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1. History and Motivation

20th century physics:

▶ General Relativity

• Relevant for big scales and huge energies: E.g. solar systems

▶ Quantum Theory

• Relevant for tiny scales and small energies: E.g. isolated particles

How did our universe emerge?

▶ Big Bang or inside of black holes

• Need General Relativity due to big mass

• Need Quantum Theory due to small length scales

⇒ Thus, need to combine both to a theory of quantum gravity!

⇝ Renormalization problem!
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2. Introduction to Quantum Field Theory

Example: ϕ3-theory

▶ Given via the Lagrange density

Lϕ3 =
1

2
(∂µϕ)

(
∂µϕ

)
− m2

2
ϕ2︸ ︷︷ ︸

Propagator ⇝ Edge

− g

3!
ϕ3︸ ︷︷ ︸

Interaction ⇝ Vertex

▶ Implies its residue set

Rϕ3 =

{
,

}

▶ And its Feynman graph set

Gϕ3 =

 , , , , , . . .


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2. Introduction to Quantum Field Theory

Feynman rules:

▶ Relation between Feynman graphs and Feynman integrals

▶ Algebra morphism (character)

▶ Given on residues as matrix element of corresponding monomial

Example: ϕ3-theory (cont.)

▶ Propagator Feynman rule

Φ ( ) := − i

k2 −m2 + iϵ

▶ Vertex Feynman rule

Φ

( )
:= ig

▶ Feynman rule of graphs via multiplicative extension
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2. Introduction to Quantum Field Theory

▶ Consider particle beam

▶ QM: Sum over all unobserved intermediate states:

1. View blob as “Taylor expansion” in the coupling constant

= g0 +g2 +g4

 +

+. . .

2. Integrate over internal four-momenta, e.g.

∫
M4

p p

p + k

k

dk4 ≡ g2
∫
M4

(
1

(p+ k)2 −m2 + iϵ

)(
1

k2 −m2 + iϵ

)
dk4
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2. Introduction to Quantum Field Theory

Problems:

1. Integration usually diverges and thus ill-defined

2. Summation usually diverges and thus ill-defined

Solutions:

1. Regularization and renormalization (e.g. dimensional regularization,
minimal subtraction)

2. Resummation techniques (e.g. Borel resummation)

Terminology 2.1

▶ Regularization: Ad hoc introduction of regulator ε ∈ C rendering
divergent integrals finite

▶ Renormalization: Procedure to render divergent integrals finite
compatible with QFT-axioms
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2. Introduction to Quantum Field Theory

Renormalization theory:

▶ Mathematical rigorous formulation due to Connes & Kreimer:

• Renormalization Hopf algebra

• Algebraic Birkhoff decomposition

▶ Obtain regulator-dependent Z-factor for each monomial:

LR
ϕ3(ε) =

ZKin(ε)

2
(∂µϕ0)

(
∂µϕ0

)
− ZMass(ε)m

2
0

2
ϕ2
0 −

ZInt(ε) g0
3!

ϕ3

▶ Feynman integrals derived from LR
ϕ3(ε) are finite

▶ Divergences are absorbed by making constants energy-dependent

10 / 17



3. Outlook to Quantum General Relativity
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3. Outlook to Quantum General Relativity

Lagrange density:

LQGR = − 1

2κ2

√
−Det(g)R︸ ︷︷ ︸
LGR

− 1

4κ2ζ
ηµνdDµdDν︸ ︷︷ ︸
LGF

− 1

2ζ
ηρσC

µ
(∂ρ∂σCµ)−

1

2
ηρσC

µ
(
∂µ

(
Γν

ρσCν

)
− 2∂ρ

(
Γν

µσCν

))
︸ ︷︷ ︸

LGhost

▶ Graviton field: hµν := 1
κ (gµν − ηµν) ⇐⇒ gµν ≡ ηµν + κhµν

▶ Linearized de Donder gauge fixing dDµ := ηρσΓρσµ

▶ Graviton-ghost C ∈ Γ
(
T ∗[1]M

)
▶ Graviton-antighost C ∈ Γ

(
T [−1]M

)
▶ Setup via BRST cohomology and differential-graded supergeometry
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3. Outlook to Quantum General Relativity

Expansion of the Lagrange density:

▶ Series in κ :=
√
κ , where κ := 8πG Einstein’s constant

• Graviton field: hµν := 1
κ
(
gµν − ηµν

)
⇐⇒ gµν ≡ ηµν + κhµν

• Inverse metric (via Neumann series):

gµν ≡
∑∞

k=0 (−κ)k
(
hk

)µν
= ηµν − κhµν + κ2ηαβh

αµhβν +O
(
κ3

)
• Riemannian volume form (via Newton’s identities):√

−Det(g) = 1+ κ
2
ηµνhµν+

κ2

8
(ηµνηρσ − 2ηµρηνσ)hµνhρσ+O

(
κ3

)
▶ Individual monomials can be addressed via degree in {κ, ζ, C }
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3. Outlook to Quantum General Relativity

Introducing Z-factors:

LR
QGR(ε) =

∞∑
i=0

0∑
j=−1

1∑
k=0

Z
(i,j,k)
QGR (ε)L(i,j,k)

QGR

with L(i,j,k)
QGR := (LQGR)

∣∣
O(κiζjCk)

▶ LGR invariant under hµν ⇝ hµν +∇µXν +∇νXµ for X ∈ Xc(M)

▶ Z-factors need to satisfy relations!

• Ensure (residual) gauge symmetry

• Crucial for ghost construction to work
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3. Outlook to Quantum General Relativity

▶ (Residual) Diffeomorphism invariance relies on the identities

Z
(1,0,0)
QGR (ε)Z

(i,0,0)
QGR (ε)

Z
(0,0,0)
QGR (ε)

≡ Z
((i+1),0,0)
QGR (ε) and

Z
(i,0,0)
QGR (ε)

Z
(0,−1,0)
QGR (ε)

≡
Z

(i,0,1)
QGR (ε)

Z
(0,−1,1)
QGR (ε)

▶ Corresponding to the graphical identitiesT

 •T

(
T i

)
!
= i+1 and

L

L

i
!
= i (∗∗)

Theorem 3.1 (DP, 2022)

The identities (∗∗) generate a Hopf ideal, i.e. are a combinatorial symmetry
of renormalization.1

1Generalization of [van Suijlekom, 2007].
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3. Outlook to Quantum General Relativity

Current status:

▶ Discussed relations are algebraic

• Combinatorical obstruction for multiplicative renormalization

• Describe the identification of indistinguishable subdivergences

▶ Remains to prove the compatibility with Feynman rules

• Need to identify corresponding divergences of Feynman integrals

• Graphical approach via cancellation identities

Work in progress:

⇝ Perturbative BRST cohomology via a differential-graded renormalization

Hopf algebra!
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Thank you! Comments and Questions?

“I think you should be more explicit here in step two.”2

2Cartoon by Sidney Harris
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