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Motivation: Geometric Inequalities
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Motivation: Geometric Inequalities

Inequalities
in symmetry

Mass angular momentum Area angular momentum

m ≥
√
J (Dain-’07)

charges (Chrusciel-Costa-’09)

multiple ends(Chruciel-Weinstein-

’08)

A > 8π |J | (Acena,Dain,Clement-10)

charges (Clement,Jaramillo,Reiris-’12)

cosmo. const.
(Clement,Reiris,Simon-’15)

Higher D? Higher D (Hollands-’11)
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Mass and symmetry

Asymptotically flat and Constraint equation

Assume (Σ, h) is smooth n-dimensional Riemannian manifold and C is a compact
sub-manifold, (Σ, h) is AF if Σ\C is diffeomorphic to Rn\Bn(0) for large r+
fall-offs

Consider spacetime (M, g) foliated by spacelike leaves (slices) (Σ, hab,Kab), where
hab is induced metric on Σ and Kab is extrinsic curvature tensor

M

Σt−δt

Σt

Σt+δt

na

Vacuum Einstein equations equivalent to evolution equations for initial data
(Σ, hab,Kab)+2 constraint equations on Σ

Rh −KabKab + TrhK = 0 Hamiltonian Constraint (1)

∇b [Kab − (TrhK)hab] = 0 Momentum Constraint (2)
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Mass and symmetry

Mass formulas

In GR =⇒ mass has complicated quasi-local definition

Komar mass =⇒ AF and stationary sp-t at spacelike infinity

MK = − 1

8π
lim
r→∞

∮
Sr

?dξ ! ξ timelike KVF

ADM mass =⇒ AF sp-t and at spacelike infinity

MADM =
1

16π
lim
r→∞

∮
Sr

(∂chac − ∂chaa)ncdS

Bondi-Sachs mass =⇒ AF sp-t and at null infinity= ADM for stationary sp-t

Hawking mass =⇒ AF sp-t and is not necessarily positive

Wang and Chrusciel-Herzlich mass =⇒ AH sp-t
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Mass and symmetry

Symmetries on data

An D dimensional initial data (Σ, hab,Kab) is called axisymmetric if there exist
D − 2 rotational KVFs φi which generates U(1)D−2 isometry group on
Riemannian manifold Σ and

Lφihab = LφiKab = 0

An initial data (Σ, hab,Kab) is t− φi symmetric if

1 φi are KVFs generator of U(1)D−2 isometry group
2 φi → −φi is a diffeomorphism which preserves hab but reverses the

sign of Kab
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Review 4D mass-angular inequality

Dain’s mass functional

Dain (’05) If (Σ, hab, K̄ab) is complete, t− φ symmetric, maximal, AF data in
vacuum with two ends and rescaling

hab = e4v h̃ab h̃ab = e2q
(
dρ2 + dz2

)
+ ρ2 dφ2 ←− 2 functions

then

1 K̄ab can be represented by an scalar Y

2 positive definite mass functional is

M(v, Y ) =
1

32π

∫
R3

(
16(dv)2 + ρ−4e−8v(dY )2

)
dµ0 ≥ 0

3 M evaluates ADM mass of these class

4 mass of any axisymmetric data ≥M ≥ 0

5 critical points of M are stationary sp-t
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Review 4D mass-angular inequality

Fundamental assumptions

t − φ
symmetry

K̄ab represented
by an scalar Y

divK = 0
(EVEs)

Maximality
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Review 4D mass-angular inequality

Orbit space of 3D initial data of BHs

Σ with isometry group U(1):
Σ

U(1)
∼= B orbit space which

B is, two dimensional manifold with boundary, homemoriphic to upper-half plane.

z

ρ

aE

φ vanishesφ vanishes

axis

(a) Orbit space as half plane

y

x

I+

I−

φ vanishes

φ vanishes

(b) Orbit space as infinite
strip

Orbit space of data is unique!!!
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Review 4D mass-angular inequality

Results of Dain’s mass functional

Let (Σ, h,K) be a vacuum, AF, maximal, initial data set with appropriate decay.
Then

m ≥
√
J = mex (Dain [local-’06,global-’07]) (3)

Moreover, the equality holds if and only if the data are a slice of the extreme Kerr
spacetime.

(Dain ’08) M is a conserved quantity under axisymmetric evolution of Einstein
equations.

(Dain ’14) Axisymmetric linear gravitational perturbations of the extreme Kerr
black hole is stable.

Can we prove similar inequalities in higher dimensions?
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Initial data for 5D BHs

Restriction of method on dimension

One of the restriction of Dain’s method is existence of U(1)D−2-isometry on
D-dimensional initial data (Why?)

If we have an n-dimensional sp-t with U(1)n−3-isometry group =⇒ only for
n = 4, 5 sp-t is AF

We only consider D = 4 dimensional initial data (Σ, h,K)

Is there any uniqueness theorem for 5D sp-t which represent the minimum mass?
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Initial data for 5D BHs

Topology of 5D black holes

Consider AF 5D Black hole satisfies DEC: then

Horizon topology theorem (Galloway,Schoen-’06)

H ∼= S3 (and quotients), H ∼= S1 × S2 and connected sums of these two cases

Topology of Stationary Rotating BH (Hollands,Holland,Ishibashi-’10)

1 H ∼= #k(S1 × S2)#l Lens space, k ≥ 0, l ≥ 1

2 H ∼= quotients of S3

Topological censorship (Galloway, Friedmann, Schleich, Witt)

Domain of outer communication is simply connected
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Initial data for 5D BHs

Domain of outer communication (DOC)

(Orlik,Raymond-’70) If Σ is a 4D simplify connected manifold with action
U(1)2 then

Σ ∼= #n (S2 × S2)#n′ (±CP2)

(Hollands,Holland,Ishibashi,’12)If Σ is a 4D simplify connected AF manifold
with action U(1)2 then

Σ ∼= R4#n (S2 × S2)#n′ (±CP2)
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Initial data for 5D BHs

Domain of outer communication (DOC)

Theorem(Hollands,Holland,Ishibashi,’12): Consider stationary, rotating vacuum
black hole. Then DOC has topology DOC ∼= R× Σ where

Σ ∼= R4#n (S2 × S2)#n′ (±CP2)\B (4)

where B is compact, ∂B ∼= H. B is ‘black hole region ’.

For all known solutions (until 2015) n = n′ = 0!
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Initial data for 5D BHs

Remark Alaee, Kunduri, Martinez-Pedroza (’13)

Question Does topology of H uniquely determine Σ ?

1 Choice of H does not specify a unique smooth submanifold B in R4 =⇒
different B can yield different Σ.

2 They are unique up to homological level.

Question Does B uniquely embedded in R4?
1 No, there are different possibilities.

2 But it is un-knotted
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Initial data for 5D BHs

Remark Alaee, Kunduri, Martinez-Pedroza (’13)

If H ∼= S3 the there is unique possibility for black hole region B ∼= B4

(4-ball)

If H ∼= S1 × S2 the standard choice B ∼= S1 ×B3

For multiple black hole one can find standard choice!
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Initial data for 5D BHs

Slice of 5D BH: Alaee, Kunduri, Martinez-Pedroza (’13)

H ∼= S3

Myers-Perry BH

Σ ∼= R× S3, χ = 0

H ∼= S1 × S2

Black Ring

Σ ∼= (S2 ×D2)#R, χ = 1

H2
∼= S1 × S2

H1
∼= S3

Black Saturn

Σ ∼=
(
S2 ×D2

)
#R#B4, χ = 0

H2
∼= S1 × S2

Bicycling Black Rings

Σ ∼= #2(S2 ×D2)#R, χ = 1
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Initial data for 5D BHs

Topology of Σ and Orbit space of 5D BHs

Σ with isometry group U(1)2:
Σ

U(1)2
∼= B orbit space

B is two dimensional manifold with boundary and corners (Hollands-Yazadjiev
(’08) for sp-t).

z

ρ

a1 a2 ai−1 aE ai+1 ai+2 an

(g) Orbit space as half plane

y

x

I+

I−
ai−2 ai−1 a2 a1

ai+1 ai+2 an−1 an

(h) Orbit space as infinite
strip

Orbit space structure of Σ is related to topology of H and bubbles

BMP � BBR
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Σ

U(1)2
∼= B orbit space

B is two dimensional manifold with boundary and corners (Hollands-Yazadjiev
(’08) for sp-t).

z

ρ

a1 a2 ai−1 aE ai+1 ai+2 an

(i) Orbit space as half plane

y

x

I+

I−
ai−2 ai−1 a2 a1

ai+1 ai+2 an−1 an

(j) Orbit space as infinite strip

Orbit space structure of Σ is related to topology of H and bubbles

BMP � BBR
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Initial data for 5D BHs

Topology of Σ and Orbit space of 5D BHs

Σ with isometry group U(1)2:
Σ

U(1)2
∼= B orbit space

B is two dimensional manifold with boundary and corners (Hollands-Yazadjiev
(’08) for sp-t).

z

ρ

a1 a2 ai−1 aE ai+1 ai+2 an

(k) Orbit space as half plane

y

x

I+

I−
ai−2 ai−1 a2 a1

ai+1 ai+2 an−1 an

(l) Orbit space as infinite strip

Orbit space structure of Σ is related to topology of H and bubbles

BMP � BBR
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Initial data for 5D BHs

Result

Alaee-Kunduri (’14) If (Σ, hab, K̄ab) is complete, t− φi symmetric, maximal, AF
data in vacuum with rescaling

hab = Φ2 h̃ab h̃ab = e2U
(
dρ2 + dz2

)
+ λij dφidφj ←− 4 functions

where ρ2 = detλij . Then
1 K̄ab is divergence-less and traceless 2 tensor and can be represented by two

scalars Y i and λij

K̄ab ≡ P 1
(aφ

1
b) + P 2

(aφ
2
b)

P ≡ λ−1S where Sia ≡
1

2ρ2
iφ2 iφ1 ? dY i, d ? Si = 0

2 If (Σ, hab,Kab) is a AF, U(1)2-invariant, maximal data in vacuum then

KabK
ab ≥ K̄abK̄

ab

6 functions
with a

constraint
Mass functional Mmaximal, AF, t − φi

symmetric initial data

Aghil Alaee Mass functional and mass-angular momenta inequality for U(1)2-invariant black holes20 / 28



Initial data for 5D BHs

Result

Alaee-Kunduri (’14) If (Σ, hab, K̄ab) is complete, t− φi symmetric, maximal, AF
data in vacuum with rescaling

hab = Φ2 h̃ab h̃ab = e2U
(
dρ2 + dz2

)
+ λij dφidφj ←− 4 functions

where ρ2 = detλij . Then
1 K̄ab is divergence-less and traceless 2 tensor and can be represented by two

scalars Y i and λij

K̄ab ≡ P 1
(aφ

1
b) + P 2

(aφ
2
b)

P ≡ λ−1S where Sia ≡
1

2ρ2
iφ2 iφ1 ? dY i, d ? Si = 0

2 If (Σ, hab,Kab) is a AF, U(1)2-invariant, maximal data in vacuum then

KabK
ab ≥ K̄abK̄

ab

6 functions
with a

constraint
Mass functional Mmaximal, AF, t − φi

symmetric initial data

Aghil Alaee Mass functional and mass-angular momenta inequality for U(1)2-invariant black holes20 / 28



Initial data for 5D BHs

Result

Alaee-Kunduri (’14) If (Σ, hab, K̄ab) is complete, t− φi symmetric, maximal, AF
data in vacuum with rescaling

hab = Φ2 h̃ab h̃ab = e2U
(
dρ2 + dz2

)
+ λij dφidφj ←− 4 functions

where ρ2 = detλij . Then
1 K̄ab is divergence-less and traceless 2 tensor and can be represented by two

scalars Y i and λij

K̄ab ≡ P 1
(aφ

1
b) + P 2

(aφ
2
b)

P ≡ λ−1S where Sia ≡
1

2ρ2
iφ2 iφ1 ? dY i, d ? Si = 0

2 If (Σ, hab,Kab) is a AF, U(1)2-invariant, maximal data in vacuum then

KabK
ab ≥ K̄abK̄

ab

6 functions
with a

constraint
Mass functional Mmaximal, AF, t − φi

symmetric initial data

Aghil Alaee Mass functional and mass-angular momenta inequality for U(1)2-invariant black holes20 / 28



