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Preface

The present book deals with the spectral geometry of infinite graphs.
This topic involves the interplay of three different subjects: geometry,
the spectral theory of Laplacians and the heat flow of the underlying
graph. These three subjects are brought together under the unifying
perspective of Dirichlet forms.

The spectral geometry of manifolds is a well-established field of
mathematics. On manifolds, the focus is on how Riemannian geom-
etry, the spectral theory of the Laplace–Beltrami operator, Brownian
motion and heat evolution interact. In the last twenty years large parts
of this theory have been subsumed within the framework of strongly
local Dirichlet forms. Indeed, this point of view has proven extremely
fruitful.

The spectral geometry of graphs concerns discrete objects. For
graphs, geometry is encoded in combinatorial notions, the Laplacian
is a difference operator and the heat evolution is given by a Markov
jump process. Developments in this area often come about as a dis-
crete analogue to the situation on manifolds. In particular, the spectral
geometry of graphs appears in approximation procedures. However, it
can also be studied without any reference to manifolds.

Our point of view is fundamentally different: our perspective is that
of Dirichlet forms. In this context, manifolds and graphs are treated on
an equal footing. Specifically, manifolds provide the prototype for local
Dirichlet forms and graphs provide the prototype for non-local Dirichlet
forms. Therefore, conceptually, the similarities result from the common
context of Dirichlet forms and the differences are a consequence of the
local as opposed to non-local character.

Beyond the conceptual beauty of this approach, it also offers vari-
ous practical advantages. As far as results are concerned, there is no
need for restrictive boundedness assumptions on the geometry of the
underlying graph. At the same time, the reader is offered a very ac-
cessible introduction to the powerful theory of Dirichlet forms. In fact,
our approach enables the reader to quickly reach cutting-edge research
topics with a minimum number of prerequisites.

The structure of this book. We now discuss the structure of this
book. The Prelude, Chapter 0, presents many of the relevant ideas in
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vi PREFACE

the context of finite graphs. In this part of the book, the reader will
already encounter the main players and concepts in a finite-dimensional
context. This chapter will be accessible to undergraduate students who
have seen basic linear algebra, analysis, some probability theory and
ordinary differential equations. It can be used for a one-semester topics
course at this level. Alternatively, individual sections can be used to
motivate topics studied in full generality in later chapters, or Chapter 0
can be skipped altogether.

The actual discussion of infinite graphs starts after the Prelude with
Chapters 1 and 2. Here, Chapter 1 covers all of the basic notions and
concepts needed for a discussion of infinite graphs. This material is
used virtually everywhere in the book. Chapter 2, on the other hand,
covers some more advanced tools as well as additional aspects needed in
specific places only. So, the reader may skip Chapter 2 at first reading
and only come back to the relevant parts of it as needed.

In fact, the first section of Chapter 1 already presents the setting of
infinite graphs and the connection to Dirichlet forms and the Laplacian.
Besides introducing basic quantities, this section also has the character
of a summary as it collects all essential definitions. Therefore, having
read the first section of Chapter 1, the reader can jump into any of
the following chapters as they should now be familiar with the basic
concepts and notations. In fact, the reader is invited to explore the
topics of the book by browsing through the chapters. Each chapter
starts with a summary and care has been taken to ensure that the
chapters can be used independently of each other. Thus, depending on
the interest of the reader, any of the numerous topics can be pursued,
offering substantial flexibility.

In this way, Chapter 1 together with a choice of subsequent chapters
can serve as a basis for a one-year graduate course. This course will only
require some basic topics from functional analysis. The more advanced
tools which are necessary to deal with the material are provided in a
series of appendices at the end of the book. In this way, the spectral
geometry of graphs gives a wonderful opportunity to learn abstract
operator-theoretic concepts “on the job.”

Following Chapter 0, the book is divided into three parts. Part 1,
which consists of Chapters 1 to 7, deals with “Foundations and funda-
mental topics.” As discussed already, the first chapter discusses all of
the basic objects needed for the theory. A core theme of the remain-
ing chapters is how various quantities and concepts of interest can be
investigated via generalized solutions.

Part 2, Chapters 8 to 10, deals with “Classes of graphs.” In this
part, we study graphs with a uniformly positive measure, graphs with
a spherical symmetry and graphs with suitable sparseness properties.
Taken together, these are the most common models encountered in the
study of infinite graphs.
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Part 3, Chapters 11 to 14, deals with “Geometry and intrinsic met-
rics.” In this part, the geometry of graphs is approached via the re-
cently developed tool of intrinsic metrics for graphs.

Each part of the book starts with a brief synopsis and each chapter
begins with a summary giving an overview of the contents. As men-
tioned previously, the Prelude, Chapter 0 is an independent portion
of the book which can be used for an undergraduate course. As such,
Chapter 0 has an extended nontechnical introduction to give a general
mathematical and scientific context for our viewpoint on graphs. Fi-
nally, the book concludes with a series of appendices summarizing the
required background from spectral theory and the theory of Dirichlet
forms required for parts of the book starting with Chapter 1.

A word about the * sections. There are a few sections where
neither the results nor the notations are necessary to understand the
remaining parts of the book. To indicate this, these sections are marked
with a * in the title.

A word about the exercises. There are three types of exercises
found at the end of each chapter, separated into the categories of Ex-
cavation, Example and Extension.

The Excavation Exercises serve the purpose of recalling (and in
this sense “excavating”) prerequisites from linear algebra, probability
and functional analysis and applying them in the context of the book.
These exercises can be used in a course to bring students up to speed
and to enliven their background knowledge. However, as their purpose
is to make the prerequisites transparent, they are only mentioned at
the beginning of each section so that they do not interrupt the flow of
the presentation.

The Example Exercises let the reader apply the theory to concrete
examples. In some cases, the topics of an entire chapter can be worked
out for a particular example. These exercises may either serve as a
review and summary of the chapter or they may be split up and used
to illuminate topics found in specific sections. Thus, they are usually
not explicitly mentioned within the text.

Finally, the Extension Exercises consist of material that goes be-
yond the core of our theory and in this sense “extends” the perspective
of the reader. In some cases, these are interesting observations that
illuminate a certain aspect and, in other cases, they provide a link to
related topics which are not treated exhaustively in the book. These
exercises appear as remarks within the text.
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A word about the historical notes. Each chapter ends with
notes discussing the history of the subject as well as pointing out cor-
responding references. Furthermore, at the end of the notes of Chap-
ters 0 and 1, we include standard references which intersect with the
topics treated in this book.
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Synopsis

A graph is a geometric structure on a set of vertices. At the same
time, a graph comes with both a Dirichlet form and a Laplacian defined
on the set of functions on its vertices. The interplay between this
geometric structure and the spectral theory of the Laplacian is a main
focus of this book. Certain unboundedness features of the geometry
as well as boundary structures can only occur if the underlying set of
vertices is infinite. Still, many phenomena of interest already appear
in the case of finite graphs. This is discussed in this part. The material
of this part is not necessary in order to understand the later parts. On
the other hand, the reader may glance through this part in order to
gain perspective and motivation for later considerations.



CHAMBER 0

Finite Graphs

I don’t know how you all see it, when it comes to the children.
Wu-Tang is for the children. We teach the children.

ODB.

The concept of a graph is one of the most fundamental mathematical
concepts ever conceived. Graphs inherently appear in many branches of
mathematics and natural sciences. Occurrences of graphs in real world
questions range from the spreading of diseases in biology to computer
and electrical networks in engineering to lattice gauge theory in elemen-
tary particle physics, amongst other manifestations. In mathematics,
graphs are unavoidable as they appear (implicitly) whenever there is
a relation between objects. In particular, they play a most prominent
role in various combinatorial questions. At the same time, graphs often
come about via approximation schemes when dealing with a continuous
setting.

At its core, the concept of a graph allows us to give a precise mean-
ing to the notion of a neighbor. This naturally extends to a notion of
a neighborhood and, more generally, to the idea of a space being con-
nected. These notions clearly have a geometric flavor, which starts on a
local scale and extends outwards. As such, many questions investigated
for graphs can be seen as dealing with the interplay between local and
global geometric features of the graph. This perspective underlies our
book.

A very natural question in the context of graphs concerns the prop-
agation in time of various quantities within a graph. This includes, for
example, quantities such as information, energy, or heat. Clearly, the
geometry of the graph will determine the change in the distribution of
the entity in question over time. Hence, understanding the geometry
will allow us to understand the propagation. Conversely, investigation
of the propagation can be used to understand the geometry.

The basic model for such propagation is given by a heat equation
in Section 5. In analytic terms, the solution of a heat equation is pro-
vided by a semigroup of operators satisfying certain positivity prop-
erties. The operators which arise from graphs automatically satisfy
these properties. Conversely, any semigroup of operators on a discrete
space with such positivity properties can be seen to arise from a graph.
Hence, there is a one-to-one correspondence between graphs and such
semigroups. Having set up this framework, the long-term behavior of

3



4 0. FINITE GRAPHS

systems modeled by the heat equation can then conveniently be de-
scribed via spectral theory, see Section 7.

It turns out that probability theory allows us to give a completely
different (though equivalent) approach to the heat equation via the
theory of Markov processes on discrete spaces. This is discussed in
Section 10. It is rather remarkable that these two different branches
of mathematics give solutions to the same problem and this underlines
the relevance of our models.

While propagation deals with dynamics arising from graphs and
their geometry, there is also a more static point of view given in Sec-
tion 4. In this view, graphs serve as a basic model in the description
of the electric currents in a system of wires in electrostatic equilib-
rium. Equivalently, one may think of the flow of a liquid in a system of
tubes. In this context, graphs are often referred to as networks. Cru-
cial problems in this context are the Poisson equation and the capacitor
problem. Graphs then give rise to solutions of the capacitor problem
with certain properties and vice versa. So, here again, we encounter a
one-to-one correspondence between graphs and solutions of an analytic
problem with specific properties.

It is by no means obvious and, in fact, rather surprising that graphs
can serve as models for the description of so many different physical
problems. These problems include both the heat equation and elec-
trostatics in the discrete setting. Analytically, the connection comes
about via a self-adjoint operator known as a graph Laplacian which is
introduced in Section 1. This Laplacian generates the semigroup aris-
ing in the study of the heat equation and, at the same time, gives rise
to resolvents in the study of the capacitor problem. These semigroups
and resolvents are introduced in Section 6. It turns out that graph
Laplacians share a feature with the negative of the ordinary second
derivative of a function on the real line, specifically, that they are posi-
tive at a maximum of the function. More importantly, graph Laplacians
are even characterized by this property, as discussed in Section 3. This
shows that graph Laplacians and the Laplacian on Euclidean space
are connected by deep structural ties rather than just by a superficial
analogy.

A convenient way to deal with self-adjoint operators is by means of
quadratic forms. These are mappings of pairs of functions to numbers.
The forms corresponding to graph Laplacians are characterized by com-
patibility with normal contractions. Forms with such a compatibility
are known as Dirichlet forms. They are in a one-to-one correspondence
with graphs, as shown in Section 2.

The preceding discussion unfolds a rather remarkable panorama:
the compatibility of a form with normal contractions is equivalent to
the operator associated to the form sharing features with the second
derivative. This, in turn, can be characterized via solutions to both the
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heat equation and to the capacitor problem. An alternative, but equiv-
alent, point of view is provided by probability via Markov processes.
Any of these features characterizes the structure of a graph.

None of these considerations are restricted to finite graphs. In fact,
as investigated in later chapters, they also apply to infinite graphs.
More generally, the theory of Dirichlet forms encompasses a variety
of other geometric situations which includes Laplacians on Euclidean
space and manifolds. However, what is so special about graphs, and
especially about finite graphs, is that they allow us to give both a
precise and panoramic view of the topic without having to bother with
numerous technical details.

In the context of the overall structure of the present chapter and
of the book, one more remark may be in order. A very convenient
feature of the theory of Dirichlet forms is that it not only deals with
the geometry of the underlying object, which in this case is a graph,
but, at the same time, also includes the concept of something “outside”
of the object. In the language of physics, this means that we are dealing
with an open system. In our context, this leads to having an additional
ingredient, which we call the killing term, in our definition of a graph
when compared to what is usually found as the definition of a graph
in textbooks on graph theory. Having this killing term at our disposal,
we are able to capture numerous phenomena without having to look at
case distinctions.

1. Graphs, Laplacians and Dirichlet forms

In this section we introduce the three key objects of our consid-
erations. These are graphs, Laplacians and Dirichlet forms. We will
show in the subsequent sections that these three types of objects are
in one-to-one correspondences with each other.

To recall and apply some basic facts from linear algebra and analysis
the reader may want to solve the Excavation Exercises 0.1, 0.2, 0.3
and 0.4 found at the end of the chapter. These exercises review the
basics of the discrete topology, quadratic forms, the Hilbert space of
interest and the notion of self-adjointness.

1.1. Graphs. We introduce the basic concepts of graphs and the
arising degree function.

Finite graphs are usually defined as combinatorial objects with a
finite set of vertices and a set of edges connecting the vertices. More
generally, graphs can be considered as having weights on the edges. In
the subsequent definition, these notions are captured via a finite set X
and a suitable function b on X ×X. Moreover, the definition features
an additional ingredient given by a function c : X −→ [0,∞). This
ingredient may come as a surprise to the reader familiar with graphs
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from other contexts. It is intimately linked to the overall perspective of
Dirichlet forms taken in this book. As such, the relevance of c unfolds
in detail in subsequent sections. Here, we already comment on this
relevance in the remarks following the definition.

Definition 0.1 (Graph over finite X). Let X be a finite set. A
graph over X or a finite graph is a pair (b, c) consisting of a function
b : X ×X −→ [0,∞) satisfying

• b(x, y) = b(y, x) for all x, y ∈ X
• b(x, x) = 0 for all x ∈ X
and a function c : X −→ [0,∞). If c(x) = 0 for all x ∈ X, then
we speak of b as a graph over X (instead of (b, 0)). The elements of
X are called the vertices of the graph. The map b is called the edge
weight . More specifically, a pair (x, y) with b(x, y) > 0 is called an edge
with weight b(x, y) connecting x to y. The vertices x and y are called
neighbors if they form an edge. We write x ∼ y in this case. The map
c is called the killing term.

Figure 1. A subgraph of the two-dimensional Euclidean lattice and
the graph induced by the edges and vertices of the icosahedron.

Figure 2. The first spheres of a regular tree and a rooted regular tree.

Remark. In Figures 1 and 2 some basic examples of finite graphs
are displayed. While c = 0 in the first three examples, in the case of
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the rooted tree in Figure 2 the dotted line at the root indicates that
c does not vanish at this vertex. How these figures relate precisely to
our definition of a graph is elaborated in the next remark.

Remark (How our definition compares to definitions found in
graph theory). As the function b is symmetric, there is an edge con-
necting x to y if and only if there is an edge (with the same weight)
connecting y to x. As b vanishes on the diagonal, there is no edge from
a vertex to itself. Thus, our graphs are weighted undirected graphs
without loops in the sense of graph theory. On the other hand, c is
not usually included in the definition of a graph. It is a special feature
arising from the perspective on graphs we take, that is, the perspective
of Dirichlet forms on discrete spaces. As we will show later, with b
and c, graphs and symmetric Dirichlet forms over X are in a one-to-
one correspondence, see Theorem 0.22. Similarly, graphs and operators
satisfying a maximum principle are in a one-to-one correspondence, see
Theorem 0.24. Such operators are called graph Laplacians. These two
correspondences give analytic characterizations of graphs.

The presence of c as well as b also naturally connects to the sto-
chastic point of view, as seen when we first look at solutions of the
heat equation. Here, it is natural to expect that given a positive ini-
tial distribution of heat which is bounded above, the amount of heat
should remain positive and bounded above (with the same bound).
This turns out to be exactly the case when the semigroup is associated
to a graph Laplacian arising from a graph involving both b and c, see
Theorem 0.49. Analytically, the presence of c captures the possibility
of losing heat during the time of the heat flow as can happen geomet-
rically due to boundary conditions. This possibility of losing heat is
described in Corollary 0.62 and Theorem 0.65.

We also note that restrictions to subsets of forms associated to
graphs are again forms associated to graphs only if we allow for a non-
vanishing c (Exercise 0.31).

Finally, the presence of both b and c gives a one-to-one correspon-
dence between graphs and Markov processes (which, in turn, are deter-
mined by either the Dirichlet form or the Laplacian). This is discussed
towards the end of Subsection 10.1. From this viewpoint, b encodes
how the process jumps between points of X and c captures the pos-
sibility of the process leaving X. One way of visualizing c is that the
value of c indicates the weight of a connection from that vertex to some
additional point (often called the graveyard or cemetery) outside of X.
This explains the name killing term for c.

In summary, it is only by including c in the definition that we are
able to capture natural analytic and probabilistic aspects of discrete
Dirichlet spaces.
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Example 0.2 (Graphs with standard weights). If b takes values in
{0, 1} and c(x) = 0 for all x ∈ X, then we speak of a graph b with
standard weights . In this case, the set of edges E is given by

E = {(x, y) ∈ X ×X | b(x, y) = 1}.

An important geometric quantity that comes with a graph (b, c)
over X is the vertex degree. In our context, this is defined as follows.

Definition 0.3 (Degree). Let (b, c) be a graph over a finite set X.
The degree is the function deg : X −→ [0,∞) given by

deg(x) =
∑
y∈X

b(x, y) + c(x).

Example 0.4 (Combinatorial degree). If b is a graph with standard
weights over X, then

deg(x) =
∑

y∈X,b(x,y)=1

1 = #{y ∈ X | y ∼ x}

for x ∈ X. In this case, deg(x) is the number of neighbors of x and
deg is called the combinatorial degree.

Notation. Whenever f is a real-valued function on X, we write
f = 0 if f(x) = 0 for all x ∈ X. Likewise, we write f ≥ 0, f ≤ 0, f > 0
or f < 0 whenever these inequalities hold at all vertices of X. We will
call functions satisfying f ≥ 0 positive and functions satisfying f > 0
strictly positive.

Furthermore, we will use the notation
∑

x,y∈X for the double sum∑
x∈X

∑
y∈X starting with the next subsection and throughout the rest

of the book.

1.2. Forms and Laplacians on graphs. Any graph over a finite
set comes with a form, a Laplacian and a matrix. We now introduce
these objects.

To a finite set X we associate the real vector space C(X) of all
functions f : X −→ R. A natural basis for C(X) consists of charac-
teristic functions 1x which take the value 1 at x and are 0 otherwise.
For f ∈ C(X) we denote by supp f the support of f , which is the set
where f is non-zero, that is, supp f = {x ∈ X | f(x) 6= 0}. We say
that a function has full support if f is non-zero everywhere, that is,
supp f = X.

A linear map L : C(X) −→ C(X) is called an operator on C(X).
Clearly, to any operator L, there exists a unique function l : X×X −→
R with

Lf(x) =
∑
y∈X

l(x, y)f(y)

for all f ∈ C(X) and x ∈ X. A direct calculation gives that l(x, y) =
L1y(x). We say that L is the operator on C(X) induced by the matrix
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l and l is the matrix associated to L. Of particular relevance to us is
the case when l is symmetric, i.e., satisfies

l(x, y) = l(y, x)

for all x, y ∈ X. We say that L is an operator on C(X) with symmetric
matrix if l is symmetric or call L a symmetric operator in this case.

A form over X is a map

Q : C(X)× C(X) −→ R

which is bilinear, i.e., satisfies

Q(αf + g, h) = αQ(f, h) +Q(g, h)

and

Q(f, αg + h) = αQ(f, g) +Q(f, h)

for all f, g, h ∈ C(X) and all α ∈ R. A form Q is called symmetric if
Q satisfies Q(f, g) = Q(g, f) for all f, g ∈ C(X). For the values of Q
on the diagonal {(f, f) | f ∈ C(X)} of C(X) × C(X) we will use the
notation

Q(f) = Q(f, f).

In particular, when Q is symmetric, we get

Q(f + g) = Q(f) + 2Q(f, g) +Q(g).

If Q is a form, then there exists a unique function l : X ×X −→ R
with

Q(f, g) =
∑
x,y∈X

l(x, y)f(x)g(y)

for all f, g ∈ C(X). We call Q the form induced by the matrix l and
l the matrix associated to Q. We note that Q(1x, 1y) = l(x, y) for all
x, y ∈ X and Q(1x, 1) =

∑
z∈X l(x, z) where 1 denotes the function

which is 1 on all vertices. In particular, Q is symmetric if and only if
the associated matrix l is symmetric.

If l is a symmetric matrix over X with associated form Q and
associated operator L, then

Q(f, g) =
∑
x,y∈X

l(x, y)f(x)g(y) =
∑
y∈X

(Lf)(y)g(y) =
∑
x∈X

f(x)(Lg)(x)

for all f, g ∈ C(X). In this case, we will speak of L as being the
operator associated to the form Q and Q being the form associated to
the operator L. Hence, defining any one of these three objects, namely,
either the matrix l, the form Q or the operator L, uniquely determines
the other two associated objects.

After this general introduction to matrices, operators and forms,
we now focus on the matrix, operator and form which arise naturally
from a graph (b, c) over X. We start with the form Qb,c.
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Definition 0.5 (Form associated to a graph). Let (b, c) be a graph
over a finite set X. The form Qb,c acting on C(X)× C(X) by

Qb,c(f, g) =
1

2

∑
x,y∈X

b(x, y)(f(x)−f(y))(g(x)−g(y))+
∑
x∈X

c(x)f(x)g(x)

is called the form associated to the graph (b, c) or the energy form.

We note by direct calculation that

Qb,c(1x) =
∑
y∈X

b(x, y) + c(x) = deg(x)

and

Qb,c(1x, 1y) = −b(x, y)

whenever x 6= y. Furthermore,

Qb,c(1x, 1) = c(x)

for all x ∈ X.
Clearly, Qb,c is symmetric. Furthermore, by definition, Qb,c has the

following feature: if f, g ∈ C(X) satisfy |f | ≤ |g| and |f(x) − f(y)| ≤
|g(x)− g(y)| for all x, y ∈ X, then

Qb,c(f) ≤ Qb,c(g).

Symmetric forms with this feature are referred to as Dirichlet forms.
We will see that all symmetric Dirichlet forms arise as forms associated
to graphs.

We next introduce the operator associated to the form Qb,c.

Definition 0.6 (Laplacian). Let (b, c) be a graph over a finite set
X. The operator Lb,c acting on C(X) by

Lb,cf(x) =
∑
y∈X

b(x, y)(f(x)− f(y)) + c(x)f(x)

is called the Laplacian associated to the graph (b, c).

This Laplacian satisfies a remarkable feature known as the maxi-
mum principle, namely,

Lb,cf(x) ≥ 0

whenever f has a non-negative maximum at x ∈ X. While this is a
direct consequence of the definition, a rather surprising amount of infor-
mation can be extracted from this maximum principle. Furthermore,
as we will see later, the validity of this maximum principle actually
characterizes Laplacians arising from graphs.

A direct computation shows that Qb,c and Lb,c are induced by the
same matrix lb,c, which we introduce next.
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Definition 0.7 (Matrix associated to a graph). Let (b, c) be a
graph over a finite set X. The matrix lb,c given by

lb,c(x, y) =

{
−b(x, y) if x 6= y∑

z∈X b(x, z) + c(x) if x = y

is called the matrix associated to the graph (b, c). We say that (b, c)
induces the matrix lb,c.

As b is symmetric, so is lb,c. As the form and the Laplacian associ-
ated to a graph (b, c) are both induced by the matrix lb,c, we immedi-
ately obtain the following relation between them.

Proposition 0.8 (Green’s formula). Let (b, c) be a graph over a
finite set X. Let Qb,c and Lb,c be the form and Laplacian associated to
(b, c). For all f, g ∈ C(X),

Qb,c(f, g) =
∑
x∈X

(Lb,cf)(x)g(x) =
∑
x∈X

f(x)(Lb,cg)(x).

One of the goals of this chapter is to characterize the matrices,
forms and operators induced by graphs within the class of all sym-
metric matrices, forms and operators. We will start by characterizing
symmetric matrices induced by graphs.

Lemma 0.9 (Characterizing matrices arising from graphs). Let X
be a finite set. Let l : X ×X −→ R be a symmetric matrix. Then, the
following statements are equivalent:

(i) There exists a graph (b, c) such that l = lb,c. (“Graph”)
(ii) The matrix l satisfies

l(x, y) ≤ 0

for all x, y ∈ X with x 6= y and∑
z∈X

l(x, z) ≥ 0

for all x ∈ X. (“Matrix”)

Moreover, if (i) and (ii) hold, then the graph (b, c) which induces l
satisfies c = 0 if and only if

∑
z∈X l(x, z) = 0 for all x ∈ X.

Proof. (i) =⇒ (ii): Let l = lb,c be the matrix associated to a graph
(b, c). By the definition of lb,c, l(x, y) = −b(x, y) ≤ 0 for all x 6= y as
b(x, y) ≥ 0. Furthermore,∑

z∈X

l(x, z) = l(x, x) +
∑
z 6=x

l(x, z) =
∑
z∈X

b(x, z) + c(x)−
∑
z 6=x

b(x, z)

= c(x) ≥ 0

for all x ∈ X as b(x, x) = 0. This gives (ii).
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(ii) =⇒ (i): Define b : X ×X −→ R for x 6= y by

b(x, y) = −l(x, y) and b(x, x) = 0.

Define c : X −→ R by

c(x) =
∑
z∈X

l(x, z).

Then, (b, c) is a graph over X by (ii) and the symmetry of l.
Furthermore, by construction, lb,c(x, y) = −b(x, y) = l(x, y) for

x 6= y and

lb,c(x, x) =
∑
z∈X

b(x, z) + c(x) =
∑
z 6=x

b(x, z) + c(x)

= −
∑
z 6=x

l(x, z) +
∑
z∈X

l(x, z) = l(x, x).

Therefore, l is the matrix associated to the graph (b, c). This gives (i).

The last statement is clear from the considerations above. �

1.3. Laplacians and forms on graphs with a measure. We
will next discuss Laplacians as operators on a finite-dimensional Hilbert
space. Although these notions will not be used until Section 5, we in-
troduce them at this point because of the importance of this viewpoint
for the overall theory.

We start by introducing measures on a finite set X. If m : X −→
(0,∞) is a strictly positive function on X, then we can extend m to a
measure of full support on X via

m(A) =
∑
x∈A

m(x)

for all subsets A ⊆ X. Therefore, the pair (X,m) can be seen as a
measure space.

Remark. Technically, we could allow for the function m to take
values in [0,∞). However, in this case, all further considerations are
carried out on the support of m, which is the same as passing from X
to the subset of X where m does not vanish. Hence, for convenience,
we exclude this and only consider the case when m is strictly positive.

Notation. When m is assumed to be strictly positive, then we say
that (X,m) is a finite measure space.

Definition 0.10 (Graph over finite (X,m)). If (X,m) is a finite
measure space and (b, c) is a graph over X, then (b, c) is called a graph
over (X,m).

There are some measures which occur naturally in our setting. Two
of these are introduced next. The first one is general, the second one
requires a graph structure (b, c) over X.
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Example 0.11 (Counting measure). Let m = 1. Then m is called
the counting measure on X. In this case, the measure of a set A ⊆ X
is the number of vertices in the set, i.e.,

m(A) =
∑
x∈A

1 = #A.

Example 0.12 (Normalizing measure). Given a graph (b, c) over
X, we let m(x) = deg(x) =

∑
y∈X b(x, y) + c(x). Whenever we use deg

in the spirit of a measure, we denote it by n and call n the normalizing
measure, i.e., n = deg is given by

n(x) =
∑
y∈X

b(x, y) + c(x).

We note that in the case of graphs with standard weights, i.e., b
taking values in {0, 1} and c = 0, the normalizing measure n satisfies

n(A) = #EA +
1

2
#∂EA

for A ⊆ X where EA = {(x, y) ∈ A× A | x ∼ y} and

∂EA = {(x, y) ∈ (A× (X \ A)) ∪ ((X \ A)× A) | x ∼ y}.
That is, the normalizing measure counts the number of edges within A
plus the number of edges leaving A (Exercise 0.28).

An important geometric quantity which comes with a graph (b, c)
over (X,m) is another type of a vertex degree. This is introduced next.

Definition 0.13 (Weighted degree). Let (b, c) be a graph over
a finite measure space (X,m). The weighted degree is the function
Deg : X −→ [0,∞) given by

Deg(x) =
1

m(x)

(∑
y∈X

b(x, y) + c(x)

)
.

We note that

Deg =
deg

m
,

where deg is the degree function.

Example 0.14 (Weighted degree for counting and normalizing mea-
sure). Let us discuss the function Deg in the case of the counting and
normalizing measures introduced above. In the case of the counting
measure m = 1, we have

Deg =
deg

m
= deg .

In particular, for standard weights and m = 1, Deg is the same as the
combinatorial degree.
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For the normalizing measure m = n = deg, we have

Deg =
deg

n
= 1,

which justifies the name of n. In this case, the weighted degree does
not distinguish between vertices.

Given a measure m, the space C(X) inherits a Hilbert space struc-
ture in a natural way. In this context, we can make full use of the
theory of self-adjoint operators on Hilbert spaces in order to analyze
Laplacians on graphs, especially in the case of infinite graphs considered
later. Here, we introduce the corresponding notations and concepts in
the finite setting.

The vector space C(X) with inner product

〈f, g〉 =
∑
x∈X

f(x)g(x)m(x)

and induced norm

‖f‖ = 〈f, f〉1/2

is complete and, therefore, a Hilbert space. This Hilbert space will be
denoted by `2(X,m). Note that we work here with spaces of real-valued
functions.

A linear map Lm : `2(X,m) −→ `2(X,m) is called an operator on
`2(X,m). Such an operator Lm can be uniquely represented by a matrix
l : X ×X −→ R with

〈Lmf, g〉 =
∑
x,y∈X

l(x, y)f(y)g(x)

for all f, g ∈ `2(X,m). Equivalently,

Lmf(x) =
1

m(x)

∑
y∈X

l(x, y)f(y)

for all f ∈ `2(X,m) and x ∈ X. In fact, a direct calculation gives

l(x, y) = 〈Lm1y, 1x〉.
We call Lm the operator induced by the matrix l on `2(X,m) and we
call l the matrix associated to Lm.

An operator Lm on `2(X,m) is called self-adjoint if Lm satisfies

〈Lmf, g〉 = 〈f, Lmg〉
for all f, g ∈ `2(X,m). Clearly this holds if and only if 〈Lm1y, 1x〉 =
〈1y, Lm1x〉, that is, if and only if

l(x, y) = l(y, x).

Hence, an operator Lm is self-adjoint on `2(X,m) if and only if the
matrix associated to Lm is symmetric.
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It is clear from the preceding discussion that self-adjoint operators
are in one-to-one correspondence with symmetric matrices. Further-
more, if Lm is a self-adjoint operator with an associated symmetric
matrix l, then we can associate a symmetric form Q induced by the
matrix l as before by

Q(f, g) =
∑
x,y∈X

l(x, y)f(x)g(y).

This form will then satisfy

Q(f, g) = 〈Lmf, g〉 = 〈f, Lmg〉.

In this case, we denote the form by QLm and note that the map
Lm 7→ QLm provides a one-to-one correspondence between self-adjoint
operators and symmetric forms.

Let us emphasize that we do not need the measure m in order to
define the form or to define matrices. The measure only enters when
we want to speak about operators on a Hilbert space.

We next define the operator on `2(X,m) that is most prominent
throughout our work.

Definition 0.15 (Laplacian on `2(X,m)). Let (b, c) be a graph
over a finite measure space (X,m). The operator Lb,c,m acting on
`2(X,m) via

Lb,c,mf(x) =
1

m(x)

∑
y∈X

b(x, y)(f(x)− f(y)) +
c(x)

m(x)
f(x)

is called the Laplacian on `2(X,m) associated to the graph (b, c).

We note the following immediate relationship between the Lapla-
cian Lb,c and the Laplacian Lb,c,m on `2(X,m):

Lb,c,mf(x) =
1

m(x)
Lb,cf(x)

for all f ∈ `2(X,m) and all x ∈ X. In particular, we note that

〈Lb,c,m1y, 1x〉 = Lb,c,m1y(x)m(x) = Lb,c1y(x).

Therefore, the matrix associated to Lb,c,m is just the matrix lb,c asso-
ciated to the graph (b, c) as in Definition 0.7. In particular, Lb,c,m is
self-adjoint as lb,c is symmetric. Furthermore, Qb,c is the form asso-
ciated to both Lb,c and Lb,c,m and Green’s formula, Proposition 0.8,
transfers to Lb,c,m as

Qb,c(f, g) = 〈Lb,c,mf, g〉 = 〈f, Lb,c,mg〉

for all f, g ∈ `2(X,m).
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2. Characterizing forms associated to graphs

In this section we give a structural characterization of forms as-
sociated to graphs. This will be based on the concept of a normal
contraction. In fact, we will show that forms associated to graphs are
exactly the forms compatible with normal contractions.

A map C : R −→ R is called a normal contraction if

C(0) = 0 and |C(s)− C(t)| ≤ |s− t|

for all s, t ∈ R. In particular, we note that |C(s)| ≤ |s| for all s ∈ R
when C is a normal contraction.

In the context of normal contractions it is convenient to define

s ∧ t = min{s, t} and s ∨ t = max{s, t}

for real numbers or for real-valued functions s and t.

Example 0.16. The following maps C : R −→ R are normal con-
tractions.

(a) C(s) = |s|.
(b) C(s) = (±s) ∨ 0.
(c) C(s) = s ∧ 1.
(d) C(s) = 0 ∨ (s ∧ 1).

The last normal contraction in the example above maps a real num-
ber s to the number closest to s in [0, 1]. We will denote this normal
contraction as C[0,1], that is,

C[0,1](s) = 0 ∨ (s ∧ 1).

The normal contraction C[0,1] will play a special role in some of the
characterizations below.

Given a form Q on C(X) and a normal contraction C, we will say
that Q is compatible with C if

Q(C ◦ f) ≤ Q(f)

for all f ∈ C(X). Here C ◦ f denotes the composition of C and f .
From the defining properties of a normal contraction we directly infer
the following compatibility of normal contractions and forms associated
to graphs.

Proposition 0.17 (Compatibility of graph forms with normal con-
tractions). Let (b, c) be a graph over a finite set X and let Qb,c be the
form associated to (b, c). If f ∈ C(X) and C is a normal contraction,
then

Qb,c(C ◦ f) ≤ Qb,c(f).
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Proof. As C is a normal contraction, we clearly have |C(f(x))| ≤
|f(x)| and |C(f(x))−C(f(y))| ≤ |f(x)−f(y)| for all x, y ∈ X. Taking
squares we obtain

(C(f(x)))2 ≤ f 2(x) and (C(f(x))− C(f(y)))2 ≤ (f(x)− f(y))2.

This gives the desired statement after multiplying by c(x) and b(x, y)
and taking sums. �

The characterization of forms associated to graphs that we are after
will follow from a converse to this proposition. Our proof of this con-
verse is based on studying forms Q which are compatible with suitable
normal contractions. This will be of interest in other situations as well.
We will need the following auxiliary proposition.

Proposition 0.18 (Representing forms via differences). Let X be
a finite set. Let Q be a symmetric form over X with associated matrix
l : X ×X −→ R. Define bQ : X ×X −→ R and cQ : X −→ R by

bQ(x, y) =

{
−l(x, y) if x 6= y

0 if x = y

and
cQ(x) =

∑
y∈X

l(x, y).

The form Q satisfies

Q(f, g) =
1

2

∑
x,y∈X

bQ(x, y)(f(x)−f(y))(g(x)−g(y))+
∑
x∈X

cQ(x)f(x)g(x)

for all f, g ∈ C(X).

Proof. This follows by a direct computation. By definition,

Q(f, g) =
∑
x,y∈X

l(x, y)f(x)g(y).

Furthermore, by using the definitions of cQ and bQ, we get

l(x, x) =
∑
y∈X

l(x, y)−
∑
y 6=x

l(x, y) = cQ(x) +
∑
y∈X

bQ(x, y).

Therefore,

Q(f, g)

=
∑
x,y∈X

l(x, y)f(x)g(y)

=
∑
x∈X

l(x, x)f(x)g(x) +
∑
x∈X

∑
y 6=x

l(x, y)f(x)g(y)

=
∑
x∈X

(
cQ(x) +

∑
y∈X

bQ(x, y)

)
f(x)g(x)−

∑
x,y∈X

bQ(x, y)f(x)g(y)
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=
∑
x,y∈X

bQ(x, y)f(x)(g(x)− g(y)) +
∑
x∈X

cQ(x)f(x)g(x)

=
1

2

∑
x,y∈X

bQ(x, y)(f(x)− f(y))(g(x)− g(y)) +
∑
x∈X

cQ(x)f(x)g(x),

where in the last equality we use the symmetry of bQ, which follows
from the symmetry of l. �

We note that whenever (bQ, cQ) is a graph over X, the proposition
above says that Q = QbQ,cQ . We will now show that compatibility with
certain normal contractions implies that (bQ, cQ) is indeed a graph. We
start by characterizing the symmetric forms which are compatible with
the absolute value and those which are compatible with the normal
contraction C[0,1] ◦ f = 0 ∨ (f ∧ 1) introduced above.

Lemma 0.19 (Characterization of compatibility with normal con-
tractions). Let X be a finite set. Let Q be a symmetric form over X
with associated matrix l : X ×X −→ R.

(a) The following statement are equivalent:
(i) The form Q satisfies, for all f ∈ C(X),

Q(|f |) ≤ Q(f).

(ii) The matrix l satisfies, for all x 6= y,

l(x, y) ≤ 0.

(b) The following statements are equivalent:
(i) The form Q satisfies, for all f ∈ C(X),

Q(C[0,1] ◦ f) ≤ Q(f).

(ii) The matrix l satisfies, for all x ∈ X and y ∈ X with x 6= y,

l(x, y) ≤ 0 and
∑
z∈X

l(x, z) ≥ 0.

Remark. The proof of the implication (i) =⇒ (ii) in (a) given
below actually shows that Q(|f |) ≤ Q(f) for all f ∈ C(X) is also
equivalent to

Q(f+, f−) ≤ 0

for all f ∈ C(X), where the positive and negative part f± of f are
defined by

f+ = f ∨ 0 and f− = (−f) ∨ 0.

Proof. As shown in Proposition 0.18, we have

Q(f) =
1

2

∑
x 6=y

bQ(x, y)(f(x)− f(y))2 +
∑
x∈X

cQ(x)f 2(x)

with
bQ(x, y) = −l(x, y) for x 6= y
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and

cQ(x) =
∑
z∈X

l(x, z).

This shows the implication (ii) =⇒ (i) in both (a) and (b), compare
the reasoning in the proof of Proposition 0.17.

(i) =⇒ (ii) in (a): Assume that Q satisfies Q(|f |) ≤ Q(f) for all
f ∈ C(X). Let x, y ∈ X with x 6= y and consider f = 1x − 1y, where
1z denotes the characteristic function of z ∈ X. Then, |f | = 1x + 1y.
Hence, the assumption on Q gives

Q(1x + 1y) ≤ Q(1x − 1y).

Invoking the bilinearity and symmetry of Q, we can easily infer

4Q(1x, 1y) ≤ 0.

Since l(x, y) = Q(1x, 1y), the desired statement follows.

(i) =⇒ (ii) in (b): Assume that Q satisfies Q(C[0,1] ◦ f) ≤ Q(f) for
all f ∈ C(X).

We start by showing that l(x, y) ≤ 0 for all x 6= y. By part (a),
which has already been proven, it suffices to show that Q(|f |) ≤ Q(f)
holds for all f ∈ C(X).

Let f ∈ C(X). After replacing f by αf with a suitable α > 0, we
can assume without loss of generality that |f | ≤ 1. Now, consider the
decomposition of f into positive and negative parts f = f+− f− where
f+(x) = f(x) ∨ 0 and f−(x) = −f(x) ∨ 0. Clearly, |f | = f+ + f−. For
s > 0 set

fs = f+ − sf−.
Then, C[0,1] ◦ fs = f+ for all s > 0. Thus, our assumption gives

Q(f+) = Q(C[0,1] ◦ fs) ≤ Q(fs) = Q(f+ − sf−).

Invoking the bilinearity of Q and dividing by s > 0, we can then easily
infer

0 ≤ −2Q(f+, f−) + sQ(f−)

for all s > 0. Letting s→ 0, we obtain

0 ≤ −Q(f+, f−).

Given this inequality, it follows that

Q(|f |) = Q(f+ + f−)

= Q(f+) + 2Q(f+, f−) +Q(f−)

≤ Q(f+)− 2Q(f+, f−) +Q(f−)

= Q(f).

This gives the desired compatibility of Q with | · |.
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We now turn to proving that
∑

z∈X l(x, z) ≥ 0 for all x ∈ X. Let
x ∈ X and consider f = 1 + s1x with s > 0. Then, C[0,1] ◦ f = 1 for all
s > 0 and we obtain by assumption that

Q(1) = Q(C[0,1] ◦ f) ≤ Q(f) = Q(1 + s1x).

By the bilinearity of Q and dividing by s, this implies

0 ≤ 2Q(1, 1x) + sQ(1x).

Letting s→ 0, we obtain

0 ≤ Q(1, 1x) =
∑
z∈X

l(x, z).

This gives the desired inequality for every x ∈ X. �

We are now in position to prove our characterization of symmet-
ric forms associated to graphs in terms of compatibility with normal
contractions.

Theorem 0.20 (Characterization of forms associated to graphs).
Let Q be a symmetric form over a finite set X. Then, the following
statements are equivalent:

(i) There exists a graph (b, c) over X with

Q = Qb,c. (“Graph”)

(ii) The matrix l associated to Q satisfies, for x, y ∈ X with x 6= y,

l(x, y) ≤ 0 and
∑
z∈X

l(x, z) ≥ 0. (“Matrix”)

(iii) For all f ∈ C(X),

Q(C[0,1] ◦ f) ≤ Q(f).

(“Form compatible with one normal contraction”)
(iv) For all normal contractions C and f ∈ C(X),

Q(C ◦ f) ≤ Q(f).

(“Form compatible with normal contractions”)
(v) If f, g ∈ C(X) satisfy, for all x, y ∈ X,

|f | ≤ |g| and |f(x)− f(y)| ≤ |g(x)− g(y)|,
then

Q(f) ≤ Q(g).

Remark. Note that the above shows that compatibility with a
particular normal contraction, namely C[0,1], is equivalent to compat-
ibility with all normal contractions. It can also be shown that this
is equivalent to compatibility with the contraction C(−∞,1] given by
C(−∞,1](s) = s ∧ 1, i.e., Q(f ∧ 1) ≤ Q(f) for all f ∈ C(X) (Exer-
cise 0.29).
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Proof. This follows from the preceding considerations. Indeed,
Lemma 0.9 gives the equivalence between (i) and (ii). The equivalence
between (ii) and (iii) is the content of Lemma 0.19 (b). The implication
(i) =⇒ (v) can be directly read off from the definition of Qb,c and was
also already noted in Subsection 1.2 (compare Proposition 0.17 for a
similar reasoning as well). The implication (v) =⇒ (iv) is clear from
the definition of a normal contraction. Finally, (iv) =⇒ (iii) is obvious
as C[0,1] is a normal contraction. �

The previous result indicates that we should single out forms satis-
fying any one of the equivalent conditions appearing in Theorem 0.20.

Definition 0.21 (Dirichlet form over a finite set). Let X be a finite
set. A form Q on C(X) is called a Dirichlet form if Q satisfies

Q(C ◦ f) ≤ Q(f)

for all f ∈ C(X) and all normal contractions C : R −→ R.

Given the notion of a Dirichlet form, the preceding considerations
directly imply the following result.

Theorem 0.22 (Correspondence Dirichlet forms and graphs). Let
X be a finite set. The map (b, c) 7→ Qb,c gives a bijective correspondence
between graphs (b, c) over X and symmetric Dirichlet forms over X.

Remark. It is also possible to characterize graphs with c = 0 via
forms which are compatible with certain contractions. This will be
discussed in Section 8.

3. Characterizing Laplacians associated to graphs

The Laplacian ∆ acting on smooth functions on Euclidean space via
∆f = −f ′′ has the property that ∆f(x) ≥ 0 whenever a smooth func-
tion f has a maximum at x. Here, we are going to see that Laplacians
on graphs are characterized by a very similar feature. This feature is
called the maximum principle. The validity of this principle means that
Laplacians on graphs can be seen as the negative of taking the second
derivative in a discrete setting. The maximum principle also has strong
consequences for solutions u of equations of the form (L+ α)u = f for
α ≥ 0.

Excavation Exercise 0.5 recalls the equivalence of injectivity, sur-
jectivity and bijectivity for an operator on a finite-dimensional vector
space, which will be used throughout this section.

We start by defining the maximum principle that will characterize
all Laplacians on finite graphs.
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Definition 0.23 (Maximum principle). Let X be a finite set and
let L be an operator on C(X). The operator L is said to satisfy the
maximum principle if

Lf(x) ≥ 0

whenever f ∈ C(X) has a non-negative maximum at x ∈ X.

Remark. Clearly, L satisfies the maximum principle if and only if
Lf(x) ≤ 0 whenever f ∈ C(X) has a non-positive minimum at x ∈ X.

Remark. We have phrased the definition of the maximum principle
without any reference to a measure. However, the inequality in question
remains unchanged if both sides are multiplied by the inverse of the
measure of x. Thus, the operator L associated to a matrix l satisfies
the maximum principle if and only if for one (all) m : X −→ (0,∞) the
operator Lm associated to the matrix l on `2(X,m) satisfies

Lmf(x) ≥ 0

whenever f ∈ `2(X,m) has a non-negative maximum at x ∈ X.

Remark. The definition raises the question if Lf(x) > 0 whenever
f has a non-negative maximum at x. Our subsequent discussion will
show that the vanishing of Lf(x) for all such x is indeed possible if f
is constant. Moreover, under suitable connectedness assumptions, we
will see that the only case when Lf(x) vanishes is when f is constant.

We now show that the maximum principle characterizes Laplacian
operators within the set of symmetric operators on C(X).

Theorem 0.24 (Maximum principle and graphs). Let X be a finite
set and let L be a symmetric operator on C(X). Then, the following
statements are equivalent:

(i) The operator L satisfies the maximum principle.
(ii) There exists a graph (b, c) over X such that L = Lb,c is the Lapla-

cian associated to (b, c).

Proof. (i) =⇒ (ii): Let l be the matrix associated to L. By
Lemma 0.9 it suffices to show that l(x, y) ≤ 0 for all x 6= y and∑

z∈X l(x, z) ≥ 0 for all x ∈ X. Applying the maximum principle
to f = 1, we directly obtain L1(x) =

∑
z∈X l(x, z) ≥ 0 for all x ∈ X.

Applying the maximum principle at x ∈ X to f = −1y for an arbitrary
y ∈ X with y 6= x we infer −L1y(x) = −l(x, y) ≥ 0 so that l(x, y) ≤ 0
for all x 6= y.

(ii) =⇒ (i): As L = Lb,c is the Laplacian associated to a graph (b, c)
it follows that if f has a non-negative maximum at x, then

Lf(x) =
∑
y∈X

b(x, y)(f(x)− f(y)) + c(x)f(x) ≥ 0,

which completes the proof. �
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The maximum principle discussed in the previous theorem is not a
strict analogue to the maximum principle satisfied by the Laplacian ∆
on Euclidean space alluded to at the beginning of this section. In fact,
there is no restriction on the sign of the maximum in the Euclidean
case. This is due to the presence of c in our setting. We now give a
strict analogue.

Definition 0.25 (Strong maximum principle). Let X be a finite
set and let L be an operator on C(X). The operator L is said to satisfy
the strong maximum principle if Lf(x) ≥ 0 holds whenever f ∈ C(X)
has a maximum at x ∈ X.

Hence, the strong maximum principle removes the assumption found
in the maximum principle that the maximum attained by f at x is non-
negative. As such, the maximum principle holds whenever the strong
maximum principle holds. In fact, the relationship between these two
principles can be described as follows.

Lemma 0.26 (Maximum principle and strong maximum principle).
Let X be a finite set and let L be an operator on C(X) satisfying
the maximum principle. The operator L satisfies the strong maximum
principle if and only if

L1 = 0.

Proof. Assume L satisfies the strong maximum principle. Con-
sidering f = 1 and any x ∈ X, we then obtain L1(x) ≥ 0. Similarly,
considering f = −1 and any x ∈ X we obtain −L1(x) ≥ 0. This
implies L1 = 0.

Conversely, assume L1 = 0. Let f ∈ C(X) have a maximum at
x ∈ X. Then, for any s ∈ R, f + s1 also has a maximum at x.
Choosing s so that this maximum is non-negative then gives

Lf(x) = Lf(x) + sL1(x) = L(f + s1)(x) ≥ 0,

where the last inequality is due to the fact that L satisfies the maximum
principle. Therefore, L satisfies the strong maximum principle. �

Note that for a Laplacian Lb,c associated to a graph (b, c), Lb,c1 = 0
if and only if c = 0. Therefore, combining the previous lemma with
Theorem 0.24, we immediately infer the following characterization of
the vanishing of the killing term.

Corollary 0.27 (Strong maximum principle and vanishing c). Let
X be a finite set and let L be a symmetric operator on C(X). Then,
the following statements are equivalent:

(i) L satisfies the strong maximum principle.
(ii) There exists a graph (b, c) over X with c = 0 such that L = Lb is

the Laplacian associated to b.
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The maximum principle has strong consequences for solutions u of
equations of the form (L+ α)u = f for f with a fixed sign and α ≥ 0.
Here, L + α is shorthand notation for L + αI, where I is the identity
operator on C(X). We will now discuss these consequences in some
detail. We will need the following topological assumption in order to
deal with the existence and uniqueness of solutions, i.e., bijectivity of
L + α. The maximum principle will then yield additional features of
the solutions.

Definition 0.28 (Connected component and paths). Let (b, c) be
a graph over a finite set X. Given x, y ∈ X we call a sequence
(x0, x1, . . . , xn) of pairwise distinct vertices a path from x to y if x0 =
x, xn = y and xj ∼ xj+1 for j = 0, 1, . . . , n − 1. We say that a path
(x0, x1, . . . , xn) connects the vertices x0 and xn. We call a subset Y of
X connected if any two vertices in Y can be connected by a path of
vertices in Y . Furthermore, Y is a connected component of X if Y is
connected and Y is not contained in a strictly larger connected subset
of X. A graph (b, c) is called connected if (b, c) has only one connected
component.

Remark. There is an equivalent (and maybe even more elegant)
definition of connected components via saturated sets for which one
does not have to define what it means for a set to be connected first
(Exercise 0.30).

Remark. Whenever a graph without a killing term is connected,
taking a proper subset and restricting the associated form to functions
on the subset gives rise to a graph with a non-vanishing killing term.
In this sense, graphs with non-vanishing c are unavoidable if one wants
compatibility of the forms with restrictions to subsets (Exercise 0.31).

It turns out that connectedness of the graph together with non-
triviality of c makes Lb,c injective (and, therefore, bijective). Specifi-
cally, the following holds.

Lemma 0.29 (Non-vanishing c characterizes the bijectivity of Lb,c).
Let (b, c) be a graph over a finite set X and let Lb,c be the associated
Laplacian on C(X). The operator Lb,c is bijective if and only if c does
not vanish identically on any connected component of (b, c).

Proof. As Lb,c is a linear operator on a finite dimensional vector
space, bijectivity is equivalent to injectivity. Thus, it suffices to char-
acterize injectivity. By restricting attention to a specific connected
component, we can assume without loss of generality that the graph is
connected.

If c = 0, then clearly Lb,c1 = 0. Therefore, Lb,c is not injective in
this case.
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Now, suppose that c does not vanish at all x ∈ X. Let u ∈ C(X)
satisfy Lb,cu = 0. Green’s formula, Proposition 0.8, gives

0 =
∑
x∈X

u(x)Lb,cu(x) = Qb,c(u)

=
1

2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 +
∑
x∈X

c(x)u2(x).

As all terms appearing in the sums are non-negative, we infer u(x) =
u(y) whenever b(x, y) > 0 and u(x) = 0 whenever c(x) 6= 0. As the
graph is connected, the first set of conditions implies u is constant
and the second set of conditions implies u = 0 as c does not vanish
identically. Therefore, Lb,c is injective. �

Remark. Note that injectivity of Lb,c is equivalent to Qb,c being
an inner product.

Theorem 0.30 (Maximum principle and solutions to (L+α)u = f).
Let X be a finite set and let L be a symmetric operator on C(X) which
satisfies the maximum principle. For any α > 0 and f ∈ C(X) the
equation

(L+ α)u = f

has a unique solution u. Furthermore, 0 ≤ u ≤ 1/α if 0 ≤ f ≤ 1.

Proof. As L satisfies the maximum principle, by Theorem 0.24
there exists a graph (b, c) over X such that L = Lb,c. Therefore, L+ α
is the Laplacian associated to the graph (b, c + α). As c + α > 0 for
α > 0, the operator L + α is bijective by Lemma 0.29. This gives the
existence and uniqueness of the solution u as u = (L+ α)−1f .

Assume now additionally that 0 ≤ f ≤ 1. We first show u ≥ 0. Let
u have a minimum at x ∈ X and assume u(x) < 0. We can then apply
the maximum principle to −u at x to obtain

−Lu(x) ≥ 0.

As u(x) < 0, this gives the contradiction

0 ≤ f(x) = Lu(x) + αu(x) ≤ αu(x) < 0.

By a similar reasoning we can show u ≤ 1/α as follows: Let u have a
maximum at x ∈ X and assume u(x) > 1/α > 0. We can then directly
apply the maximum principle to u at x to obtain the contradiction

1 ≥ f(x) = Lu(x) + αu(x) ≥ αu(x) > 1.

This completes the proof. �

Remark. By the characterization of Theorem 0.24 the assumption
that L is symmetric and satisfies the maximum principle can be re-
placed by the assumption that L = Lb,c for a graph (b, c) over X. A
converse to this theorem also holds, as will be discussed in Section 6.
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The preceding theorem deals with the case α > 0. Thus, it raises
the question of what happens when α = 0, that is, when we wish to
solve Lu = f for a given function f ∈ C(X). In order to address this
problem, we will look at the injectivity of the operator L, i.e., we look
at solutions of Lu = 0.

For Laplacians on graphs, this question has already been addressed
above. Functions u ∈ C(X) which satisfy

Lb,cu = 0

for the Laplacian associated to a graph (b, c) over X are called har-
monic. It is clear that if Lb,c is bijective, then u = 0 is the only
harmonic function. By Lemma 0.29, the operator Lb,c is bijective if
and only if c 6= 0 on every connected component of (b, c). In the case
of c = 0,

Lb1 = 0,

so that all constant functions are harmonic. If, furthermore, the graph
b is connected, then these are the only harmonic functions, as we will
show below, see also the proof of Lemma 0.29.

This discussion implies that the existence and uniqueness as well as
the estimates found in Theorem 0.30 for solutions u of (L+α)u = f for
α > 0 cannot be valid for α = 0 and all symmetric operators satisfying
the maximum principle. However, the existence and uniqueness of so-
lutions to Lu = f is clear when L is a bijective operator. Furthermore,
when L = Lb,c is bijective and the graph is connected we recover a
variant of the estimates found in Theorem 0.30 for the solution u.

In order to show this, we will first discuss some versions of a “Liou-
ville property” for Laplacians associated to graphs.

Lemma 0.31 (Liouville-type properties). Let (b, c) be a connected
graph over a finite set X.

(a) If u ∈ C(X) is harmonic, then u is constant.
(b) If Lb,c on C(X) is bijective, u ∈ C(X) has a non-negative maximum

and Lb,cu(x) = 0 for all x ∈ X at which u takes this maximum,
then u = 0.

Remark. The famous Liouville Theorem asserts that harmonic
functions (i.e., functions satisfying ∆f = 0) in the plane are constant
if they are bounded. Lemma 0.31 gives some variants of this theorem.

Proof. (a) The argument for this already appeared in the proof
of Lemma 0.29. Namely, if u is harmonic, then Proposition 0.8 gives

0 =
∑
x∈X

u(x)Lb,cu(x) =
1

2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 +
∑
x∈X

c(x)u2(x).

As the graph is connected, we obtain that u is constant.
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(b) If u has a non-negative maximum at x, then

0 = Lb,cu(x) =
∑
y∈X

b(x, y)(u(x)− u(y)) + c(x)u(x)

implies u(y) = u(x) for all y ∼ x and c(x)u(x) = 0. Repeating this
argument, we infer that u is constant by the connectedness of the
graph. Since Lb,c is assumed to be bijective, it follows that c 6= 0
by Lemma 0.29. Letting x be such that c(x) 6= 0, we obtain u(x) = 0.
As u is constant, u = 0, which gives the conclusion. �

Corollary 0.32. Let (b, c) be a connected graph over a finite set
X such that the associated Laplacian Lb,c on C(X) is bijective. For
any f ∈ C(X), the equation

Lb,cu = f

has a unique solution. Furthermore, if f satisfies f ≥ 0 and f 6= 0,
then u > 0.

Proof. As Lb,c is bijective, u = L−1
b,cf is the unique solution of

Lb,cu = f .
Assume now that f ≥ 0 with f 6= 0. Then, u satisfies u 6= 0

as otherwise Lb,cu = 0. It remains to show u > 0. Assume there
exists a y ∈ X with u(y) ≤ 0. Consider v = −u. Then, v has a non-
negative maximum. Moreover, at each x where v attains this maximum
we have Lb,cv(x) = −Lb,cu(x) = −f(x) ≤ 0. Since Lb,c satisfies the
maximum principle by Theorem 0.24, it follows that Lb,cv(x) ≥ 0 and
thus Lb,cv(x) = 0 at every maximum. Therefore, by Lemma 0.31, we
infer v = 0 and thus u = 0. This is a contradiction. �

Remark. The proof of the corollary uses the strong Liouville prop-
erty. In fact, it is not hard to generalize the proof to even characterize
a variant of this Liouville property in the following way: If L is a bi-
jective operator on C(X) which satisfies the maximum principle, then
the following statements are equivalent:

(i) The inverse L−1 is positivity improving, i.e., L−1f > 0 whenever
f ≥ 0 and f 6= 0.

(ii) Any function u with a non-negative maximum and Lu ≤ 0 satisfies
u = 0.

Indeed, the implication (ii) =⇒ (i) follows exactly as in the proof of
the corollary. To show the implication (i) =⇒ (ii) let u with Lu ≤ 0
have a non-negative maximum. Assume that u 6= 0. It follows that
f = −Lu does not vanish identically (as L is injective) and satisfies
f ≥ 0. Therefore, (i) implies L−1f = −u > 0, which is a contradiction
to the assumption that u has a non-negative maximum.
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4. Networks and electrostatics

In this section we will discuss a context from physics in which graphs
appear naturally. More specifically, we will show how graphs serve as
the right objects to study electrostatics in a discrete setting. We will
first introduce the necessary background and notations and then turn
to the basic equations of electrostatics and their solutions. The main
focus will be on harmonic functions and three fundamental problems
of electrostatics: the Poisson problem, the Dirichlet problem and the
capacitor problem.

We start by describing our situation and fixing terminology. For
now, we consider a graph (b, c) with c = 0 over a finite set X. Such a
setting is sometimes referred to as a network and written as (X, b). We
will write b for (b, 0), Qb for Qb,0 and Lb for Lb,0. A pair (x, y) ∈ X×X
with b(x, y) > 0 is called an edge. Since (x, y) is an ordered pair, it
is natural to think of edges as being directed, that is, (x, y) is an edge
going from x to y. The set of all edges is denoted by E = E(X, b). The
function w : E −→ R given by

w((x, y)) =
1

b(x, y)

is called the resistance and b is called the conductance in the context
of networks.

For an edge e = (x, y), we call x = s(e) the source of e, y = r(e)
the range of e and e = (y, x) the reverse edge of e. As b is symmetric,
it follows that e ∈ E if and only if e ∈ E. An n-tuple (e1, . . . , en) of
edges is called a cycle if

r(ej) = s(ej+1), j = 1, . . . , n,

where we set en+1 = e1.
A map ϕ : E −→ R is called a flow if ϕ(e) = −ϕ(e). The energy of

a flow ϕ is defined by

E(ϕ) =
1

2

∑
e∈E

ϕ2(e)w(e).

For our subsequent considerations, it may be helpful to keep the
following interpretations of the quantities introduced above in mind:
Consider a static situation of currents in a system of wires or water in
a system of tubes connected at certain joints. This is modeled by a
network with the following correspondences:

• Functions on the vertices correspond to potentials, i.e., (differences
in) voltage or pressure on the joints.
• Flows correspond to electrical currents or water flows.
• Resistance corresponds to electrical resistance or thickness of tubes.
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• Charge distribution corresponds to the Laplacian applied to the po-
tential (Poisson equation of electrostatics).

In this setting, Ohm’s law applies and says that the potential dif-
ference U and the current I are connected to the resistance R via
R = U/I, i.e.,

resistance =
potential difference

flow
.

The corresponding energy is then given by

1

2
UI =

1

2

U2

R
=

1

2
I2R.

We will come back to these interpretations from time to time in what
follows.

We will now investigate flows satisfying certain additional proper-
ties. The first property states that the total flow times the resistance of
edges, i.e., the total potential difference, is equal to 0 along any cycle.

Definition 0.33 (Kirchhoff cycle rule). Let b be a graph over a
finite set X and let ϕ : E −→ R be a flow on (X, b). Then, ϕ is said to
satisfy the Kirchhoff cycle rule (KCR) if

n∑
j=1

ϕ(ej)w(ej) = 0

for any cycle (e1, . . . , en).

Example 0.34 (Flows induced by functions). Let f ∈ C(X). One
checks directly that Ψf : E −→ R defined by

Ψf (e) = (f(r(e))− f(s(e)))b(s(e), r(e)) =
f(r(e))− f(s(e))

w(e)

is a flow satisfying the Kirchhoff cycle rule. It is called the flow induced
by f . Clearly,

Ψf+λg = Ψf + λΨg

for all f, g ∈ C(X) and λ ∈ R.

In fact, the preceding is not just an example but rather the example
of a flow satisfying the Kirchhoff cycle rule. This is the content of the
next proposition.

Proposition 0.35 (Characterization of flows satisfying (KCR)).
Let b be a graph over a finite set X and let ϕ : E −→ R be a flow on
(X, b). Then, the following statements are equivalent:

(i) The flow ϕ satisfies the Kirchhoff cycle rule.
(ii) There exists an f ∈ C(X) with ϕ = Ψf .

In this case, Ψf1 = Ψf2 if and only if f1 − f2 is constant on each
connected component of the graph.
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Remark. The last statement is known in physics as the arbitrari-
ness in fixing the zero of the potential.

Proof. (ii) =⇒ (i): This is discussed in Example 0.34.

(i) =⇒ (ii): Without loss of generality, let (X, b) be connected
as, otherwise, we argue on each connected component of the graph
separately. Fix o ∈ X and let f be a function on X with f(o) = 0. For
any x ∈ X let (x0, . . . , xn) be a path in X with x0 = o and xn = x and
define

f(x) =
n−1∑
j=0

ϕ((xj, xj+1))w((xj, xj+1)).

This is well-defined since ϕ satisfies the Kirchhoff cycle rule. By con-
struction, we then have for x, y with x ∼ y

f(y) = f(x) + ϕ((x, y))w((x, y)),

that is,

f(y)− f(x)

w((x, y))
= (f(y)− f(x))b(x, y) = ϕ((x, y)).

This gives (ii).

We now turn to the last statement: Assume again without loss of
generality that the graph is connected and let Ψf1 = Ψf2 . Thus,

0 = Ψf1−f2 .

Letting f = f1 − f2, we infer

0 =
f(r(e))− f(s(e))

w(e)

for any edge e. As the graph is connected, we conclude that f is
constant. �

The proposition says that functions on the vertices are in one-to-one
correspondence with flows on edges satisfying the Kirchhoff cycle rule.
Accordingly, it is possible to “translate” statements from the world of
functions to the world of flows and vice versa. This will be studied
next.

Proposition 0.36 (Energy via flows and via functions). Let b be
a graph over a finite set X with associated form Qb. If ϕ : E −→ R is
a flow on (X, b) with ϕ = Ψf for f ∈ C(X), then

E(ϕ) = Qb(f).

Remark. This is a version of the equality 1
2
U2

R
= 1

2
I2R discussed

in connection with Ohm’s Law.
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Proof. This follows by a direct computation as

E(ϕ) =
1

2

∑
e∈E

ϕ2(e)w(e)

=
1

2

∑
(x,y)∈E

ϕ2((x, y))
1

b(x, y)

=
1

2

∑
x,y∈X

b(x, y)(f(x)− f(y))2 = Qb(f).

Here, we used ϕ = Ψf , i.e., ϕ((x, y)) = b(x, y)(f(y)− f(x)) in the next
to last line. �

We now turn to a second important property that a flow may satisfy.
This property may be interpreted as stating that the flow into a vertex
equals the flow out of the vertex.

Definition 0.37 (Kirchhoff vertex rule). Let b be a graph over a
finite set X and let x ∈ X. A flow ϕ : E −→ R on (X, b) satisfies the
Kirchhoff vertex rule (KVR) at x if∑

e∈E,r(e)=x

ϕ(e) = 0.

If a flow satisfies the Kirchhoff vertex rule at every vertex, then it is
said to satisfy the Kirchhoff vertex rule (KVR).

Remark. If a flow ϕ satisfies the Kirchhoff vertex rule at x ∈ X,
then ∑

e∈E,s(e)=x

ϕ(e) = 0

(and conversely). This follows since e ∈ E if and only if e ∈ E and
ϕ(e) = −ϕ(e).

Furthermore, for any decomposition of the edge set E1∪̇E2 = Ex =
{e | r(e) = x} we have ∑

e∈E1

ϕ(e) =
∑
e∈E2

ϕ(e).

This gives the interpretation that the flow into a vertex equals the flow
out of a vertex mentioned above.

Remark. By the laws of electrostatics, the current in a network of
wires satisfies both the Kirchhoff cycle rule and the Kirchhoff vertex
rule. Similarly, both Kirchhoff rules are “obvious” for the (static) flow
of water in a network of pipes.

We now give an interpretation of the Kirchhoff vertex rule for flows
coming from functions. We start with the definition of a harmonic
function for a graph. This concept was already introduced in Section 3.
We now extend the definition to subsets of the vertex set.
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Definition 0.38 (Harmonic functions on graphs). Let (b, c) be a
graph over a finite set X with associated Laplacian Lb,c. Let A ⊆ X. A
function f ∈ C(X) is called harmonic on A (with respect to the graph
(b, c)) if

Lb,cf(x) = 0

for all x ∈ A. If f is harmonic on A = X, then f is called harmonic.

Remark. The concept of a harmonic function is defined without
reference to a measure on X. However, f is clearly harmonic on A ⊆ X
with respect to (b, c) if and only if Lb,c,mf = 0 on A for the operator
Lb,c,m associated to (b, c) over the measure space (X,m) for one (all)
choices of m : X −→ (0,∞).

It is not hard to characterize under which conditions ϕ = Ψf satis-
fies KVR. Note that by Lemma 0.35 this characterizes flows satisfying
KVR within the class of flows satisfying KCR.

Lemma 0.39 (Harmonic functions and Kirchhoff vertex rule). Let
b be a graph over a finite set X with associated Laplacian Lb. Let
f ∈ C(X) and let ϕ = Ψf be the flow induced by f . Then, the following
statements are equivalent:

(i) The flow ϕ satisfies the Kirchhoff vertex rule at x ∈ X.
(ii) Lbf(x) = 0.

In particular, ϕ = Ψf satisfies the Kirchhoff vertex rule if and only if
f is harmonic.

Proof. Due to

ϕ((x, y)) = (f(y)− f(x))b(x, y)

this is immediate from the definitions. �

We now study a fundamental problem in electrostatics of networks.
This problem consists of finding the flow generated by a given charge
distribution and subject to fixed voltages at certain points. Giving a
mathematical description of the ideas from physics behind this prob-
lem leads to equations involving the Laplacian of the network. Three
instances of such equations have received special attention. These are
presented next. To do so, we will assume that our network is modeled
by a connected graph (b, c) over a finite set X (even though we could
restrict to the case c = 0).

The Dirichlet problem (DP). There are no charges in the interior
and we are given the voltage at certain points. The desired flow will
then satisfy the Kirchhoff cycle rule. Thus, it is induced by a function.
This function must then be harmonic at all points where there is no
voltage given since the flow satisfies the Kirchhoff vertex rule at all
such points. Thus, we are led to the Dirichlet problem:

Given a subset B ⊆ X (“the boundary”) and a function g on B,
find a function u on X satisfying:
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• Lb,cu = 0 on A = X \B (“u is harmonic on A”)
• u = g on B. (“u takes the value g on the boundary”)

The capacitor problem (CP). There are no charges outside of two
given sets (e.g., metal plates) on which the voltage is fixed as zero and
one, respectively. The desired flow will then satisfy the Kirchhoff cycle
rule. Thus, it is induced by a function. This function must then be
harmonic at all points where there is no voltage given since the flow
satisfies the Kirchhoff vertex rule at all such points. Thus, we are led
to the capacitor problem:

Given two subsets F,G ⊆ X (“the metal plates”), find a function
u on X satisfying:

• Lb,cu = 0 on X \ (F ∪G) (“u is harmonic on X \ (F ∪G)”)
• u = 1 and Lb,cu ≥ 0 on F (“u is 1 and is superharmonic on F”)
• u = 0 and Lb,cu ≤ 0 on G. (“u is 0 and is subharmonic on G”)

The Poisson problem (PP). We are given charges but no further
conditions on the voltage. Thus, we are led to the Poisson problem:

Given a function g on X, find a function u on X satisfying:

• Lb,cu = g.

We will now show how these problems can be solved. In fact, we
will show even more and discuss how unique solvability of the capacitor
problem characterizes Laplacians on graphs.

We begin with a discussion of the Poisson problem. In fact, we have
already discussed problems of this type in Section 3. As the constant
function 1 is in the kernel of Lb,c for c = 0, in general, there is neither
uniqueness nor existence of the solution of Lb,cu = g for a graph (b, c)
over X. However, a slight strengthening of the requirements will give
both existence and uniqueness. This strengthening consists in fixing
the voltage to be zero at one point. This is known as “fixing the gauge.”

Theorem 0.40 (The Poisson problem with a fixed gauge). Let (b, c)
be a connected graph over a finite set X. Let p ∈ X and let g : X \
{p} −→ R. Then, the Poisson problem with a fixed gauge:

• Lb,cu = g on X \ {p}
• u(p) = 0

has a unique solution. Moreover, if g ≥ 0, then u ≥ 0 on X \ {p}.

Proof. Set X̃ = X \ {p} and consider the graph (b̃, c̃) over X̃

with b̃(x, y) = b(x, y) and c̃(x) = c(x) + b(x, p) for x, y ∈ X̃. A direct
calculation shows that u is the desired solution of the Poisson problem
with a fixed gauge if and only the restriction of u to X̃, that is, v = u|X̃
satisfies

Lb̃,c̃v = g.

Note that if we start with v defined on X̃, we extend it by 0 to define
u on X.
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Now, c̃ does not vanish identically on any connected component
of (b̃, c̃) since the graph (b, c) is connected and, hence, p must have
at least one neighbor in every connected component of X̃. Thus, by
Lemma 0.29, Lb̃,c̃ is bijective so the equation Lb̃,c̃v = g on X̃ has a
unique solution v.

Now, suppose g ≥ 0. We wish to show that u ≥ 0. Let x ∈ X \ {p}
be a minimum for u on X \ {p} such that u(x) ≤ 0. We obtain

0 ≤ g(x) = Lb,cu(x) =
∑
y∈X

b(x, y)(u(x)− u(y)) + c(x)u(x) ≤ 0

and thus Lb,cu(x) = 0. Therefore, u(y) = u(x) for all y ∼ x. Repeating
this argument shows that u is constant on the connected component of
X \ {p} which contains x. Now, this connected component has at least
one vertex xp which is connected to p. As u(p) = 0, we have u = 0.
Therefore, u ≥ 0. �

After this discussion of the Poisson problem we now turn to a dis-
cussion of the Dirichlet problem. We note that our analysis of the
Dirichlet problem below actually yields unique solvability of the ca-
pacitor problem. It also gives the existence of the effective resistance
metric found in the literature on networks.

Theorem 0.41 (The Dirichlet problem). Let (b, c) be a connected
graph over a finite set X. Let B ⊆ X with B 6= ∅, A = X \ B and
g : B −→ R. Then, the Dirichlet problem (DP):

• Lb,cu = 0 on A
• u = g on B

has a unique solution. Moreover, for the set

Ag = {h ∈ C(X) | h = g on B}
and f ∈ Ag the following statements are equivalent:

(i) Qb,c(f) = inf{Qb,c(h) | h ∈ Ag}.
(ii) The function f solves the Dirichlet problem (DP).

In particular, there exists a unique minimizer in (i). Moreover, if 0 ≤
g ≤ 1, then 0 ≤ f ≤ 1.

Remark. The theorem above says that the solution of the Dirichlet
problem minimizes energy, as is sensible for a solution to a physical
problem.

Remark. For B = ∅, the corresponding statement is wrong in
general. For example, Lb,cu = 0 does not have a unique solution if
c = 0.

Proof. We will show a series of claims which will prove the theo-
rem (and a bit more).

Claim 1. The solution of (DP) exists and is unique.
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Proof of Claim 1. We transform the problem to an equivalent prob-
lem for which we will establish existence and uniqueness. Let f be a
solution of Lb,cf = 0 on A with f = g on B, that is, let f solve (DP).
For any x ∈ A, we then have

0 = Lb,cf(x)

=
∑
y∈X

b(x, y)(f(x)− f(y)) + c(x)f(x)

=
∑
y∈A

b(x, y)(f(x)− f(y)) +
∑
y∈B

b(x, y)(f(x)− f(y)) + c(x)f(x)

=
∑
y∈A

b(x, y)(f(x)− f(y)) +

(
c(x) +

∑
y∈B

b(x, y)

)
f(x)−

∑
y∈B

b(x, y)g(y)

=
∑
y∈A

b(x, y)(f(x)− f(y)) + d(x)f(x)− h(x)

with

d(x) = c(x) +
∑
y∈B

b(x, y) and h(x) =
∑
y∈B

b(x, y)g(y).

Note that both d and h do not depend on f .

We let L
(D)
A = LbA,d, which we call the Dirichlet Laplacian associ-

ated to the graph (bA, d) over A, given by bA(x, y) = b(x, y) for x, y ∈ A,
d as above and the restriction fA of f to A, we obtain from the above
that

(P) L
(D)
A fA = h on A.

Now, if f is a solution of (DP), then fA solves (P), as shown by the

above calculation. Conversely, any solution f̃ of (P) becomes a solution

f to (DP) after extending f̃ by g on B. This gives:

f solves (DP) ⇐⇒ fA solves (P).

Therefore, it suffices to show that (P) has a unique solution, that

is, L
(D)
A is bijective. By construction, L

(D)
A is the Laplacian associated

to the graph (bA, d) over A. Thus, by Lemma 0.29, it suffices to show
that d does not vanish on any connected component of A, where the
connected components are defined with respect to bA. Let Z be such
a connected component. Invoking the definition of d, it suffices to find
x ∈ Z and y ∈ B with b(x, y) > 0. First, we choose an arbitrary
y′ ∈ B and o ∈ Z. As the graph is connected there exists a path
(x0, x1, . . . , xn) in (X, b) with x0 = o and xn = y′. Let j be the smallest
index such that xj does not belong to Z. Then, letting y = xj, y
belongs to B as otherwise it would belong to Z since Z is a connected
component. Thus, x = xj−1 ∈ Z and y = xj ∈ B satisfy b(x, y) > 0.
This finishes the proof of Claim 1.

Claim 2. Any minimizer of Qb,c on Ag solves (DP).
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Proof of Claim 2. Suppose that there exists an f ∈ Ag with

Qb,c(f) = min{Qb,c(h) | h ∈ Ag}.

Let ϕ be an arbitrary function supported on A. Then, f + λϕ belongs
to Ag for all λ ∈ R. Thus, the function

λ 7→ Qb,c(f + λϕ) = Qb,c(f) + 2λQb,c(f, ϕ) + λ2Qb,c(ϕ)

has a minimum at λ = 0. Taking the derivative at λ = 0 yields

0 = Qb,c(f, ϕ) =
∑
x∈X

Lb,cf(x)ϕ(x)

by Green’s formula, Proposition 0.8. As ϕ supported in A was arbi-
trary, we conclude that Lb,cf = 0 on A.

Claim 3. There exists a minimizer of Qb,c on Ag.
Proof of Claim 3. Let (fn) be a sequence in Ag with

lim
n→∞

Qb,c(fn) = min{Qb,c(h) | h ∈ Ag}.

It follows that (Qb,c(fn)) is a bounded sequence. Let o be an arbi-
trary point in B. Then, fn(o) = g(o) for all n ∈ N as fn ∈ Ag. As
we will show below, the boundedness of (Qb,c(fn)) together with the
boundedness of (fn(o)) implies that (fn(x)) is bounded for any x ∈ X.
By choosing a suitable subsequence we can, without of loss of general-
ity, assume that (fn) converges pointwise to a function f . Obviously,
f ∈ Ag and

Qb,c(f) = Qb,c

(
lim
n→∞

fn

)
= lim

n→∞
Qb,c(fn) = min{Qb,c(h) | h ∈ Ag}.

Thus, f is a minimizer of Qb,c on Ag.
It remains to show the desired boundedness of (fn(x)) for x ∈ X.

Let x ∈ X and let γ = (x0, . . . , xn) with x0 = o and xn = x be a path
from o to x. Then, for any function u, we have by the Cauchy–Schwarz
inequality

|u(x)− u(o)|

≤
n−1∑
j=0

|u(xj)− u(xj+1)|

=
n−1∑
j=0

|u(xj)− u(xj+1)|b(xj, xj+1)1/2 · 1

b(xj, xj+1)1/2

≤

(
n−1∑
j=0

(u(xj)− u(xj+1))2b(xj, xj+1)

)1/2(n−1∑
j=0

b(xj, xj+1)−1

)1/2

≤ Q
1/2
b,c (u)C(γ)



4. NETWORKS AND ELECTROSTATICS 37

with C(γ) =
(∑n

j=1 b(xj, xj+1)−1
)1/2

. Applying this to fn and noting

that fn(o) = g(o) for all n since o ∈ B, we get

|fn(x)− g(o)| ≤ C(γ)Q
1/2
b,c (fn).

As (Qb,c(fn))n is bounded and C(γ) does not depend on n, it follows
that (fn(x))n is bounded.

Claim 4. If 0 ≤ g ≤ 1, then 0 ≤ f ≤ 1.
Proof of Claim 4. Recall that C[0,1] ◦ f = 0∨ f ∧ 1. If f ∈ Ag, then

C[0,1]◦f ∈ Ag since C[0,1]◦g = g. Therefore, C[0,1]◦f is also a minimizer
of Qb,c as Qb,c is a Dirichlet form and thus Qb,c(C[0,1]◦f) ≤ Qb,c(f). The
already proven uniqueness then gives f = C[0,1] ◦ f , which is equivalent
to 0 ≤ f ≤ 1.

By combining the preceding statements we now prove the theo-
rem: Claim 1 yields the existence and uniqueness of solutions to (DP).
Claim 2 shows the implication (i) =⇒ (ii). Furthermore, in Claim 3, we
have shown the existence of a minimizer of Qb,c on Ag. We next turn to
(ii) =⇒ (i): The solution of (DP) and the minimizer of Qb,c on Ag both
exist and are unique by the considerations above. As the minimizer of
Qb,c on Ag solves (DP) by Claim 2, it coincides with the unique solu-
tion of (DP). Thus, this unique solution minimizes Qb,c on Ag. Finally,
the last statement of the theorem follows from Claim 4. �

A consequence of Theorem 0.41 is the existence of the so-called
effective resistance Weff. We discuss this next. By letting B = {x, y}
for x, y ∈ X with x 6= y and g : B −→ R by g(x) = 0 and g(y) = 1, we
obtain the following result.

Corollary 0.42 (Existence of effective resistance). Let b be a con-
nected graph over a finite set X and let x, y ∈ X with x 6= y. Then,
there exists a unique f = fx,y with f(x) = 0, f(y) = 1 and Lbf = 0 on
X \ {x, y}. This f is the minimizer of Qb on

Ax,y = {h ∈ C(X) | h(x) = 0, h(y) = 1}.

Remark (Effective resistance and the resistance metric). The name
effective resistance arises from an interpretation in electrostatics as fol-
lows: Put a normalized voltage between x and y. The effective resis-
tanceWeff(x, y) of the entire network is then determined viaWeff(x, y) =
U/I where U = 1− 0 is the difference in voltage between x and y and
I is the arising current. As the energy E is given by E = UI, we can
replace I by E/U and obtain Weff(x, y) = U2/E = 1/E. Now, the
energy E is given by Qb(fx,y) and the formula

Weff(x, y) =
1

Qb(fx,y)

follows.
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The effective resistance can be expressed by the following remark-
able formula (Exercise 0.32 (a))

Weff(x, y) = max{(f(x)− f(y))2 | Qb(f) ≤ 1}.
Indeed, the effective resistance defines a metric (Exercise 0.32 (c*)).
However, it is somewhat easier to see that

r(x, y) = W
1/2

eff (x, y), x 6= y

and r(x, y) = 0 for x = y defines a metric as well (Exercise 0.32 (b)).

As another consequence of Theorem 0.41, we also obtain the exis-
tence and uniqueness of solutions to the capacitor problem.

Corollary 0.43 (Capacitor problem). Let (b, c) be a connected
graph over a finite set X with associated Laplacian Lb,c. Let F,G ⊆ X
be subsets of X with F ∩ G = ∅ and F ∪ G 6= ∅. Then, the capacitor
problem (CP):

• u = 1 and Lb,cu ≥ 0 on F
• u = 0 and Lb,cu ≤ 0 on G
• Lb,cu = 0 on X \ (F ∪G)

has a unique solution. This solution is given by the unique minimizer
of Qb,c on

A = {h ∈ C(X) | h ≥ 1 on F , h ≤ 0 on G}
and satisfies 0 ≤ u ≤ 1.

Proof. By Theorem 0.41, the problem

• Lb,cu = 0 on X \ (F ∪G)
• u = 1 on F and u = 0 on G

has a unique solution which satisfies 0 ≤ u ≤ 1. Furthermore, for
x ∈ F ,

Lb,cu(x) =
∑
y∈X

b(x, y)(u(x)− u(y)) + c(x)u(x)

=
∑
y∈X

b(x, y)(1− u(y)) + c(x) ≥ 0.

For x ∈ G,

Lb,cu(x) =
∑
y∈X

b(x, y)(u(x)− u(y)) + c(x)u(y) = −
∑
y∈X

b(x, y)u(y) ≤ 0.

Therefore, u is a solution of the capacitor problem. It is unique as the
solution of the Dirichlet problem is unique by Theorem 0.41.

Moreover, this solution is the unique minimizer of Qb,c on

Ag = {h ∈ C(X) | h = 1 on F , h = 0 on G}
with g = 1F . Now, obviously Ag ⊆ A. As Qb,c is a Dirichlet form and
C[0,1]A = Ag, the desired statement on the minimizer follows. �
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We are now ready to prove a characterization of Dirichlet forms
in electrostatics. Note that, although we have always formulated the
capacitor problem for Lb,c, it can just as well be formulated for a general
symmetric operator L. However, if we have unique solutions, L is
immediately the Laplacian associated to a connected graph, as the
following result shows.

Theorem 0.44 (Characterization of graphs in electrostatics). Let
X be a finite set and let Q be a symmetric form over X with associated
operator L. Then, the following statements are equivalent:

(i) There exists a graph (b, c) over X such that b is connected or c does
not vanish identically on any connected component with L = Lb,c
and Q = Qb,c.

(ii) Every capacitor problem (CP) for L on X has a unique solution.

Proof. (i) =⇒ (ii): By Corollary 0.43 there is a unique solution
on every connected component of the graph whose intersection with
the set F ∪ G from the capacitor problem is non-empty. In the case
of a connected component whose intersection with F ∪ G is empty,
the capacitor problem reduces to finding a harmonic function on this
component. Clearly, the constant function 0 is harmonic and non-
vanishing c on this component yields uniqueness of this solution.

(ii) =⇒ (i): Let l be the matrix of L, so Lf(x) =
∑

y∈X l(x, y)f(y)

for all f ∈ C(X) and x ∈ X. By Lemma 0.9, in order for L to be equal
to Lb,c for a graph (b, c) over X we need to show l(x, y) ≤ 0 for x 6= y
and

∑
y∈X l(x, y) ≥ 0 for all x ∈ X.

Let x ∈ X and let 1x be the characteristic function of {x}. If
F = {x} and G = X \ {x}, then the unique solution u of (CP) must
satisfy u = 1x. Since u solves (CP) for L, we get Lu ≤ 0 on G and,
hence, for all y 6= x,

l(y, x) = L1x(y) ≤ 0.

By the symmetry of Q it also follows that l(x, y) ≤ 0. If F = X, then
u, the unique solution of (CP), must satisfy u = 1 so we obtain from
(CP) that Lu ≥ 0 and, hence,∑

y∈X

l(x, y) = L1(x) ≥ 0

for all x ∈ X. This shows that L and Q are associated to a graph by
Lemma 0.9.

We now show that the graph (b, c) must be connected if c vanishes
on some connected component. Suppose not and let U be a connected
component of (b, c) where c vanishes. Let F,G ⊆ X \ U be such that
F ∪G 6= ∅ and F ∩G = ∅, which is possible since we assumed that (b, c)
is not connected. Since (F ∪G)∩U = ∅ the capacitor problem reduces
to Lb,cu = 0 on U . Thus, all constant functions on U are solutions to
the capacitor problem on U since c = 0 on U . This contradicts the
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uniqueness of the solutions of the capacitor problem and, therefore,
implies that (b, c) must be connected. �

From Lemma 0.29 we know that c being non-vanishing on any con-
nected component is equivalent to injectivity of the operator Lb,c, which
is equivalent to Qb,c being an inner product. This gives the following
immediate corollary.

Corollary 0.45. Let X be a finite set and let Q be a symmetric
form over X which is an inner product with associated operator L.
Then, the following statements are equivalent:

(i) There exists a graph (b, c) over X with L = Lb,c and Q = Qb,c.
(ii) Every capacitor problem (CP) for L on X has a unique solution.

5. The heat equation and the Markov property

In this section we present another way of looking at graphs and their
associated forms and Laplacians. More specifically, we will show that
Laplacians on graphs are exactly the operators describing a “heat equa-
tion” on a finite set. The mathematical formulation of this connection
requires the concepts of a semigroup and of the Markov property.

See Excavation Exercises 0.6, 0.7 and 0.8 for some of the required
background. More specifically, these exercises review the concept of
the norm of an operator on a Hilbert space, the basics of the semi-
group associated to an operator and how the semigroup behaves for
commuting operators.

Let (X,m) be a finite measure space. We will deal with operators
on `2(X,m). In order to simplify the notation, we will write L instead
of Lm for such operators. Let L : `2(X,m) −→ `2(X,m) be a self-
adjoint operator. A continuously differentiable function ϕ : [0,∞) −→
`2(X,m) is a solution of the parabolic equation associated to L with
initial condition f ∈ `2(X,m) if ϕ satisfies

• ∂tϕt = −Lϕt for t ≥ 0
• ϕ0 = f.

In this context we think of x ∈ X as a space variable and t ∈ [0,∞) as
time.

We want to investigate conditions on L such that the preceding
equation can be thought of as a “heat equation” and the time evolution
gives a “heat diffusion” on the graph. A rather detailed discussion of
such conditions will be given in Section 10. Here, we just note that it
is natural to aim for the following properties:

• If f ≥ 0, then ϕt ≥ 0 for all t ≥ 0.
• If f ≤ 1, then ϕt ≤ 1 for all t ≥ 0.
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Indeed, the first condition states that the amount of heat remains
positive if the initial distribution is positive and the second condi-
tion implies that the diffusion process does not contribute to the total
amount of heat but rather distributes it in time. If L is such that the
above are satisfied for any solution of the parabolic equation, then we
will call the associated equation the heat equation.

Given f ∈ `2(X,m), there exists a unique solution of the parabolic
equation above given by

ϕt = e−tLf.

Here, e−tL is defined via the power series

e−tL =
∞∑
n=0

(−t)n

n!
Ln.

We call e−tL for t ≥ 0 the semigroup associated to the operator L.
Motivated by the above considerations, we say that the semigroup is
positivity preserving if f ≥ 0 implies

e−tLf ≥ 0

for all t ≥ 0. Recall that a function satisfying f ≥ 0 is called positive.
Therefore, the semigroup e−tL is positivity preserving if it maps positive
functions to positive functions.

We say that the semigroup is contracting if f ≤ 1 implies

e−tLf ≤ 1

for all t ≥ 0. If the semigroup e−tL is both positivity preserving and
contracting, then e−tL is called a Markov semigroup and is said to
satisfy the Markov property . We note that the Markov property cor-
responds exactly to the two properties aimed at above. As e−tL satis-
fies the parabolic equation associated to L, it follows that if e−tL is a
Markov semigroup, then e−tLf is a solution of the heat equation with
initial condition f .

We now start towards characterizing the Markov property for semi-
groups e−tL. We will need an auxiliary lemma which does not involve
graphs. In what follows, if A : `2(X,m) −→ `2(X,m) is an operator on
`2(X,m), then ‖A‖ denotes the operator norm of A which is defined
by ‖A‖ = sup{‖Af‖ | f ∈ `2(X,m), ‖f‖ = 1}. In particular, if A and
B are operators on `2(X,m), then ‖AB‖ ≤ ‖A‖‖B‖.

Lemma 0.46 (Lie–Trotter product formula on finite sets). Let (X,m)
be a finite measure space. If A and B are operators on `2(X,m), then

eA+B = lim
n→∞

(e
1
n
Ae

1
n
B)n.

Proof. Set Sn = e
1
n

(A+B) and Tn = e
1
n
Ae

1
n
B for n ∈ N. We want

to show that ‖Snn − T nn ‖ → 0 as n→∞.
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We first note that for any operator L on `2(X,m) we have ‖eL‖ ≤
e‖L‖. Consequently, it follows that

‖Tn‖ ≤ ‖e
1
n
A‖‖e

1
n
B‖ ≤ e

1
n
‖A‖e

1
n
‖B‖ = e

1
n

(‖A‖+‖B‖)

and

‖Sn‖ ≤ e
1
n
‖A+B‖ ≤ e

1
n

(‖A‖+‖B‖).

A telescoping argument gives

Snn − T nn =
n−1∑
j=0

Sjn(Sn − Tn)T n−1−j
n .

Therefore,

‖Snn − T nn ‖ ≤ C1n‖Sn − Tn‖,
where C1 = e(‖A‖+‖B‖). Moreover,

‖Sn − Tn‖ =

∥∥∥∥∥
∞∑
j=0

1

j!

(
A+B

n

)j
−
∞∑
k=0

1

k!

(
A

n

)k ∞∑
l=0

1

l!

(
B

n

)l∥∥∥∥∥
=

∥∥∥∥∥
∞∑
j=2

1

j!

(
A+B

n

)j
−
∑
k+l≥2

1

k!l!

(
A

n

)k (
B

n

)l∥∥∥∥∥
≤ C

1

n2

for some constant C. Therefore,

‖Snn − T nn ‖ ≤
C1C

n
,

which yields the desired statement. �

We now characterize when a semigroup is positivity preserving in
terms of the matrix and the form associated to a self-adjoint operator.

Theorem 0.47 (First Beurling–Deny criterion). Let (X,m) be a
finite measure space. Let L be a self-adjoint operator on `2(X,m) with
associated matrix l and form Q = QL. Then, the following statements
are equivalent:

(i) The matrix elements of the operator L satisfy, for all x, y ∈ X
with x 6= y,

l(x, y) ≤ 0. (“Operator”)

(ii) The form satisfies, for all f ∈ `2(X,m),

Q(|f |) ≤ Q(f). (“Form”)

(iii) The semigroup satisfies, for all f ≥ 0 and t ≥ 0,

e−tLf ≥ 0. (“Semigroup”)
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Remark. The proof below gives yet another characterization of
when a semigroup e−tL, t ≥ 0, is positivity preserving, namely, if and
only if

(iv) |e−tLf | ≤ e−tL|f | for all f ∈ C(X).

Indeed, the “if” is clear and the “only if” is shown at the beginning of
the proof of (iii) =⇒ (ii). This is a useful characterization in various
situations.

Proof. (i) =⇒ (iii): We first decompose L into a diagonal and an
off-diagonal part. More specifically, we write

L = L̃+ D̃,

where L̃ has matrix elements equal to those of L on the off-diagonal

and matrix elements equal to zero on the diagonal and D̃ has matrix
elements equal to those of L on the diagonal and matrix elements equal
to zero on the off-diagonal. The Lie–Trotter formula, Lemma 0.46, then
gives

e−tL = lim
n→∞

(
e−

t
n
L̃e−

t
n
D̃
)n
.

Now, by assumption, −L̃ has only non-negative entries. This is then

also true of e−
t
n
L̃. Also, e−

t
n
D̃ has only non-negative entries as it is a

diagonal matrix with exponential functions on the diagonal. Putting
this together, we infer that e−tL has only non-negative matrix entries.
This gives (iii).

(iii) =⇒ (ii): From (iii) we easily obtain

|e−tLf | ≤ e−tL|f |.

Indeed, write f = f+−f− with f+ = f ∨0 and f− = −f ∨0. Note that
f+ ≥ 0, f− ≥ 0 and |f | = f+ + f−. Now, a direct computation gives

|e−tLf | = |e−tLf+ − e−tLf−|
≤ |e−tLf+|+ |e−tLf−|
= e−tLf+ + e−tLf−

= e−tL|f |.

Here, we used assumption (iii) in the next to last step. From this
preliminary consideration we infer

〈e−tLf, f〉 ≤ |〈e−tLf, f〉| ≤ 〈e−tL|f |, |f |〉.

Moreover, 〈|f |, |f |〉 = 〈f, f〉. This gives

〈(e−tL − I)|f |, |f |〉 ≥ 〈(e−tL − I)f, f〉.

Dividing by t > 0 we infer

〈1
t
(e−tL − I)|f |, |f |〉 ≥ 〈1

t
(e−tL − I)f, f〉.
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Noting that ∂te
−tL = −Le−tL so that ∂te

−tL|t=0 = −L and letting
t→ 0+ in the inequality above then yields

−Q(|f |) = 〈−L|f |, |f |〉 ≥ 〈−Lf, f〉 = −Q(f).

This gives (ii).

(ii) =⇒ (i): This has already been shown in Lemma 0.19 (a). �

Remark. There is another characterization of the first Beurling–
Deny criterion involving the form and taking the maximum and mini-
mum of two functions (Exercise 0.33).

Having dealt with the positivity preserving part of the Markov prop-
erty, we are now going to characterize the contracting part.

Theorem 0.48 (Second Beurling–Deny criterion). Let (X,m) be a
finite measure space. Let L be a self-adjoint operator on `2(X,m) with
associated matrix l and form Q = QL. Then, the following statements
are equivalent:

(i) The matrix elements of the operator L satisfy, for all x, y ∈ X
with x 6= y,

l(x, y) ≤ 0 and
∑
z∈X

l(x, z) ≥ 0. (“Operator”)

(ii) The form satisfies, for all f ∈ `2(X,m),

Q(0 ∨ f ∧ 1) ≤ Q(f). (“Form”)

(iii) The semigroup satisfies, for all t ≥ 0 and 0 ≤ f ≤ 1,

0 ≤ e−tLf ≤ 1. (“Semigroup”)

Proof. (i) ⇐⇒ (ii): This was already shown in Theorem 0.20.

(i)⇐⇒ (iii): The equivalence of l(x, y) ≤ 0 for x 6= y and the semi-
group being positivity preserving was already shown in Theorem 0.47.
For the remaining part, we start with a preliminary consideration. Set
f = L1 so that the statement of (i) is equivalent to f ≥ 0. Consider
now the function ut = e−tL1. This function satisfies u0 = 1 and

∂tut = −Le−tL1 = −e−tLL1 = −e−tLf
for all t ≥ 0. In particular,

lim
t→0+

1

t
(ut − u0) = ∂tut|t=0 = −f.

We now turn to proving the desired equivalence. If (i) holds, then
u satisfies u0 = 1 and ∂tut = −e−tLf ≤ 0, where the last inequality
follows as e−tL is positivity preserving and f ≥ 0 due to (i). This shows
that ut is non-increasing in t and gives

e−tL1 ≤ 1.
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Now, let 0 ≤ f ≤ 1. Then the inequality above implies

0 ≤ e−tLf ≤ e−tL1 ≤ 1

as e−tL is positivity preserving. This shows (iii).
Conversely, if (iii) holds, then we infer

−L1 = ∂te
−tL1|t=0 = lim

t→0+

1

t

(
e−tL − 1

)
≤ 0

from which
∑

z∈X l(x, z) ≥ 0 follows. �

Remark. From the proofs of Theorem 0.20 and Theorem 0.48
above we actually see that, under the assumption l(x, y) ≤ 0 for x 6= y,
the following statements are equivalent:

(i) The matrix elements of the operator L satisfy, for all x ∈ X,∑
z∈X

l(x, z) ≥ 0.

(ii) The form satisfies, for all f ≥ 0,

Q(f ∧ 1) ≤ Q(f).

(iii) The semigroup satisfies, for all t ≥ 0,

e−tL1 ≤ 1.

Furthermore, we note that the condition Q(f ∧1) ≤ Q(f) is equivalent
to the fact that Q is a Dirichlet form (Exercise 0.29).

We now conclude this section with a characterization of the validity
of the Markov property via graphs.

Theorem 0.49 (Characterization of the Markov property). Let
(X,m) be a finite measure space. Let L be a self-adjoint operator on
`2(X,m) with associated form Q = QL. Then, the following statements
are equivalent:

(i) There exists a graph (b, c) over (X,m) with

Q = Qb,c and L = Lb,c,m. (“Graph”)

(ii) The semigroup e−tL, t ≥ 0, satisfies the Markov property, i.e.,

0 ≤ e−tLf ≤ 1 for all 0 ≤ f ≤ 1. (“Semigroup”)

Proof. The statement directly follows by combining the first and
second Beurling–Deny criteria, that is, Theorems 0.47 and 0.48, with
Lemma 0.9. �

Remark. By Theorem 0.22 graphs are in a one-to-one correspon-
dence with Dirichlet forms. Therefore, the preceding theorem implies
that Dirichlet forms are in a one-to-one correspondence with semi-
groups satisfying the Markov property.
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6. Resolvents and heat semigroups

It is rather remarkable that the same mathematical structure (i.e.,
Dirichlet forms) appears prominently in both the theory of the heat
equation and electrostatics. This is not only true in the discrete set-
ting considered in this book but also in the continuous setting. In
the continuous setting, instead of the Laplacian L, one considers the
continuous Laplacian ∆.

In this section, we will discuss some of the general mathematics
connecting the heat equation and electrostatics. Although the results
hold for general self-adjoint positive operators on an arbitrary Hilbert
space, we will stick to the setting of a finite set X with a measure m
and the associated Hilbert space `2(X,m). In order to simplify the
notation, we will write L instead of Lm for operators on this Hilbert
space.

The Excavation Exercises 0.9, 0.10 and 0.11 review some facts of
linear algebra, in particular, the spectral theorem for self-adjoint oper-
ators which is used below.

Our considerations in Section 5 show that the heat equation leads
to the study of semigroups e−tL for t ≥ 0 with the Markov property.
This Markov property means that L is associated to a Dirichlet form or,
equivalently, to a graph. On the other hand, as discussed in Section 4,
electrostatics deals with the energy of a network which is encoded by
a Dirichlet form and leads one to consider basic problems of electro-
statics. These problems, which have various manifestations such as the
Poisson problem, the Dirichlet problem and the capacitor problem, all
involve the Laplacian L associated to a graph. As seen in our discussion
in Section 4, this yields equations of the form

Lu = g,

where it is sometimes necessary to modify the underlying graph.
In this sense, electrostatics naturally leads to the study of the

inverse of the operator L. As L itself may not be invertible, see
Lemma 0.29 for a characterization of the invertibility of L, this leads to
the study of the operators (L+α)−1 for α > 0. As by Green’s formula
all of the eigenvalues of L are non-negative, it follows that L+ α is al-
ways invertible for α > 0, in fact, even for α > −λ0, where λ0 denotes
the smallest eigenvalue of L. The operators (L + α)−1 are known as
resolvents associated to L.

Mathematically, semigroups and resolvents are intimately related.
In fact, each one can be obtained from the other. The corresponding
formulae which we prove in this section are the following:

(L+ α)−1 =

∫ ∞
0

e−tαe−tLdt
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for α > 0 and

e−tL = lim
n→∞

(
n

t

(
L+

n

t

)−1
)n

for all t > 0. The first formula above is referred to as the “Laplace
transform.”

To make sense of these formulae, we think of the arising operators
as matrices and treat the formulae as being meant to hold in each
component separately. A more structural interpretation is possible but
not necessary for the subsequent considerations of this chapter. We
will, however, need this more general interpretation in later chapters.

We will require some preparation in order to provide a proof of
these formulae. Although we think of L as being the Laplacian arising
from a graph, the connection between semigroups and resolvents men-
tioned above hold for general self-adjoint operators with non-negative
eigenvalues.

The Laplacian L is self-adjoint on `2(X,m). As such, all eigenvalues
of L are real. The set of eigenvalues of L is called the spectrum of L
and denoted by σ(L). For any λ ∈ σ(L), we let Eλ be the orthogonal
projection onto the eigenspace of λ. In this situation, the following
simple version of the “spectral theorem” is known from basic linear
algebra:

• EλEµ = 0 for λ 6= µ.
• I =

∑
λ∈σ(L)Eλ.

• L =
∑

λ∈σ(L) λEλ.

Moreover, by

〈f, Lf〉 = Q(f, f) ≥ 0

we infer that all of the eigenvalues of L are non-negative.
This allows us to express both the semigroup e−tL and the resolvents

(L + α)−1 easily via the projections Eλ. Indeed, the above formulae
directly give

Ln =
∑
λ∈σ(L)

λnEλ

for any natural number n. This immediately implies

∞∑
n=0

cnL
n =

∑
λ∈σ(L)

ϕ(λ)Eλ

whenever ϕ(z) =
∑∞

n=0 cnz
n is a power series converging for all z ∈ C.

In particular, we infer for the semigroup that

e−tL =
∑
λ∈σ(L)

e−tλEλ

for any t ≥ 0.
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As for the resolvents, we note for α > 0 that

Rα =
∑
λ∈σ(L)

(λ+ α)−1Eλ =
∑
λ∈σ(L)

1

λ+ α
Eλ

clearly satisfies the equations

Rα(L+ α) = (L+ α)Rα = I.

Thus, Rα is the inverse of (L+ α) and we obtain

(L+ α)−1 =
∑
λ∈σ(L)

(λ+ α)−1Eλ.

Furthermore, as above,

(L+ α)−n =
∑
λ∈σ(L)

(λ+ α)−nEλ

for all natural numbers n.
The above considerations clearly hold for any self-adjoint operator

with non-negative eigenvalues and not only the Laplacian L. For the
proof of the following lemma, we recall the elementary identity ex =
limn→∞(1 + x

n
)n, which implies that

e−tλ =
1

etλ
= lim

n→∞

(
1

1 + tλ
n

)n

= lim
n→∞

(
n

t

(
λ+

n

t

)−1
)n

.

Lemma 0.50 (Laplace transform). Let (X,m) be a finite measure
space. Let L be a self-adjoint operator on `2(X,m) with non-negative
eigenvalues.

(a) For all α > 0,

(L+ α)−1 =

∫ ∞
0

e−tαe−tLdt.

(“Laplace transform”)
(b) For all t > 0,

e−tL = lim
n→∞

(
n

t

(
L+

n

t

)−1
)n

.

Proof. (a) The discussion above gives

e−tαe−tL =
∑
λ∈σ(L)

e−t(α+λ)Eλ and (L+ α)−1 =
∑
λ∈σ(L)

1

λ+ α
Eλ.

Now, the desired statement follows easily by integration.

(b) As follows from the discussion above, for all natural numbers n
we have

e−tL =
∑
λ∈σ(L)

e−tλEλ and

(
n

t

(n
t

+ L
)−1
)n

=
∑
λ∈σ(L)

( n
t

n
t

+ λ

)n
Eλ.
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Now, the desired statement follows easily from

lim
n→∞

(
1

1 + tλ
n

)n

= e−tλ.

This completes the proof. �

The previous lemma is valid for any self-adjoint operator with non-
negative eigenvalues. If L is the Laplacian associated to a graph, then
e−tL also satisfies the Markov property and this gives another charac-
terization of the Laplacian on graphs as follows.

Corollary 0.51. Let (X,m) be a finite measure space. Let L be a
self-adjoint operator on `2(X,m) with non-negative eigenvalues. Then,
the following statements are equivalent:

(i) For all t ≥ 0 and all f ∈ `2(X,m) with 0 ≤ f ≤ 1,

0 ≤ e−tLf ≤ 1.

(ii) For all α > 0 and all f ∈ `2(X,m) with 0 ≤ f ≤ 1,

0 ≤ α(L+ α)−1f ≤ 1.

(iii) There exists a graph (b, c) over (X,m) with L = Lb,c,m.

Proof. The equivalence between (i) and (ii) follows easily from
the formulae given in Lemma 0.50 above. The equivalence between (i)
and (iii) was shown in Theorem 0.49. �

7. A Perron–Frobenius theorem and large time behavior

In this section we study positivity improving semigroups, existence
of ground states and large time behavior of the heat equation. In a
sense, we study how heat spreads both instantaneously (small time
behavior) and as time goes to infinity (large time behavior).

Excavation Exercises 0.9, 0.10 and 0.11 giving the spectral theo-
rem used for the previous section will also be helpful for this section.
Furthermore, Exercise 0.12 recalls the variational characterization of
the bottom of the spectrum while Exercise 0.13 reviews the concepts
of direct sums of Hilbert spaces and operators.

We start by identifying the property of operators which will be of
interest.

Definition 0.52 (Positivity improving). An operatorA : `2(X,m) −→
`2(X,m) is called positivity improving if Af > 0 whenever f ≥ 0 with
f 6= 0.

Recall that functions satisfying f ≥ 0 are called positive and func-
tions satisfying f > 0 are called strictly positive. Hence an operator is
positivity improving if it maps non-trivial positive functions to strictly
positive functions.
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We next show that, for semigroups and resolvents, positivity im-
provement can be characterized by connectedness of the graph. Recall
from Definition 0.28 that we call a subset of a graph connected if any
two vertices in the subset can be connected by a path in the subset.
A maximal connected subset is called a connected component of the
graph and a graph is called connected if the graph consists of a single
connected component.

We note that for any subset U ⊆ X, the space `2(X,m) can
naturally be decomposed into `2(U,mU) ⊕ `2(X \ U,mX\U), where
mU and mX\U denote the restrictions of m to U and X \ U , respec-
tively. Furthermore, we note that if U is a connected component of X,
then L = Lb,c,m maps `2(U,mU) to `2(U,mU) and `2(X \ U,mX\U) to
`2(X \U,mX\U). Hence, L can be written as LU ⊕LX\U acting on the
direct product `2(U,mU)⊕ `2(X \ U,mX\U), where LU means that L
is restricted to `2(U,mU). This will be used in what follows.

Proposition 0.53 (Characterization of positivity improving semi-
groups and resolvents). Let (b, c) be a graph over a finite measure space
(X,m) with associated Laplacian L = Lb,c,m. Then, the following state-
ments are equivalent:

(i) The semigroup e−tL is positivity improving for one (all) t > 0.
(ii) The resolvent (L+α)−1 is positivity improving for one (all) α > 0.
(iii) The graph (b, c) is connected.

Proof. (i) =⇒ (ii): This follows immediately from the fact that
(L+ α)−1 =

∫∞
0
e−tαe−tLdt, which is shown in Lemma 0.50 (b).

(ii) =⇒ (iii): Suppose that (b, c) is not connected so that there
exists a non-empty connected component U of X with U 6= X. We
may then write L = LU ⊕ LX\U , where LU is the restriction of L to
`2(U,mU) and LX\U of L to `2(X \ U,mX\U). It follows that

(L+ α)−1 = (LU + α)−1 ⊕ (LX\U + α)−1.

Let f ∈ `2(U,mU) be positive and non-trivial. Then (f, 0) ∈ `2(U,mU)⊕
`2(X\U,mX\U), which can be unitarily identified with `2(X,m), is pos-
itive and non-trivial but

(L+ α)−1(f, 0) = ((LU + α)−1f, (LX\U + α)−10) = ((LU + α)−1f, 0)

is not strictly positive. Hence (L+ α)−1 is not positivity improving.

(iii) =⇒ (i): Let f ≥ 0 with f 6= 0. Let ϕ : [0,∞) ×X −→ [0,∞)
via

ϕt(x) = e−tLf(x).

By Corollary 0.51 we have ϕt(x) ≥ 0 for all t ≥ 0 and x ∈ X. We wish
to show that ϕt(x) > 0 for all t > 0 and x ∈ X.

Assume that ϕt0(x0) = 0 for some t0 > 0 and some x0 ∈ X. Then,
t 7→ ϕt(x0) has a minimum at t0. Thus,

∂tϕt0(x0) = 0.
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As ϕt solves ∂tϕt = −Lϕt, this implies

0 = Lϕt0(x0)

=
1

m(x0)

∑
y∈X

b(x0, y)(ϕt0(x0)− ϕt0(y)) +
c(x0)

m(x0)
ϕt0(x0)

= − 1

m(x0)

∑
y∈X

b(x0, y)ϕt0(y).

By ϕ ≥ 0 we conclude ϕt0(y) = 0 for all y ∼ x0. By connectedness of
the graph, we obtain inductively that ϕt0 = 0. This gives the contra-
diction f = et0Lϕt0 = 0. �

Remark. If the heat semigroup is positivity improving, then heat
spreads “instantaneously” over the entire space. This is often referred
to as the infinite propagation speed for the heat equation. Positivity
improving semigroups are also sometimes called ergodic.

Remark. A positivity preserving semigroup Pt = e−tL is positiv-
ity improving if and only if only the trivial subspaces of `2(X,m) are
invariant under the semigroup and multiplication by functions on X
(Exercise 0.34).

We will now focus on the behavior of the semigroup as time goes
to infinity. This will be investigated in two steps. We first show con-
vergence of the semigroup to the eigenspace of the smallest eigenvalue
and then study this eigenspace.

Lemma 0.54 (Speed of convergence). Let L be a self-adjoint op-
erator on `2(X,m). Let λ0 < λ1 be the smallest and second smallest
eigenvalues of L, respectively, and let α = λ1− λ0. If E0 is the orthog-
onal projection onto the eigenspace of λ0, then

‖eλ0te−tL − E0‖ ≤ e−αt.

In particular,
‖e−tL − E0‖ ≤ e−λ1t

if λ0 = 0.

Proof. We write L =
∑n

j=0 λjEj with pairwise different eigenval-
ues λ0 < λ1 < . . . < λn of L and Ej the associated pairwise orthogonal
spectral projections onto the eigenspaces. These are the projections
denoted by Eλ in Section 6. As discussed there,

e−tL =
n∑
j=0

e−tλjEj.

This yields

eλ0te−tL = E0 +
n∑
j=1

e−t(λj−λ0)Ej.
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From this we derive

‖eλ0te−tL − E0‖ ≤ e−(λ1−λ0)t

as follows: Let f ∈ `2(X,m). We use the fact that the Ej are pairwise
orthogonal twice to get

‖(eλ0te−tL − E0)f‖2 =
n∑

j,k=1

e−t(λj−λ0)e−t(λk−λ0)〈Ejf, Ekf〉

(Ej pairwise orthogonal) =
n∑
j=1

e−2t(λj−λ0)‖Ejf‖2

≤ e−2αt

n∑
j=0

‖Ejf‖2

(Ej pairwise orthogonal) = e−2αt‖
n∑
j=0

Ejf‖2

= e−2αt‖f‖2.

Since this holds for all f ∈ `2(X,m), taking square roots yields the
conclusion. �

The result above shows that eλ0te−tL converges exponentially to E0,
the orthogonal projection onto the eigenspace of λ0. In particular, if
λ0 = 0, we get that the semigroup e−tL converges exponentially to E0.

We will now investigate the properties of E0 in the case when the
graph is connected. The following result is known as the Perron–
Frobenius theorem and states that the eigenspace of λ0 is one-dimensional.
We recall that by the variational characterization of the bottom of the
spectrum we have λ0 = inf Q(f), where the infimum is taken over all
f ∈ `2(X,m) with ‖f‖ = 1.

Theorem 0.55 (Perron–Frobenius). Let (b, c) be a connected graph
over a finite measure space (X,m). Let L = Lb,c,m be the associated
Laplacian with form Q = Qb,c and let λ0 be the smallest eigenvalue of
L with E0 the associated orthogonal projection. Then, the eigenspace
of λ0 is one-dimensional and there exists a unique normalized strictly
positive eigenfunction u corresponding to λ0 with

E0f = 〈u, f〉u
for all f ∈ `2(X,m).

Proof. We first note the following general fact.

Claim. A normalized function u is an eigenfunction corresponding
to λ0 if and only if Q(u) = λ0.

Proof of the claim. If Lu = λ0u with ‖u‖ = 1, then Q(u) =
〈Lu, u〉 = λ0‖u‖2 = λ0.
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Conversely, let u be normalized with Q(u) = λ0. Let λ0 < . . . < λn
denote the eigenvalues of L. Writing L =

∑n
j=0 λjEj, we note that

λ0 = Q(u) = 〈u, Lu〉 = 〈u,
n∑
j=0

λjEju〉 =
n∑
j=0

λj‖Eju‖2

with
∑n

j=0 ‖Eju‖2 = ‖u‖2 = 1. This shows Eju = 0 for j ≥ 1 and
E0u = u, so that Lu = λ0u.

We now show that any eigenfunction corresponding to λ0 is either
strictly positive or strictly negative:

Let u be a normalized eigenfunction corresponding to λ0. Then,

λ0 ≤ Q(|u|) ≤ Q(u) = λ0.

Here, we used the variational characterization of λ0 in the first inequal-
ity and that Q is a Dirichlet form in the second inequality. Therefore,

λ0 = Q(|u|).

As |u| is normalized as well, we infer that |u| is also an eigenfunction
corresponding to λ0 by the claim.

We now write u = u+ − u−, where u+ = u∨ 0 and u− = −u∨ 0, so
that |u| = u+ + u−. Then

u+ =
1

2
(|u|+ u) and u− =

1

2
(|u| − u)

are also eigenfunctions corresponding to λ0 (or vanish identically). As-
sume, without loss of generality, that u+ 6= 0. As e−tL is positivity
improving for all t > 0 by Proposition 0.53, we infer

0 < e−Lu+ = e−λ0u+.

This implies

u+ > 0 and u− = 0.

These considerations show that any eigenfunction corresponding to
λ0 has a strict sign. We conclude that the eigenspace of λ0 is one-
dimensional as eigenfunctions with a strict sign cannot be orthogonal
to one another.

Now, as the eigenspace of λ0 is one-dimensional, we then obtain

E0f = 〈u, f〉u

for any normalized eigenfunction u and f ∈ `2(X,m). Hence, any
normalized strictly positive u has the desired properties and is uniquely
determined by these properties. �

We note that λ0 = 0 is equivalent to L being not invertible. We now
use Theorem 0.55 above to give another proof of Lemma 0.29 which
characterizes this property in the case when the graph is connected.



54 0. FINITE GRAPHS

Corollary 0.56 (Characterization of λ0 = 0). Let (b, c) be a con-
nected graph over a finite measure space (X,m), L = Lb,c,m, Q = Qb,c

and λ0 be the smallest eigenvalue of L. Then, λ0 = 0 if and only if
c = 0.

Proof. From Theorem 0.55 and its proof, we know that

λ0 = Q(u) =
1

2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 +
∑
x∈X

c(x)u2(x),

where u is the unique strictly positive normalized eigenfunction corre-
sponding to λ0 which minimizes Q(f) over ‖f‖ = 1. If λ0 = 0, then
c = 0 since u > 0. Conversely, if c = 0, then taking u to be a constant
function such that ‖u‖ = 1 will minimize Q(f) with value λ0 = 0. �

Remark (The case c = 0). In fact, if c = 0, the dimension of the
eigenspace of λ0 = 0 is equal to the number of connected components
of the graph (Exercise 0.35).

We now introduce some terminology related to the quantities pre-
sented above.

Definition 0.57 (Ground state and ground state energy). Let
(b, c) be a connected graph over a finite measure space (X,m) with
associated Laplacian L = Lb,c,m. The smallest eigenvalue λ0 of L is
called the ground state energy and the normalized positive eigenfunc-
tion u corresponding to λ0 is called the ground state.

We also introduce the heat kernel, which arises from the heat semi-
group e−tL.

Definition 0.58 (Heat kernel). Let (b, c) be a graph over a finite
measure space (X,m) with associated Laplacian L = Lb,c,m. The map

p : [0,∞)×X ×X −→ [0,∞)

defined by

e−tLf(x) =
∑
y∈X

pt(x, y)f(y)m(y)

for all t ≥ 0, f ∈ `2(X,m) and x ∈ X is called the heat kernel.

Remark. From the symmetry of the semigroup, which follows from
the self-adjointness of the operator, we note that

pt(x, y) = e−tL1y(x)/m(y) =
1

m(x)m(y)
〈1x, e−tL1y〉

=
1

m(x)m(y)
〈e−tL1x, 1y〉 = e−tL1x(y)/m(x).

The next result connects the heat kernel and the ground state and
ground state energy.
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Theorem 0.59 (Convergence to the ground state and ground state
energy). Let (b, c) be a connected graph over the finite measure space
(X,m). Let L = Lb,c,m be the associated Laplacian with ground state
energy λ0, ground state u and heat kernel p. Let λ1 > λ0 be the second
smallest eigenvalue of L and let α = λ1 − λ0.

(a) For all x, y ∈ X,

|eλ0tpt(x, y)− u(x)u(y)| ≤ e−αt√
m(x)m(y)

.

(“Theorem of Chavel–Karp for finite graphs”)
(b) For all x, y ∈ X,

lim
t→∞

1

t
log pt(x, y) = −λ0.

(“Theorem of Li for finite graphs”)

Proof. To prove (a), first observe that for any f ∈ `2(X,m) we

have |f(x)| ≤ ‖f‖/
√
m(x). Now, the formula for E0 in Theorem 0.55

gives E01y(x)/m(y) = u(x)u(y) while pt(x, y) = e−tL1y(x)/m(y) by
definition. From Lemma 0.54 we then obtain

|eλ0tpt(x, y)− u(x)u(y)| = |e
λ0te−tL1y(x)− E01y(x)|

m(y)

≤ ‖e
λ0te−tL − E0‖‖1y‖
m(y)

√
m(x)

≤ e−αt√
m(x)m(y)

.

This gives (a).

To prove (b), note from the above that

u(x)u(y)− e−αt√
m(x)m(y)

≤ eλ0tpt(x, y) ≤ u(x)u(y) +
e−αt√

m(x)m(y)
.

As u is strictly positive by Theorem 0.55, (b) follows after taking log-
arithms for large t, dividing by t and letting t→∞. �

We now give an immediate corollary which states that the only
eigenvalue which has a strictly positive eigenfunction is the ground
state energy.

Corollary 0.60 (Positive eigenfunctions are multiples of ground
states). Let (b, c) be a connected graph over the finite measure space
(X,m). Let L = Lb,c,m be the associated Laplacian with ground state
energy λ0 and ground state u. If there exists λ ∈ R and v ≥ 0 which is
non-trivial and satisfies Lv = λv, then

λ = λ0 and v = αu

for α > 0.
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Proof. As λ is an eigenvalue, it follows that λ0 ≤ λ since λ0 is the
smallest eigenvalue of L by definition. Now, from Lv = λv we get

e−tLv = e−λtv.

Since v ≥ 0, it follows that

e−λtv(x) = e−tLv(x) =
∑
y∈X

pt(x, y)v(y)m(y) ≥ pt(x, y)v(y)m(y)

for all x ∈ X. Now, choose x0 ∈ X such that v(x0) 6= 0. Then, by
Theorem 0.59 (b) and the estimate above, we get

−λ = lim
t→∞

1

t
log
(
e−λtv(x0)

)
≥ lim

t→∞

1

t
log (pt(x0, x0)v(x0)m(x0)) = −λ0.

Therefore, λ ≤ λ0. Combining the two inequalities gives λ = λ0. That
v = αu for α > 0 then follows as the eigenspace of λ0 is one-dimensional
by Theorem 0.55. �

We finish this section by looking at consequences for the case when
the killing term c vanishes.

Corollary 0.61 (The case c = 0). Let b be a connected graph over
a finite measure space (X,m). If L = Lb,0,m is the associated Laplacian,
λ1 is the second smallest eigenvalue of L and e−tL is the heat semigroup
with heat kernel p, then∣∣∣∣pt(x, y)− 1

m(X)

∣∣∣∣ ≤ e−tλ1√
m(x)m(y)

.

Proof. Since c = 0, the ground state energy is 0 by Corollary 0.56
and the normalized strictly positive eigenfunction is given by the con-
stant function with value 1/

√
m(X) by connectedness. Now, the state-

ment follows from Theorem 0.59 (a). �

Combining the above results yields the following characterization
of the case of a vanishing killing term.

Corollary 0.62 (Characterization of c = 0). Let (b, c) be a con-
nected graph over a finite measure space (X,m) and let L = Lb,c,m be
the associated Laplacian with heat semigroup e−tL and heat kernel p.
Then,

lim
t→∞

pt(x, y) = 0

for all x, y ∈ X if and only if

c 6= 0.

Proof. If c = 0, then pt(x, y)→ 1/m(X) 6= 0 as t→∞ by Corol-
lary 0.61. On the other hand, if c 6= 0, then λ0 > 0 by Corollary 0.56.
Therefore, pt(x, y)→ 0 as t→∞ by Theorem 0.59. �
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Remark. In Theorem 0.59 and Corollary 0.61 one obtains expo-
nential convergence towards the ground state. The rate depends on
the distance between the first two eigenvalues, i.e., the so-called spec-
tral gap. This motivates the study of the spectral gap, which is an
important topic of research.

8. When there is no killing

In the previous sections we have seen various characterizations for
matrices, forms and operators associated to graphs where both an edge
weight and a killing term are present. In this section we consider
characterizations for the case when the killing term vanishes. As such,
this section will provide both a summary of the preceding material and
introduce several new ideas.

We let l be a symmetric matrix on X with associated symmetric
form Q and operator L. That is,∑

x,y∈X

l(x, y)f(x)g(y) = Q(f, g) = Q(g, f)

=
∑
x∈X

Lf(x)g(x) =
∑
x∈X

f(x)Lg(x)

for all f, g ∈ C(X). We note that if any one of l, Q or L is associated
to a graph, then all three are associated to the same graph. That is,
any one of the equalities l = lb,c, Q = Qb,c or L = Lb,c for a graph (b, c)
over X, implies that all three equalities are true. The same is clearly
true for a graph b over X.

We will first recall the characterizations for matrices, forms and
operators associated to graphs (b, c). We will then discuss the case of
no killing, i.e., when c = 0 for each of the objects. In some cases, this
has already been done in the previous sections, in other cases, we will
introduce new ideas.

We start with matrices. Lemma 0.9 shows that l is associated to a
graph (b, c) if and only if

l(x, y) ≤ 0 for all x 6= y and∑
y∈X

l(x, y) ≥ 0 for all x ∈ X.

Furthermore, Lemma 0.9 also shows that l is a matrix associated to a
graph b if and only if

l(x, y) ≤ 0 for all x 6= y and∑
y∈X

l(x, y) = 0 for all x ∈ X.
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Hence, we see that the difference between graphs with c 6= 0 and c = 0
is precisely encoded in the sum

∑
y∈X l(x, y). Indeed, it is the case that

c(x) =
∑
y∈X

l(x, y)

when connecting graphs and matrices. This gives the matrix perspec-
tive on both graphs (b, c) as well as graphs b over X.

We next discuss the Dirichlet form characterization for graphs. We
recall that Q is a Dirichlet form if and only if Q is compatible with all
normal contractions C, that is,

Q(C ◦ f) ≤ Q(f)

for all f ∈ C(X) and all normal contractions C. Theorem 0.20 shows
that Q = Qb,c if and only if Q is a Dirichlet form. In fact, Theorem 0.20
gives even more information as it states that Q is a Dirichlet form if
and only if Q is compatible with C[0,1], where C[0,1] ◦ f = 0 ∨ f ∧ 1,
if and only if |f(x) − f(y)| ≤ |g(x) − g(y)| and |f | ≤ |g| imply that
Q(f) ≤ Q(g) for all f, g ∈ C(X). This gives the form perspective on
graphs (b, c).

For the form perspective on graphs b over X, i.e., graphs without
killing, we start by defining the notion of a contraction. We call a map
C : R −→ R a contraction if

|C(s)− C(t)| ≤ |s− t|
for all s, t ∈ R. Hence, the difference between a contraction and a
normal contraction is that we do not require that C(0) = 0 for a
contraction. Note, in particular, that

C(s) = s ∨ 1 = max{s, 1}
is a contraction which is not normal. We now present a counterpart to
Theorem 0.20 characterizing symmetric forms which are associated to
graphs b over X.

Theorem 0.63 (Characterization of forms associated to graphs
with no killing). Let Q be a symmetric form over a finite set X. Then,
the following statements are equivalent:

(i) There exists a graph b over X such that Q = Qb.
(ii) For all f ∈ C(X),

Q(f) ≥ 0 and Q(f ∨ 1) ≤ Q(f).

(iii) For all contractions C and f ∈ C(X),

Q(C ◦ f) ≤ Q(f).

(iv) If f, g ∈ C(X) satisfy |f(x)−f(y)| ≤ |g(x)−g(y)| for all x, y ∈ X,
then

Q(f) ≤ Q(g).
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Proof. (i) =⇒ (iv): If |f(x)−f(y)| ≤ |g(x)−g(y)| for all x, y ∈ X,
then clearly

b(x, y)(f(x)− f(y))2 ≤ b(x, y)(g(x)− g(y))2

so that Qb(f) ≤ Qb(g).

(iv) =⇒ (iii): Since |C(f(x)) − C(f(y))| ≤ |f(x) − f(y)| for all
contractions C, it follows that Q(C ◦ f) ≤ Q(f).

(iii) =⇒ (ii): Since C ◦ f = f ∨ 1 is a contraction, it follows that
Q(f ∨ 1) ≤ Q(f). Furthermore, taking the contraction C ◦ f = 0 for
all f ∈ C(X) gives

0 = Q(0) = Q(C ◦ f) ≤ Q(f)

for all f ∈ C(X).

(ii) =⇒ (i): We first note that

0 ≤ Q(1) = Q(0 ∨ 1) ≤ Q(0) = 0

so that Q(1) = 0. By applying the Cauchy–Schwarz inequality to the
matrix elements of Q, it then follows that Q(f, 1) = 0 for all f ∈ C(X).

Next, we observe that f+ = f ∨ 0 = lims→0(f ∨ s). For s 6= 0,
f ∨ s = s((f/s) ∨ 1) so that

Q(s((f/s) ∨ 1)) = s2Q((f/s) ∨ 1) ≤ s2Q(f/s) = Q(f)

by our assumption on Q. Therefore,

Q(f+) = Q(f ∨ 0) ≤ Q(f)

for all f ∈ C(X) by letting s→ 0. A similar reasoning for f− = −f∨0,
gives that

Q(f−) ≤ Q(f).

Now, by checking cases, we obtain

f ∧ 1 = −(f − 1)− + 1.

Therefore,

Q(f ∧ 1) = Q(−(f − 1)− + 1)

= Q((f − 1)−)− 2Q((f − 1)−, 1) +Q(1)

= Q((f − 1)−)

≤ Q(f − 1)

= Q(f)− 2Q(f, 1) +Q(1)

= Q(f).

Hence, as we have shown that both Q(f ∨ 0) ≤ Q(f) and Q(f ∧ 1) ≤
Q(f) for all f ∈ C(X), it follows that

Q(C[0,1] ◦ f) ≤ Q(f).
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Now, Theorem 0.20 implies that there exists a graph (b, c) over X such
that Q = Qb,c. As Q(1) =

∑
x∈X c(x) = 0, it follows that c = 0. This

completes the proof. �

We now recall some of the operator characterizations for graphs
(b, c). First, by Theorem 0.24, L = Lb,c if and only if L satisfies the
maximum principle, that is,

Lf(x) ≥ 0

for any f which achieves a non-negative maximum at x ∈ X. Fur-
thermore, by Corollary 0.51, from the heat semigroup and resolvent
viewpoint, we get that L = Lb,c if and only if

0 ≤ e−tLf ≤ 1

if and only if

0 ≤ (L+ α)−1f ≤ 1

α

for all f ∈ `2(X,m) with 0 ≤ f ≤ 1 and all t ≥ 0 and α > 0.
We now turn to the operator perspective on c = 0. In Corollary 0.27

we have proven the so-called strong maximum principle, which says
that Lf(x) ≥ 0 for any x ∈ X which is a maximum for f . We just
recall it here.

Theorem 0.64 (Characterization of operators associated to graphs
with no killing). Let L be a symmetric operator over a finite set X.
Then, the following statements are equivalent:

(i) There exists a graph b over X such that L = Lb.
(ii) The operator L satisfies the strong maximum principle.

Furthermore, in the case of L = Lb,c where (b, c) is a connected
graph and λ0 is the smallest eigenvalue of L, Lemma 0.29 and Corol-
lary 0.56 give that c = 0 is equivalent to L being not bijective, which
is equivalent to λ0 = 0. In particular, this is also equivalent to the
existence of non-zero harmonic functions for L (which are the constant
functions).

We will now look at the semigroup and resolvent viewpoint on the
lack of a killing term. We have already seen one manifestation of this
in Corollary 0.62 which stated that, in the long term, the heat kernel
will tend to 0 if and only if there is a killing term. Thus, as X is a
finite set, it follows that

e−tL1(x) =
∑
y∈X

pt(x, y)m(y)→ 0

as t→∞ if and only if c 6= 0. This gives the long-term perspective on
heat loss in the presence of a killing term.
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We will now consider the case of short-term behavior. In particular,
we will look at the validity of the equation

e−tL1 = 1

for all t > 0. We note that e−tL1 can be interpreted as the total
amount of heat found within the graph at time t. Hence, the equality
above indicates that no heat is lost at any time during the heat evolu-
tion. Heat semigroups which satisfy this equation are called stochasti-
cally complete or conservative. Otherwise, the heat semigroup is called
stochastically incomplete or non-conservative.

A natural way for this property to fail is to have a killing bound-
ary condition at some vertices, that is, that heat is removed as soon
as it reaches a vertex where killing occurs. As, by Proposition 0.53,
heat spreads instantaneously over any space, it follows that heat is lost
instantaneously in this case. As the result below shows, this killing
is exactly encoded in c and is one of the reasons for the name killing
term.

Theorem 0.65 (Characterization of semigroups associated to graphs
with no killing). Let L be a self-adjoint operator on `2(X,m). Then,
the following statements are equivalent:

(i) There exists a graph b over (X,m) such that L = Lb.
(ii) The semigroup e−tL is positivity preserving and satisfies

e−tL1 = 1

for all t > 0.
(iii) The resolvent (L+ α)−1 is positivity preserving and satisfies

α(L+ α)−11 = 1

for all α > 0.

Proof. (i) =⇒ (ii): That e−tL for L = Lb is positivity preserving
for all t ≥ 0 follows from Corollary 0.51. Furthermore, as c = 0 we get
L1 = 0 and thus Ln1 = 0 for all n ∈ N. As e−tL =

∑∞
n=0(−tL)n/n! it

follows that

e−tL1 = 1.

(ii) =⇒ (i): We first note that e−tL1 = 1 and the positivity preserv-
ing property of e−tL implies that e−tL is contracting, i.e., e−tLf ≤ 1 for
all f ∈ `2(X,m) with f ≤ 1. This follows as when f ≤ 1, we obtain
0 ≤ e−tL(1− f) = e−tL1− e−tLf = 1− e−tLf so that

e−tLf ≤ 1

for all f ∈ `2(X,m) with f ≤ 1 and all t ≥ 0.
Therefore, as 0 ≤ e−tLf ≤ 1 for all f ∈ `2(X,m) with 0 ≤ f ≤ 1 it

follows that L = Lb,c for a graph (b, c) over (X,m) by Corollary 0.51.
Our aim is now to show that c = 0.
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Suppose not, i.e., suppose that c 6= 0. Without loss of generality,
we may assume that (b, c) is connected as otherwise we work on a
connected component where c 6= 0. It follows from Corollary 0.56
that λ0 > 0 where λ0 is the smallest eigenvalue of L. Therefore, the
semigroup e−tL converges exponentially to 0 by Theorem 0.59. As such,
there exists some t > 0 such that e−tL1 < 1. The contradiction shows
that c = 0 so that L = Lb.

(ii) ⇐⇒ (iii): This is immediate from the identities

e−tL = lim
n→∞

(
n

t

(
L+

n

t

)−1
)n

and (L+ α)−1 =

∫ ∞
0

e−tαe−tLdt

found in Lemma 0.50. �

Remark. It is also possible to base a proof of the fact that c =
0 for (ii) =⇒ (i) in Theorem 0.65 above on the Lie–Trotter product
formula (Exercise 0.36). Furthermore, stochastic incompleteness is an
instantaneous phenomenon, i.e., if it happens for one t > 0, then it
happens for all t > 0 (Exercise 0.37).

9. Turning graphs into other graphs*

In this section we study the effect that changing the graph has on
the resolvent. We first show that sending the potential or killing term
to infinity at a point introduces a boundary with Dirichlet boundary
conditions. While no convergence for the operators can be expected, we
show convergence of the resolvents. Secondly, we show how gradually
disconnecting a graph decouples the resolvent.

Let (X,m) be a finite measure space. For two bijective operators
A and B on `2(X,m) the equalities

A−1 −B−1 = A−1(B − A)B−1 = B−1(B − A)A−1

hold. These equalities can be checked directly and are essential for the
considerations of this section. Whenever A−1 and B−1 are resolvents,
these equalities are called the resolvent identities.

Proposition 0.66 (Monotonicity of resolvents). Let (b, c) be a
graph over a finite measure space (X,m) and let L = Lb,c,m be the
associated Laplacian. If c′ ≤ c and L′ = L′b,c′,m, then

〈(L+ α)−1f, g〉 ≤ 〈(L′ + α)−1f, g〉

for all α > 0 and f, g ∈ `2(X,m) with f, g ≥ 0.

Proof. It suffices to consider the case of c and c′ being equal except
at a single vertex o where c′(o) ≤ c(o). Let ϕx = 1x/m(x), λ =
c(o)− c′(o) and let Λ: `2(X,m) −→ `2(X,m) be given by

Λ(·) = 〈·, ϕo〉ϕo.
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A direct calculation gives L − L′ = λΛ. By the resolvent identity, for
all f, g ∈ `2(X,m) with f, g ≥ 0, we have

〈(L′ + α)−1f, g〉− 〈(L+ α)−1f, g〉
= λ〈(L′ + α)−1Λ(L+ α)−1f, g〉
= λ〈(L+ α)−1f, ϕo〉〈(L′ + α)−1ϕo, g〉.

The statement follows since λ ≥ 0 and resolvents are positivity pre-
serving, that is, they map positive functions to positive functions by
Corollary 0.51. �

Given a graph (b, c) over (X,m) we recall the definition of the
Dirichlet Laplacian for a subset K ⊆ X. We let bK = b|K×K , mK =
m|K and

dK(x) = c(x) +
∑

y∈X\K

b(x, y)

for x ∈ K. The Dirichlet Laplacian with respect to K is the Laplacian

L
(D)
K = LbK ,dK ,mK

on `2(K,mK). Equivalently, if πK : `2(X,m) −→ `2(K,mK) is the
canonical projection and iK : `2(K,mK) −→ `2(X,m) is continuation

by zero on K, then L
(D)
K = πKLb,c,miK .

Theorem 0.67 (Turning the potential up to infinity at a vertex
yields a Dirichlet Laplacian). Let (b, c) be a connected graph over a
finite measure space (X,m) and let o ∈ X. Let X ′ = X \ {o} and
for λ ≥ 0 let (b, cλ) be the graph on (X,m) with cλ = c + λ1o. If
f, g ∈ `2(X,m) and α > 0, then

lim
λ→∞
〈(Lb,cλ,m + α)−1f, g〉 = 〈(L(D)

X′ + α)−1πX′f, πX′g〉.

Proof. For x ∈ X, let ϕx ∈ `2(X,m) be given by ϕx = 1x/m(x)
and denote i = iX′ and π = πX′ . Let Lλ = Lb,cλ,m and Gλ = (Lλ+α)−1

for λ ≥ 0. The function

λ 7→ Gλ(x, y) = (Lλ + α)−1ϕx(y) = 〈(Lλ + α)−1ϕx, ϕy〉

is monotone decreasing by Proposition 0.66 and bounded below by 0
by Corollary 0.51. Thus, the following limit exists for all x, y ∈ X

G∞(x, y) = lim
λ→∞

Gλ(x, y).

Let Λ(·) = 〈·, ϕo〉ϕo and note that Lµ − Lλ = (µ − λ)Λ. From the
resolvent formula we infer

Gλ −Gµ = Gλ(Lµ − Lλ)Gµ = (µ− λ)GλΛGµ.
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Taking the matrix elements at x, y ∈ X, setting µ = 0 and using the
symmetry of the operators involved gives

Gλ(x, y)−G0(x, y) = −λ〈GλΛG0ϕx, ϕy〉
= −λ〈ϕx, GλΛG0ϕy〉
= −λ〈ϕx, Gλϕo〉〈G0ϕy, ϕo〉
= −λGλ(x, o)G0(o, y).

Since the graph is connected, by Proposition 0.53 the resolvents are
positivity improving so that G0(o, y) > 0. Therefore, we obtain

lim
λ→∞

λGλ(x, o) = − lim
λ→∞

Gλ(x, y)−G0(x, y)

G0(o, y)
= −G∞(x, y)−G0(x, y)

G0(o, y)

for all x, y ∈ X. In particular, we get limλ→∞Gλ(x, o) = 0 for all
x ∈ X. Therefore, if f = 1o or g = 1o, then, since π1o = 0,

lim
λ→∞
〈(Lλ + α)−1f, g〉 = 0 = 〈(L(D) + α)−1πf, πg〉.

Furthermore, setting y = o in the limit above, we get

lim
λ→∞

λGλ(x, o) =
G0(x, o)

G0(o, o)
.

Since G∞(x, o) = 0, we arrive at

G∞(x, y) = G0(x, y)− lim
λ→∞

λGλ(x, o)G0(o, y)

= G0(x, y)− G0(x, o)

G0(o, o)
G0(o, y).

We now show that

πG∞i(L
(D)
X′ + α) = (L

(D)
X′ + α)πG∞i = I

on `2(X ′,m′), where m′ = m|X′ , which will complete the proof. Note

that L
(D)
X′ f(x) = L0f(x)+ b(x,o)

m(x)
f(o). Let g∞(·) = πG∞(x, ·) = G∞(x, ·),

g0(·) = G0(x, ·) and h0(·) = G0(o, ·). By what we have shown above

g∞ = g0 −
g0(o)

h0(o)
h0.

We calculate, for y 6= o,

(L
(D)
X′ + α)g∞(y) = (L

(D)
X′ + α)g0(y)− g0(o)

h0(o)
(L

(D)
X′ + α)h0(y)

= (L0 + α)g0(y)− g0(o)

h0(o)
(L0 + α)h0(y) +

b(y, o)

m(y)

(
g0(o)− g0(o)

h0(o)
h0(o)

)
= ϕx(y)− g0(o)

h0(o)
ϕo(y) = ϕx(y).
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Since {ϕx}x∈X,x 6=o is a basis for `2(X ′,m′) and g∞(y) = πG∞iϕx(y),
this yields

(L
(D)
X′ + α)πG∞i = I.

On the other hand, since iπ = I−m(o)Λ, L
(D)
X′ = πL0i on `2(X ′,m′),

G∞Λ = 0 and Λiϕ = 0 for ϕ ∈ `2(X ′,m′), we get

G∞i(L
(D)
X′ + α)ϕ = G∞iπ(L0 + α)iϕ

= G∞(I −m(o)Λ)(L0 + α)iϕ

= lim
λ→∞

Gλ(L0 + α)iϕ.

Using the resolvent formula Gλ = G0 − λGλΛG0 we proceed

. . . = G0(L0 + α)iϕ− lim
λ→∞

λGλΛG0(L0 + α)iϕ

= iϕ− lim
λ→∞

λGλΛiϕ

= iϕ.

Hence,

πG∞i(L
(D)
X′ + α) = I.

Thus, we have shown

πG∞i = (L
(D)
X′ + α)−1,

which finishes the proof �

Theorem 0.68 (Turning off an edge disconnects the graph in the
resolvents). Let (b0, c) be a graph over a finite measure space (X,m)
with two connected components X1 and X2 and let x1 ∈ X1 and x2 ∈
X2. Let bλ = b0 + λ1{(x1,x2),(x2,x1)}. Then, for all α > 0,

lim
λ→0+
〈(Lbλ,c,m + α)−1f, g〉 = 0

whenever supp f ⊆ X1 and supp g ⊆ X2.

Proof. Let Lλ = Lbλ,c,m for λ ≥ 0. We start with a claim.
Claim. There exists a C ≥ 0 such that for all λ ≥ 0 and all

f, g ∈ `2(X,m)

|〈(Lλ + α)−1f, g〉| ≤ C‖f‖‖g‖.
Proof of the claim. Let Qλ be the form associated to Lλ for λ ≥ 0.

Then, since bλ(x1, x2) ≥ 0 = b0(x1, x2) and bλ = b0 otherwise, one has

Qλ(ϕ) ≥ Q0(ϕ)

for ϕ ∈ `2(X,m). In particular, for the smallest eigenvalue µ
(λ)
1 of Lλ

with normalized eigenfunction ψ
(λ)
1 ,

µ
(λ)
1 = 〈Lλψ(λ)

1 , ψ
(λ)
1 〉 = Qλ(ψ

(λ)
1 ) ≥ Q0(ψ

(λ)
1 ) ≥ µ

(0)
1 .
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Let the eigenvalues of Lλ be given by 0 ≤ µ
(λ)
1 ≤ . . . ≤ µ

(λ)
N with

orthonormal eigenfunctions ψ
(λ)
1 , . . . , ψ

(λ)
N . It follows that, for all f, g ∈

`2(X,m),

|〈f, (Lλ + α)−1g〉| =

∣∣∣∣∣
N∑
k=1

〈f, ψ(λ)
k 〉〈g, ψ

(λ)
k 〉

µ
(λ)
k + α

∣∣∣∣∣
≤ 1

µ
(λ)
1 + α

N∑
k=1

∣∣∣〈f, ψ(λ)
k 〉〈g, ψ

(λ)
k 〉
∣∣∣

≤ 1

µ
(0)
1 + α

(
N∑
k=1

〈f, ψ(λ)
k 〉

2

)1/2( N∑
k=1

〈g, ψ(λ)
k 〉

2

)1/2

=
1

µ
(0)
1 + α

‖f‖‖g‖,

using ‖h‖2 = ‖
∑

µE
(λ)
µ h‖2 =

∑
k |〈h, ψ

(λ)
k 〉|2 for h ∈ `2(X,m) since the

eigenfunctions are orthonormal and (Lλ +α)−1ψ
(λ)
k = 1

µ
(λ)
k +α

ψ
(λ)
k . This

proves the claim.

Now, let ϕx = 1x/m(x) and let x1, x2 be as assumed. Set

Λ(·) = ϕx1(〈·, ϕx1〉 − 〈·, ϕx2〉) + ϕx2(〈·, ϕx2〉 − 〈·, ϕx1〉)
and, for λ ≥ 0,

Rλ = (Lλ + α)−1.

It follows that Lλ − L0 = λΛ and, by the resolvent identity, Rλ =
R0 − λRλΛR0. Therefore, we get for f, g such that supp f ⊆ X1 and
supp g ⊆ X2,

〈f,Rλg〉 = 〈f,R0g〉 − λ〈f,RλΛR0g〉
= 〈f,R0g〉 − λ〈f,Rλϕx1〉 (〈R0g, ϕx1〉 − 〈R0g, ϕx2〉)
− λ〈f,Rλϕx2〉 (〈R0g, ϕx2〉 − 〈R0g, ϕx1〉)

= λ〈f,Rλϕx1〉〈R0g, ϕx2〉,

where the other terms vanish since L0 leaves the subspaces `2(X1,m1)
and `2(X2,m2) invariant (where m1 = m|X1 and m2 = m|X2) and so
does R0 = (L0 + α)−1. Thus, by the claim above, there exists a C ≥ 0
such that

|〈f, (Lλ + α)−1g〉| ≤ λC2‖f‖‖g‖ → 0

as λ→ 0 and the statement follows. �

10. Markov processes and the Feynman–Kac formula*

In this section we discuss the connection between the semigroups
e−tL arising from the Laplacian L = Lb,c,m and a Markov process.
Therefore, we connect the analytic perspective of Laplacians on graphs



10. MARKOV PROCESSES AND THE FEYNMAN–KAC FORMULA* 67

presented thus far with a probabilistic view. Although this viewpoint
is both interesting and of conceptual importance, the results presented
here are not used in most of the book.

The reader may want to solve Excavation Exercise 0.14 for the
purposes of this section.

We start by giving an idea of how to think about the process. To
this end, we will take the point of view that we already know that e−tL

is a semigroup giving the transition probabilities of a Markov process.
We then sketch how the key quantities of the Markov process can be
identified in terms of the graph.

These consideration will be made precise later when we introduce
the corresponding process in detail. We will first recall some basic
notions from probability. We then construct an explicit process and
calculate some basic properties such as the expected jumping times
and jumping probabilities.

The link between the semigroup and the constructed process is then
established via the Feynman–Kac formula, which we prove at the end
of the section.

10.1. A basic intuition. In this subsection we give an idea of
how to think about the process associated to the semigroup. We will
not go into too much technical detail since this will be taken care of in
later parts of the section.

A continuous time Markov process on X consists of a memoryless
particle moving in time between the vertices of X. This process is
essentially characterized by two functions

p : X ×X −→ [0,∞) and q : X −→ [0,∞)

with the following interpretations:

• p(x, y) is the probability that the particle jumps from x to y.
• e−tq(x) is the probability that a particle starting at x at time 0 is still

at x at time t.

Given these quantities, we can define P : [0,∞)×X ×X −→ [0, 1],
(t, x, y) 7→ Pt(x, y), as

Pt(x, y) = the probability that the particle is at y at time t

if the particle starts at x at time 0.

We can then compute the quantities p and q from the short time be-
havior of Pt as follows.

First, Pt(x, x) is the probability that the particle that started at x
is found at x at time t. This means that the particle has either stayed
at x up to time t or has returned to x after leaving x. The probability
of staying at x is given by e−tq(x). On the other hand, the probability
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of leaving is 1 − e−tq(x) and the probability of returning to x is given
by a probability r(t) which tends to zero as t→ 0. Hence, we infer

Pt(x, x) = e−tq(x) + ϕx(t)

where ϕx expresses the probability of returning to x and is given by
(1−e−tq(x))r(t). Therefore, ϕx has derivative zero at t = 0. We conclude
that

∂tPt(x, x)|t=0 = −q(x) + ϕ′x(0) = −q(x).

In a similar way, one argues that the probability Pt(x, y) for small
t and x 6= y is governed by the probability πt(x, y) of the event that
the particle starts at x and reaches y in one jump and then stays there
up to time t. That is,

Pt(x, y) = πt(x, y) + ψx,y(t),

where ψx,y(t) has derivative 0 at t = 0. The probability πt(x, y) for this
event can be bounded by

(1− e−tq(x))p(x, y)e−tq(y) ≤ πt(x, y) ≤ (1− e−tq(x))p(x, y),

where the term e−tq(y) in the lower bound accounts for the probability
of not leaving y after reaching y. This leads to

∂tPt(x, y)|t=0 = q(x)p(x, y) + ψ′x,y(0) = q(x)p(x, y).

Now, we connect these findings with the structure of the underlying
graph b over (X,m) via the semigroup. For the sake of simplicity, we
assume that c = 0 first and discuss the case of arbitrary c ≥ 0 later.
We assume that the process given above is linked to a semigroup via
the identity

e−tL1y(x) = Pt(x, y)

for x, y ∈ X, t ≥ 0 where e−tL is the semigroup of the operator L =
Lb,0,m on `2(X,m) for the form Q. In particular, for f, g ∈ `2(X,m),

〈e−tLf, g〉 =
∑
x∈X

e−tLf(x)g(x)m(x) =
∑
x∈X

(∑
y∈X

Pt(x, y)f(y)

)
g(x)m(x).

Thus, we may compute q and p using this identity as follows∑
z∈X

b(x, z) = Q(1x, 1x)

= −∂t〈e−tL1x, 1x〉|t=0

= −∂te−tL1x(x)m(x)|t=0

= −∂tPt(x, x)m(x)|t=0

= q(x)m(x).
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Similarly, for x 6= y,

b(x, y) = −Q(1y, 1x)

= ∂t〈e−tL1y, 1x〉|t=0

= ∂te
−tL1y(x)m(x)|t=0

= ∂tPt(x, y)m(x)|t=0

= q(x)p(x, y)m(x).

This gives

p(x, y) =
b(x, y)∑
z∈X b(x, z)

and q(x) =
1

m(x)

∑
y∈X

b(x, y)

for x, y ∈ X. Note that the symmetry of b does not imply the symmetry
of p but rather that

q(x)p(x, y)m(x) = q(y)p(y, x)m(y).

If c is non-vanishing, then the considerations above yield

p(x, y) =
b(x, y)∑

z∈X b(x, z) + c(x)
and

q(x) =
1

m(x)

(∑
z∈X

b(x, z) + c(x)

)
for x, y ∈ X. This has two consequences. First, the process jumps
faster, as can be seen by the increase in q(x). Second, there is a prob-
ability of

k(x) = 1−
∑

z∈X b(x, z)∑
z∈X b(x, z) + c(x)

that if the particle jumps away from x it does not jump to any vertex of
X but rather leaves the system whenever c(x) > 0. The point to which
the particle leaves in this case is often referred to as the graveyard or
cemetery. In probability, one often says that the particle is killed at x
due to the presence of c(x) > 0. For this reason c is often referred to
as the killing term.

Note that the preceding discussion has shown that any Markov
process on a discrete set naturally comes with a graph. The aim of the
subsequent subsections is to show that, conversely, any graph gives a
Markov process. Thus, putting these together, we will show a one-to-
one correspondence between Markov processes on discrete spaces and
graphs.

In Section 7 we introduced the heat kernel of the semigroup e−tL

for t ≥ 0 as the function p : [0,∞)×X ×X −→ [0,∞) such that

e−tLf(x) =
∑
y∈X

pt(x, y)f(y)m(y)
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for x ∈ X, t ≥ 0. By the calculations above, one sees that we have the
identity

pt(x, y) =
1

m(y)
Pt(x, y)

for x, y ∈ X, t ≥ 0.

10.2. Some probabilistic background. In this subsection we
want to make the considerations above rigorous. To this end, we need
some basic notions from probability, in particular, from the theory of
stochastic processes. For the convenience of the reader we briefly recall
these notions. For more details and background we refer to [Nor98].

Let (Ω,F ,P) be a probability space and let X be a finite or count-
ably infinite set. This also covers the case of stochastic processes on
infinite sets because the definitions of this section will be used in later
parts of the book on infinite graphs. We denote by P(A | B) the prob-
ability of the event A conditioned on event B. Moreover, for a random
variable Z : Ω −→ X, we denote by E(Z) the expected value of Z and
by E(Z | A) the expected value of Z conditioned on A.

A family Y of random variables Yn, n ∈ N0, taking values in X is
called a discrete time Markov chain if for all x1, . . . , xk, y ∈ X we have

P(Yk+1 = y | Y0 = x1, . . . , Yk = xk) = P(Yk+1 = y | Yk = xk).

The distribution of Y0 is called the initial distribution of Y . If the
initial distribution is supported on x ∈ X, then we say that Y starts
at x.

To define a continuous time Markov chain or Markov process, we
consider a right-continuous process X = (Xt)t>0 on X with an initial
distribution. We define the sequence of jump times J : N0 −→ [0,∞)
by J0 = 0 and

Jn+1 = inf{t ≥ Jn | Xt 6= XJn}
for n ∈ N0, where inf ∅ =∞. We define the sequence of holding times
S : N −→ [0,∞] by

Sn =

{
Jn − Jn−1 if Jn <∞
∞ otherwise.

The lifetime or explosion time ζ is defined by

ζ = sup
n∈N0

Jn.

After explosion, the process can be thought to have left X. It is con-
venient to introduce an additional point x∞ to X which is often called
the cemetery. We then set Xt = x∞ for t ≥ ζ. Such a process is called
minimal. The terminology minimal refers to the fact that after leaving
X the process does not return to X again. We call Y = (Yn)n∈N0 given
by Yn = XJn for n ∈ N0 the jump chain associated to X.
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A continuous time Markov chain or Markov process is a minimal
right-continuous process X = (Xt)t>0 on X such that the jump chain
Y of X is a discrete time Markov chain and, for each n ∈ N, the
holding times S1, . . . , Sn conditioned on Y0, . . . , Yn−1 are independent
exponential random variables where the parameter of Sj is given by
q(Yj) for j = 1, . . . n and for some function q : X −→ [0,∞).

Such a process can be constructed via a discrete time Markov chain
Y over X and a sequence ξ = (ξn)n∈N of independent exponentially
distributed random variables of parameter 1 that are also independent
of Y . Setting

Sn =
1

q(Yn−1)
ξn, Jn = S1 + . . .+ Sn, ζ = sup

n∈N0

Jn

we can define a Markov process X : [0,∞)× Ω −→ X via

X|[Jn,Jn+1)×Ω = Yn and X|[ζ,∞)×Ω = x∞

for n ∈ N0.
A random variable T : Ω −→ [0,∞] is called a stopping time for X

if the event {T = t0} depends only on (Xt)t≤t0 . It turns out, and here
we only give a reference to the book of Norris [Nor98, Theorem 6.5.4]
as the proof is highly probabilistic, that every Markov process on X is
a strong Markov process, that is, for any stopping time T , the process
XT = (Xt)t>0 conditioned on T <∞ and XT = x is a Markov process.

Given a Markov process X over X and x ∈ X, we use the notation

Px(·) = P(· | X0 = x) and Ex(·) = E(· | X0 = x).

10.3. Construction of the process associated to the semi-
group. We next construct a process which we later show to be asso-
ciated to the semigroup. We start with the case c = 0 and discuss the
case of non-vanishing c at the end of this subsection. Exercise 0.14
concerning the number of jumps of a process will be used in this sub-
section.

Let b be a graph over a finite measure space (X,m). If c = 0, the
two degree functions deg and Deg are given, for x ∈ X, by

deg(x) =
∑
y∈X

b(x, y) and Deg(x) =
1

m(x)

∑
y∈X

b(x, y).

We next define the Markov process X = Xb associated to Qb via
the semigroup e−tL of the operator L = Lb,0,m. Let (Ω,F ,P) be a
probability space and let Y = (Yn)n∈N0 be a discrete time Markov
chain over X such that

P (Yn = y |Yn−1 = x) =
b(x, y)

deg(x)

for n ∈ N0. This corresponds to the quantity p(x, y) which we calcu-
lated in the first subsection.
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Let (ξn)n∈N be a sequence of independent exponentially distributed
random variables of parameter 1 which are also independent of Y . We
define the sequence of holding times Sn, n ∈ N, and jumping times Jn,
n ∈ N0, via

Sn =
1

Deg(Yn−1)
ξn and Jn = S1 + . . .+ Sn

with the convention that J0 = 0. That is, in the notation of the
subsection above, the function q is given by Deg. The probability for
Sn = Sn+1 vanishes for some n ∈ N0 so, for convenience, we restrict
the process to when this does not happen.

Since X is assumed to be finite, it is easy to check that ζ =
supn∈N0

Jn =∞ P-almost surely. So, for convenience, we will consider
the process only for ζ =∞.

We define X = Xb : [0,∞)× Ω −→ X via

Xt = Yn if t ∈ [Jn, Jn+1).

Let us make some basic observations which will help us to interpret
the behavior of the process. First, we calculate that the expected
holding time from a vertex x is given by Deg(x). Hence, the larger the
sum

∑
y∈X b(x, y) and the smaller m(x), the faster the particle jumps

when at x.

Lemma 0.69 (Expected holding time). Let b be a graph over a finite
measure space (X,m) and let X = Xb be the associated process. Then,
for all n ∈ N0,

E(Sn+1 | XJn = x) =
1

Deg(x)
.

Proof. The random variables ξn in Sn = ξn/Deg(Yn−1) are expo-
nentially distributed with parameter 1. So, we compute

E(Sn+1 | XJn = x) = E(Sn+1 | Yn = x) =
1

Deg(x)

∫ ∞
0

se−sds =
1

Deg(x)
.

This gives the statement. �

Next, we compute the probability of making zero, one or more
jumps from a vertex x at time t. To this end, we denote the random
variable counting the number of jumps up to time t by N(t), i.e.,

N(t) = sup{n ∈ N0 | Jn ≤ t}.

With the help of the next lemma, we can make the considerations of the
first subsection rigorous. In particular, as the first statement shows, the
function q of the first subsection coincides with the function q chosen
here.
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Lemma 0.70 (Probability of jumping). Let b be a graph over a finite
measure space (X,m) and let X = Xb be the associated process. Then,

Px
(
N(t) = 0

)
= e−Deg(x)t

and

Px
(
N(t) = 1

)
=
∑
y∈X

Px(N(t) = 1 ∧ XJ1 = y)

=
∑
y∈X,

Deg(x)6=Deg(y)

b(x, y)

m(x)

(e−Deg(y)t − e−Deg(x)t)

(Deg(x)−Deg(y))
+

∑
y∈X,

Deg(x)=Deg(y)

b(x, y)

m(x)
te−Deg(y)t.

Additionally, equality holds for each term under the sum over y ∈ X.
In particular,

lim
t→0

Px(N(t) ≥ 2)

t
= 0.

Proof. We calculate in a straightforward manner

Px(N(t) = 0) = Px(S1 ≥ t) = P(ξ1 ≥ tDeg(x)) =

∫ ∞
tDeg(x)

e−sds = e−Deg(x)t.

This gives the first statement. For the second statement, we calculate

Px(N(t) = 1) =
∑
y∈X

Px(N(t) = 1 ∧ XJ1 = y)

=
∑
y∈X

Px(N(t) = 1 | XJ1 = y)Px(XJ1 = y).

Now, by the definition of X, we get

Px(XJ1 = y) = P(Y1 = y | Y0 = x) =
b(x, y)

deg(x)
.

Using the independence of Yn and ξn we proceed to compute

Px(N(t) = 1 | XJ1 = y)

= P(S1 ≤ t < S1 + S2 | Y1 = y, Y0 = x)

= P
( 1

Deg(Y0)
ξ1 ≤ t <

1

Deg(Y0)
ξ1 +

1

Deg(Y1)
ξ2 | Y1 = y, Y0 = x

)
= P

( 1

Deg(x)
ξ1 ≤ t <

1

Deg(x)
ξ1 +

1

Deg(y)
ξ2

)
=

∫ t

0

Deg(x)e−Deg(x)s

∫ ∞
t−s

Deg(y)e−Deg(y)rdrds

= Deg(x)e−Deg(y)t

∫ t

0

e−(Deg(x)−Deg(y))sds,

where the last two equalities stem from the fact that for an exponen-
tially distributed random variable ξ with parameter 1, the density of
ξ/a for a > 0 is exponentially distributed with parameter a.
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Plugging these findings into the calculation above and distinguish-
ing between the cases Deg(x) 6= Deg(y) and Deg(x) = Deg(y) we arrive
at

Px(N(t) = 1)

=
∑
y∈X

Px(N(t) = 1 | XJ1 = y)Px(XJ1 = y)

=
∑

y∈X,Deg(x) 6=Deg(y)

Deg(x)

(Deg(x)−Deg(y))
(e−Deg(y)t − e−Deg(x)t)

b(x, y)

deg(x)

+
∑

y∈X,Deg(x)=Deg(y)

Deg(x)te−Deg(y)t b(x, y)

deg(x)
.

Given the definitions of Deg and deg, we obtain the statement for
Px(N(t) = 1). The statement about the limit of Px(N(t) ≥ 2)/t as
t→ 0 follows easily via the formula Px(N(t) ≥ 2) = 1− Px(N(t) ≤ 1)
and the first two statements. �

We next define the Markov process Xb,c associated to a graph (b, c)
over (X,m) with a possibly non-vanishing c. In this case, the definitions
of the two degree functions deg and Deg read as

deg(x) =
∑
y∈X

b(x, y) + c(x) and Deg(x) =
1

m(x)

(∑
y∈X

b(x, y) + c(x)

)
for x ∈ X. Let Y = (Yn)n∈N0 be a discrete time Markov chain over X
such that for n ∈ N0

P (Yn = y |Yn−1 = x) =


b(x, y)/ deg(x) if x, y ∈ X
c(x)/ deg(x) if x ∈ X, y = x∞

1 if x = y = x∞
0 else,

where x∞ is the cemetery. Let (ξn)n∈N again be a sequence of indepen-
dent exponentially distributed random variables of parameter 1 which
are also independent of Y . The sequence of holding times Sn, n ∈ N,
and jumping times Jn, n ∈ N0, are given via

Sn =
1

Deg(Yn−1)
ξn and Jn = S1 + . . .+ Sn,

with the convention that J0 = 0. In the case that c 6= 0 it can be
checked rather easily that ζ <∞ P-almost surely since the process will
reach x∞ in a finite time almost surely.

As before, we define X = Xb : [0,∞)× Ω −→ X ∪ {x∞} via

Xt = Yn if t ∈ [Jn, Jn+1).
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10.4. The Feynman–Kac semigroup. In this subsection we in-
troduce the Feynman–Kac semigroup. We will later show that this
semigroup is equal to the semigroup of the Laplacian. To do so, we
compute the generator of the Feynman–Kac semigroup and discover
that the generator is the Laplacian.

We will introduce the Feynman–Kac semigroups for subgraphs and
show that their generator is the corresponding Laplacian with Dirichlet
boundary condition. This is slightly more general than what we need
for the Feynman–Kac formula on finite graphs. However, this consid-
eration for subgraphs is not very complicated and will be used later to
extend the result to infinite graphs.

Let (b, c) be a graph over (X,m) and let K ⊆ X be a subset. We
denote the restriction of m to K by mK . The graph (bK , cK) over
(K,mK) is given by bK = b|K×K and cK : K −→ [0,∞) by

cK(x) = c(x) +
∑

y∈X\K

b(x, y).

The corresponding Dirichlet Laplacian of (b, c) over (K,mK) with re-

spect to K is defined as an operator L
(D)
K : `2(K,mK) −→ `2(X,m)

L
(D)
K = LbK ,cK ,mK .

Let X = Xb be the process associated to a graph b over (X,m) and
let K ⊆ X be a subset. Let τK : Ω −→ [0,∞) be the first exit time,
i.e., τK is the time where the process first leaves the set K or

τK = inf{t ≥ 0 | Xt ∈ X \K}.

Clearly, τK is a stopping time and τX = J∞ =∞ almost surely.
Next, we define the operators which turn out to be a semigroup.

We say that a family of operators St : `
2(X,m) −→ `2(X,m) for t ≥ 0

defines a semigroup if for all t, t′ ≥ 0 we have St+t′ = StSt′ . This
implies, in particular, that S0 = I.

Lemma 0.71 (Feynman–Kac semigroup). Let (b, c) be a graph over
a finite measure space (X,m) and let X = Xb be the associated process.

For K ⊆ X, let L
(D)
K be the Dirichlet Laplacian of (b, c) over (K,mK)

and let τK be the first exit time. If Tt : `
2(K,mK) −→ `2(K,mK) for

t ≥ 0 is defined by

Ttf(x) = Ex
(

1{t<τK}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
,

then Tt is a semigroup such that

lim
t→0+

f(x)− Ttf(x)

t
= L

(D)
K f(x)

for f ∈ `2(K,mK) and x ∈ K.
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Remark. Note that for v : X −→ [0,∞) the integral∫ t

0

v(Xs)ds =
∑

n≤N(t)

(Jn − Jn−1)v(XJn) + (t− JN(t))v(XJN(t)
)

defines a random variable which is almost surely finite since ζ < ∞
P-almost surely.

Proof. We first use the Markov property of X to show that Tt
is a semigroup with T0 = I. Denote by X′ a copy of the process X.
Furthermore, we define the stopping time τ ′K to be the first time that
X′ leaves K. We then compute, using the strong Markov property of
X, that

TtTt′f(x) = Ex
(

1{t<τK}e
−

∫ t
0 (c/m)(Xs)dsTt′f(Xt)

)
= Ex

(
1{t<τK}e

−
∫ t
0 (c/m)(Xs)dsEXt

(
1{t′<τ ′K}e

−
∫ t′
0 (c/m)(Xs)dsf(X′t′)

))
= Ex

(
1{t+t′<τK}e

−
∫ t
0 (c/m)(Xs)dse−

∫ t+t′
t (c/m)(Xs)dsf(Xt+t′)

)
= Ex

(
1{t+t′<τK}e

−
∫ t+t′
0 (c/m)(Xs)dsf(Xt+t′)

)
= Tt+t′f(x).

Therefore, TtTt′ = Tt+t′ . Furthermore, the equality T0 = I is clear.
We next compute the derivative of Ttf(x) at time t = 0. Since X is

finite, we can assume without loss of generality that f ≥ 0. To take the
derivative of Ttf(x) at t = 0, we divide the expected value into three
parts according to the number of jumps up to time t. We compute

Ttf(x)− f(x)

t
=

1

t
Ex
(

1{t<τK ,N(t)=0}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
+

1

t
Ex
(

1{t<τK ,N(t)=1}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
+ ψt(x)

with

ψt(x) =
1

t
Ex
(

1{t<τK ,N(t)≥2}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
≤ C

1

t
P(t < τK , N(t) ≥ 2)

→ 0

as t→ 0+, where C = supx∈K f(x) and we used Lemma 0.70 in taking
the limit.
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Next, we turn to the first term on the right-hand side of the equality
above and use Lemma 0.70 again in the third step to get

1

t

(
Ex
(

1{t<τK ,N(t)=0}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
− f(x)

)
=

1

t

(
Ex
(
1{N(t)=0}e

−t(c/m)(x)f(x)
)
− f(x)

)
=

1

t

(
e−t(c/m)(x)f(x)Px(N(t) = 0)− f(x)

)
=

1

t
(e−t(

∑
y∈X b(x,y)+c(x))/m(x)f(x)− f(x))

→ − 1

m(x)

(∑
y∈X

b(x, y) + c(x)
)
f(x)

as t→ 0+.
Finally, we turn to the second term on the right-hand side of the

equality above and calculate

1

t
Ex
(

1{t<τK ,N(t)=1}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
=

1

t

∑
y∈K

Ex
(

1{N(t)=1,XJ1=y}e
−J1(c/m)(x)−(t−J1)(c/m)(y)

)
f(y).

To estimate the exponential terms on the right hand side we introduce
q0 = miny∈K(c/m)(y) and q1 = maxy∈K(c/m)(y). Then, for every
y ∈ K, we obtain the two-sided estimate on the summands of the right
hand side above

Px (N(t) = 1,XJ1 = y) e−tq1 ≤ Ex
(

1{N(t)=1,XJ1=y}e
−J1(c/m)(x)−(t−J1)(c/m)(y)

)
≤ Px (N(t) = 1,XJ1 = y) e−tq0 .

Summing over y ∈ K and dividing by t, we can use Lemma 0.70 to
estimate

1

t

∑
y∈K

Px (N(t) = 1,XJ1 = y) f(y) · e−tqj

=
1

t
· 1

m(x)

( ∑
y∈K,

Deg(x)6=Deg(y)

b(x, y)
(e−Deg(y)t − e−Deg(x)t)

(Deg(x)−Deg(y))
f(y)

+
∑
y∈K,

Deg(x)=Deg(y)

b(x, y)te−Deg(y)tf(y)

)
· e−tqj

→ 1

m(x)

∑
y∈K

b(x, y)f(y)

as t→ 0+ for j = 0, 1. As these sums are lower and upper bounds for
the term we are interested in, we get by recalling the equation on the
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expected value above

1

t
Ex
(

1{t<τK ,N(t)=1}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
→ 1

m(x)

∑
y∈K

b(x, y)f(y),

as t→ 0+.
Putting all of these calculations together yields

lim
t→0+

f(x)− Ttf(x)

t
=

1

m(x)

((∑
y∈X

b(x, y) + c(x)

)
f(x)−

∑
y∈K

b(x, y)f(y)

)
= L

(D)
K f(x).

This finishes the proof. �

10.5. The Feynman–Kac formula. We now prove the main re-
sult of this section. It links the semigroup of the Laplacian of a graph
with the corresponding process. We start with a general version from
which we deduce two corollaries that both offer different perspectives.

Excavation Exercise 0.7 will be relevant for this subsection.

The following general version, which is formulated for subgraphs,
will also serve to prove a corresponding result for infinite graphs.

Theorem 0.72 (Feynman–Kac formula for subgraphs). Let (b, c)
be a graph over a finite measure space (X,m) and let X = Xb be the

process associated to b. For a subset K ⊆ X, let L
(D)
K = LbK ,cK ,mK be

the Dirichlet Laplacian and τK be the first exit time. Then,

e−tL
(D)
K f(x) = Ex

(
1{t<τK}e

−
∫ t
0 (c/m)(Xs)dsf(Xt)

)
for all f ∈ `2(K,mK), x ∈ K and t ≥ 0.

Proof. By Lemma 0.71, the semigroup

Ttf(x) = Ex
(

1{t<τK}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
satisfies

lim
t→0

Ttf(x)− f(x)

t
= −L(D)

K f(x).

Thus, L
(D)
K generates both semigroups Tt and e−tL

(D)
K . Since for any

given linear operator A on the finite-dimensional Hilbert space `2(X,m)
the ordinary differential equation

∂tϕ(t) = Aϕ(t), ϕ(0) = u

has a unique solution ϕ : [0,∞) −→ `2(K,m) for any u ∈ `2(K,m), the
claim follows. �
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Next, we come to two corollaries. The first corollary shows how,
on the level of processes, the killing term can be decoupled from the
process. That is, we link the semigroup for a graph (b, c) with the
process associated to b.

Corollary 0.73 (Feynman–Kac formula for finite graphs for Xb).
Let (b, c) be a graph over a finite measure space (X,m) with associated
Laplacian L = Lb,c,m. Let X = Xb be the process associated to b. Then,

e−tLf(x) = Ex
(
e−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
for all f ∈ `2(X,m), x ∈ X and t ≥ 0.

Proof. The statement follows immediately with the choice K = X
since τX = ζ =∞ almost surely. �

Remark. A direct consequence of the Feynman–Kac formula is the
inequality

e−tLb,c,mf ≤ e−tLb,0,mf

for all positive f ∈ `2(X,m). The inequality is strict if c 6= 0 and t > 0.
In particular, if c 6= 0, then

e−tLb,c,m1 < 1

for t > 0, where 1 denotes the function which is constantly one on X.
This gives a probabilistic proof that e−tLb,c,m1 < 1 for all t > 0 if and
only if c 6= 0, which was already shown via analysis as Theorem 0.65
in Section 8. We shall further explore the question of how such a strict
inequality can occur in the case of infinite graphs even when c = 0 in
Chapter 7.

The final result of this section connects the semigroup of the Lapla-
cian directly with its associated process.

Corollary 0.74 (Feynman–Kac formula for finite graphs for Xb,c).
Let (b, c) be a graph over a finite measure space (X,m) with associated
Laplacian L = Lb,c,m. Let X = Xb,c be the process associated to (b, c).
Then,

e−tLf(x) = Ex
(

1{ζ>t}f(Xt)
)

for all f ∈ `2(X,m), x ∈ X and t ≥ 0.

Proof. We embed the graph (b, c) over (X,m) into a supergraph
(b′, 0) over (X ′,m′) via

X ′ = X∪̇{x∞}

b′|X×X = b, b′(x∞, x) = b(x, x∞) = c(x)

for x ∈ X with m′|X = m and m(x∞) arbitrary, where x∞ is the ceme-
tery introduced in Subsection 10.2. We apply Theorem 0.72 with the
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choice K = X ⊆ X ′ and observe that the restriction of the Lapla-
cian L′ = Lb′,0,m′ to X with Dirichlet boundary conditions is exactly
L = Lb,c,m. Furthermore, for the first exit time τ ′X of the process X′
associated to b′ and the explosion time ζ of the process X associated
to (b, c), we have

{ζ > t} = {τ ′X > t}.
Thus, we have by Theorem 0.72 with the choice K = X ⊆ X ′,

e−tLf(x) = Ex
(

1{τX>t}f(X′t)
)

= Ex
(

1{ζ>t}f(Xt)
)
,

where the last equality follows as the processes Xt and X′t agree before
they leave X. This finishes the proof. �

Remark. The Feynman–Kac formula can also be presented via
supergraphs (Exercise 0.38). Furthermore, the formula can be used to
characterize the lack of killing (Exercise 0.39).

We finish the section with yet another characterization of graphs
which is an immediate consequence of what we have proven above.

Theorem 0.75 (Characterization of Markov semigroups and Markov
processes). Let (X,m) be a finite measure space and let L be a self-
adjoint operator on `2(X,m). Then, the following statements are equiv-
alent:

(i) e−tL is a Markov semigroup for t ≥ 0.
(ii) There exists a Markov process X = Xb,c associated to a graph (b, c)

over (X,m) such that

e−tLf(x) = Ex
(

1{ζ>t}f(Xt)
)

for all f ∈ `2(X,m), x ∈ X and t ≥ 0.

Proof. (i) =⇒ (ii): If e−tL satisfies the Markov property, then
L = Lb,c,m for a graph (b, c) over (X,m) by Theorem 0.49. Hence, the
statement follows directly from the corollary above.

(ii) =⇒ (i): For 0 ≤ f ≤ 1, we obviously have

0 ≤ Ex
(

1{ζ>t}f(Xt)
)
≤ 1.

Therefore, e−tL is a Markov semigroup for t ≥ 0. �
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Exercises

Excavation exercises.

Exercise 0.1 (Discrete topology and continuity). Consider a finite
set X with the discrete topology which comes from the discrete metric
ddisc(x, y) = 1 if x 6= y and ddisc(x, y) = 0 if x = y.

(a) Show that every function f : X −→ R is continuous.
(b) Show that the space C(X) of real-valued functions on X is a real

vector space with respect to pointwise addition and scalar multi-
plication.

(c) Give an example of a basis for C(X).

Exercise 0.2 (Quadratic form). Let (b, c) be a graph over a finite
set X. Show that Qb,c : C(X) −→ [0,∞), f 7→ Qb,c(f) = Qb,c(f, f) is a
quadratic form, i.e., for s ∈ R and f, g ∈ C(X), Qb,c satisfies

Qb,c(sf) = s2Qb,c(f)

and
Qb,c(f + g) +Qb,c(f − g) = 2(Qb,c(f) +Qb,c(g)).

Exercise 0.3 (Hilbert space). Let (X,m) be a finite measure space.

(a) Show that

〈f, g〉 =
∑
x∈X

f(x)g(x)m(x)

defines a scalar product on C(X) and

‖f‖ = 〈f, f〉1/2

defines a norm on C(X).
(b) Let `2(X,m) be C(X) equipped with 〈·, ·〉. Show that `2(X,m) is

a Hilbert space, that is, `2(X,m) is complete with respect to the
norm ‖ · ‖.

(c) Show that {ex | x ∈ X} with ex = 1x/m
1/2(x) for x ∈ X, where

1x is the characteristic function of {x}, is an orthonormal basis of
`2(X,m).

(d) Show that `2(X,m) is unitarily equivalent to R|X| where |X| de-
notes the cardinality of X.

Exercise 0.4 (Laplacian is self-adjoint). Let (b, c) be a graph over
a finite measure space (X,m). Show that the Laplacian Lb,c,m is a
self-adjoint operator on `2(X,m).

Exercise 0.5 (Characterization of bijectivity). Let X be a finite
set and let A : C(X) −→ C(X) be an operator. Show that the following
statements are equivalent:

(i) A is bijective.
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(ii) A is injective.
(iii) A is surjective.

Exercise 0.6 (Operator norm bound for the Laplacian). Let (X,m)
be a finite measure space.

(a) Let A be an operator on `2(X,m). Show that

‖A‖ = sup{‖Af‖ | f ∈ `2(X,m), ‖f‖ = 1}

defines a norm on the vector space of operators on `2(X,m). We
call ‖ · ‖ the operator norm.

(b) Show that if A and B are operators on `2(X,m), then

‖AB‖ ≤ ‖A‖‖B‖.

(c) Let (b, c) be a graph over (X,m) and let Lb,c,m be the associated
Laplacian. Prove that

‖Lb,c,m‖ ≤ 2 sup
x∈X

Deg(x)

where Deg(x) = 1
m(x)

(∑
y∈X b(x, y) + c(x)

)
is the weighted vertex

degree.

Exercise 0.7 (The semigroup solves the heat equation). Let (X,m)
be a finite measure space and let A be a self-adjoint operator on
`2(X,m).

(a) Show that the sum

e−tA =
∞∑
n=0

1

n!
(−tA)n

converges absolutely for all t ≥ 0 with respect to the operator norm
‖ · ‖ defined in Exercise 0.6.

(b) Show that the function ϕt = e−tAf for f ∈ `2(X,m) is the unique
solution of the differential equation

∂tϕt = −Aϕt

for t ≥ 0 with ϕ0 = f.

Exercise 0.8 (Commuting operators and the exponential func-
tion). Let (X,m) be a finite measure space. Let A and B be operators
on `2(X,m) such that AB = BA. Show that

eA+B = eAeB.
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Exercise 0.9 (Existence of eigenvalues for self-adjoint operators).
Let (X,m) be a finite measure space. Let A be a self-adjoint operator
on `2(X,m). Let ‖A‖ be the operator norm of A as defined in Ex-
ercise 0.6 above. Show that either ‖A‖ or −‖A‖ is an eigenvalue for
A.

(Hint: Suppose that ‖A‖ 6= 0. Let f ∈ `2(X,m) be such that
‖f‖ = 1 and ‖Af‖ = ‖A‖ (why does this exist?). Let g = Af/‖Af‖
so that Af = ‖A‖g and use this to show that Ag = ‖A‖f . Then either
f − g 6= 0 or f + g 6= 0, which can be used to give an eigenvector for
±‖A‖.)

Exercise 0.10 (Reducing subspaces). Let (X,m) be a finite mea-
sure space. Let A be a self-adjoint operator on `2(X,m). Suppose that
M is a subspace of `2(X,m) such that AM ⊆ M . Let M⊥ denote the
orthogonal complement of M , that is, M⊥ = {f ∈ `2(X,m) | 〈f, g〉 =
0 for all g ∈M}. Show that M⊥ is a subspace of `2(X,m) and AM⊥ ⊆
M⊥.

Such a subspace is called a reducing subspace for A.

Exercise 0.11 (Spectral theorem). Let (X,m) be a finite mea-
sure space. Let A be a self-adjoint operator on `2(X,m) and let σ(A)
denote the set of eigenvalues of A. For every λ ∈ σ(A), let Eλ de-
note the orthogonal projection onto the eigenspace of λ. That is, if
{fλ1 , fλ2 , . . . , fλn} is an orthonormal basis for the eigenspace of λ, then
Eλ(f) =

∑n
i=1〈f, fλi 〉fλi . Show that:

(a) EλEµ = 0 if λ 6= µ.
(b) I =

∑
λ∈σ(A) Eλ.

(c) A =
∑

λ∈σ(A) λEλ.

(Hint: Use Exercises 0.9 and 0.10 above, note that eigenspaces are
reducing subspaces for A and use induction.)

Exercise 0.12 (Variational characterization of bottom of the spec-
trum). Let (X,m) be a finite measure space. Let Q be a symmetric
quadratic form with associated self-adjoint operator L on `2(X,m). Let
λ0 be the smallest eigenvalue of L. Show that

λ0 = min
f∈`2(X,m),‖f‖=1

Q(f).

Exercise 0.13 (Direct sums of Hilbert spaces and operators). Let
(H1, 〈·, ·〉1) and (H2, 〈·, ·〉2) denote Hilbert spaces, that is, complete
inner product spaces.

(a) Show that H1⊕H2, which is defined as H1×H2 with inner product
〈·, ·〉 given by

〈(x1, y1), (x2, y2)〉 = 〈x1, x2〉1 + 〈y1, y2〉2,
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is a Hilbert space.
(b) Let A1 be an operator on H1 and A2 be an operator on H2. Show

that A1 ⊕ A2, which is defined by

(A1 ⊕ A2)(x, y) = (A1x,A2y),

is an operator on H1 ⊕H2.
(c) Let ‖ · ‖1 and ‖ · ‖2 denote the operator norm on the space of

operators on H1 and H2, respectively, as defined in Exercise 0.6
above. If ‖ · ‖ denotes the operator norm for operators on H1⊕H2,
show that

‖A1 ⊕ A2‖ = max{‖A1‖1, ‖A1‖2}.

Exercise 0.14 (Finitely many jumps in finite time almost surely).
Let (θn)n∈N be a sequence of real positive random variables that take
values in a finite set and let (ξn)n∈N be a sequence of independent ex-
ponentially distributed random variables of parameter 1 which are inde-
pendent of θn. Show that the random variable ζ = supn∈N (θ1ξ1 + . . .+ θnξn)
satisfies ζ =∞ almost surely.

Example exercises.

Exercise 0.15 (Normal contractions). Show that the following
functions C : R −→ R are normal contractions.

(a) C(s) = |s|.
(b) C(s) = (±s) ∨ 0.
(c) C(s) = s ∧ 1.
(d) C(s) = 0 ∨ (s ∧ 1).

Exercise 0.16 (Positivity preserving but non-contracting). Give
an example of a self-adjoint operator on `2(X,m) whose semigroup is
positivity preserving but not contracting.

Exercise 0.17 (Non-positivity preserving and non-contracting).
Give an example of a self-adjoint operator on `2(X,m) whose semigroup
is neither positivity preserving nor contracting.

Exercise 0.18 (Smallest eigenvalue 0 but no graph). Give an ex-
ample of a self-adjoint operator on `2(X,m) whose smallest eigenvalue
is λ0 = 0 with constant eigenfunction ϕ0 = 1 but which is not associ-
ated to a graph.

Next, we present various examples which illustrate our theory. As
usual, it takes work to compute anything concrete. The examples below
are presented in order of increasing difficulty.
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Exercise 0.19 (Complete graphs). Let X = {1, . . . , N} for some
N ∈ N. The complete graph with N vertices is given by bK(x, y) = 1
for all x, y ∈ X with x 6= y and cK = 0. Take your favorite number N
with N ≥ 5.

(a) Draw the graph.
(b) Write down the matrix lbK ,cK of the Laplacian LbK ,cK .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbK ,cK ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = 1 and g =

1N − 1N−1.
(f) Solve the Dirichlet problem for B = {1, . . . , dN/2e} and g = 1B.
(g) Solve the capacitor problem for

F = {1, . . . , bN/4c} and G = {bN/4c, . . . , dN/2e}.
(h) Solve the heat equation for the initial distributions f = 1{N}.

Exercise 0.20 (Star graphs). Let X = {0, 1, . . . , N} for some N ∈
N. The star graph with N+1 vertices is given by bS(0, x) = bS(x, 0) = 1
for all x ∈ X, x 6= 0 and bS(x, y) = 0 for all x, y 6= 0 and cS = 0. Take
your favorite number N with N ≥ 5.

(a) Draw the graph.
(b) Write down the matrix lbS ,cS of the Laplacian LbS ,cS .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbS ,cS ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = N and g =

1{1,...,N−1}.
(f) Solve the Dirichlet problem for B = {0, 1, . . . , dN/2e} and g = 1B.
(g) Solve the capacitor problem for F = {1, . . . , bN/2c} and G = {N}.
(h) Solve the heat equation for the initial distributions f = 1{N}.

Exercise 0.21 (Line graphs). LetX = {1, . . . , N} for someN ∈ N.
The line graph with N vertices is given by bL(x, y) = 1 for all x, y ∈ X
with |x − y| = 1 and bL(x, y) = 0 otherwise and cL = 0. Take your
favorite number N with N ≥ 5.

(a) Draw the graph.
(b) Write down the matrix lbL,cL of the Laplacian LbL,cL .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbL,cL,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = N and g = 1{N}.
(f) Solve the Dirichlet problem for B = {1, N} and g = 1B.
(g) Solve the capacitor problem for F = {1} and G = {N}.
(h) Solve the heat equation for the initial distributions f = 1{N}.
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Exercise 0.22 (Cycle graphs). Let X = {1, . . . , N} for some N ∈
N. The cycle graph with N vertices is given by bC(x, y) = 1 for all
x, y ∈ X with |x−y| = 1 or {x, y} = {1, N} and bC(x, y) = 0 otherwise
and cC = 0. Take your favorite number N with N ≥ 5.

(a) Draw the graph.
(b) Write down the matrix lbC ,cC of the Laplacian LbC ,cC .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbC ,cC ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = N and g = 1{N}.
(f) Solve the Dirichlet problem for B = {1, bN/2c} and g = 1B.
(g) Solve the capacitor problem for F = {1}, G = {bN/2c} and g = 1G.
(h) Solve the heat equation for the initial distributions f = 1{N}.

Exercise 0.23 (Wheel graphs). Let X = {0, 1, . . . , N} for some
N ∈ N. The wheel graph with N+1 vertices is given by bW (x, y) = 1 for
all x, y ∈ X with |x−y| = 1 or {x, y} = {1, N}, bW (0, x) = bW (x, 0) = 1
for all x 6= 0 and bW (x, y) = 0 otherwise and cW = 0. Take your favorite
number N with N ≥ 4.

(a) Draw the graph.
(b) Write down the matrix lbW ,cW of the Laplacian LbW ,cW .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbW ,cW ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = N and g =

1{1,...,N−1}.
(f) Solve the Dirichlet problem for B = {0, 1, . . . , bN/2c} and g = 1B.
(g) Solve the capacitor problem for F = {1, . . . , bN/2c}, G = {N} and

g = 1G.
(h) Solve the heat equation for the initial distributions f = 1{N}.

Exercise 0.24 (Hypercube graphs). Let X = {0, 1}N for some
N ∈ N. The N-dimensional hypercube graph is given by bH(x, y) = 1
for all x, y ∈ X with |x−y| = 1 and bH(x, y) = 0 otherwise and cH = 0.
Take your favorite number N with N ≥ 3.

(a) Draw the graph.
(b) Write down the matrix lbH ,cH of the Laplacian LbH ,cH .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbH ,cH ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem with fixed gauge for p = (1, . . . , 1) and

g = 1{(0,...,0)}.
(f) Solve the Dirichlet problem for B = {x ∈ X | |x| ≤ N/2} and

g = 1B.
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(g) Solve the capacitor problem for F = {(0, . . . , 0)}, G = {(1, . . . , 1)}
and g = 1G.

(h) Solve the heat equation for the initial distributions f = 1{(0,...,0)}.

Exercise 0.25 (Tree graphs). Take your favorite numbers k,N
with N, k ≥ 2. Let bT over X be the graph given by the first N spheres
of the rooted k-regular tree with root o with edge weights equal to 1
and let cT = 0. (A tree is a graph without cycles. A tree is k-regular
rooted if every vertex except for the root o has k + 1 neighbors while
o has k neighbors. The n-th sphere is the subset of vertices whose
combinatorial graph distance is less than n, where the combinatorial
graph distance between two vertices is the smallest number n such that
the vertices can be connected by a path of n+ 1 vertices.)

(a) Draw the graph and write down bT .
(b) Write down the matrix lbT ,cT of the Laplacian LbT ,cT .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbT ,cT ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem for g = 1{B} where B is the N -th sphere

and with p = o where o is the root of the tree.
(f) Solve the Dirichlet problem where B is the N -th sphere of the tree

and g = 1B.
(g) Solve the capacitor problem for F = {o} with the root o, G being

the N -th sphere and g = 1G.
(h) Solve the heat equation for the initial distributions f = 1{o} for the

root o.

Exercise 0.26 (Complete bipartite graphs). LetX = {1, . . . , N,N+
1, . . . , N +M} for some N,M ∈ N. The complete bipartite graph with
N + M vertices is given by bB(x, y) = bB(y, x) = 1 for all x, y ∈ X
with x ≤ N , y > N and bB(x, y) = 0 otherwise and cB = 0. Take your
favorite numbers N,M with N ≥ 2, M ≥ 3.

(a) Draw the graph.
(b) Write down the matrix lbB ,cB of the Laplacian LbB ,cB .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbB ,cB ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem for g = 1{1,...,N}.
(f) Solve the Dirichlet problem for B = {1, . . . , bN/2c} and g = 1B.
(g) Solve the capacitor problem for F = {1, . . . , bN/2c}, G = {M}

and g = 1G.
(h) Solve the heat equation for the initial distributions f = 1{M}.
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Exercise 0.27 (Petersen graph*). Let

X = {(j, k) | j = 0, 1, k = 1, . . . , 5}.

The Petersen graph is given by bP which defines a cycle graph on
{(0, 1), . . . , (0, 5)}, bP ((1, k), (1, l)) = 1 if k−l mod 5 = 2, bP ((0, k), (1, k)) =
bP ((1, k), (0, k)) = 1 for k = 1, . . . , 5 and cT = 0.

(a) Draw the graph.
(b) Write down the matrix lbP ,cP of the Laplacian LbP ,cP .
(c) Let m = 1. Determine the eigenvalues and a set of orthonormal

eigenfunctions of the Laplacian LbP ,cP ,m.
(d) Compute the resolvents and the semigroup.
(e) Solve the Poisson problem for g = 1{(0,1),...,(0,5)} and p = (0, 0).
(f) Solve the Dirichlet problem for B = {(1, 1), . . . , (1, 5)} and g = 1B.
(g) Solve the capacitor problem for F = {(0, 1)}, G = {(1, 5)} and

g = 1G.
(h) Solve the heat equation for the initial distributions f = 1{(0,1)}.

Challenge!

Extension exercises.

Exercise 0.28 (The normalizing measure counts edges). Let X be
a finite set. Let b be a graph with standard weights over X, i.e., b takes
values in {0, 1} and c = 0. Let A ⊆ X. Show that the normalizing
measure n(x) =

∑
y∈X b(x, y) = #{y | y ∼ x} satisfies

n(A) = #EA +
1

2
#∂EA,

where EA = {(x, y) ∈ A× A | x ∼ y} and ∂EA = {(x, y) ∈ (A× (X \
A)) ∪ ((X \ A)× A) | x ∼ y}.

Exercise 0.29 (Characterizing Dirichlet forms). Let Q be a sym-
metric form over X. Show that the following statements are equivalent:

(i) Q(f ∧ 1) ≤ Q(f) for all f ∈ C(X).
(ii) Q(C[0,1] ◦ f) ≤ Q(f) for all f ∈ C(X) where C[0,1]f = 0 ∨ f ∧ 1.

(Hint: Show that 1
−ε ((−εf) ∧ 1)→ f+ = f ∨ 0 as ε→∞.)

Exercise 0.30 (Saturated sets and connected components). Let
(b, c) be a graph over a finite set X. A subset Y of X is called saturated
in (b, c) if x ∈ X with x ∼ y for y ∈ Y implies that x ∈ Y . Show that a
subset Y saturated in (b, c) is a connected component of X if and only
if Y cannot be decomposed into two disjoint non-empty saturated sets.
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Exercise 0.31 (Restricting forms to subsets). Let b be a connected
graph over a finite set X and let Q = Qb,0 be the form associated to b.
Let U be a proper subset of X. For a function f : U −→ R, we define

f̃ , the extension of f to X, via f̃(x) = f(x) for x ∈ U and f̃(x) = 0

otherwise. Define the form QU on C(U) by QU(f) = Q(f̃). Show that
QU is associated to a graph (bU , cU) with non-vanishing cU .

Exercise 0.32 (Effective Resistance). Let b be a connected graph
over a finite set X and let L = Lb be the associated Laplacian with
associated form Q = Qb.

(a) Show that the effective resistance defined by

Weff =
1

Q(fx,y)
,

where f = fx,y is the unique function satisfying f(x) = 0, f(y) = 1
and Lf = 0 on X \ {x, y} for x 6= y, satisfies

Weff(x, y) = max{(f(x)− f(y))2 | Q(f) ≤ 1}.
(Hint: Let x, y ∈ X with x 6= y. Using Q(f) = Q(f + λ1) for any
λ ∈ R and Q(f) = Q(−f) it is possible to show (how?) that

min
f(x)=0,f(y)=1

Q(f) = min
f(x) 6=f(y)

Q(f)

(f(x)− f(y))2
.

This allows us to conclude the statement.)
(b) Show that

r(x, y) = W
1/2

eff (x, y), x 6= y

and r(x, y) = 0 for x = y defines a metric on the graph.
(c*) It can actually be shown that

r2(x, y) = Weff(x, y), x 6= y

and r(x, y) = 0 for x = y is a metric. Challenge!

Exercise 0.33 (Characterizing the first Beurling–Deny criterion).
Let Q be a positive quadratic form. Show that Q satisfies the first
Beurling–Deny criterion, i.e., Q(|f |) ≤ Q(f) for all f ∈ C(X) if and
only if for all f, g ∈ C(X)

Q(f ∨ g) +Q(f ∧ g) ≤ Q(f) +Q(g).

Exercise 0.34 (Positivity improving semigroups and invariant sub-
spaces). Show that a positivity preserving semigroup Pt = e−tL is pos-
itivity improving if and only if only the trivial subspaces of `2(X,m)
are invariant under the semigroup and multiplication by functions on
X.
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Exercise 0.35 (Characterization of λ0 = 0). Let (b, c) be a graph
over X with c = 0 and let λ0 be the smallest eigenvalue of Lb,c,m =
Lb,0,m. Prove the following statements:

(a) λ0 = 0.
(b) The space of eigenfunctions V0 corresponding to λ0 = 0 consists of

all functions that are constant on each connected component.
(c) The dimension of V0 is equal to the number of connected compo-

nents of the graph.
(d) Show that Lb,0,m is not surjective and determine its range.

Exercise 0.36 (Stochastic incompleteness and the Lie–Trotter prod-
uct formula). Let (b, c) be a connected graph over (X,m) and let
L = Lb,c,m denote the associated Laplacian. Use the Lie–Trotter for-
mula to show that e−tL1 < 1 for all t > 0 if and only if c 6= 0.

(Hint: A symmetric matrix with non-negative entries whose rows
(or columns) sum up to 1 is called stochastic and whose rows sum
up to less than 1 is called substochastic. Show that these properties
are preserved under taking products of matrices so that e−tce−tLb is
substochastic if and only if c 6= 0.)

Exercise 0.37 (Stochastic incompleteness is instantaneous). Let
(b, c) be a connected graph over (X,m) and let L = Lb,c,m be the
associated Laplacian. Show that if e−tL1 < 1 for some t > 0, then
e−tL1 < 1 for all t > 0.

(Hint: Use the semigroup property, i.e., that e−(s+t)L = e−sLe−tL

for all s, t ≥ 0.)

Exercise 0.38 (Feynman–Kac formula via supergraphs). Let (b′, c′)
be a graph over a finite measure space (X ′,m′) with associated Lapla-
cian L′ = Lb′,c′,m′ . Show that there is a graph b over a finite (X,m)
such that X ′ ⊆ X, m|X′ = m′, b|X′×X′ = b′ and that for the Markov
process X associated to b we have

e−tL
′
f(x) = Ex

(
1t<τX′f(Xt)

)
for all f ∈ `2(X ′,m′), x ∈ X ′, where τX′ is the first exit time of X ′.

Exercise 0.39 (Characterizing c = 0). Let (b, c) be a graph over a
finite measure space (X,m). Show that the process (Xt) does not leave
X for all t > 0 if and only if c = 0.
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Notes

With the exception of Section 9, the material found in this chapter
is certainly well known, though scattered throughout the existing liter-
ature (see the discussion at the end of these notes) and not necessarily
presented via our perspective of bringing together Dirichlet forms, ge-
ometry of graphs and spectral theory.

The crucial references for us are the papers of Beurling/Deny [BD58,
BD59]. These works announce and outline a general theory connecting
electrostatics and heat diffusion through what is there called a Dirichlet
form. The setting for these papers is that of locally compact topolog-
ical spaces allowing for a Radon measure of full support. They do
not provide proofs in this general setting. These proofs were provided
later in various papers, see the monograph of Fukushima [Fuk80] for a
detailed treatment and further references. However, in [BD58], Beurl-
ing/Deny give a complete treatment for the special case in which the
locally compact space in question is a finite set and the measure is 1
at every point. Roughly speaking, we follow the treatment of [BD58]
by considering a finite set but with an arbitrary measure.

The notions introduced in Section 1 are completely standard.
Section 2 rephrases the basic setting of Beurling/Deny [BD58] us-

ing the language of graphs. In particular, Part (a) of Lemma 0.19 is
Remarque 2 in [BD58] and Part (b) which characterizes the compat-
ibility with normal contractions can already be found in the proof of
Théorème 1 in [BD58]. The correspondence between Dirichlet forms
and graphs found in Theorem 0.22 (and the underlying equivalence of
(i) and (iii) in Theorem 0.20) are Théorème 1 in [BD58].

Although maximum principles for Laplacians on graphs appear
throughout the literature, we could not find an earlier treatment of the
material presented in Section 3 which fully characterizes Laplacians on
graphs in terms of maximum principles.

The use of graphs in electrostatics as found in Section 4 is standard
at this point and goes back to at least the work of Kirchhoff [Kir45]. In
particular, the characterization of graphs given via the capacitor prob-
lem in Theorem 0.44 is Théorème 2 in [BD58]. The resistance metric
discussed in the remark following Corollary 0.42 appears in Remarque
3 in [BD58].

Section 5 is essentially contained in Beurling/Deny [BD58]. In par-
ticular, Theorem 0.49 characterizing the Markov property is Théorème
6 in [BD58]. The splitting of the Beurling–Deny criteria into two, as
found in Theorems 0.47 and 0.48, cannot be found in the quoted works
of Beurling/Deny. We have not been able to ascertain the first source
of this splitting. It can be found under the name of “Beurling–Deny
criteria” in [RS78] or [Dav89].
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Resolvents and semigroups are connected by general principles, the
special features of the Markov property found in Corollary 0.51 in Sec-
tion 6 can be found on page 219 of [BD58].

The Perron–Frobenius Theorem found in Section 7 goes back at
least to the works of Perron [Per07] and Frobenius [Fro08, Fro09,
Fro12]. This material can be found in textbooks. We essentially follow
the presentation in [RS78] for the proof of Theorem 0.55. It is also
standard to use the Perron–Frobenius Theorem to treat convergence
to the ground state of Markov chains as treated in many places, e.g.
[Nor98]. This is also found for finite Markov chains in [SC97]. The-
orem 0.59 and Corollary 0.61 are certainly well known; however, we
have not been able to find them in this form in any textbook.

Section 8 partially serves as a summary of previous considerations.
As such, we refer to the notes above concerning previously discussed
results. Many graph theory textbooks discuss graphs without killing
as their basic object, therefore, disappearance of the killing term is not
an issue. As such, we have not found the characterization of graphs in
terms of special Dirichlet forms that we present in Theorem 0.63 in any
standard reference. On the other hand, conservativeness or stochastic
completeness of semigroups, which is characterized in Theorem 0.65,
is a standard topic in the theory of Markov chains on a discrete space
state with continuous time. See, for example, [Nor98].

Section 9 is not standard. It provides a study of certain geometric
questions which arise naturally in our perspective.

Section 10 is standard and discussed in any textbook on Markov
processes in continuous time, e.g., [Nor98].

Of course there is a great body of excellent textbooks that intersect
with some of the topics treated in this and the forthcoming chapters.
However, the notes at the end of the chapters have a primarily his-
torical character, rather than attempting to provide an extensive bib-
liography. Nevertheless, we take this opportunity to give the reader
at least a partial glimpse of the broad variety of the subject by listing
some standard references that we are aware of. For the books that we
missed, we apologize in advance for our ignorance.

For finite graphs, various aspects of the geometry and spectral the-
ory of Laplacian and Markov processes have been studied and presented
in books by Chung [Chu83], Biggs [Big93] and Colin de Verdière
[CdV98] and the recent and delightful book by Grigor′yan [Gri18],
which also deals with infinite graphs. The book chapters by Saloff-
Coste [SC97] study the connections between analytic inequalities and
geometry in the context of mixing times of continuous time Markov
chains.
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The main focus of the remaining texts we mention is on infinite
graphs. The textbook of Woess [Woe00] provides a standard refer-
ence for discrete time Markov chains with a strong focus on discrete
groups, see also [Woe09]. Moreover, there is an excellent survey arti-
cle on the spectral theory of graphs by Mohar/Woess [MW89]. The
potential theory and the electrical network point of view have been
developed in the books of Doyle/Snell [DS84], Soardi [Soa94] and,
more recently, in the text by Levin/Peres/Wilmer [LPW09] and by
Jorgensen/Pearse [JP]. Percolation, electric networks, random walks
and other stochastic aspects are covered, with a particular focus on
trees, in the book by Lyons/Peres [LP16]. There is also a text by
Barlow [Bar17] that is particularly worth mentioning because it com-
plements this book in the sense that it treats heat kernel estimates,
which are completely omitted here. A further topic which is not cov-
ered in this book concerns discrete notions of curvature, for which we
refer the reader to [NR17]. Moreover, we also mention the recent
book of Kostenko/Nicolussi [KN21], which presents some connections
between discrete and metric graphs.
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Foundations and Fundamental
Topics



Synopsis

This is the first part of our general study of infinite graphs. We
introduce basic quantities associated to graphs such as Dirichlet forms,
Laplacians and semigroups in Chapter 1. Chapter 2 expands upon the
material developed in Chapter 1 and collects several useful tools that
are needed at later points. The main focus of the subsequent chapters
in Part 1 is the investigation of certain features of graphs and their
Laplacians via solutions (or their absence) to generalized eigenvalue
equations. We start with a discussion of essential self-adjointness in
Chapter 3, then turn to studying characterizations of the ground state
in Chapter 4 and the convergence of the semigroup to the ground state
in Chapter 5. The final two chapters of this part deal with fundamen-
tal stochastic properties in terms of generalized solutions. These are
recurrence in Chapter 6 and stochastic completeness in Chapter 7. Our
general point of view in this part is that of functional analysis based on
Dirichlet forms. Various topics of this part will be taken up in Part 3.
The main focus there will be the investigation of the behavior of so-
lutions to generalized eigenvalue equations in terms of the underlying
geometry of the graph.



CHAMBER 1

Infinite Graphs – Key Concepts

First things first, ...
ODB.

In this chapter we discuss key concepts in the spectral geometry of
infinite graphs. We first introduce in Section 1 the setting and the main
objects of study found throughout the remainder of the book. These
include graphs, the associated Laplacians and Dirichlet forms, and the
induced semigroups and resolvents. Our definition of a graph includes
weights on the edges as well as a killing term. We also introduce a few
key tools, such as minimum principles, which will be used throughout.

We then turn to the connection between graphs and Dirichlet forms
in Section 2 where we show that graphs are in a one-to-one correspon-
dence with regular Dirichlet forms. In Section 3 we use tools such as
approximation by finite graphs, domain monotonicity and maximum
principles to prove the Markov property of the semigroup and resol-
vent associated to a regular Dirichlet form. An additional property of
the semigroup and resolvent, namely, that they are positivity improv-
ing, is shown to be equivalent to the connectedness of the graph in
Section 4.

We discuss certain special cases of the general theory in the subse-
quent two sections: In Section 5 we give criteria for when the associated
Laplacians are bounded operators and in Section 6 we discuss what we
call graphs with standard weights. These are graphs where the edge
weights are either one or zero and the killing term is absent.

1. The setting in a nutshell

In this section we introduce our basic setting. We will use the
material and notation of this section tacitly throughout the remainder
of the book. Thus, we assume that the reader is familiar with this
section throughout. On the other hand, given familiarity with this
section, the reader should be able to read essentially any other part of
the book.

Excavation Exercises 1.1 and 1.2 recall basic facts about the Hilbert
space which will be introduced in this section.

Throughout, we let X be a discrete and countable set. More pre-
cisely, we equip X with the discrete topology and by countable we
mean that there is an injective map from X to N. We denote the set

97
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of all real-valued functions on X by C(X). For f ∈ C(X), we write
supp f for the support of f , i.e.,

supp f = {x ∈ X | f(x) 6= 0}.

We denote the set of all functions on X with finite support by Cc(X).
For x ∈ X, we denote the characteristic function of the set which
consists of the element x by 1x. We call a function f ∈ C(X) which
satisfies f ≥ 0 positive and a function which satisfies f > 0 strictly
positive.

If, additionally, there is a measure m on X, we call (X,m) a discrete
measure space. To avoid pathologies we will always assume that the
measure m has full support, i.e., that every point of X has positive
measure. In this situation the set of square summable functions

`2(X,m) = {f ∈ C(X) |
∑
x∈X

f 2(x)m(x) <∞}

has a natural Hilbert space structure with inner product given by

〈f, g〉 =
∑
x∈X

f(x)g(x)m(x)

for f, g ∈ `2(X,m) and norm ‖f‖ =
√
〈f, f〉.

Definition 1.1 (Graph over X). A graph over X is a pair (b, c)
consisting of a function b : X ×X −→ [0,∞) satisfying

• b(x, y) = b(y, x) for all x, y ∈ X
• b(x, x) = 0 for all x ∈ X
•
∑

y∈X b(x, y) <∞ for all x ∈ X
and a function c : X −→ [0,∞). Whenever c = 0, when referring to
(b, 0) we speak instead of b as a graph over X. We call the elements of
X the vertices of the graph. We call a pair (x, y) with b(x, y) > 0 an
edge with weight b(x, y). We will also say that x and y are connected
by an edge with weight b(x, y). We call the vertices x and y neighbors
if there exists an edge connecting them and write x ∼ y in this case.
We call the map c the killing term.

We note that we speak of neighbors as being connected by an edge.
More generally, we say that two vertices x and y are connected if there
exists a sequence (xk)

n
k=0 in X with xk pairwise distinct, b(xk, xk+1) > 0

for k = 0, . . . , n − 1, x0 = x and xn = y. We call such a sequence a
path connecting x and y. We call a subset of X connected if all pairs
of vertices in the subset are connected by a path consisting of vertices
in the subset. A connected component of the graph is a maximal con-
nected subset of X. If X has only one connected component, i.e., if
any two vertices x, y ∈ X are connected, then we say that the graph
(b, c) is connected.



1. THE SETTING IN A NUTSHELL 99

We say that a graph (b, c) is locally finite if for every x ∈ X the
number of neighbors of x is finite, i.e.,

#{y ∈ X | y ∼ x} <∞

for all x ∈ X. In general, we will not assume that graphs are locally
finite.

The degree of a vertex x ∈ X is the function deg : X −→ [0,∞)
defined by

deg(x) =
∑
y∈X

b(x, y) + c(x).

If (b, c) is a graph over X and m is a measure on X with full support
we refer to (b, c) as a graph over (X,m). In this case, we will also refer
to the weighted degree Deg : X −→ [0,∞) as

Deg(x) =
1

m(x)

(∑
y∈X

b(x, y) + c(x)

)
.

Example 1.2 (Counting and normalizing measure). Let (b, c) be a
graph over X. We now introduce two natural choices for a measure on
X. The first is the counting measure given by the constant function
m = 1. In this case, Deg = deg. The second natural measure, called
the normalizing measure n, is defined as n = deg. Whenever we use
deg in the spirit of a measure we denote it by n. In this case, Deg = 1.

To a graph (b, c) over X, we associate the subspace D = Db,c of
C(X) given by

D = {f ∈ C(X) | 1

2

∑
x,y∈X

b(x, y)(f(x)− f(y))2 +
∑
x∈X

c(x)f 2(x) <∞}

and the bilinear map

Q = Qb,c : D ×D −→ R

defined by

Q(f, g) =
1

2

∑
x,y∈X

b(x, y)(f(x)− f(y))(g(x)− g(y)) +
∑
x∈X

c(x)f(x)g(x).

We note that the sums defining Q(f, g) are absolutely convergent on
D due to

|b(x, y)(f(x)− f(y))(g(x)− g(y))| ≤
1

2
b(x, y)(f(x)− f(y))2 +

1

2
b(x, y)(g(x)− g(y))2

and

|c(x)f(x)g(x)| ≤ 1

2
c(x)

(
f 2(x) + g2(x)

)
.
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We call Q the energy form and refer to elements of D as functions
of finite energy. Clearly, Q is symmetric, i.e., satisfies

Q(f, g) = Q(g, f)

for all f, g ∈ D. The form Q is also positive, i.e., satisfies

Q(f, f) ≥ 0

for all f ∈ D.
We will often be interested in the values of Q on the diagonal only.

In this case, we will use the notation

Q(f) = Q(f, f)

for f ∈ D. We can then extend Q to a map on C(X), again denoted
by Q, defined by Q : C(X) −→ [0,∞] via

Q(f) =

{
Q(f) if f ∈ D
∞ else.

This map has the following semi-continuity property.

Proposition 1.3 (Lower semi-continuity of Q). Let (b, c) be a
graph over X. If a sequence (fn) in C(X) converges pointwise to
f ∈ C(X), i.e., fn(x)→ f(x) as n→∞ for all x ∈ X, then

Q(f) ≤ lim inf
n→∞

Q(fn).

Proof. This is a direct consequence of Fatou’s lemma. Indeed,
consider the measure space X × X with the measure B and X with
the measure C given by

B(M) =
1

2

∑
(x,y)∈M

b(x, y) and C(N) =
∑
x∈N

c(x)

for M ⊆ X ×X, N ⊆ X, and the functions Fn, F : X ×X −→ [0,∞)
defined by

Fn(x, y) = (fn(x)− fn(y))2 and F (x, y) = (f(x)− f(y))2.

Then, clearly Fn(x, y) → F (x, y) for all x, y ∈ X, f 2
n(x) → f 2(x) for

all x ∈ X as n→∞ and∫
X×X

FdB +

∫
X

f 2dC = Q(f),

∫
X×X

FndB +

∫
X

f 2
ndC = Q(fn).

Now, Fatou’s lemma gives the desired statement. �

Besides the energy form Q associated to (b, c) we will also consider
the formal Laplacian Lb,c acting on

F = Fb = {f ∈ C(X) |
∑
y∈X

b(x, y)|f(y)| <∞ for all x ∈ X}
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by

Lb,cf(x) =
∑
y∈X

b(x, y)(f(x)− f(y)) + c(x)f(x).

We note that the formal Laplacian Lb,c depends on both b and c while
the domain F depends only on b.

The operator Lb,c has a certain symmetry property and the form
Q and operator Lb,c are related by an integration by parts formula
which we refer to as Green’s formula. This is the content of the next
proposition.

Proposition 1.4 (Green’s formula). Let (b, c) be a graph over X.

(a) Every ϕ ∈ Cc(X) belongs to F and for all f ∈ F∑
x∈X

ϕ(x)Lb,cf(x) =
∑
x∈X

Lb,cϕ(x)f(x)

=
1

2

∑
x,y∈X

b(x, y)(ϕ(x)− ϕ(y))(f(x)− f(y)) +
∑
x∈X

c(x)ϕ(x)f(x),

where all of the sums are absolutely convergent.
(b) We have

D ⊆ F

and thus for all f ∈ D and ϕ ∈ Cc(X)

Q(ϕ, f) =
∑
x∈X

ϕ(x)Lb,cf(x) =
∑
x∈X

Lb,cϕ(x)f(x).

Proof. (a) By the assumptions on f , ϕ and b we have∑
x,y∈X

|b(x, y)f(y)ϕ(x)| =
∑
x∈X

|ϕ(x)|
∑
y∈X

b(x, y)|f(y)| <∞

and ∑
x,y∈X

|b(x, y)f(x)ϕ(x)| =
∑
x∈X

|f(x)ϕ(x)|
∑
y∈X

b(x, y) <∞.

Given this finiteness, the desired equalities follow easily by direct com-
putations.

(b) Given (a), it suffices to show that every f ∈ D belongs to F .
To see this, we calculate∑

y∈X

b(x, y)|f(y)| ≤
∑
y∈X

b(x, y)|f(x)− f(y)|+
∑
y∈X

b(x, y)|f(x)|.

Now, the first term can be seen to be finite via the Cauchy–Schwarz
inequality as(∑

y∈X

b(x, y)

)1/2(∑
y∈X

b(x, y)(f(x)− f(y))2

)1/2

≤ deg1/2(x)Q1/2(f)
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and the second term is bounded by deg(x)|f(x)| < ∞. This gives the
desired statement. �

In most of our subsequent considerations we not only have a graph
(b, c) over X but also a measure m of full support on X. In this situa-
tion, suitable restrictions of the form Q will yield self-adjoint operators
on the Hilbert space `2(X,m). These operators will be our prime con-
cern. To describe how these operators arise we will need the norm
‖ · ‖Q : D ∩ `2(X,m) −→ [0,∞) given by

‖f‖Q =
(
Q(f) + ‖f‖2

)1/2
,

where ‖f‖ is the `2(X,m) norm of f .

We define the form Q(N) = Q
(N)
b,c,m as the restriction of Q to

D(Q(N)) = D ∩ `2(X,m).

Then, clearly, Q(N) is symmetric and positive asQ has these properties.
As above, we set

Q(N)(f) = Q(N)(f, f)

and extend Q(N) to all of `2(X,m) by setting it to be ∞ outside of
D∩ `2(X,m). We think of Q(N) as arising from some sort of Neumann
boundary conditions and this is the reason for the superscript (N). We
will refer to Q(N) as the Neumann form.

If a sequence (fn) from `2(X,m) converges to f in `2(X,m), then
it clearly converges pointwise and from Proposition 1.3 we obtain

Q(N)(f) ≤ lim inf
n→∞

Q(N)(fn).

Thus, Q(N) is a lower semi-continuous map on a subspace of `2(X,m).
By standard theory, see Theorem B.9 in Appendix B, Q(N) is closed,
i.e., D(Q(N)) is complete with respect to ‖ · ‖Q.

In some sense, Q(N) is the “maximal” form associated to a graph.
We will be even more concerned with the “minimal” form. This form
comes about by considering all symmetric closed forms which are re-
strictions of Q(N) (or Q) and whose domain contains Cc(X). The in-
tersection over the domains of all such forms will be a closed subspace
of D(Q(N)). Hence, the restriction of Q to this domain will yield a

positive closed form. We denote this form by Q(D) = Q
(D)
b,c,m and its

domain by D(Q(D)) = D(Q
(D)
b,c,m).

By construction Q(D) is the smallest closed form extending the re-

striction of Q to Cc(X) × Cc(X). Thus, we can also obtain D(Q
(D)
b,c,m)

by taking the closure with respect to ‖ · ‖Q of Cc(X), that is,

D(Q(D)) = Cc(X)
‖·‖Q

.

We think of Q(D) as arising from some sort of Dirichlet boundary con-
ditions and this is the reason for the superscript (D).



1. THE SETTING IN A NUTSHELL 103

By the standard theory of closed forms, see Lemma B.7 and Corol-

lary B.12, there exists a unique self-adjoint operator L(D) = L
(D)
b,c,m on

`2(X,m) whose domain D(L(D)) is contained in D(Q(D)) and which
satisfies

〈g, L(D)f〉 = Q(D)(g, f)

for all f ∈ D(L(D)) and g ∈ D(Q(D)). We call L(D) the Dirichlet
Laplacian or just the Laplacian associated to a graph. We denote the
spectrum of L(D) by σ(L(D)) and the bottom of the spectrum of L(D)

by λ0(L(D)). We note that L(D) is positive and thus σ(L(D)) ⊆ [0,∞)
and λ0(L(D)) ≥ 0.

In general, it is rather hard to describe explicitly the domain of
L(D). Still, the action of this operator is easy to describe. To do so, we
introduce the formal operator L = Lb,c,m associated to a graph (b, c)
over the measure space (X,m). This operator has domain F and acts
via

Lf(x) =
1

m(x)
Lb,cf(x) =

1

m(x)

(∑
y∈X

b(x, y)(f(x)− f(y)) + c(x)f(x)

)
.

From Proposition 1.4, we immediately infer the following variant of
Green’s formula in the case when we have a measure.

Proposition 1.5 (Green’s formula for L). Let (b, c) be a graph
over (X,m). For all f ∈ F and ϕ ∈ Cc(X) we have∑

x∈X

ϕ(x)Lf(x)m(x) =
∑
x∈X

Lϕ(x)f(x)m(x)

=
1

2

∑
x,y∈X

b(x, y)(ϕ(x)− ϕ(y))(f(x)− f(y)) +
∑
x∈X

c(x)ϕ(x)f(x).

If f ∈ D, then the last term reads as Q(ϕ, f). In particular, if f ∈ D
satisfies Lf ∈ `2(X,m), then for all ϕ ∈ Cc(X)

Q(ϕ, f) = 〈ϕ,Lf〉.
Finally, if f ∈ D ∩ `2(X,m) and LCc(X) ⊆ `2(X,m), then for all
ϕ ∈ Cc(X)

Q(ϕ, f) = 〈Lϕ, f〉.

Comparing this with the defining property of L(D) and using the
fact that Q(D) is a restriction of Q, we immediately infer the following
theorem.

Theorem 1.6 (Action of the Dirichlet Laplacian). Let (b, c) be a
graph over (X,m) and let L(D) be the Dirichlet Laplacian. Then,

L(D)f(x) = Lf(x)

for all f ∈ D(L(D)) and x ∈ X.
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Proof. By definition, L(D) is the unique self-adjoint operator with
D(L(D)) ⊆ D(Q(D)) which satisfies 〈g, L(D)f〉 = Q(D)(g, f) for all
f ∈ D(L(D)) and g ∈ D(Q(D)). Furthermore, as Q(D) is a restric-
tion of Q and Cc(X) ⊆ D(Q(D)) ⊆ D ⊆ F , from Green’s formula,
Proposition 1.5, we have

〈ϕ,L(D)f〉 = Q(D)(ϕ, f) = Q(ϕ, f) =
∑
x∈X

ϕ(x)Lf(x)m(x)

for all ϕ ∈ Cc(X) and f ∈ D(Q(D)). The conclusion follows by choosing
ϕ = 1x/m for arbitrary x. �

Next, we discuss an innocent-looking feature of the form Q whose
surprising consequences will unfold later. We let C denote a normal
contraction, i.e., C : R −→ R satisfies C(0) = 0 and |C(s) − C(t)| ≤
|s − t| for all s, t ∈ R. Then, the form Q is compatible with C in the
sense that if f ∈ D, then

Q(C ◦ f) ≤ Q(f).

In particular, it follows that C ◦ f ∈ D for all f ∈ D. It is obvious that
this formula also holds if Q is replaced by Q(N). It is less clear but still
true that it also holds for Q(D). A proof can be found in Section 2. A
closed form which is compatible all with normal contractions is called
a Dirichlet form. Thus, we will see that Q(D) and Q(N) are Dirichlet
forms. We further discuss Dirichlet forms in Section 2.

We mention here that this compatibility has strong consequences
for both the semigroup e−tL

(D)
and resolvent (L(D) + α)−1 associated

to L(D) where t ≥ 0 and α > 0. Namely, this semigroup and resolvent
satisfy

0 ≤ e−tL
(D)

f ≤ 1 and 0 ≤ α(L(D) + α)−1f ≤ 1

for all f ∈ `2(X,m) with 0 ≤ f ≤ 1. This is known as the Markov
property of the semigroup and resolvent. With this property, we can
extend the semigroup and resolvent to all `p(X,m) for p ∈ [1,∞].
Details will be discussed in Section 1.

For α ∈ R we say that a function u is α-subharmonic if u ∈ F and

(L+ α)u ≤ 0.

We say that u is α-superharmonic if −u is α-subharmonic, i.e., u ∈ F
satisfies (L+ α)u ≥ 0. We say that u is α-harmonic if u is both α-sub
and α-superharmonic, i.e., u ∈ F satisfies

(L+ α)u = 0.

When α = 0, we say that u is (sub/super)harmonic. We will see
that various features of such functions are intimately related to the
geometric, spectral and stochastic properties of graphs.
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We next present three basic results concerning solutions of the equa-
tion

(L+ α)u = f

which will be used in various later considerations. We refer to this
equation as the Poisson equation. As a special case, we note that u is
α-harmonic when f = 0.

We will use the notation u∧v = min{u, v} and u∨v = max{u, v} for
the minimum and maximum of two functions, respectively. We start
with a minimum principle for certain supersolutions of the Poisson
equation.

Theorem 1.7 (Minimum principle). Let (b, c) be a graph over (X,m).
Let U ⊆ X. Assume that a function u ∈ F satisfies

• (L+ α)u ≥ 0 on U for some α ≥ 0
• u ∧ 0 attains a minimum on U
• u ≥ 0 on X \ U .

If α > 0 or if every connected component of U is connected to X \ U ,
then u ≥ 0. In fact, on each connected component of U either u = 0
or u > 0.

Proof. Without loss of generality we can assume that U is con-
nected. If u > 0 there is nothing to show. Therefore, assume there
exists a vertex x ∈ U with u(x) ≤ 0. As u ∧ 0 attains a minimum on
U , there then exists a vertex x0 ∈ U with u(x0) ≤ 0 and u(x0) ≤ u(y)
for all y ∈ U . As u(y) ≥ 0 for y ∈ X \ U , we obtain u(x0)− u(y) ≤ 0
for all y ∈ X. By the supersolution assumption we then find

0 ≤ (L+ α)u(x0)

=
1

m(x0)

(∑
y∈X

b(x0, y)(u(x0)− u(y)) + c(x0)u(x0)

)
+ αu(x0) ≤ 0.

Therefore, if α > 0, then 0 = u(x0) and u(y) = u(x0) = 0 for all
y ∼ x0. As U is connected, iteration of this argument shows that u = 0
on U .

On the other hand, for α = 0, we obtain by the same argument
that u is constant on U . As U is connected to X \ U , namely there
exist x ∈ U and y ∈ X \ U such that x ∼ y, we conclude that u = 0
on U . �

For the following lemma, given a sequence of functions (un) and a
function u we write

un(x)↗ u(x)

as n → ∞ if un(x) ≤ un+1(x) for all n ∈ N0 and if un(x) → u(x) as
n → ∞ for x ∈ X. In other words, the sequence converges at x in a
monotonically increasing manner. We will write un ↗ u pointwise if
this happens at all x ∈ X.
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Lemma 1.8 (Monotone convergence of solutions). Let (b, c) be a
graph over (X,m). Let α ∈ R and let u, f ∈ C(X). Let (un) be a
sequence of functions in F with un ≥ 0. Assume that un(x) ↗ u(x)
and (L+ α)un(x)→ f(x) for all x ∈ X as n→∞. Then, u ∈ F and

(L+ α)u = f.

Proof. Without loss of generality, we assume that m = 1. By
assumption

(L+ α)un(x) =
∑
y∈X

b(x, y)(un(x)− un(y)) + (c(x) + α)un(x)

converges to f(x) for any x ∈ X. As
∑

y∈X b(x, y)un(x) converges in-

creasingly to u(x)
∑

y∈X b(x, y) < ∞, the assumptions on (un) show

that
∑

y∈X b(x, y)un(y) must converge as well and, in fact, must con-

verge to
∑

y∈X b(x, y)u(y) by the monotone convergence theorem. From
this, we easily obtain the conclusion. �

We let

u+ = u ∨ 0 and u− = −u ∨ 0

denote the positive and negative parts of u so that u = u+ − u− and
|u| = u+ + u−. The next lemma then shows that the positive and
negative parts of a α-harmonic function are α-subharmonic.

Lemma 1.9 (α-subharmonic and α-superharmonic functions). Let
(b, c) be a graph over (X,m). Let α ∈ R. If u, v ∈ F are α-subharmonic
(α-superharmonic, respectively), then u∨ v is α-subharmonic (u∧ v is
α-superharmonic, respectively). In particular, if u is α-harmonic, then
u+, u− and |u| are all α-subharmonic.

Proof. Let u, v be α-subharmonic for some α ∈ R and let w =
u ∨ v. Let x ∈ X and assume without loss of generality that w(x) =
u(x) ≥ v(x). Then,

w(x)− w(y) =

{
u(x)− u(y) if u(y) ≥ v(y)

u(x)− v(y) else

≤ u(x)− u(y).

Thus, (L+ α)w ≤ (L+ α)u ≤ 0 so that w is α-subharmonic.
Now, let u, v be α-superharmonic. We first observe that u ∧ v =

−((−u)∨ (−v)). Hence, by what we have shown above, (−u)∨ (−v) is
α-subharmonic as −u and −v are α-subharmonic. Therefore, u∧v is α-
superharmonic. The “in particular” statement follows as u± = (±u)∨0
and |u| = u+ + u−. �

We now introduce the heat equation. More specifically, a function
u : [0,∞) × X −→ R is called a solution of the heat equation if, for
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every x ∈ X, the mapping t 7→ ut(x) is continuous on [0,∞) and
differentiable on (0,∞), ut ∈ F for all t > 0 and

(L+ ∂t)ut(x) = 0

for all x ∈ X and t > 0. The equation (L+ ∂t)u = 0 is called the heat
equation. If u has all of the properties above but instead of equality in
the heat equation satisfies (L+∂t)u ≥ 0, then we call u a supersolution
of the heat equation. If u is a solution of the heat equation and u0 = f
for f ∈ C(X), then f is called the initial condition for u. We will say
that u satisfies the heat equation with initial condition f in this case.
We think of x as a space variable and t as time.

We note that if f ∈ `2(X,m), then the function

ut(x) = e−tL
(D)

f(x)

is a solution of the heat equation with initial condition f , as follows
from the spectral theorem. For details and a proof, see Theorem A.33
in Appendix A.

We now prove a minimum principle for the heat equation. In par-
ticular, for supersolutions of the heat equation on certain subsets, pos-
itivity on the boundary propagates to positivity on the subset. This
will be used later to establish the minimality of certain solutions.

Theorem 1.10 (Minimum principle for the heat equation). Let
(b, c) be a graph over (X,m). Let U ⊆ X be a connected subset and
suppose that U contains a vertex which is connected to a vertex outside
of U . Let T ≥ 0 and let u : [0, T ] × X −→ R be such that t 7→ ut(x)
is continuously differentiable on (0, T ) for every x ∈ U and ut ∈ F for
all t ∈ (0, T ]. Assume u satisfies

• (L+ ∂t)u ≥ 0 on (0, T )× U
• u ∧ 0 attains a minimum on U × [0, T ]
• u ≥ 0 on ((0, T ]× (X \ U)) ∪ ({0} × U).

Then, u ≥ 0 on [0, T ]× U .

Proof. Let (t, x) be a point where u ∧ 0 attains a minimum on
U × [0, T ]. If ut(x) ≥ 0, the conclusion follows so we assume ut(x) < 0.
Since u is positive on {0} × U we have t > 0. Furthermore, since u
attains a minimum at (t, x) with respect to t we obtain ∂tut(x) = 0 if
t < T and ∂tut(x) ≤ 0 if t = T .

Since u also attains a negative minimum at (t, x) with respect to x,
we have

Lut(x) =
1

m(x)

∑
y∈X

b(x, y)(ut(x)− ut(y)) +
c(x)

m(x)
ut(x) ≤ 0.

Therefore, (L+ ∂t)ut(x) ≤ 0. As u also satisfies (L + ∂t)u ≥ 0 we
obtain

(L+ ∂t)ut(x) = 0
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and hence Lut(x) = 0. Therefore, ut(y) = ut(x) < 0 for all y ∼ x.
Iterating this argument and using the assumption that U is connected
implies that ut is a negative constant on U . At the vertex x ∈ U which
has a neighbor not in U , the equation Lut(x) = 0 then contradicts the
assumption u ≥ 0 on (0, T ]× (X \ U). �

In most parts of this book, we focus on the form Q(D) and the op-
erator L(D). However, as has already been seen, other forms inducing
operators naturally appear, e.g., the Neumann form Q(N). A conve-
nient way to deal with this situation is to introduce the following more
general notion.

Definition 1.11 (Associated forms and operators). We say that a
form Q with domain D(Q) is associated to a graph if Q is closed,

D(Q(D)) ⊆ D(Q) ⊆ D(Q(N)) and Q = Q(N)

on D(Q). We then say that the arising operator L is associated to a
graph or an associated operator .

Remark. An equivalent formulation is that Q is a restriction of
Qb,c, the domain D(Q) of Q contains Cc(X) and D(Q) is complete
with respect to ‖ · ‖Q (Exercise 1.10). As Q is a symmetric positive
closed form, L is a self-adjoint operator with spectrum contained in
[0,∞), see Appendix B for details.

The statement and proof of Theorem 1.6 directly carry over to
operators associated to graphs by replacing Q(D) by Q and L(D) by L.

Theorem 1.12 (Action of associated operators). Let (b, c) be a
graph over (X,m). Let L be an associated operator. Then,

Lf(x) = Lf(x)

for all f ∈ D(L).

We note, in particular, that the result above applies to the oper-

ator L(N) = L
(N)
b,c,m with domain D(L(N)) arising from the Neumann

form Q(N) = Q
(N)
b,c,m. We will refer to L(N) = L

(N)
b,c,m as the Neumann

Laplacian.

Notation. As already seen in the preceding discussion, we will
often suppress the subscripts b, c or b, c,m in various quantities if the
graph is clear from the context. The most prominent role in the book
will be played by Dirichlet boundary conditions, i.e., the form Q(D) =

Q
(D)
b,c,m and the operator L(D) = L

(D)
b,c,m. For this reason, we will often

suppress the superscript (D) if no confusion should arise. Thus, if not
stated otherwise (as is the case, for example, in the next section) we
will often write Q instead of Q(D) and L instead of L(D).
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Remark. We note that our definition of a graph allows for the
vertex set X to be finite. However, most of the statements from this
point on are trivially true if X is finite. As this is not the focus of
the remaining parts of the book, we will not discuss the finite case
explicitly. However, there are a few instances when we need X to be
infinite for the statement to be true. Whenever this is the case, we
include this explicitly in our assumptions and discuss the finite case
via remarks. On the other hand, we note that any set which allows for
a connected graph structure b must be countable (Exercise 1.11).

2. Graphs and (regular) Dirichlet forms

In this section we show that graphs and regular Dirichlet forms are
in a one-to-one correspondence. To this end, we use some of the fun-
damental theory of closed forms on Hilbert spaces, which is discussed
in Appendix B.

Let X be a countable set and let m be a measure on X with full
support. A symmetric positive form over (X,m) is given by a dense
subspace D(Q) of `2(X,m) called the domain of the form and a bilinear
map

Q : D(Q)×D(Q) −→ R

satisfying

• Q(f, g) = Q(g, f) (“Symmetry”)
• Q(f, f) ≥ 0 (“Positivity”)

for all f, g ∈ D(Q). From now on, all forms are assumed to be sym-
metric and positive so we do not mention this explicitly.

We note that such a map is already determined by its values on the
diagonal as

Q(f, g) =
1

4

(
Q(f + g, f + g)−Q(f − g, f − g)

)
.

For f ∈ `2(X,m), we then define Q(f) by

Q(f) =

{
Q(f, f) if f ∈ D(Q)

∞ otherwise.

If the map `2(X,m) −→ [0,∞], f 7→ Q(f), is lower semi-continuous,
then Q is called closed . If Q has a closed extension, then Q is called
closable and the smallest closed extension is called the closure of Q.

The form Q is closed if and only if D(Q) with the form norm
‖ · ‖Q : D(Q) −→ [0,∞) given by

‖f‖Q =
(
Q(f) + ‖f‖2

)1/2
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is complete. If Q′ is closable with closure Q, then for any f ∈ D(Q),
there exists a sequence (fn) in D(Q′) with

lim
n→∞

‖f − fn‖Q = 0.

For details and further background on these concepts for general Hilbert
spaces we refer the reader to Appendix B. Here, we only note the fol-
lowing direct consequence of lower semi-continuity in our case.
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Proposition 1.13 (Consequence of lower semi-continuity). Let Q
be a closed form on `2(X,m). If (fn) is a sequence in D(Q) satisfying

• fn → f in `2(X,m)
• (Q(fn)) is bounded,

then f ∈ D(Q) and
Q(f) ≤ lim inf

n→∞
Q(fn).

Proof. By fn → f in `2(X,m) it follows that fn → f pointwise
and we can invoke lower semi-continuity of Q to infer that

Q(f) ≤ lim inf
n→∞

Q(fn) <∞.

This is the desired inequality, which also implies f ∈ D(Q). �

Let C : R −→ R be a normal contraction, i.e., a map with C(0) = 0
and |C(s)− C(t)| ≤ |s− t|. If Q is both closed and satisfies

Q(C ◦ f) ≤ Q(f)

for all f ∈ D(Q) and all normal contractions C, then Q is called a
Dirichlet form on (X,m).

For a graph (b, c) over (X,m), we show next that Q(N) = Q
(N)
b,c,m is

a Dirichlet form. This form was introduced in the last section as the
restriction of Q = Qb,c to D(Q(N)) = D ∩ `2(X,m).

Proposition 1.14 (Q(N) is a Dirichlet form). Let (b, c) be graph

over (X,m). Then, Q
(N)
b,c,m is a Dirichlet form.

Proof. As Q(N) is a restriction of Q, it is lower semi-continuous
by Proposition 1.3. By Theorem B.9 in Appendix B this implies that
Q(N) is closed. Clearly, for all normal contractions C and f ∈ `2(X,m),
it follows that C ◦ f ∈ `2(X,m). Furthermore, for f ∈ D(Q(N)) =
D ∩ `2(X,m),

Q(N)(C ◦ f) = Q(C ◦ f) ≤ Q(f) = Q(N)(f).

Thus, Q(N) is closed and compatible with normal contractions. There-
fore, Q(N) is a Dirichlet form. �

Let ‖ · ‖∞ denote the supremum norm on Cc(X). A Dirichlet form
Q on (X,m) is called regular if D(Q) ∩ Cc(X) is dense in both Cc(X)
with respect to ‖·‖∞ and in D(Q) with respect to the form norm ‖·‖Q.

It turns out that a Dirichlet form Q on (X,m) is regular if and only
if Q is the closure of the restriction of Q to the subspace Cc(X). The
“if” direction is immediate from the definition of a regular Dirichlet
form. The “only if” direction is shown next.

Lemma 1.15. Let Q be a regular Dirichlet form over (X,m). Then,
Cc(X) is contained in D(Q). In particular, Q is the closure of the
restriction of Q to Cc(X)× Cc(X).
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Proof. Let x ∈ X be arbitrary and let ϕ = 2 · 1x so that ϕ ∈
Cc(X). We will show that ϕ ∈ D(Q). As x is chosen arbitrarily, this
will imply the first statement.

As Q is regular, Cc(X) ∩ D(Q) is dense in Cc(X) with respect to
the supremum norm, so there exists a ψ ∈ D(Q) with 1 < ψ(x) < 3
and |ψ(y)| < 1 for all y 6= x, i.e.,

‖ϕ− ψ‖∞ < 1.

As Q is a Dirichlet form, D(Q) is invariant under taking the modulus
and we can assume ψ ≥ 0. Furthermore, as taking the minimum with 1
is also a normal contraction, ψ ∧ 1 ∈ D(Q). As D(Q) is a vector space
it contains ψ−ψ∧1 and this is a nonzero multiple of ϕ by construction.
Thus ϕ ∈ D(Q) and as x ∈ X is arbitrary, the first statement follows.

As Q was assumed to be regular, the space Cc(X) = Cc(X)∩D(Q)
is dense in D(Q) with respect to the form norm and the “in particular”
statement follows. �

We have already encountered a regular Dirichlet form. More specif-

ically, whenever (b, c) is a graph over (X,m) and Q = Q(D) = Q
(D)
b,c,m is

the form defined in the previous section with domain

D(Q
(D)
b,c,m) = Cc(X)

‖·‖Q

and acting as a restriction of Qb,c, i.e., Q
(D)
b,c,m is the closure of Qb,c

restricted to Cc(X)× Cc(X), then Q is a regular Dirichlet form as we

now show. In particular, we will show that the domain of Q
(D)
b,c,m is

preserved by normal contractions.

Lemma 1.16 (Q(D) is a regular Dirichlet form). Let (b, c) be a graph

over (X,m). Then, Q
(D)
b,c,m is a regular Dirichlet form.

Proof. We first show that Q = Q
(D)
b,c,m is a Dirichlet form. We

denote the restriction of Q to Cc(X)×Cc(X) by Q(comp)
b,c . Whenever C

is a normal contraction and ϕ ∈ Cc(X), we find by a direct computation

Q(comp)
b,c (C ◦ ϕ) =

1

2

∑
x,y∈X

b(x, y)(C ◦ ϕ(x)− C ◦ ϕ(y))2

+
∑
x∈X

c(x) (C ◦ ϕ(x))2

≤ 1

2

∑
x,y∈X

b(x, y)(ϕ(x)− ϕ(y))2 +
∑
x∈X

c(x)ϕ(x)2

= Q(comp)
b,c (ϕ).

Here, we used the defining properties of a normal contraction in the
middle step.
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We will extend this inequality to D(Q). In particular, we will show
that C ◦ f ∈ D(Q) for f ∈ D(Q). As Q is the closure of its restriction

Q(comp)
b,c to Cc(X)×Cc(X), there exists a sequence (ϕn) in Cc(X) with

ϕn → f with respect to ‖ · ‖Q. In particular, ϕn → f in `2(X,m).
Then, clearly, the sequence (C ◦ ϕn) belongs to Cc(X) and converges
to C ◦ f in `2(X,m). Moreover, the sequence (Q(C ◦ ϕn)) is bounded
as

Q(C ◦ ϕn) = Q(comp)
b,c (C ◦ ϕn) ≤ Q(comp)

b,c (ϕn) = Q(ϕn)→ Q(f)

as n→∞. From Proposition 1.13, we then infer C ◦ f ∈ D(Q) and

Q(C ◦ f) ≤ Q(f).

Therefore, Q is a Dirichlet form.

By construction, Q is the closure of Q(comp)
b,c . Hence, Q is regular.

This finishes the proof. �

It turns out that the converse to the previous lemma holds as well.

Lemma 1.17 (Regular Dirichlet forms arise from graphs). Let Q be
a regular Dirichlet form over (X,m). Then, there exists a graph (b, c)

over (X,m) with Q = Q
(D)
b,c,m.

Proof. By Lemma 1.15, Cc(X) is contained in D(Q). Define
b : X ×X −→ R by

b(x, y) = −Q(1x, 1y)

for x 6= y and b(x, x) = 0 and define c : X −→ R by

c(x) = Q(1x)−
∑
y∈X

b(x, y).

We will show that (b, c) is a graph with Q
(D)
b,c,m = Q. This will also show

that the sum appearing in the definition of c is absolutely convergent.

Claim. (a) For any x, y ∈ X with x 6= y, we have Q(1x, 1y) ≤ 0. In
particular, b(x, y) ≥ 0.

(b) For any finite K ⊆ X and x ∈ K, we have Q(1K , 1x) ≥ 0.

Proof of the claim. (a): Consider for x 6= y the function f = 1x−1y.
As the modulus is a normal contraction and Q is a Dirichlet form we
obtain

Q(1x + 1y) = Q(|f |) ≤ Q(f) = Q(1x − 1y).

As Q is bilinear, this gives

Q(1x) + 2Q(1x, 1y) +Q(1y) ≤ Q(1x)− 2Q(1x, 1y) +Q(1y).

Therefore,

4Q(1x, 1y) ≤ 0,

which gives the conclusion.
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(b): Consider now for x ∈ K the function gs = 1K + s1x for s ≥ 0.
As taking the minimum with 1 is a normal contraction we infer

Q(1K) = Q(1 ∧ gs) ≤ Q(gs) = Q(1K + s1x).

As Q is bilinear,

0 ≤ 2Q(1K , 1x) + sQ(1x).

Letting s→ 0+ then yields

0 ≤ Q(1K , 1x).

From (a) of the claim, b is positive. Moreover, for any K ⊆ X finite
and any x ∈ K we compute

Q(1x) = Q(1K , 1x)−
∑

y∈K,y 6=x

Q(1y, 1x)

= Q(1K , 1x) +
∑

y∈K,y 6=x

b(x, y)

= Q(1K , 1x) +
∑
y∈K

b(x, y).

As, by the claim, both Q(1K , 1x) and b are positive, we can now con-
clude ∑

y∈K

b(x, y) ≤ Q(1x)

for any K ⊆ X finite and this gives∑
y∈X

b(x, y) ≤ Q(1x) <∞.

From this we infer

Q(1x)−
∑
y∈X

b(x, y) ≥ 0

for all x ∈ X. Thus, c defined at the beginning of the proof exists and
is positive. Hence, (b, c) is indeed a graph.

Moreover, from the very definitions of b and c we conclude for x, y ∈
X with x 6= y

Q(1x, 1y) = −b(x, y) = Q
(D)
b,c,m(1x, 1y)

and for x ∈ X

Q(1x) = c(x) +
∑
y∈X

b(x, y) = Q
(D)
b,c,m(1x).

By bilinearity, Q and Q
(D)
b,c,m agree on Cc(X). As both are regular

Dirichlet forms, they must then be equal. �
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Remark. In the preceding proof we have shown the following: Let
Q(comp) be a form on Cc(X)×Cc(X) with Q(comp)(C ◦ϕ) ≤ Q(comp)(ϕ)
for all ϕ ∈ Cc(X) and all normal contractions C. Then, there exists
a graph (b, c) over X such that Q(comp) is the restriction of Qb,c to
Cc(X)× Cc(X) (Exercise 1.12).

Theorem 1.18 (Regular Dirichlet forms and graphs). The map

(b, c) 7→ Q
(D)
b,c,m is a bijective correspondence between graphs (b, c) over

(X,m) and regular Dirichlet forms over (X,m).

Proof. This is a direct consequence of Lemmas 1.16 and 1.17. In
particular, injectivity of the map follows directly from the first lines of
the proof of Lemma 1.17. �

We finish this section by providing a structural characterization of
the domain of the unique regular Dirichlet form associated to a graph.
We recall that D denotes the space of functions of finite energy. We
let D0 denote the subspace of f ∈ D for which there exists a sequence
(ϕn) in Cc(X) with ϕn → f pointwise and Q(f − ϕn)→ 0 as n→∞.

Theorem 1.19 (Domain of D(Q(D))). Let (b, c) be a graph over

(X,m) with associated energy form Qb,c. Then, Q(D) = Q
(D)
b,c,m is the

restriction of Qb,c to

D(Q(D)) = D0 ∩ `2(X,m).

Remark. To put this result into perspective, we compare it with

the corresponding statement for the Neumann form Q(N) = Q
(N)
b,c,m. By

definition, Q(N) arises as a restriction of Qb,c to

D(Q(N)) = D ∩ `2(X,m).

So, we see that the difference between the Dirichlet and Neumann
boundary conditions comes from a corresponding difference between D
and D0.

Proof. We let Q = Q(D) in the proof. To show

D(Q) = D0 ∩ `2(X,m)

we will prove two inclusions.

D(Q) ⊆ D0∩ `2(X,m): By definition, D(Q) is the closure of Cc(X)

with respect to ‖ · ‖Q given by ‖f‖Q = (Q(f) + ‖f‖)1/2. This imme-
diately gives the statement as `2(X,m) convergence implies pointwise
convergence.

D0 ∩ `2(X,m) ⊆ D(Q): Let f ∈ D0 ∩ `2(X,m). As Q is a closed
form, the restriction of Q to the diagonal is lower semi-continuous.
Thus, by Proposition 1.13, it suffices to find a sequence (χn) in Cc(X)
with χn → f in `2(X,m) as n→∞ and (Q(χn)) bounded.
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Since f ∈ D0 we can find a sequence (ϕn) in Cc(X) with ϕn → f
pointwise and Q(f − ϕn) → 0 as n → ∞. This implies, in particular,
that the sequence (Q(ϕn)) = (Q(ϕn)) is bounded. We will modify the
sequence (ϕn) in order to obtain a sequence (χn) converging to f in
`2(X,m). Consider

ψn = ϕn ∧ |f |.
Claim. We have:

• ψn ∈ Cc(X) for all n.
• ψn → f pointwise as n→∞.
• The sequence (Q(ψn))n is bounded.

Proof of the claim. The first two statements are straightforward.
The last statement follows from

|ψn(x)− ψn(y)| ≤ |ϕn(x)− ϕn(y)|+ | |f(x)| − |f(y)| |
≤ |ϕn(x)− ϕn(y)|+ |f(x)− f(y)|.

Consider now χn = ψn ∨ −|f |. Then, we clearly have

χn = −(−ψn ∧ |f |).
Thus, we can apply the reasoning of the previous claim to obtain:

• χn ∈ Cc(X) for all n.
• χn → f pointwise as n→∞.
• The sequence (Q(χn))n is bounded.

Moreover, by construction the sequence (χn) satisfies

−|f | ≤ χn ≤ |f |.
Thus, by Lebesgue’s dominated convergence theorem, the sequence
(χn) converges to f in `2(X,m). Hence, the sequence (χn) has all
of the desired properties. This finishes the proof. �

Remark. It is possible to elaborate on the approximation of f and
C ◦ f by a sequence in Cc(X) (Exercise 1.13).

3. Approximation, domain monotonicity and the Markov
property

A basic idea in the study of regular Dirichlet forms is to first inves-
tigate their restrictions to compact sets. In our context, this amounts
to looking at restrictions to finite subsets of X. We will discuss various
instances of this idea in this section. Together, they will provide very
basic features of regular Dirichlet forms and the associated operators.

Excavation Exercise 1.3 discussing convergence of operators will be
used in the proof of Lemma 1.21 below.

We recall that if (b, c) is a graph over (X,m), then the Laplacian
L = L(D) associated to the regular Dirichlet form Q = Q(D) satisfies
σ(L) ⊆ [0,∞), where σ(L) denotes the spectrum of L. This follows
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as Q is a symmetric positive closed form, see Appendix B for details.
In particular, we can then use the spectral theorem to define the semi-
group and resolvent associated to L, that is, e−tL for t ≥ 0 and (L+α)−1

for α > 0.
Using the spectral theorem, we can also show that both the semi-

group and resolvent are bounded operators on `2(X,m) with ‖e−tL‖ ≤
1 and ‖α(L + α)−1‖ ≤ 1 for all t ≥ 0 and α > 0, see Proposi-
tions A.32 and A.34 in Appendix A. We refer to the fact that the
norm of both the semigroup and resolvent is uniformly bounded by
1 by saying that the semigroup is a contraction semigroup and the
resolvent is a contraction resolvent .

The facts mentioned above follow from the general theory of forms
and operators. In this section we will use the graph structure and the
method of exhaustion via finite sets to establish a further property of
both the semigroup and the resolvent associated to L. More specifically,
if (X,m) is a discrete measure space and A : `2(X,m) −→ `2(X,m) is
a bounded operator, then A is said to have the Markov property or to
be Markov if

0 ≤ Af ≤ 1

for any f ∈ `2(X,m) with 0 ≤ f ≤ 1. We will show that both e−tL and
α(L+ α)−1 are Markov for every t ≥ 0 and α > 0.

We note that the Markov property consists of two separate inequal-
ities. We recall that a function f ∈ C(X) is called positive if f ≥ 0.
We call an operator mapping positive functions to positive functions
positivity preserving. We call an operator mapping functions bounded
above by 1 to functions bounded above by 1 contracting. Hence, we
see that a bounded operator has the Markov property if and only if
the operator is positivity preserving and contracting. For an abstract
treatment of the Markov property and its relation to Dirichlet forms
see Appendix C.

After this discussion of the property of interest, we now introduce
the basic ideas for the exhaustion process. For (b, c) over (X,m) let
Q = Qb,c be the associated energy form. For any finite set K ⊆ X,

we denote the restriction of m to K by mK and let Q
(D)
K be the form

defined on `2(K,mK) by

Q
(D)
K (f) = Q(iKf)

for f ∈ `2(K,mK). Here, iK : C(K) −→ C(X) is the canonical em-
bedding, i.e., iKf is the extension of f ∈ C(K) to X by setting iKf

to be identically zero outside of K. Clearly, Q
(D)
K is a closed form

on `2(K,mK) since the domain of Q
(D)
K is the entire Hilbert space

`2(K,mK).
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A short calculation then gives

Q
(D)
K (f) = Q(iKf) = QbK ,cK (f) +

∑
x∈K

dK(x)f 2(x),

where bK is the restriction of b to K ×K, cK is the restriction of c to
K and

dK(x) =
∑

y∈X\K

b(x, y)

describes the edge deficiency of a vertex in K compared to the same

vertex in X. Thus, Q
(D)
K is the Dirichlet form associated to the graph

(bK , cK + dK) over (K,mK), i.e.,

Q
(D)
K = QbK ,cK+dK .

Clearly, Q
(D)
K is regular as K is finite.

We denote the self-adjoint operator associated to Q
(D)
K by L

(D)
K and

call it the Dirichlet Laplacian with respect to K. As K is finite, this
operator is bounded and defined on the entire Hilbert space `2(K,mK).
We infer from Theorem 1.6 that

L
(D)
K f(x) =

1

m(x)

(∑
y∈K

b(x, y)(f(x)− f(y)) +
(
dK(x) + c(x)

)
f(x)

)
for all f ∈ `2(K,mK) and x ∈ K. In particular,

L(iKf)(x) = L
(D)
K f(x)

for all x ∈ K and thus Lf = L
(D)
K f if f is supported on K.

We can use this explicit formula to obtain some information on

the semigroup and resolvent of L
(D)
K , which is gathered in the next

proposition. Part of this proposition can be inferred from the material
presented in Chapter 0. To make the presentation self-contained, we
provide a complete proof here.

Proposition 1.20 (Features of restrictions to finite sets). Let (b, c)
be a graph over (X,m).

(a) If K ⊆ X is finite, the eigenvalues of L
(D)
K are non-negative. If the

graph is additionally connected and infinite, then the eigenvalues

of L
(D)
K are strictly positive and L

(D)
K is invertible. (“Positivity”)

(b) If K ⊆ X is finite and f ∈ `2(K,mK) with 0 ≤ f ≤ 1, then

0 ≤ α(L
(D)
K + α)−1f ≤ 1 (“Markov”)

for α > 0. Furthermore, (L
(D)
K )−1f ≥ 0 if the graph is connected

and infinite.
(c) If K ⊆ H are finite subsets of X and α > 0, then

(L
(D)
K + α)−1f ≤ (L

(D)
H + α)−1f
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on K for all f ∈ `2(K,mK) with f ≥ 0, where f is extended by
zero on H \ K. If the graph is connected and infinite, then the
statement holds also for α = 0. (“Domain monotonicity”)

Proof. (a) The first statement is clear from the inequality

〈f, L(D)
K f〉 = Q

(D)
K (f) = Q(iKf) ≥ 0

applied to the eigenfunctions of L
(D)
K . Now, assume that there exists

an f0 such that L
(D)
K f0 = 0. Then,

0 = 〈f0, L
(D)
K f0〉

= Q
(D)
K (f0)

=
∑
x,y∈K

b(x, y)(f0(x)− f0(y))2 +
∑
x∈K

(c(x) + dK(x))f 2
0 (x)

yields that f0 is constant on every connected component of K. By
the fact that the graph is connected and infinite, there exists a vertex
x ∈ K with y ∈ X \ K such that b(x, y) > 0. Therefore, dK(x) > 0.
Indeed, this is true for every connected component of K. Hence, we
have

0 = 〈f0, L
(D)
K f0〉 ≥ dK(x)f 2

0 (x) ≥ 0.

Thus, f0 = 0 and, therefore, 0 is not an eigenvalue. This shows the

strict positivity of the eigenvalues of L
(D)
K and invertibility follows.

(b) By (a) the resolvent (L
(D)
K + α)−1 exists for every α > 0 and

also for α = 0 if the graph is connected and infinite. Consider now

f ∈ `2(K,mK) with 0 ≤ f ≤ 1 and set u = (L
(D)
K + α)−1f . Then,

f(x)m(x) = (L
(D)
K + α)u(x)m(x)

=
∑
y∈K

b(x, y)(u(x)− u(y)) +
(
dK(x) + c(x) + αm(x)

)
u(x).

We will investigate this equality for xM ∈ K such that u(xM) is the
maximum of u and x0 ∈ K such that u(x0) is the minimum of u on K.

For x0, we have ∑
y∈K

b(x0, y)(u(x0)− u(y)) ≤ 0

and we infer from f(x0) ≥ 0 that u(x0) ≥ 0. For xM we have∑
y∈K

b(xM , y)(u(xM)− u(y)) ≥ 0

and we infer from f(xM) ≤ 1 and u(xM) ≥ u(x0) ≥ 0 that αu(xM) ≤ 1.
This gives

0 ≤ u(x0) ≤ u(x) ≤ u(xM) ≤ 1

α
for all x ∈ K and we have shown (b).
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(c) Set uK = (L
(D)
K +α)−1f , uH = (L

(D)
H +α)−1f and v = uH − uK .

Then, on K we have

(L
(D)
H + α)v = (L

(D)
H + α)(uH − uK)

= f − (L
(D)
H + α)uK

= f −
(
(L

(D)
H + α)− (L

(D)
K + α) + (L

(D)
K + α)

)
uK

= f − (L
(D)
H − L(D)

K )uK − f

= (L
(D)
K − L(D)

H )uK

= 0.

We use this to show v ≥ 0.
Clearly, v ≥ 0 on H \K as uK vanishes outside of K and uH ≥ 0 by

(b). Consider now x0 ∈ K such that v(x0) is the minimum of v on K.
Assume that v(x0) < 0. Then, we obtain from the previous equality

and the explicit formula for L
(D)
H the contradiction

0 = (L
(D)
H + α)v(x0)m(x0)

=
∑
y∈H

b(x0, y)(v(x0)− v(y)) + (dH(x0) + c(x0) + αm(x0)) v(x0)

< 0.

This contradiction shows v(x0) ≥ 0 and thus v ≥ 0. �

Our next result will show convergence of the restrictions to finite
subsets for both the resolvent and the semigroup. In order to be able
to state the result conveniently we will use the following notation.

Notation. Let (b, c) be a graph over (X,m), let Q = Q
(D)
b,c,m be

the associated regular Dirichlet form and Q
(D)
K be the restriction of

Q to the finite set K ⊆ X with associated Dirichlet Laplacian L
(D)
K

acting on `2(K,mK) as defined above. We extend L
(D)
K by zero on

the orthogonal complement of `2(K,mK) in `2(X,m). We will extend

functions Φ of L
(D)
K accordingly, that is, for f ∈ `2(X,m), we write

Φ(L
(D)
K ) for iKΦ(L

(D)
K )(f |K). This is, in particular, used for the function

Φ(λ) = (λ+ α)−1, i.e.,

(L
(D)
K + α)−1f for iK(L

(D)
K + α)−1(f |K),

but also applies to Φ(λ) = (λ + α) or Φ(λ) = e−tλ. The extended
operators will be denoted by the same symbols as the original ones.

Lemma 1.21 (Convergence of finite approximations). Let (b, c) be
a graph over (X,m) and let Q be the associated regular Dirichlet form
with Laplacian L. Let (Kn) be an increasing sequence of finite subsets
of X with X =

⋃
nKn.
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(a) If f ∈ `2(X,m) and α > 0, then

lim
n→∞

(L
(D)
Kn

+ α)−1f = (L+ α)−1f.

(b) If f ∈ `2(X,m) and t ≥ 0, then

lim
n→∞

e−tL
(D)
Kn f = e−tLf.

Furthermore, if additionally f ≥ 0, then the sequences in both state-
ments converge not only in `2(X,m) but also pointwise monotonically
increasingly, i.e.,

(L
(D)
Kn

+ α)−1f ↗ (L+ α)−1f and e−tL
(D)
Kn f ↗ e−tLf

pointwise as n→∞.

Remark. The proof of (b) will actually show

lim
n→∞

Φ(L
(D)
Kn

)f = Φ(L)f

for any f ∈ `2(X,m) and any function Φ: [0,∞) −→ R which is con-
tinuous and satisfies limx→∞Φ(x) = 0. We say that such functions
vanish at infinity.

Proof. (a) In the proof we will use the following characterization
of resolvents: Whenever Q is a positive closed form with associated
self-adjoint operator L, the function f is an arbitrary element of the
underlying Hilbert space and α > 0, then u = (L+α)−1f is the unique
minimizer of

Q(v) + α

∥∥∥∥v − 1

α
f

∥∥∥∥2

over v ∈ D(Q). See Theorem E.1 for a proof of this characterization.
After decomposing f into positive and negative parts, we can re-

strict attention to f ≥ 0. Define

un = (L
(D)
Kn

+ α)−1f.

Then, un ≥ 0 by the Markov property in Proposition 1.20 (b).
By domain monotonicity, Proposition 1.20 (c), the sequence (un(x))

is monotone increasing for any x ∈ X. Moreover, we have ‖un‖ ≤
α−1‖f‖ since the operators (L

(D)
Kn

+α)−1 are bounded uniformly in norm
by 1/α, as follows from the spectral theorem, see Proposition A.34.
This implies that (un(x)) is also bounded for any x ∈ X. Thus, the
sequence (un) converges pointwise and in `2(X,m) to a function u ∈
`2(X,m) by Lebesgue’s dominated convergence theorem.

Let ϕ ∈ Cc(X). Assume without loss of generality that the support

of ϕ is contained in K1. Then, Q(ϕ) = Q
(D)
Kn

(ϕ) for all n sufficiently
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large. Since Q is closed and thus lower semi-continuous, convergence
of (un) to u and the minimizing property of un then give

Q(u) + α
∥∥u− 1

α
f
∥∥2 ≤ lim inf

n→∞

(
Q(un) + α

∥∥u− 1
α
f
∥∥2
)

= lim inf
n→∞

(
Q(un) + α

∥∥un − 1
α
f
∥∥2
)

= lim inf
n→∞

(
Q

(D)
Kn

(un) + α
∥∥un − 1

α
f
∥∥2
)

≤ lim inf
n→∞

(
Q

(D)
Kn

(ϕ) + α
∥∥ϕ− 1

α
f
∥∥2
)

= Q(ϕ) + α
∥∥ϕ− 1

α
f
∥∥2
.

As ϕ ∈ Cc(X) is arbitrary and Q is regular, this implies

Q(u) + α
∥∥u− 1

α
f
∥∥2 ≤ Q(v) + α

∥∥v − 1
α
f
∥∥2

for any v ∈ D(Q). Thus, u is a minimizer of

Q(v) + α
∥∥v − 1

α
f
∥∥2
,

so that u must then be equal to (L+ α)−1f by the characterization of
the resolvent stated at the start of the proof.

(b) Let C0([0,∞)) be the vector space of all continuous functions
Φ: [0,∞) −→ R with limx→∞Φ(x) = 0. Define for α > 0 the function
Φα : [0,∞) −→ R by

Φα(x) = (x+ α)−1.

Then, clearly Φα ∈ C0([0,∞)) for any α > 0 and Φα(L) = (L + α)−1

by the functional calculus, see Definition A.21 in Appendix A.
Let A be the closure in the supremum norm of the linear span of

Φα for α > 0. Then, by (a) we have

lim
n→∞

Φ(L
(D)
Kn

)f = Φ(L)f

for all Φ ∈ A and f ∈ `2(X,m). We will show that for every t ≥ 0,
the function [0,∞) −→ R given by x 7→ e−tx belongs to A, which will
complete the proof. The statement for t = 0 is clear, so we assume
that t > 0.

We note that it suffices to show that

A = C0([0,∞)).

We will do so by proving the following claim and then applying the
Stone–Weierstrass theorem.

Claim. The set A has the following properties:

• A separates the points of [0,∞) (i.e., for any x, y ∈ [0,∞) with x 6= y
there exists a Φ ∈ A with Φ(x) 6= Φ(y)).
• A does not vanish identically at any point (i.e., for any x ∈ [0,∞)

there exists a Φ ∈ A with Φ(x) 6= 0).
• A is an algebra.
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Proof of the claim. The first two points follow directly by consid-
ering Φ = Φ1. As for the last point, by definition, A is a vector space.
Thus, it suffices to show that A is closed under multiplication. To show
this it suffices to show ΦαΦβ ∈ A for any α, β > 0. For α 6= β this is
clear as

ΦαΦβ =
1

α− β
(Φβ − Φα).

For α = β we can consider a sequence (βn) of positive numbers with
βn → β = α and βn 6= β for all n. Then, by what we have just shown
ΦαΦβn ∈ A as βn 6= α. Thus, ΦαΦβ ∈ A as limn→∞ΦαΦβn = ΦαΦβ in
the supremum norm. This finishes the proof of the claim.

Given the claim, the desired statement that A = C0([0,∞)) follows
directly from the Stone–Weierstrass theorem. This concludes the proof
of (b).

In the case of f ≥ 0, the fact that the sequence (un) given by

un = (L
(D)
Kn

+ α)−1f is monotonically increasing pointwise follows from

Lemma 1.20 (c). The corresponding statement for e−tL
(D)
Kn follows from

the connection between resolvents and semigroups. That is, from the
formula (

k

t

(
x+

k

t

)−1
)k

=

(
1 +

tx

k

)−k
→ e−tx

as k →∞ for any t > 0, it follows that

e−tL
(D)
Kn f = lim

k→∞

(
k

t

(
L

(D)
Kn

+
k

t

)−1
)k

f

for any f ∈ `2(X,m) and t > 0, see Theorem A.35 for more details. �

Remark. The convergence given in the previous lemma is a char-
acterization of regularity (Exercise 1.14).

Combining the Markov property of the resolvents of restrictions to
finite sets proven in Lemma 1.20 (b) along with the convergence state-
ments in Lemma 1.21 gives the Markov properties for the semigroups
and resolvents associated to the regular form on the entire graph.

Corollary 1.22 (Markov property of resolvents and semigroups).
Let (b, c) be a graph over (X,m) with associated regular Dirichlet form
Q and Laplacian L. Then, for any f ∈ `2(X,m) with 0 ≤ f ≤ 1,

0 ≤ α(L+ α)−1f ≤ 1 and 0 ≤ e−tLf ≤ 1

for all α > 0 and t ≥ 0.

Remark. It is not necessary for the function to be bounded in order
for the positivity preserving property above to hold (Exercise 1.15).
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Proof. After suitable approximation procedures, it suffices to con-
sider ϕ ∈ Cc(X) with 0 ≤ ϕ ≤ 1. Consider now an increasing sequence
Kn of finite subsets of X with X =

⋃
nKn. In particular, we may

assume that the support of ϕ is contained in Kn for all n ∈ N. By
Lemma 1.21 we have

(L+ α)−1ϕ = lim
n→∞

(L
(D)
Kn

+ α)−1ϕ.

By the Markov property for finite sets, Lemma 1.20 (b), we have 0 ≤
α(L

(D)
Kn

+ α)−1ϕ ≤ 1. Combining these two observation we obtain the
desired statement for the resolvents.

We now turn to proving the statement for the semigroups. The
case t = 0 is clear so we restrict attention to the case t > 0. As above,
the equality

e−tLf = lim
k→∞

(
k

t

(
L+

k

t

)−1
)k

f

for any f ∈ `2(X,m) given in Theorem A.35 gives the statement from
the already shown statement for the resolvents. �

Remark (Second Beurling–Deny criterion). The preceding corol-
lary also follows immediately from the general theory of Dirichlet forms,
where it is referred to as one direction of the second Beurling–Deny
criterion. Indeed, this is one of the characterizing features of Dirichlet
forms. For finite sets this was discussed in Chapter 0. The case of
arbitrary Dirichlet forms is treated in Appendix C. Here, we gave a di-
rect proof as this method of proof is rather instructive and has further
consequences which we establish below.

We now show that the resolvent generates the minimal solution to
the Poisson problem for a positive function. This follows directly from
the considerations above, the minimum principle and the convergence
to solutions.

Lemma 1.23 (Resolvents as minimal solutions to (L + α)u = f).
Let (b, c) be a graph over (X,m) with associated regular Dirichlet form
Q and Laplacian L. Let α > 0 and f ∈ `2(X,m). If u = (L + α)−1f ,
then u belongs to F and satisfies

(L+ α)u = f.

Furthermore, if additionally f ≥ 0, then u is the smallest v ∈ F
with v ≥ 0 and (L+ α)v ≥ f.

Proof. We first show that u is a solution as stated. For α > 0, we
note that the resolvent (L+α)−1 maps `2(X,m) into D(L) ⊆ D(Q) ⊆
D ⊆ F , where the last inclusion follows by Proposition 1.4 (b) and
the other inclusions follow from the definitions. By Theorem 1.6, the
operator L is a restriction of L so that u = (L+ α)−1f ∈ F satisfies

(L+ α)u = f,
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as claimed.

We now establish the minimality of u when additionally f ≥ 0. We
first note that u ≥ 0 whenever f ≥ 0 as the resolvent is positivity
preserving by Corollary 1.22. Now, let v ≥ 0 be another function
with v ∈ F and (L + α)v ≥ f . Let (Kn) be an increasing sequence

of finite subsets of X with X =
⋃
nKn and let L

(D)
Kn

be the Dirichlet

Laplacian on `2(Kn,mKn). We recall that L
(D)
Kn

agrees with L on the
set of functions supported in Kn. Let fn = f1Kn ,

un = (L
(D)
Kn

+ α)−1fn

and extend un by 0 to X \Kn. Then, letting wn = v − un, wn satisfies

• (L+ α)wn = (L+ α)v − (L
(D)
Kn

+ α)un ≥ f − fn = 0 on Kn

• wn ∧ 0 attains a minimum on Kn since Kn is finite
• wn = v ≥ 0 on X \Kn.

Hence, we can apply the minimum principle, Theorem 1.7, and find
wn = v − un ≥ 0 on X. Therefore, v ≥ un on X.

Finally, we show that un converges to u and thus v ≥ u, which will
complete the proof. Indeed, this can be seen by first fixing k ∈ N and

considering (L
(D)
Kn

+ α)−1fk for n ≥ k. Then, Lemma 1.21 (a) gives

lim
n→∞

(L
(D)
Kn

+ α)−1fk = (L+ α)−1fk.

Furthermore, Proposition A.34 gives

‖α(L+ α)−1‖ ≤ 1 and ‖α(L
(D)
Kn

+ α)−1‖ ≤ 1

for all n ∈ N and all α > 0. Therefore, as fk → f in `2(X,m) we have

lim
k→∞

(L+ α)−1fk = (L+ α)−1f

and

‖(L(D)
Kn

+ α)−1(fn − fk)‖ ≤
1

α
‖fn − fk‖ → 0

as k, n→∞. Thus, the triangle inequality implies

‖un − u‖ ≤ ‖(L(D)
Kn

+ α)−1(fn − fk)‖+ ‖(L(D)
Kn

+ α)−1fk − (L+ α)−1fk‖
+ ‖(L+ α)−1(fk − f)‖,

where we have shown that all three terms go to 0 as k, n→∞. �

As the resolvent associated to the operator coming from the regular
Dirichlet form generates the minimal positive solution of the Poisson
equation, so does the semigroup generate the minimal solution of the
heat equation. This is discussed next.

We recall that a function

u : [0,∞)×X −→ R
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is called a solution of the heat equation with initial condition f if
for all x ∈ X, the mapping t 7→ ut(x) is continuous on [0,∞) and
differentiable on (0,∞), ut ∈ F for all t > 0 and

(L+ ∂t)ut(x) = 0

for all x ∈ X and t > 0 with u0 = f . We call u a supersolution of the
heat equation with initial condition f if u satisfies all the assumptions
above and instead of equality in the heat equation we have

(L+ ∂t)ut(x) ≥ 0.

We now show that if the initial condition is positive, then the semigroup
of the associated Laplacian generates the minimal positive supersolu-
tion of the heat equation.

Lemma 1.24 (Semigroup as the minimal solution of the heat equa-
tion). Let (b, c) be a graph over (X,m) with associated regular Dirichlet
form Q and Laplacian L. Let f ∈ `2(X,m). If

ut(x) = e−tLf(x)

for t ≥ 0 and x ∈ X, then u is a solution of the heat equation with
initial condition f .

Furthermore, if additionally f ≥ 0, then u is the smallest positive
supersolution of the heat equation with initial condition greater than or
equal to f .

Proof. As L is a restriction of L by Theorem 1.6, the fact that
ut(x) = e−tLf(x) is a solution of the heat equation with initial condition
f for f ∈ `2(X,m) is a consequence of the spectral theorem and can
be found as Theorem A.33 in Appendix A.

We now show minimality. Let f additionally satisfy f ≥ 0. Then,
by Corollary 1.22 we have ut(x) ≥ 0 for all t ≥ 0 and x ∈ X as the
semigroup is positivity preserving. Thus, u is a positive solution of
the heat equation with initial condition f . Now, suppose that w is a
positive supersolution of the heat equation with w0 ≥ f . Let (Kn) be
an increasing sequence of finite subsets of X with X =

⋃
nKn and let

L
(D)
Kn

be the Dirichlet Laplacian on `2(Kn,mKn). We recall that L
(D)
Kn

agrees with L on functions supported in Kn. We let fn = f1Kn and

u
(n)
t (x) = e−tL

(D)
Kn fn(x)

for x ∈ Kn and t ≥ 0. We extend u(n) by 0 to [0,∞) × X \ Kn. If
w(n) = w − u(n), then w(n) satisfies

• (L+ ∂t)w
(n) ≥ 0 on (0, T )×Kn

• w(n)∧0 attains a minimum on the compact set [0, T ]×Kn since w(n)

is continuous
• w(n) ≥ 0 on ((0, T ]× (X \Kn)) ∪ ({0} ×Kn).
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Hence, we can apply the minimum principle for the heat equation,
Theorem 1.10, to obtain w(n) = w − u(n) ≥ 0 on [0, T ] × Kn for all
n ∈ N. Therefore, w ≥ u(n) on [0, T ] × X as u(n) vanishes outside of
Kn and w is positive.

We now show that u(n) converges to u from which it follows that
w ≥ u, thereby completing the proof. Indeed, this can be seen by first

fixing k ∈ N and considering e−tL
(D)
Kn fk for n ≥ k. Then, Lemma 1.21 (b)

gives

lim
n→∞

e−tL
(D)
Kn fk = e−tLfk.

Furthermore, by Proposition A.32 in Appendix A we have

‖e−tL‖ ≤ 1 and ‖e−tL
(D)
Kn ‖ ≤ 1

for all n ∈ N and all t ≥ 0. As fk → f in `2(X,m) we have

lim
k→∞

e−tLfk = e−tLf

and

‖e−tL
(D)
Kn (fn − fk)‖ ≤ ‖fn − fk‖ → 0

as k, n→∞. Thus, the triangle inequality implies

‖u(n) − u‖ ≤ ‖e−tL
(D)
Kn (fn − fk)‖+ ‖e−tL

(D)
Kn fk − e−tLfk‖+ ‖e−tL(fk − f)‖,

where we have shown that all three terms go to 0 as k, n→∞. �

We have shown that the resolvent of an operator coming from a
regular Dirichlet form is positivity preserving for α > 0. We will now
finish this section by showing that, in some cases, we can even deal
with α which are not positive. This will be used later in Chapter 4.

We will write Q ≥ C for a Dirichlet form Q and C ∈ R if

Q(f) ≥ C‖f‖2

for all f ∈ D(Q).

Corollary 1.25. Let (b, c) be a graph over (X,m) with associated
regular Dirichlet form Q and Laplacian L. Let Q ≥ C for C ∈ R. If
α > −C, then (L+ α)−1 is positivity preserving, i.e.,

(L+ α)−1f ≥ 0

for f ∈ `2(X,m) with f ≥ 0.

Proof. By Corollary 1.22, we have e−tLf ≥ 0 for all f ∈ `2(X,m)
with f ≥ 0. From Q ≥ C we note by the variational characterization of
the bottom of the spectrum that λ0(L) ≥ C and thus σ(L) ⊆ [C,∞),
see Theorem E.8. In particular, (L+ α)−1 exists for all α > −C.

This allows us to extend the Laplace transform formula from The-
orem A.35 as follows: From

(x+ α)−1 =

∫ ∞
0

e−tαe−txdt,
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which holds for all x ≥ C and α > −C, we obtain

(L+ α)−1 =

∫ ∞
0

e−tαe−tLdt

for all α > −C. As e−tLf ≥ 0, this completes the proof. �

Remark. We note, in particular, that this result extends the cor-
responding statement from Corollary 1.22 to allow α to be negative
when C > 0. In particular, for any connected finite set K ⊆ X which
contains a vertex which is connected to a vertex outside of K, it follows

that the Dirichlet form Q
(D)
K satisfies the assumptions of the corollary

above by Proposition 1.20 (a). Therefore, the above result applies to

the resolvent of any Dirichlet Laplacian L
(D)
K for K ⊆ X finite which

is connected to a vertex outside of K.

4. Connectedness, irreducibility and positivity improving

In this section we discuss some of the consequences of connectedness
of the graph. This geometric property translates directly into proper-
ties of the form as well as the associated semigroup and resolvent.
Specifically, connectedness of the graph is equivalent to irreducibility
of the form, a property which can be understood as stating that the
form cannot be decomposed into two orthogonal parts. Furthermore,
connectedness is equivalent to the fact that the semigroup or resolvent
maps non-vanishing positive functions to strictly positive functions.
This property is called positivity improving.

In the previous section we showed that the semigroup and resolvent
associated to L always map positive functions to positive functions.
This property is called positivity preserving. Here, we will show that
connectedness is equivalent to a strict strengthening of this property.

We recall that a subset of X is called connected if any two points
in the subset can be connected by a path consisting of vertices in the
subset. A maximal connected subset is called a connected component
and (b, c) is called connected if it consists of one connected component.

We now introduce the necessary concepts of irreducible forms and
positivity improving operators. A quadratic form Q on `2(X,m) with
domain D(Q) is called irreducible if the only subsets U ⊆ X such that
1UD(Q) ⊆ D(Q) and

Q(f) = Q(1Uf) +Q(1X\Uf)

for all f ∈ D(Q) are either U = ∅ or U = X.
An operator A on `2(X,m) is called positivity improving if Af > 0

for all non-trivial f ∈ D(A) with f ≥ 0.

Theorem 1.26 (Characterization of connectedness and positivity
improving). Let (b, c) be a graph over (X,m) with associated regular
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Dirichlet form Q and Laplacian L. Then, the following statements are
equivalent:

(i) (b, c) is connected.
(ii) Q is irreducible.
(iii) (L+ α)−1 is positivity improving for all α > 0.
(iv) e−tL is positivity improving for all t > 0.

Proof. (i) =⇒ (iv): Let ϕ ∈ Cc(X) be positive and non-trivial.
Let (Kn) be an increasing sequence of connected finite sets such that

X =
⋃
nKn. Denote by L

(D)
Kn

the operators corresponding to the re-

strictions of Q to Cc(Kn). By Proposition 1.20 (b), (L
(D)
Kn

+ α)−1ϕ ≥ 0
for all α > 0. Therefore,

e−tL
(D)
Knϕ = lim

n→∞

(
n

t

(
L

(D)
Kn

+
n

t

)−1
)n

ϕ ≥ 0,

so that the semigroup e−tL
(D)
Kn is positivity preserving.

Now, let u(x, t) = e−tL
(D)
Knϕ(x) ≥ 0 and assume that n is large

enough so that the support of ϕ is included in Kn. We want to show
that u(x, t) > 0 for all x ∈ Kn and t > 0. If there exists x0 ∈ Kn and
t0 > 0 such that u(x0, t0) = 0, then (x0, t0) is a minimum for u in both
variables. Having a minimum at t0 gives

0 = ∂tu(x0, t0) = −L(D)
Kn
u(x0, t0).

Now, having a minimum at x0 yields u(y, t0) = 0 for all y ∼ x0. As Kn

is connected, this implies u(x, t0) = 0 for all x ∈ Kn. However,

et0L
(D)
Kn u(x, t0) = ϕ(x),

so that ϕ = 0 on Kn which gives a contradiction to the assumption on

ϕ. Therefore, e−tL
(D)
Knϕ > 0 for all t > 0, so that e−tL

(D)
Kn is positivity

improving.

As we assume that ϕ ≥ 0, by Lemma 1.21, we get e−tL
(D)
Knϕ→ e−tLϕ

as n→∞ where the convergence is pointwise monotonically increasing.
Therefore, we infer that e−tLϕ > 0.

For a non-trivial positive function f ∈ `2(X,m), let fn = 1Knf ∈
Cc(X). Then, fn converges monotonically increasingly to f in `2(X,m)
as n → ∞. By Corollary 1.22 applied to the functions fn+1 − fn, we
have that 0 < e−tLfn → e−tLf where the convergence is pointwise
monotonically increasing. Therefore, e−tLf > 0.

(iv) =⇒ (iii): This follows directly from the Laplace transform
formula in Theorem A.35, that is,

(L+ α)−1 =

∫ ∞
0

e−αte−tLdt.
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(iii) =⇒ (ii): If the form Q is not irreducible, then there exists a
proper non-trivial subset U ⊆ X such that L decomposes into a direct
sum of operators LU⊕LX\U on `2(U,mU)⊕`2(X\U,mX\U). Hence, the
resolvent also decomposes into a direct sum (LU +α)−1⊕(LX\U +α)−1.
In this case, taking a non-trivial function f ∈ `2(U,mU) with f ≥ 0
yields a non-trivial function (f, 0) ∈ `2(U,mU)⊕`2(X \U,mX\U) which
is non-negative. However,

(L+ α)−1(f, 0) = ((LU + α)−1f, (LX\U + α)−10) = ((LU + α)−1f, 0),

which is not strictly positive.

(ii) =⇒ (i): For any connected component U , we clearly have that
1Uϕ ∈ D(Q) and

Q(ϕ) = Q(1Uϕ) +Q(1X\Uϕ)

for any ϕ ∈ Cc(X). We want to show that the same holds for f ∈ D(Q)
so that we may apply irreducibility to conclude connectedness.

Let f ∈ D(Q) and let ϕn ∈ Cc(X) be such that ‖ϕn − f‖Q → 0 as
n→∞. Then, (1Uϕn) is a Cauchy sequence in ‖ · ‖Q since

Q(1Uϕn − 1Uϕm) ≤ Q(1U(ϕn − ϕm)) +Q(1X\U(ϕn − ϕm))

= Q(ϕn − ϕm)

and ‖1Uϕn − 1Uϕm‖ ≤ ‖ϕn − ϕm‖ for all n,m ∈ N0. Hence, (1Uϕn)
converges in D(Q) so that 1Uf ∈ D(Q). Furthermore, as Q(1Uϕn) →
Q(1Uf) and Q(ϕn)→ Q(f) as n→∞, it follows that

Q(f) = Q(1Uf) +Q(1X\Uf).

By irreducibility, we infer that either U = ∅ or U = X. This shows
that (b, c) is connected. �

5. Boundedness and compactly supported functions

In this section we study basic facts about the domain of the oper-
ators. More specifically, we first characterize boundedness of the oper-
ators and the form. We then characterize when the formal Laplacian
maps the finitely supported functions into `2.

We start with a characterization of boundedness. For a graph (b, c)
over (X,m) we let Q = Qb,c and L = Lb,c,m and recall that

Deg(x) =
1

m(x)

(∑
y∈X

b(x, y) + c(x)

)
for x ∈ X denotes the weighted degree. Furthermore, we recall that a
closed formQ with domainD(Q) is associated to the graph ifD(Q(D)) ⊆
D(Q) ⊆ D(Q(N)) and Q is a restriction of Q. We say that the corre-
sponding operator L, which is a restriction of L, is associated to the
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graph as well. The boundedness statement below shows that there is
a unique such form whenever the weighted degree is bounded.

Theorem 1.27 (Characterization of boundedness). Let (b, c) be a
graph over (X,m) and let L be a Laplacian associated to the graph with
form Q. Then, the following statements are equivalent:

(i) The weighted degree Deg is a bounded function on X.
(ii) The form Q and, thus, Q is bounded on `2(X,m).
(iii) The operator L and, thus, L is bounded on `2(X,m).

The equivalent statements, in particular, imply that Q(D) = Q = Q(N).
Moreover, if Deg is bounded by D <∞, then Q ≤ 2D and L is bounded
by 2D on `2(X,m).

Proof. (i) =⇒ (ii): Suppose Deg ≤ D, i.e.,
∑

y∈X b(x, y) + c(x) ≤
Dm(x) for all x ∈ X. Then for f ∈ `2(X,m) we have∑

x∈X

(∑
y∈X

b(x, y) + c(x)

)
f 2(x) ≤ D

∑
x∈X

f 2(x)m(x) = D‖f‖2.

Therefore, if f ∈ `2(X,m), then

Q(f) =
1

2

∑
x,y∈X

b(x, y)(f(x)− f(y))2 +
∑
x∈X

c(x)f 2(x)

≤
∑
x,y∈X

b(x, y)(f 2(x) + f 2(y)) +
∑
x∈X

c(x)f 2(x)

≤ 2
∑
x,y∈X

b(x, y)f 2(x) +
∑
x∈X

c(x)f 2(x)

≤ 2D‖f‖2,

where we used the symmetry of b and Fubini’s theorem in the second
inequality above. This shows that `2(X,m) ⊆ D and thatQ is bounded
by 2D on `2(X,m).

(ii) =⇒ (iii): The statements for L follow directly from the fact
that

‖L‖ = sup
f∈D(L),‖f‖≤1

〈Lf, f〉 = sup
f∈D(L),‖f‖≤1

Q(f)

as L is self-adjoint. In particular, if Deg ≤ D, then L is bounded by
2D from the argument above. As L is thus bounded, it follows that
D(L) = `2(X,m) and since L and L agree on D(L) by Theorem 1.6,
the statement for L follows.

(iii) =⇒ (i): Let ex = 1x/
√
m(x) for x ∈ X and observe that

‖ex‖ = 1 and

〈Lex, ex〉 = Q(ex) = Deg(x).

As we assume that L is bounded, this shows the statement. �
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We next investigate the issue of whether the space of functions of
compact support Cc(X) is in the domain of an associated operator
L. We start by giving an example where L does not map Cc(X) into
`2(X,m), in which case Cc(X) cannot be included in D(L).

Example 1.28 (LCc(X) not in `2(X,m)). LetX = N0 and b(0, k) =
b(k, 0) = k−2 for k ≥ 1 and b(k, l) = 0 for k, l ≥ 1 with c = 0. Fur-
thermore, let m be given by m(k) = k−3 for k ≥ 1 with m(0) = 1.
Then,

∞∑
k=0

(L10(k))2m(k) ≥
∞∑
k=1

b2(0, k)

m(k)
=
∞∑
k=1

1

k
=∞.

Thus, L10 is not in `2(X,m).

The next theorem characterizes Cc(X) ⊆ D(L) and gives some
sufficient conditions for this to hold. In particular, Cc(X) ⊆ D(L) if
the graph is locally finite.

Theorem 1.29 (Characterization of Cc(X) ⊆ D(L)). Let (b, c) be
a graph over (X,m) and let L be a Laplacian associated to the graph.
Then, the following statements are equivalent:

(i) Cc(X) ⊆ D(L).
(ii) LCc(X) ⊆ `2(X,m).
(iii) The functions X −→ [0,∞), y 7→ b(x, y)/m(y) are in `2(X,m)

for all x ∈ X.
(iv) `2(X,m) ⊆ F .

Furthermore, the equivalent conditions above are satisfied if

inf
y∼x

m(y) > 0

for all x ∈ X which holds, in particular, if the graph is locally finite.

Proof. (i) ⇐⇒ (ii): Let Q be the form associated to L. From
general properties, see Theorem B.11 in Appendix B,

D(L) =

{
f ∈ D(Q)

∣∣∣∣ there exists a unique g ∈ `2(X,m) with
Q(h, f) = 〈h, g〉 for all h ∈ D(Q)

}
.

By Green’s formula, Proposition 1.5, we have for all h ∈ D(Q) ⊆ F ,
ϕ ∈ Cc(X) and g = Lϕ

Q(h, ϕ) =
∑
x∈X

h(x)g(x)m(x).

The right-hand side is equal to 〈h, g〉 if and only if g = Lϕ ∈ `2(X,m).
Along with the fact that L is a restriction of L by Theorem 1.12, this
shows the equivalence between (i) and (ii).

(ii)⇐⇒ (iii): Let ϕx be given by ϕx(y) = b(x, y)/m(y). We observe
that

L1x = Deg(x)1x − ϕx,
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which yields L1x ∈ `2(X,m) if and only if ϕx ∈ `2(X,m).

(iii) ⇐⇒ (iv): Assume that ϕx given by ϕx(y) = b(x, y)/m(y) are
in `2(X,m) for all x ∈ X. Then, for f ∈ `2(X,m), we get by the
Cauchy–Schwarz inequality∑

y∈X

b(x, y)|f(y)| =
∑
y∈X

ϕx(y)|f(y)|m(y) ≤ ‖ϕx‖‖f‖.

Hence, f ∈ F .
On the other hand, assume that `2(X,m) ⊆ F and let x ∈ X. De-

fine Nx =
{y ∈ X | y ∼ x}. Then, `1(Nx, b(x, ·)) = {f ∈ F | suppf ⊆ Nx}
and we have

`2(Nx,m1Nx) ⊆ `1(Nx, b(x, ·)).
By the closed graph theorem we infer the existence of a constant C ≥ 0
such that for all f ∈ `2(X,m) and all x ∈ X∑

y∈X

b(x, y)|f(x)| = ‖f1Nx‖`1(Nx,b(x,·)) ≤ C‖f1Nx‖ ≤ C‖f‖.

Therefore, ∑
y∈X

ϕx(y)|f(y)|m(y) =
∑
y∈X

b(x, y)|f(y)| ≤ C‖f‖.

Hence, ϕx ∈ `2(X,m) by the Riesz representation theorem.

Finally, the condition infy∼xm(y) = Cx > 0 implies that ϕx ∈
`2(X,m) for x ∈ X, since

‖ϕx‖2 =
∑
y∈X

b2(x, y)

m(y)
≤ 1

Cx

∑
y∈X

b2(x, y) <∞.

This shows the “in particular” statement. �

6. Graphs with standard weights

In this section we discuss a class of examples which have been of
special interest in the literature, namely, graphs with standard weights.
They appear as a special case in our framework. In particular, we apply
the results of the previous section to characterize when the associated
forms and operators on such graphs are bounded.

Definition 1.30 (Graphs with standard weights). Let (b, c) be a
graph over X. If b takes values in {0, 1} and c = 0, we say that b is a
graph with standard weights .

We denote the edges of the graph by

E = {(x, y) ∈ X ×X | x ∼ y}.
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For graphs with standard weights, the degree function deg given by
deg(x) =

∑
y∈X b(x, y) is the combinatorial degree, i.e., if x ∈ X, then

deg(x) = #{y ∈ X | x ∼ y} = # (E ∩ ({x} ×X)) .

The assumption
∑

y∈X b(x, y) < ∞ clearly implies that graphs with
standard weights are locally finite.

6.1. The energy form and the formal Laplacian for graphs
with standard weights. We now explicitly write out the energy form
and the Laplacian in the case of standard weights.

For a graph b with standard weights, the energy form Q is given by

Q(f) =
1

2

∑
x,y∈X,x∼y

(f(x)− f(y))2

for f ∈ C(X). Furthermore, by local finiteness, the domain F of the
formal Laplacian consists of all functions, i.e.,

F = C(X).

We denote the formal Laplacian Lb,0 for graphs b with standard weights

by ∆̃. This operator acts as

∆̃f(x) =
∑

y∈X,y∼x

(f(x)− f(y)).

6.2. The counting measure. We now introduce the counting
measure and give a boundedness criterion for the resulting combinato-
rial Laplacian.

The counting measure m = 1 counts the number of vertices in a
subset of X. In this case, the degree and the weighted degree satisfy

deg = Deg

and are equal to the combinatorial degree.

In this case, we denote the Laplacian L
(D)
b,0,1 associated to Q

(D)
b,0,1 by

∆. By Theorem 1.6, ∆ is a restriction of ∆̃.
We deduce the following corollaries from the results of the previous

sections.

Corollary 1.31 (Characterization of boundedness). Let b be a
graph with standard weights and let m = 1 be the counting measure.
Then, the following statements are equivalent:

(i) The combinatorial degree deg is a bounded function on X.
(ii) The form Q is bounded.

(iii) The operator ∆ is bounded.

Proof. This follows directly from Theorem 1.27 and the equality
of the combinatorial and weighted degrees, deg = Deg, in this case. �
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Corollary 1.32 (Cc(X) ⊆ D(∆)). Let b be a graph with standard
weights and let m = 1 be the counting measure. Then, Cc(X) ⊆ D(∆).

Proof. As m = 1 is uniformly bounded from below by a positive
constant, the statement follows directly from Theorem 1.29. �

6.3. The normalizing measure. We now introduce the normal-
izing measure and discuss how the resulting Laplacian is always bounded.

The normalizing measure n is given by deg which is the combina-
torial degree in the case of standard weights. This measure counts the
number of edges for a subset of vertices, more specifically,

n(A) = #EA +
1

2
#∂EA

for A ⊆ X, where EA = E ∩ (A× A) and

∂EA = E ∩ (((X \ A)× A) ∪ (A× (X \ A)))

(cf. Exercise 0.28). Letting m = n, the weighted degree Deg satisfies

Deg = 1.

For the normalizing measure n = deg, we denote the Laplacian

L
(D)
b,0,n associated to Q

(D)
b,0,n by ∆n and refer to ∆n as the normalized

Laplacian. By Theorem 1.6, ∆n is a restriction of 1
n
∆̃, that is

∆nf(x) =
1

deg(x)

∑
y∈X,y∼x

(f(x)− f(y))

for f ∈ D(∆n) and x ∈ X.

Corollary 1.33 (∆n is bounded). Let b be a graph with stan-
dard weights and let n be the normalizing measure. Then, the normal-
ized Laplacian ∆n is a bounded operator on `2(X,n). In particular,
Cc(X) ⊆ D(∆n) = `2(X,n).

Proof. This follows directly from Theorem 1.27 and the equality
Deg = 1 in this case. �
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Exercises

Excavation exercises.

Exercise 1.1 (The Hilbert space `2(X,m)). Let (X,m) be a dis-
crete measure space. Show that

`2(X,m) = {f : X −→ R |
∑
x∈X

f 2(x)m(x) <∞}

is a real Hilbert space with inner product given by

〈f, g〉 =
∑
x∈X

f(x)g(x)m(x).

Exercise 1.2 (Denseness of Cc(X) in `2(X,m)). Let (X,m) be a
discrete measure space. Show that Cc(X) is dense in `2(X,m).

Exercise 1.3 (Closure convergence). Let (Ln) be a sequence of
self-adjoint operators on a Hilbert space and let L be a self-adjoint
operator. Assume that for a family {Φα}α∈I of measurable bounded
functions from R to R and some index set I we have

lim
n→∞

Φα(Ln)f = Φα(L)f

for all f in the Hilbert space and for all α ∈ I. Let A be the closure of
{Φα}α∈I with respect to the supremum norm. Show that

lim
n→∞

Φ(Ln)f = Φ(L)f

for all Φ ∈ A and f in the Hilbert space.

Example exercises.

Exercise 1.4 (Mutual independence of positivity preserving and
contracting). Let (X,m) be a discrete measure space.

(a) Give an example of a self-adjoint operator with a positivity pre-
serving but not contracting semigroup.

(b) Give an example of a self-adjoint operator which is neither positiv-
ity preserving nor contracting.

(c) Give an example of a self-adjoint operator whose semigroup is con-
tracting but not positivity preserving.

Exercise 1.5 (Graph with strictly positive b). Give an example of
a graph b over an infinite set X with b(x, y) > 0 for all x, y ∈ X with
x 6= y.
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Exercise 1.6 (Infinite star graph). Consider the infinite star-graph
with X = N0 = N ∪ {0}, m : X −→ (0,∞) and b : X × X −→ [0,∞)
satisfying b(x, y) = 0 whenever {x, y} ⊆ N and b(x, y) > 0 whenever
x 6= y with 0 ∈ {x, y}. Let Q be an associated form and L be the
corresponding Laplacian.

(a) Characterize the boundedness of the associated form Q.
(b) Characterize the validity of Cc(X) ⊆ D(L).

Exercise 1.7 (Dirichlet form not satisfying Cc(X) ⊆ D(Q)). Give
an example of a discrete measure space (X,m) and a Dirichlet form Q
on (X,m) which does not satisfy Cc(X) ⊆ D(Q).

(Hint: Any expression of the form Q(f) = 1
2

∑
x,y b(x, y)(f(x) −

f(y))2 with symmetric b ≥ 0 will be compatible with contractions. If∑
y b(x, y) < ∞ does not hold for all x ∈ X, the domain of Q cannot

contain all of Cc(X).)

Exercise 1.8 (Dirichlet form with D ⊆ `∞). Give an example of
a Dirichlet form over an infinite set X such that all functions of finite
energy are bounded.

(Hint: An example may be given based on X = N and b : X×X −→
[0,∞) with b(x, y) = 0 whenever |x − y| > 1. To achieve the desired
boundedness it suffices (why?) to show finiteness of

∑
n∈N |f(n)−f(n+

1)| for all functions of finite energy. Note that such functions satisfy
(why?)

∑
n∈N b(n, n+ 1)|f(n)− f(n+ 1)|2 <∞.)

Exercise 1.9 (Dirichlet form with D ⊆ `2(X,m)). Give an exam-
ple of Dirichlet form over an infinite set such that all functions of finite
energy belong to `2(X,m).

(Hint: Have a look at the preceding exercise.)

Extension exercises.

Exercise 1.10 (Forms associated to a graph). Show that a form
Q with domain D(Q) ⊆ `2(X,m) is associated to a graph if and only if
Cc(X) ⊆ D(Q), the form Q is a restriction of Q and D(Q) is complete
with respect to ‖ · ‖Q.

Exercise 1.11 (Graphs over arbitrary sets). Let X be an arbitrary
set and assume that b : X × X −→ [0,∞) satisfies b(x, y) = b(y, x),
b(x, x) = 0 and ∑

z∈X

b(x, z) = sup
U⊆X,finite

∑
y∈U

b(x, y) <∞

for all x, y ∈ X. Call a subset Y of X connected if for arbitrary
x, y ∈ Y there exists n ∈ N and x0, . . . , xn ∈ Y with x0 = x, xn = y
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and b(xk, xk+1) > 0 for all k = 0, . . . , n− 1. Show that any connected
subset of X is countable.

Exercise 1.12 (Graphs and forms on Cc(X)). Let Q(comp) be a
form on Cc(X) × Cc(X) with Q(comp)(C ◦ ϕ) ≤ Q(comp)(ϕ) for all ϕ ∈
Cc(X) and all normal contractions C : R −→ R. Show that there
exists a graph (b, c) over X such that Q(comp) is the restriction of Qb,c
to Cc(X)× Cc(X).

Exercise 1.13 (Approximating f and Ff). Let (X,m) be a dis-
crete measure space. Let Q(comp) be a closable form on Cc(X)×Cc(X)
with closure Q. Let F : `2(X,m) −→ `2(X,m) be a continuous map
with F (Cc(X)) ⊆ Cc(X) and assume that Q(comp)(Fϕ) ≤ Q(comp)(ϕ)
holds for all ϕ ∈ Cc(X).

(a) Show that Ff ∈ D(Q) for all f ∈ D(Q) and Q(Ff) ≤ Q(f).
(b) Show that for any f ∈ D(Q) there exists a sequence (ϕn) in Cc(X)

with ϕn → f with respect to ‖ · ‖Q and Fϕn → Ff with respect to
‖ · ‖Q.

Exercise 1.14 (Regularity and resolvent convergence). Let (X,m)
be a discrete measure space. Let Q be a Dirichlet form on (X,m) such
that Cc(X) ⊆ D(Q) and let L be the self-adjoint operator associated
to Q. For an increasing sequence of finite sets Kn ⊆ X such that
X =

⋃
nKn, let LKn be the operators corresponding to the restriction

of Q to Cc(Kn). Assume

lim
n→∞

(LKn + α)−1ϕ = (L+ α)−1ϕ

for all α > 0 and ϕ ∈ Cc(X). Show that Q is regular.

Exercise 1.15 (Positivity preservation). Let A be a bounded op-
erator on `p(X,m) for any p ∈ [1,∞] which has the Markov property,
i.e., for all f ∈ `p(X,m) with 0 ≤ f ≤ 1 we have 0 ≤ Af ≤ 1. Show
that A is positivity preserving, i.e., Af ≥ 0 for all f ≥ 0.
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Notes

Most of the material found in this chapter is known to experts. Very
roughly speaking, substantial parts of the chapter can be seen as an
elaboration on the well-known Beurling–Deny formulae in the specific
(and most simple) situation where the underlying locally compact space
is just a discrete topological space. For a treatment of the general case,
we refer to the monograph of Fukushima [Fuk80] and the subsequent
textbook of Fukushima/Ōshima/Takeda [FŌT11]. Our presentation
here is determined by our perspective of bringing together the geome-
try of graphs, spectral theory and Dirichlet forms. In this, we follow
to a large extent the treatment of Keller/Lenz [KL12] and the subse-
quent discussion in Haeseler/Keller/Lenz/Wojciechowski [HKLW12].
Of course, this chapter generalizes the corresponding material in Chap-
ter 0 which deals with finite sets, compare the notes there.

Section 1 can be seen as summarizing the setting and the basic
perspective on Dirichlet forms on discrete sets developed in [KL12,
HKLW12]. The Green’s formula as it appears in Propositions 1.4
and 1.5 was first presented in [HK11].

The main result of Section 2, Theorem 1.18, shows the correspon-
dence between graphs and regular Dirichlet forms on discrete sets. This
can be derived from the Beurling–Deny formula as given in [FŌT11].
Here, we follow [KL12].

Approximation of regular Dirichlet forms by exhaustions of the
space and related topics such a domain monotonicity, as presented in
Section 3, appear in many places and are, indeed, a main tool in the
study of regular Dirichlet forms. For manifolds, the fundamental paper
on the construction of the semigroup by approximation is by Dodziuk
[Dod83]. For graphs with standard weights and counting measure,
the corresponding treatment goes back to the thesis of Wojciechowski
[Woj08], see the articles [Woj09, Web10] for related material as
well. The discussion here follows [KL12], which in turn is inspired by
[Woj08]. Here, we also use approximation to prove the Markov prop-
erty of the semigroup given in Corollary 1.22. This Markov property
is, of course, well known and can be derived from abstract theory of
Dirichlet forms, see e.g. [FŌT11].

The fact that the heat semigroup on a connected Riemannian man-
ifold is positivity improving is shown in [Dod83] with corresponding
results for graphs with standard weights and counting measure found
in [Woj08]. The statement for graphs as considered in our presen-
tation can be found in [KL12]. The characterization of connectivity
in terms of positivity improving semigroups found in Section 4 is from
[HKLW12]. That the concepts of irreducibility and positivity improv-
ing agree for semigroups is standard and can be found, for example, in
[FŌT11, RS75].
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The main result of Section 5 is Theorem 1.27. It is certainly a
part of mathematical folklore. In the form stated here, it can be found
in [HKLW12]. The equivalence between (i), (ii) and (iii) given in
Theorem 1.29 goes back to [KL12]. The equivalence of these conditions
to (iv) seems not to have appeared in print earlier.

Section 6 presents the main classes of examples found in the liter-
ature. It seems fair to say that a large part of the existing literature
treats the normalized Laplacian as an analogue to the Laplace–Beltrami
operator on a manifold. From this point of view, the general weighted
graphs presented in this book and their Laplacians then correspond to
weighted manifolds and the associated Laplacian.

For complementary textbooks on infinite graphs we refer the reader
to the corresponding comments at the end of the notes to Chapter 0. As
mentioned above, the textbook of Fukushima/Ōshima/Takeda [FŌT11]
offers an excellent exposition on the theory of Dirichlet forms, but we
also mention [BH91, Dav89, MR92]. Furthermore, the theory of
Markov diffusion semigroups developed in [BGL14] is, in some sense,
complementary to the discrete setting we treat here. Textbooks treat-
ing analysis on Riemannian manifolds include [Cha84, Cha06, Gri09,
Jos17].
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Infinite Graphs – Toolbox

For cryin’ out loud my style is wild so book me.
Not long is how long that this rhyme took me.

Ghostface Killah.

In this chapter we extend the theory of the key concepts introduced
in the previous chapter. In particular, we collect various tools that
are needed at later parts of the book and provide further conceptual
insights. However, in contrast to the previous chapter, the material
here is not required for all of the subsequent considerations. So, it is
possible to skip over this chapter, dive into the material that follows
and only come back here when coming across a topic where the material
is needed.

A remarkable feature of semigroups and resolvents associated to
graphs is that they can be extended to all `p spaces. This is ultimately
a consequence of the Markov property. We discuss this extension in
Section 1. This material is used in parts of Chapters 3 and 8 and is
crucial for the considerations in Chapter 7.

In Section 2 we discuss restrictions of forms to subsets. While we
already touched upon this topic in Section 3 for restrictions to finite
sets, the general case is discussed here. This material puts the results
of Section 3 in a wider perspective and is relevant for the material in
Chapter 4.

A special feature of graphs, which is going to play a major role in
subsequent developments, is the non-locality of the Dirichlet form. A
direct consequence of the non-locality is the lack of a pointwise Leibniz
rule and, even worse, the lack of a chain rule. This poses various
challenges in applying standard techniques from analysis. We discuss
this non-locality and give an extensive presentation of ways to deal
with it in Section 3. This material will be used in Part 3, specifically
in Chapters 12 and 13.

Most of the theory developed in this book needs a discrete set with
a graph structure and a measure. However, certain parts can be de-
veloped without a measure. While this is not necessary for any of our
main applications later, it is quite instructive to see this. We present
the corresponding considerations in Section 4. This section can be
omitted and is marked as optional.

141
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We present a stochastic interpretation of the semigroup and a Feynman–
Kac formula in the also optional Section 5. The general theory as devel-
oped in these sections is not really specific to discrete sets. In essence,
it holds for general Dirichlet forms.

1. Generators, semigroups and resolvents on `p

In this section we discuss how a Dirichlet form gives rise to a semi-
group and a resolvent on `p(X,m) for every p ∈ [1,∞]. The basic idea
is that a Laplacian L associated to a Dirichlet form induces a con-
traction Markov semigroup e−tL for t ≥ 0 and a contraction Markov
resolvent (L+ α)−1 for α > 0 on `2(X,m). The Markov property then
allows us to extend these to every `p space while preserving the con-
traction and Markov properties. The arising semigroups and resolvents
agree on their common domains and have a symmetry property in that
the semigroup and resolvent on `p(X,m) are adjoint to the semigroup
and resolvent on `q(X,m) for 1/p+ 1/q = 1. Moreover, for p ∈ [1,∞),
the semigroups and resolvents are strongly continuous.

We then discuss the generators of the semigroups and resolvents and
show that their action agrees with that of the formal Laplacian. Fur-
thermore, we show that the resolvent generates the minimal solution of
the Poisson equation and the semigroup generates the minimal solution
of the heat equation. Finally, we give criteria for the boundedness of
the generators on `p(X,m).

We start this section with a short discussion of `p spaces. We then
consider semigroups and resolvents associated to graphs and their gen-
erators in the subsequent subsections. Throughout this section we will
make extensive use of general operator theory. So, for general back-
ground on spectral theory see Appendix A, for closed forms see Appen-
dix B, for Dirichlet forms see Appendix C and for general semigroups
and resolvents on Banach spaces see Appendix D. Excavation Exer-
cises 2.1, 2.2 and 2.3 recall basic facts about `p spaces which will be
used throughout this section.

Let (X,m) be a discrete measure space. For every p ∈ [1,∞), we
define

`p(X,m) = {f ∈ C(X) |
∑
x∈X

|f(x)|pm(x) <∞}.

Then, `p(X,m) is a vector space with norm ‖ · ‖p given by

‖f‖p =

(∑
x∈X

|f(x)|pm(x)

)1/p

.

For p =∞, we define

`∞(X,m) = {f ∈ C(X) | sup
x∈X
|f(x)| <∞}.
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This is a vector space with norm given by

‖f‖∞ = sup
x∈X
|f(x)|.

In fact, neither `∞(X,m) nor the norm ‖·‖∞ depend on the underlying
measure. Therefore, whenever `∞(X,m) appears independently of the
other `p(X,m) spaces, we will write `∞(X) for `∞(X,m). The spaces
`p(X,m) are complete with respect to ‖ · ‖p for p ∈ [1,∞].

1.1. Semigroups, resolvents and their generators. In this
subsection we give a brief overview of the general theory of semigroups
and resolvents on `p(X,m). This will be applied to graphs in the next
subsection. For full details and proofs, we refer the reader to Appen-
dix D.

We start with the definition of a strongly continuous contraction
Markov semigroup. For p ∈ [1,∞], we denote the bounded linear
operators on `p(X,m) by

B(`p(X,m)) = {L : `p(X,m) −→ `p(X,m) | L is linear and bounded}.

Definition 2.1 (Semigroup). Let (X,m) be a discrete measure
space and let p ∈ [1,∞]. A map S : [0,∞) −→ B(`p(X,m)) is called a
semigroup on `p(X,m) if

S(s+ t) = S(s)S(t)

for all s, t ≥ 0. A semigroup S is called strongly continuous if

lim
t→0+

S(t)f = f

for all f ∈ `p(X,m). A semigroup S is called a contraction semigroup
if

‖S(t)‖p ≤ 1

for all t ≥ 0. Finally, a semigroup is called a Markov semigroup if

0 ≤ S(t)f ≤ 1

for all t ≥ 0 and f ∈ `p(X,m) with 0 ≤ f ≤ 1.

Remark. Strong continuity of the semigroup on `p(X,m) implies
that the map [0,∞) −→ [0,∞) given by

t 7→ ‖S(t)f‖p
is continuous for all f ∈ `p(X,m), see Proposition D.3 in Appendix D.

Example 2.2. If A ∈ B(`p(X,m)), then e−tA for t ≥ 0 gives a
strongly continuous semigroup which generates a solution of the para-
bolic equation involving A (Exercise 2.7). Furthermore, given an initial
condition, this solution is unique (Exercise 2.8).

Any strongly continuous semigroup S defines an operator called the
generator of the semigroup.
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Definition 2.3 (Generator of a semigroup). Let (X,m) be a dis-
crete measure space and let p ∈ [1,∞]. If S is a strongly continuous
semigroup, then the operator A with

D(A) = {f ∈ `p(X,m) | g = lim
t→0+

f − S(t)f

t
exists in `p(X,m)}

and
Af = g

for f ∈ D(A) is called the generator of S.

It follows that D(A) is dense in `p(X,m) and that A is a closed
operator. If S is additionally a contraction semigroup, then it can be
shown that A+ α is a bijection for α > 0 with inverse given by

(A+ α)−1 =

∫ ∞
0

e−tαS(t)dt.

See Theorem D.9 for further details. We note that, in order to de-
fine the integral above, we need the notion of integration of Banach
space-valued functions. This is defined as a Riemann integral via ap-
proximation by Riemann sums of step functions. Furthermore, we note
that the properties of the generator of a strongly continuous semigroup
characterize such generators (Exercise 2.9).

We now introduce resolvents and point out their connections to
semigroups.

Definition 2.4 (Resolvents). Let (X,m) be a discrete measure
space and let p ∈ [1,∞]. A map G : (0,∞) −→ B(`p(X,m)) for p ∈
[1,∞] is called a resolvent on `p(X,m) if G satisfies the resolvent iden-
tity

G(α)−G(β) = −(α− β)G(α)G(β)

for all α, β > 0. A resolvent G is called strongly continuous if

lim
α→∞

αG(α)f = f

for all f ∈ `p(X,m). A resolvent G is called a contraction resolvent if

‖αG(α)‖p ≤ 1

for all α > 0. Finally, a resolvent G is called a Markov resolvent if

0 ≤ αG(α)f ≤ 1

for all α > 0 and f ∈ `p(X,m) with 0 ≤ f ≤ 1.

Remark. Strong continuity of the resolvent on `p(X,m) implies
that the map (0,∞) −→ [0,∞) given by

α 7→ ‖G(α)f‖p
is continuous for all f ∈ `p(X,m) (Exercise 2.10).
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Resolvents, as semigroups, have generators. In order for the defini-
tion to be meaningful, we note that the range of G(α) is independent
of α for any resolvent. Furthermore, G(α) is a bijection onto its range
and the expression G(α)−1f − αf is independent of α for any strongly
continuous resolvent, see Proposition D.15. This allows us to define
the generator of a resolvent.

Definition 2.5 (Generator of a resolvent). Let (X,m) be a discrete
measure space and let p ∈ [1,∞]. If G is a strongly continuous resolvent
on `p(X,m), then the operator A with D(A) = Range(G(α)) and

Af = G(α)−1f − αf
for f ∈ D(A) is called the generator of the resolvent G.

It follows that the generator A is closed and that A+α is a bijection
with inverse G(α), see Corollary D.17.

We now highlight the connection between resolvents and semigroups.
Namely, if S is a strongly continuous contraction semigroup, then

G(α) =

∫ ∞
0

e−tαS(t)dt

defines a strongly continuous contraction resolvent. If A denotes the
generator of S, then

G(α) = (A+ α)−1

so that A is also the generator of G. Therefore,

(A+ α)−1 =

∫ ∞
0

e−tαS(t)dt,

which is referred to as the Laplace transform formula. For further
details and a proof, see Theorem D.18.

1.2. Graphs and Markov semigroups and resolvents on dis-
crete spaces. We have seen that graphs gives rise to a strongly contin-
uous Markov contraction semigroup and resolvent on `2(X,m). In this
subsection we discuss that these semigroups and resolvents naturally
extend to all `p(X,m) for p ∈ [1,∞].

Let (b, c) be a graph over a discrete measure space (X,m) and let
L be an operator associated to the graph, see Definition 1.11. Using
the functional calculus, see Proposition A.32, we define the operator
S : [0,∞) −→ B(`2(X,m)) via

S(t) = e−tL.

We refer to S as the semigroup associated to L. If L = L(D), the Lapla-
cian arising from the regular Dirichlet form, we denote S by Sb,c,m and
call it the semigroup associated to the graph (b, c) over (X,m). Indeed,
S is a strongly continuous contraction semigroup and whenever the
form Q associated to L is a Dirichlet form, S even becomes a Markov
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semigroup. For the Dirichlet Laplacian L(D), the Markov property was
already shown in Corollary 1.22 in the last chapter. For a general
Dirichlet form Q this is a consequence of the second Beurling–Deny
criterion, Theorem C.4 in Appendix C. These considerations are sum-
marized in the next proposition.

Proposition 2.6 (Markov property on `2(X,m) – semigroup). Let
(b, c) be a graph over (X,m) and let L be an associated operator. Then,
S is a strongly continuous contraction semigroup with values in the self-
adjoint operators on `2(X,m). If the form associated to L is a Dirichlet
form, then S is even a Markov semigroup on `2(X,m). This holds, in
particular, for L(D) and L(N).

Proof. That S is a strongly continuous contraction semigroup
with values in the self-adjoint operators follows from functional cal-
culus, see Proposition A.32 in Appendix A for details. That S is a
Markov semigroup follows by Corollary 1.22 for L = L(D) and by The-
orem C.4 in Appendix C for a general L. �

The Markov property will allow us to extend S to all `p(X,m)
spaces for p ∈ [1,∞]. A crucial ingredient in this extension process is
the fact that a Markov matrix defines a bounded operator on `p(X,m)
for p ∈ [1,∞].

Definition 2.7 (Markov matrix). Let (X,m) be a discrete measure
space. A function a : X × X −→ R is called a Markov matrix if a
satisfies the following properties:

• a(x, y) = a(y, x)
• a(x, y) ≥ 0
•
∑

z∈X a(x, z)m(z) ≤ 1

for all x, y ∈ X.

With this notion we now show that a Markov matrix can be used
to define a bounded operator on `p(X,m) for all p ∈ [1,∞].

Lemma 2.8 (General bound for a Markov matrix). Let (X,m) be
a discrete measure space. Let a be a Markov matrix. Then, for all
f ∈ C(X),

sup
x∈X

∑
y∈X

|a(x, y)f(y)|m(y) ≤ sup
x∈X
|f(x)|,

and for p ∈ [1,∞),

∑
x∈X

(∑
y∈X

|a(x, y)f(y)|m(y)

)p

m(x) ≤
∑
x∈X

|f(x)|pm(x).

Here, the value ∞ is allowed to occur.
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In particular, for p ∈ [1,∞] the matrix a induces a bounded operator
A(p) with norm not exceeding 1 on each `p(X,m) by

A(p)f(x) =
∑
y∈X

a(x, y)f(y)m(y).

Proof. The “in particular” statement is a direct consequence of
the inequalities. Thus, it suffices to show these inequalities. The case
p = ∞ is clear. Consider now p ∈ (1,∞). Let q ∈ (1,∞) satisfy
1/p+ 1/q = 1. Then, we can estimate

∑
x∈X

(∑
y∈X

a(x, y)|f(y)|m(y)

)p

m(x)

=
∑
x∈X

(∑
y∈X

|a(x, y)m(y)|1/q|a(x, y)m(y)|1/p|f(y)|

)p

m(x)

≤
∑
x∈X

(∑
y∈X

a(x, y)m(y)

)p/q(∑
y∈X

a(x, y)|f(y)|pm(y)

)
m(x)

≤
∑
x∈X

∑
y∈X

a(x, y)|f(y)|pm(y)m(x)

=
∑
y∈X

|f(y)|pm(y)
∑
x∈X

a(x, y)m(x)

≤
∑
y∈X

|f(y)|pm(y),

where we used the Hölder inequality in the third line, the fact that∑
y∈X a(x, y)m(y)

≤ 1 in the fourth line, Fubini’s Theorem in the fifth line, and a(x, y) =
a(y, x) and

∑
x∈X a(y, x)m(x) ≤ 1 in the last line. The case of p = 1

follows in a similar manner by using Fubini’s Theorem. This finishes
the proof. �

Remark. Another approach to the result above is to observe that
the bound holds easily for p = 1 and p = ∞. The result then follows
for general p ∈ [1,∞] by interpolation, see Theorem E.21.

We need a further piece of notation. Whenever p, q ∈ [1,∞] satisfy
1/p + 1/q = 1 (where the cases p = 1, q = ∞ and p = ∞, q = 1 are
allowed) we can appeal to the Hölder inequality to infer that

(f, g) =
∑
x∈X

f(x)g(x)m(x)

exists as an absolutely convergent sum for f ∈ `p(X,m) and g ∈
`q(X,m). Then, (·, ·) is called the dual pairing between `p(X,m) and
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`q(X,m). Of course, for p = q = 2, we just have

(f, g) =
∑
x∈X

f(x)g(x)m(x) = 〈f, g〉.

Theorem 2.9 (Extension theorem – semigroups). Let (b, c) be a
graph over (X,m). Let S be the semigroup of an operator associ-
ated to the graph arising from a Dirichlet form. Then, there exists
a unique family of contraction Markov semigroups S(p) on `p(X,m) for
p ∈ [1,∞] satisfying the following properties:

• S(2) = S. (“Extension”)
• For all t ≥ 0 and all p, q ∈ [1,∞] with 1/p+ 1/q = 1

(S(p)(t)f, g) = (f, S(q)(t)g)

for f ∈ `p(X,m) and g ∈ `q(X,m). (“Symmetry”)
• For all t ≥ 0 and all p, q ∈ [1,∞]

S(p)(t)f = S(q)(t)f

for all f ∈ `p(X,m) ∩ `q(X,m). (“Consistency”)

For p ∈ [1,∞), the semigroup S(p) is strongly continuous. For p =∞,
the semigroup S(∞) is weak* continuous, i.e., the map

t 7→ (S(∞)(t)f, g)

is continuous for all f ∈ `∞(X,m) and g ∈ `1(X,m).

Remark. The weak* continuity of S(∞) can be seen to be equiva-
lent to pointwise continuity in the discrete setting (Exercise 2.11).

Proof. We first deal with the uniqueness statement. By consis-
tency and the extension property, the semigroups are defined on Cc(X).
As Cc(X) is dense in `p(X,m) for p ∈ [1,∞) and all S(p) are bounded,
this shows that the semigroups are uniquely determined on `p(X,m)
for p ∈ [1,∞). For p =∞, we note that the semigroup on `∞(X,m) is
uniquely determined by the semigroup on `1(X,m) by the symmetry
condition.

We now turn to proving existence. By Proposition 2.6, S(t) = e−tL

for t ≥ 0 is a Markov semigroup of self-adjoint operators on `2(X,m).
Now, for every t ≥ 0, there exists a pt : X ×X −→ R with

S(t)f(x) =
∑
y∈X

pt(x, y)f(y)m(y)

for all f ∈ `2(X,m). This p is called the heat kernel of the semigroup
of S. We will now show that pt is a Markov matrix for every t ≥ 0.

First, note that by direct calculation S(t)1y(x) = pt(x, y)m(y). As
S(t) is self-adjoint, we get

pt(x, y)m(y)m(x) = 〈S(t)1y, 1x〉 = 〈1y, S(t)1x〉 = pt(y, x)m(x)m(y)

so that pt(x, y) = pt(y, x) for all x, y ∈ X and t ≥ 0.
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Since S(t) is Markov, it follows that

0 ≤ S(t)1y(x) = pt(x, y)m(y).

Therefore, pt(x, y) ≥ 0 for all x, y ∈ X and t ≥ 0.
Finally, letting Kn ⊆ X be finite such that Kn ⊆ Kn+1 and X =⋃

nKn, it follows by the Markov property that 0 ≤ S(t)1Kn ≤ 1 and
thus

0 ≤
∑
y∈X

pt(x, y)1Kn(y)m(y) =
∑
y∈Kn

pt(x, y)m(y) ≤ 1.

By the monotone convergence theorem∑
y∈X

pt(x, y)m(y) ≤ 1

for every x ∈ X and t ≥ 0.
Hence, for every t ≥ 0, pt is a Markov matrix and Lemma 2.8 gives

for any p ∈ [1,∞] that the operator S(p)(t) : `p(X,m) −→ `p(X,m)
given by

S(p)(t)f(x) =
∑
y∈X

pt(x, y)f(y)m(y)

is bounded with norm not exceeding 1. We now show that these oper-
ators have the desired properties.

Markov property. As each pt is a Markov matrix for every t ≥ 0,
each operator S(p) satisfies

0 ≤ S(p)(t)f ≤ 1

whenever 0 ≤ f ≤ 1 for f ∈ `p(X,m).

Consistency. By definition, we have

S(p)(t)f(x) =
∑
y∈X

pt(x, y)f(y)m(y) = S(q)(t)f(x)

for any t ≥ 0 whenever f ∈ `p(X,m) ∩ `q(X,m).

S(2) = S. This is clear from the definition of S(p).
Semigroup property for S(p). By the consistency of the family the

space

C =
⋂

p∈[1,∞]

`p(X,m)

is invariant under any S(p)(t) for t ≥ 1 and p ∈ [1,∞]. Moreover,
the action of S(p) on C agrees with the action of S. As S satisfies
S(s)S(t) = S(s + t) for all s, t ≥ 0, the same will hold for S(p) on C.
As C contains Cc(X), the space C is dense in `p(X,m) for p ∈ [1,∞).
Then, the semigroup property follows on `p(X,m) for p ