the restriction of Dain's method is existence of $U(1)^{D-2}$ -isometry on D-dimensional initial data (Why?)
- $\bullet~$ If we have an n-dimensional sp-t with $U(1)^{n-3}\text{-isometry group}\Longrightarrow$ only for n=4,5 sp-t is AF
- We only consider D = 4 dimensional initial data (Σ, h, K)
- Is there any uniqueness theorem for 5D sp-t which represent the minimum mass?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Topology of 5D black holes

• Consider AF 5D Black hole satisfies DEC: then

Horizon topology theorem (Galloway,Schoen-'06) $H \cong S^3$ (and quotients), $H \cong S^1 \times S^2$ and connected sums of these two cases

Topology of Stationary Rotating BH (Hollands,Holland,Ishibashi-'10)

1
$$H \cong #k(S^1 \times S^2)#l$$
 Lens space, $k \ge 0, l \ge 1$

2) $H \cong$ quotients of S^3

Topological censorship (Galloway, Friedmann, Schleich, Witt) Domain of outer communication is simply connected

イロト 不得下 イヨト イヨト

Topology of 5D black holes

• Consider AF 5D Black hole satisfies DEC: then

Horizon topology theorem (Galloway,Schoen-'06) $H \cong S^3$ (and quotients), $H \cong S^1 \times S^2$ and connected sums of these two cases

Topology of Stationary Rotating BH (Hollands, Holland, Ishibashi-'10)

$$\ \ \, {\bf 0} \ \ \, H\cong \#k(S^1\times S^2)\#l \ \, {\rm Lens} \ {\rm space}, \ k\ge 0, \ l\ge 1 \ \ \,$$

 $\textbf{2} \ H \cong \text{quotients of } S^3$

Topological censorship (Galloway, Friedmann, Schleich, Witt) Domain of outer communication is simply connected

・ロト ・ 同ト ・ ヨト ・ ヨト

Topology of 5D black holes

• Consider AF 5D Black hole satisfies DEC: then

Horizon topology theorem (Galloway,Schoen-'06) $H \cong S^3$ (and quotients), $H \cong S^1 \times S^2$ and connected sums of these two cases

Topology of Stationary Rotating BH (Hollands, Holland, Ishibashi-'10)

$$\ \ \, {\bf 0} \ \ \, H\cong \#k(S^1\times S^2)\#l \ \, {\rm Lens} \ {\rm space}, \ k\ge 0, \ l\ge 1 \ \ \,$$

 $\textbf{2} \ H \cong \text{quotients of } S^3$

Topological censorship (Galloway, Friedmann, Schleich, Witt) Domain of outer communication is simply connected

Domain of outer communication (DOC)

• (Orlik,Raymond-'70) If Σ is a 4D simplify connected manifold with action $U(1)^2$ then

$$\Sigma \cong \#n \left(S^2 \times S^2 \right) \#n' \left(\pm \mathbb{CP}^2 \right)$$

• (Hollands,Holland,Ishibashi,'12)If Σ is a 4D simplify connected AF manifold with action $U(1)^2$ then

$$\Sigma \cong \mathbb{R}^4 \# n \left(S^2 \times S^2 \right) \# n' \left(\pm \mathbb{CP}^2 \right)$$

ヘロト 人間ト 人口ト 人口ト

Domain of outer communication (DOC)

Theorem(Hollands,Holland,Ishibashi,'12): Consider stationary, rotating vacuum black hole. Then DOC has topology $DOC \cong \mathbb{R} \times \Sigma$ where

$$\Sigma \cong \mathbb{R}^4 \# n \left(S^2 \times S^2 \right) \# n' \left(\pm \mathbb{CP}^2 \right) \setminus B \tag{4}$$

・ロト ・四ト ・ヨト ・ヨト

where B is compact, $\partial B \cong H$. B is 'black hole region '.

• For all known solutions (until 2015) n = n' = 0!

Domain of outer communication (DOC)

Theorem(Hollands,Holland,Ishibashi,'12): Consider stationary, rotating vacuum black hole. Then DOC has topology $DOC \cong \mathbb{R} \times \Sigma$ where

$$\Sigma \cong \mathbb{R}^4 \# n \left(S^2 \times S^2 \right) \# n' \left(\pm \mathbb{CP}^2 \right) \setminus B \tag{4}$$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

where B is compact, $\partial B \cong H$. B is 'black hole region '.

• For all known solutions (until 2015) n = n' = 0!

Remark Alaee, Kunduri, Martinez-Pedroza ('13)

Question Does topology of H uniquely determine Σ ?

() Choice of H does not specify a unique smooth submanifold B in $\mathbb{R}^4 \implies$ different B can yield different Σ .

2 They are unique up to homological level.

Question Does *B* uniquely embedded in \mathbb{R}^4 ? **(1)** No, there are different possibilities.

2 But it is un-knotted

< 回 > < 三 > < 三 >

Remark Alaee, Kunduri, Martinez-Pedroza ('13)

Question Does topology of H uniquely determine Σ ?

() Choice of H does not specify a unique smooth submanifold B in $\mathbb{R}^4 \implies$ different B can yield different Σ .

2 They are unique up to homological level.

Question Does *B* uniquely embedded in \mathbb{R}^4 ? **(1)** No, there are different possibilities.

Ø But it is un-knotted

< 同 ト く ヨ ト く ヨ ト

Remark Alaee, Kunduri, Martinez-Pedroza ('13)

- If $H\cong S^3$ the there is unique possibility for black hole region $B\cong B^4$ (4-ball)
- If $H \cong S^1 \times S^2$ the standard choice $B \cong S^1 \times B^3$
- For multiple black hole one can find standard choice!

- 日本 (四本) (日本) (日本) (日本)

Slice of 5D BH: Alaee, Kunduri, Martinez-Pedroza ('13)

Topology of Σ and Orbit space of 5D BHs

- Σ with isometry group $U(1)^2$: $\frac{\Sigma}{U(1)^2} \cong \mathcal{B}$ orbit space
- *B* is two dimensional manifold with boundary and corners (Hollands-Yazadjiev ('08) for sp-t).

• Orbit space structure of Σ is related to topology of H and bubbles

$\mathcal{B}_{MP} \ncong \mathcal{B}_{BR}$

(日) (周) (三) (三)

Topology of Σ and Orbit space of 5D BHs

- Σ with isometry group $U(1)^2$: $\frac{\Sigma}{U(1)^2} \cong \mathcal{B}$ orbit space
- *B* is two dimensional manifold with boundary and corners (Hollands-Yazadjiev ('08) for sp-t).

• Orbit space structure of Σ is related to topology of H and bubbles

$\mathcal{B}_{MP} \ncong \mathcal{B}_{BR}$

3

Topology of Σ and Orbit space of 5D BHs

- Σ with isometry group $U(1)^2$: $\frac{\Sigma}{U(1)^2} \cong \mathcal{B}$ orbit space
- *B* is two dimensional manifold with boundary and corners (Hollands-Yazadjiev ('08) for sp-t).

 $\bullet~$ Orbit space structure of Σ is related to topology of H and bubbles

 $\mathcal{B}_{MP} \ncong \mathcal{B}_{BR}$

(日) (同) (三) (三) (三)

• Alaee-Kunduri ('14) If $(\Sigma,h_{ab},\bar{K}_{ab})$ is complete, $t-\phi^i$ symmetric, maximal, AF data in vacuum with rescaling

$$h_{ab} = \Phi^2 \ \tilde{h}_{ab} \qquad \tilde{h}_{ab} = e^{2U} \left(\mathsf{d}\rho^2 + \mathsf{d}z^2 \right) + \lambda_{ij} \, \mathsf{d}\phi^i \mathsf{d}\phi^j \longleftarrow \boxed{4 \text{ functions}}$$

where $\rho^2 = \det \lambda_{ij}$. Then

In \bar{K}_{ab} is divergence-less and traceless 2 tensor and can be represented by two scalars Y^i and λ_{ij}

$$\begin{split} \bar{K}_{ab} \equiv P^1_{(a}\phi^1_{b)} + P^2_{(a}\phi^2_{b)} \\ P \equiv \lambda^{-1}S \quad \text{where} \quad S^i_a \equiv \frac{1}{2\rho^2}i_{\phi^2}i_{\phi^1}\star \mathrm{d}Y^i, \qquad d\star S^i = 0 \end{split}$$

② If (Σ, h_{ab}, K_{ab}) is a AF, $U(1)^2$ -invariant, maximal data in vacuum then

$$K_{ab}K^{ab} \ge \bar{K}_{ab}\bar{K}^{ab}$$

• Alaee-Kunduri ('14) If $(\Sigma,h_{ab},\bar{K}_{ab})$ is complete, $t-\phi^i$ symmetric, maximal, AF data in vacuum with rescaling

$$h_{ab} = \Phi^2 \ \tilde{h}_{ab} \qquad \tilde{h}_{ab} = e^{2U} \left(\mathsf{d}\rho^2 + \mathsf{d}z^2 \right) + \lambda_{ij} \, \mathsf{d}\phi^i \mathsf{d}\phi^j \longleftarrow \boxed{4 \text{ functions}}$$

where $\rho^2 = \det \lambda_{ij}$. Then • \bar{K}_{ab} is divergence-less and traceless 2 tensor and can be represented by two scalars Y^i and λ_{ij}

$$\label{eq:relation} \begin{split} \overline{\bar{K}_{ab}} \equiv P^1_{(a}\phi^1_{b)} + P^2_{(a}\phi^2_{b)} \\ P \equiv \lambda^{-1}S \quad \text{where} \quad S^i_a \equiv \frac{1}{2\rho^2}i_{\phi^2}i_{\phi^1}\star \mathrm{d}Y^i, \qquad d\star S^i = 0 \end{split}$$

② If (Σ,h_{ab},K_{ab}) is a AF, $U(1)^2$ -invariant, maximal data in vacuum then

$$K_{ab}K^{ab} \ge \bar{K}_{ab}\bar{K}^{ab}$$

• Alaee-Kunduri ('14) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi^i$ symmetric, maximal, AF data in vacuum with rescaling

$$h_{ab} = \Phi^2 \ \tilde{h}_{ab} \qquad \tilde{h}_{ab} = e^{2U} \left(\mathsf{d}\rho^2 + \mathsf{d}z^2 \right) + \lambda_{ij} \, \mathsf{d}\phi^i \mathsf{d}\phi^j \longleftarrow \boxed{4 \text{ functions}}$$

where $\rho^2 = \det \lambda_{ij}$. Then • \bar{K}_{ab} is divergence-less and traceless 2 tensor and can be represented by two scalars Y^i and λ_{ij}

$$\label{eq:relation} \begin{split} \overline{\bar{K}_{ab}} \equiv P^1_{(a}\phi^1_{b)} + P^2_{(a}\phi^2_{b)} \\ P \equiv \lambda^{-1}S \quad \text{where} \quad S^i_a \equiv \frac{1}{2\rho^2}i_{\phi^2}i_{\phi^1}\star \mathrm{d}Y^i, \qquad d\star S^i = 0 \end{split}$$

2 If (Σ, h_{ab}, K_{ab}) is a AF, $U(1)^2$ -invariant, maximal data in vacuum then

$$K_{ab}K^{ab} \ge \bar{K}_{ab}\bar{K}^{ab}$$

• Alaee-Kunduri ('14) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t - \phi^i$ symmetric, maximal, AF data in vacuum with rescaling

$$h_{ab} = \Phi^2 \ \tilde{h}_{ab} \qquad \tilde{h}_{ab} = e^{2U} \left(\mathsf{d}\rho^2 + \mathsf{d}z^2 \right) + \lambda_{ij} \, \mathsf{d}\phi^i \mathsf{d}\phi^j \longleftarrow \boxed{4 \text{ functions}}$$

where $\rho^2 = \det \lambda_{ij}$. Then **1** \bar{K}_{ab} is divergence-less and traceless 2 tensor and can be represented by two scalars Y^i and λ_{ij}

$$\label{eq:relation} \begin{split} \overline{\bar{K}_{ab}} \equiv P^1_{(a}\phi^1_{b)} + P^2_{(a}\phi^2_{b)} \\ P \equiv \lambda^{-1}S \quad \text{where} \quad S^i_a \equiv \frac{1}{2\rho^2}i_{\phi^2}i_{\phi^1}\star \mathrm{d}Y^i, \qquad d\star S^i = 0 \end{split}$$

2 If (Σ,h_{ab},K_{ab}) is a AF, $U(1)^2\text{-invariant,}$ maximal data in vacuum then

$$K_{ab}K^{ab} \ge \bar{K}_{ab}\bar{K}^{ab}$$

4 dimensional mass functional

- Alaee-Kunduri ('14) If $(\Sigma, h_{ab}, \bar{K}_{ab})$ is complete, $t \phi^i$ symmetric, maximal, AF data in vacuum, then
 - Mass functional is

$$\begin{aligned} \mathcal{M} &= \quad \frac{\pi}{4} \int_{\mathcal{B}} \left(-\frac{\det \mathsf{d}\lambda}{\rho^2} + e^{-6v} \frac{\mathsf{d}Y^t \lambda^{-1} \mathsf{d}Y}{2\rho^2} + 6 \left(\mathsf{d}v\right)^2 \right) \ \rho \mathsf{d}\rho \mathsf{d}z \\ &- \quad \frac{\pi}{4} \sum_{\mathsf{rods}} \int_{I_i} \log V_i \, \mathsf{d}z \end{aligned}$$

where $v = \log \Phi$ and I_i are intervals with direction vector v^i on $\partial \mathcal{B}$

$$V_i = \frac{2\sqrt{\rho^2 + z^2}\lambda_{ij}v^iv^j}{\rho^2} \qquad \text{where} \quad z \in (a_i, a_{i+1}) \text{ and } \rho \to 0$$

3

イロト 不得 トイヨト イヨト

$\textcircled{0} \quad \mathcal{M} \text{ encodes information of rod structure}$

- 2) ${\cal M}$ is a positive definite functional for a large class(Which?)
- O \mathcal{M} evaluates ADM mass of these class
- \blacksquare mass of any axisymmetric data $\geq \mathcal{M}$
- \bigcirc critical points of ${\mathcal M}$ are stationary sp-t
- M is a positive definite functional for extreme stationary BHs.

イロト イポト イヨト イヨト

- $\textcircled{0} \ \mathcal{M} \ \text{encodes information of rod structure}$
- **2** \mathcal{M} is a positive definite functional for a large class(Which?)
- Image: Image
- I mass of any axisymmetric data $\geq \mathcal{M}$
- \bigcirc critical points of $\mathcal M$ are stationary sp-t
- M is a positive definite functional for extreme stationary BHs.

イロト イポト イヨト イヨト

- $\textcircled{0} \quad \mathcal{M} \text{ encodes information of rod structure}$
- **2** \mathcal{M} is a positive definite functional for a large class(Which?)
- $\textcircled{O} \mathcal{M} \text{ evaluates ADM mass of these class}$
- ④ mass of any axisymmetric data $\geq \mathcal{M}$
- o critical points of $\mathcal M$ are stationary sp-t
- ullet $\mathcal M$ is a positive definite functional for extreme stationary BHs.

イロト イポト イヨト イヨト

- $\textcircled{0} \quad \mathcal{M} \text{ encodes information of rod structure}$
- **2** \mathcal{M} is a positive definite functional for a large class(Which?)
- $\textcircled{O} \mathcal{M} \text{ evaluates ADM mass of these class}$
- $\textcircled{\textbf{0}} mass of any axisymmetric data \geq \mathcal{M}$
- o critical points of $\mathcal M$ are stationary sp-t
- 0 \mathcal{M} is a positive definite functional for extreme stationary BHs.

イロト 不得下 イヨト イヨト

- $\textcircled{0} \quad \mathcal{M} \text{ encodes information of rod structure}$
- **2** \mathcal{M} is a positive definite functional for a large class(Which?)
- $\textcircled{O} \mathcal{M} \text{ evaluates ADM mass of these class}$
- $\textcircled{\textbf{0}} mass of any axisymmetric data \geq \mathcal{M}$
- **(**) critical points of \mathcal{M} are stationary sp-t
- 0 \mathcal{M} is a positive definite functional for extreme stationary BHs.

イロト 不得下 イヨト イヨト

- $\textcircled{0} \quad \mathcal{M} \text{ encodes information of rod structure}$
- **2** \mathcal{M} is a positive definite functional for a large class(Which?)
- $\textcircled{O} \mathcal{M} \text{ evaluates ADM mass of these class}$
- mass of any axisymmetric data $\geq \mathcal{M}$
- **(5)** critical points of \mathcal{M} are stationary sp-t
- \bigcirc \mathcal{M} is a positive definite functional for extreme stationary BHs.

- 4 同 6 4 日 6 4 日 6

Question

• Geometric inequalities in vacuum for two known extreme AF solutions

$$m^{3} \geq \frac{27\pi}{32} (|J_{1}| + |J_{2}|)^{2}$$
 (Myers-Perry)
 $m^{3} \geq \frac{27\pi}{4} |J_{1}| (|J_{2}| - |J_{1}|)$ (black ring)

• But which one is minimum?

э

Question

• Geometric inequalities in vacuum for two known extreme AF solutions

$$m^{3} \geq \frac{27\pi}{32} (|J_{1}| + |J_{2}|)^{2}$$
 (Myers-Perry)
 $m^{3} \geq \frac{27\pi}{4} |J_{1}| (|J_{2}| - |J_{1}|)$ (black ring)

• But which one is minimum?

3

Uniquness of extreme 5D BHs

- **Theorem** [Figueras,Lucietti-'10] Consider a five dimensional, AF, stationary black hole solution of the vacuum Einstein equations, with $U(1)^2$ isometry and a connected degenerate horizon (with non-toroidal sections). There exists at most one such solution with given angular momenta J_1 , J_2 and a given interval structure.
 - The non-extreme version was proved by Hollands-Yazadjiev ('08)

・ロト ・ 同ト ・ ヨト ・ ヨト

Extreme class of data-Alaee-Kunduri 15

Definition: The set of *extreme class* E is the collection of data arising from extreme, vacuum, AF, $\mathbb{R} \times U(1)^2$ invariant black holes which consist of triples $u_0 = (v_0, \lambda'_0, Y_0)$ where v_0 is a scalar, $\lambda'_0 = [\lambda_{ij}]$ is a positive definite 2×2 symmetric matrix, and Y_0 is a column vector with the appropriate bounds.

(4 個) トイヨト イヨト

Main result-Alaee-Kunduri '15

Theorem Let (Σ, h_{ab}, K_{ab}) be an AF, maximal, $U(1)^2$ -invariant, vacuum initial data with mass m and fixed angular momenta J_1 and J_2 and fixed orbit space \mathcal{B} . Then in small neighborhood

$$m \ge f(J_1, J_2)$$

for some f which depends on the orbit space \mathcal{B} . Moreover, $m = f(J_1, J_2)$ in the neighborhood if and only if the data are extreme data.

• Currently we are investigating the global mass-angular momenta for the large class of data(including MP data)

イロト 不得 トイヨト イヨト

Main result-Alaee-Kunduri '15

Theorem Let (Σ, h_{ab}, K_{ab}) be an AF, maximal, $U(1)^2$ -invariant, vacuum initial data with mass m and fixed angular momenta J_1 and J_2 and fixed orbit space \mathcal{B} . Then in small neighborhood

$$m \ge f(J_1, J_2)$$

for some f which depends on the orbit space \mathcal{B} . Moreover, $m = f(J_1, J_2)$ in the neighborhood if and only if the data are extreme data.

• Currently we are investigating the global mass-angular momenta for the large class of data(including MP data)

ヘロト 人間ト 人口ト 人口ト
- \bullet Positivity of mass functional ${\cal M}$ for all orbit spaces and extend the global proof to all orbit spaces.
- Mass-angular momenta-charge?
- Mass-angular momenta with multiple ends?
- Is \mathcal{M} a conserved quantity under $U(1)^2$ -invariant evolution of Einstein equations?
- Study stability (or instability) of U(1)²-invariant linear gravitational perturbations of the extreme MP and extreme doubly spinning black ring.

イロト イポト イヨト イヨト

- \bullet Positivity of mass functional ${\cal M}$ for all orbit spaces and extend the global proof to all orbit spaces.
- Mass-angular momenta-charge?
- Mass-angular momenta with multiple ends?
- Is \mathcal{M} a conserved quantity under $U(1)^2$ -invariant evolution of Einstein equations?
- Study stability (or instability) of U(1)²-invariant linear gravitational perturbations of the extreme MP and extreme doubly spinning black ring.

イロト イポト イヨト イヨト

- Positivity of mass functional \mathcal{M} for all orbit spaces and extend the global proof to all orbit spaces.
- Mass-angular momenta-charge?
- Mass-angular momenta with multiple ends?
- Is \mathcal{M} a conserved quantity under $U(1)^2$ -invariant evolution of Einstein equations?
- Study stability (or instability) of U(1)²-invariant linear gravitational perturbations of the extreme MP and extreme doubly spinning black ring.

イロト イポト イヨト イヨト

- Positivity of mass functional \mathcal{M} for all orbit spaces and extend the global proof to all orbit spaces.
- Mass-angular momenta-charge?
- Mass-angular momenta with multiple ends?
- Is \mathcal{M} a conserved quantity under $U(1)^2$ -invariant evolution of Einstein equations?
- Study stability (or instability) of U(1)²-invariant linear gravitational perturbations of the extreme MP and extreme doubly spinning black ring.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Positivity of mass functional \mathcal{M} for all orbit spaces and extend the global proof to all orbit spaces.
- Mass-angular momenta-charge?
- Mass-angular momenta with multiple ends?
- Is \mathcal{M} a conserved quantity under $U(1)^2$ -invariant evolution of Einstein equations?
- Study stability (or instability) of $U(1)^2$ -invariant linear gravitational perturbations of the extreme MP and extreme doubly spinning black ring.

Questions?

Aghil Alaee

Mass functional and mass-angular momenta

28 / 28

3

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・