Initial data for 5D BHs

Result

Alaee-Kunduri (’14) If (Σ, hab, K̄ab) is complete, t− φi symmetric, maximal, AF
data in vacuum with rescaling

hab = Φ2 h̃ab h̃ab = e2U
(
dρ2 + dz2

)
+ λij dφidφj ←− 4 functions

where ρ2 = detλij . Then
1 K̄ab is divergence-less and traceless 2 tensor and can be represented by two

scalars Y i and λij

K̄ab ≡ P 1
(aφ

1
b) + P 2

(aφ
2
b)

P ≡ λ−1S where Sia ≡
1

2ρ2
iφ2 iφ1 ? dY i, d ? Si = 0

2 If (Σ, hab,Kab) is a AF, U(1)2-invariant, maximal data in vacuum then

KabK
ab ≥ K̄abK̄

ab

6 functions
with a

constraint
Mass functional Mmaximal, AF, t − φi

symmetric initial data

Aghil Alaee Mass functional and mass-angular momenta inequality for U(1)2-invariant black holes20 / 28



Main results

4 dimensional mass functional

Alaee-Kunduri (’14) If (Σ, hab, K̄ab) is complete, t− φi symmetric, maximal, AF

data in vacuum, then

Mass functional is

M =
π

4

∫
B

(
−det dλ

ρ2
+ e−6v dY tλ−1dY

2ρ2
+ 6 (dv)2

)
ρdρdz

− π

4

∑
rods

∫
Ii

log Vi dz

where v = log Φ and Ii are intervals with direction vector vi on ∂B

Vi =
2
√
ρ2 + z2λijv

ivj

ρ2
where z ∈ (ai, ai+1) and ρ→ 0
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Main results

Results of M

1 M encodes information of rod structure

2 M is a positive definite functional for a large class(Which?)

3 M evaluates ADM mass of these class

4 mass of any axisymmetric data ≥M

5 critical points of M are stationary sp-t

6 M is a positive definite functional for extreme stationary BHs.
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Main results

Question

Geometric inequalities in vacuum for two known extreme AF solutions

m3 ≥ 27π

32
(|J1|+ |J2|)2 (Myers-Perry)

m3 ≥ 27π

4
|J1|(|J2| − |J1|) (black ring)

But which one is minimum?
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Main results

Uniquness of extreme 5D BHs

Theorem [Figueras,Lucietti-’10] Consider a five dimensional, AF, stationary black
hole solution of the vacuum Einstein equations, with U(1)2 isometry and a
connected degenerate horizon (with non-toroidal sections). There exists at most
one such solution with given angular momenta J1, J2 and a given interval
structure.

The non-extreme version was proved by Hollands-Yazadjiev (’08)
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Main results

Extreme class of data-Alaee-Kunduri 15

Definition: The set of extreme class E is the collection of data arising from
extreme, vacuum, AF, R× U(1)2 invariant black holes which consist of triples
u0 = (v0, λ

′
0, Y0) where v0 is a scalar, λ′0 = [λij ] is a positive definite 2× 2

symmetric matrix, and Y0 is a column vector with the appropriate bounds.
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Main results

Main result-Alaee-Kunduri ’15

Theorem Let (Σ, hab,Kab) be an AF, maximal, U(1)2-invariant, vacuum initial
data with mass m and fixed angular momenta J1 and J2 and fixed orbit space B.
Then in small neighborhood

m ≥ f(J1, J2)

for some f which depends on the orbit space B. Moreover, m = f(J1, J2) in the
neighborhood if and only if the data are extreme data.

Currently we are investigating the global mass-angular momenta for the
large class of data(including MP data)
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Current and Future projects

Open Problems for 5D BHs

Positivity of mass functional M for all orbit spaces and extend the global
proof to all orbit spaces.

Mass-angular momenta-charge?

Mass-angular momenta with multiple ends?

Is M a conserved quantity under U(1)2-invariant evolution of Einstein
equations?

Study stability (or instability) of U(1)2-invariant linear gravitational
perturbations of the extreme MP and extreme doubly spinning black ring.
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Thank you

Questions?
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