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Variational principles in General Relativity:

@ metric picture:

ﬁg = [’g (g,uzu Buv,a » Buv,aBs ¢7 QS,U) = EH(R) + Emattv

o affine picture:

ﬁA = £A (rﬂ)\#, rn)\p,,zn ¢7 (z),l/) )

o Palatini picture:

‘CP = ‘CP (g,UJ/7 I_H)\M’ rHA,u,,y7 QS’ ¢,V) = ‘CH(R) +£~matt7

All of this formulations are equivalent on shell.
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Metric Hilbert Lagrangian:

o detg L0 L °
LH(R) = %g“ Rw/;:ﬂ-/" R/J,llv

Variation of the Hilbert Lagrangian:
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Field equations:
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Example: Scalar field

detg y
Lomate = —% (¢ 0" +m?* %),
Field equations:
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npt = —V|detgl D¢,
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General matter Lagrangian:

Ematt = ﬁmatt (¢7 Vu ¢7 guu) = ﬁmatt (¢7 (b,w 8uv, rﬁ)\u) )
1 9, ° °
OLmatt = I:E G + Vi RMVH:I 5g,LL1/ +,P/\l,25 rﬁ)\u +0, (pV (5¢) )
where RHYF := 1 (P 4 PRVE PRV
2
Important euality:

PV T, 0, (0 00) = [P - ZEmat | e
ar"y,

#(vp) 60455 (9, ).
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Field equations:
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Einstein equation:

3 g e . Do
167 g
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8 0guw
1 OMV B 2(5Lmatt o \/d— THY
o g = g | det g :



Introduction

Example: Vector field



Introduction

Example: Vector field

\/|det ° °
Ematt = _M I:(VV Xa) (VV Xa) + ITI2 Xa Xa] .

2



Introduction

Example: Vector field

\/|det ° °
Ematt = _M I:(VV Xa) (VV Xa) + ITI2 Xa Xa] .

2

Field equations:



Introduction

Example: Vector field

\/|det ° °
Ematt = _M I:(VV Xa) (VV Xa) + ITI2 Xa Xa] .

2

Field equations:

° va 2 ya
oX® = m° X%,



Introduction

Example: Vector field

\/|det ° °
Ematt = _M I:(VV Xa) (VV Xa) + ITI2 Xa Xa] .

2
Field equations:
OX* = m?X®,

—/|detg| X* v X, |

A
P



Introduction

Example: Vector field

\/|det ° °
Ematt = _M I:(VV Xa) (VV Xa) + ITI2 Xa Xa] .

2

Field equations:

OX* = m?X®,
73)"“,2 = —\/|detg|X(’\V“)XR,
1 o

g G,uu = guy Lmatt + (vM Xa) (V” Xa) +

V. (X“ v x») Z x e g?) x*‘) .
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Variation of the metric Lagrangian:
OL mart 1 2 °
g = | —-—G" -V, R""|ogu +
¢ [ g, om0 S
+0r (RW“ Ogu + P0G+ MY S T AM) :

On shell: (configuration fields satisfy field equations)

0Ly = O (R“”’“éguﬁp“wmﬁ“”a m)'

Observation:

Metric appears in two ways: as a control parameter (dg) and
momentum (7).

In affine picture metric appears as a momentum!
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Transformation:

O0x (R 6gu) = 0, (WRAW (5N”>\M) +0 [%5 RUM] ,
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Aw |det g| A2 A
2 K ag 1 g K
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o
We have a non-metric connection! I =[" + /!

Affine picture

Affine Lagrangian (numerical value): L4:=Lg -6 [%,{ Ra‘m] ,

We have an affine description of our theory!
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0L A

O [P0 + m M 6T, ] =
O (P 00) + T 5Ky + Vym MY 0T,

K, is only the symmetric part of the Ricci tensor (for general
symmetric connection there also exist a skew-symmetric part!)
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To obtain the affine Lagrangian we only have to express metric by
the curvature!

V| det K|
La= Y =0

A}

Variation formula:

SLa = T 6K+ V,m MO,
Equations:
8[,A |det K| _1\ MY

o A K K = NG

T T 0K, 167A (KZ)™ = Kw=hg,
oL

Vyﬂ',{)\lw: A =0 — Vugm=0'

argu
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The extra curvature parts could be interpret as matter fields (as
above).

Example:

_ V| det R| ) Vdet(K + F)|

L
A 8w 8T

Variation formula:

0La = T 6K+ X" OFu + VP T,



Extension

Equations:

T = gﬁA (Einstein equation),
v




Extension

Equations:
oL
T = A (Einstein equation),
OKu
oL . :
X = A (constitutive relation),
OF



Extension

Equations:

X

v, P

oL

8K:V (Einstein equation),
oL

aF:, (constitutive relation),

0 (non-metricity condition).
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Extension

@ Connection is not metric and non-metricity is related to the
skew-symmetric part of Ricci curvature F,, (Weyl concept of
unified theory),

@ The skew-symmetric part of Ricci curvature could be interpret
as an electromagnetic tensor (Faraday 2-form) via coupling
constant related to cosmological constant A (some realisation
of Einstein idea of unified theory),

© |In first order of approximation it provides to generalised
Born-Infeld theory,

@ In second order of approximation it provides to
Einstein-Maxwell theory with cosmological constant

| want to apply the last (traceless) part of Riemann curvature part
and believe, that it could describe some kind of dark matter.




QUESTIONS?



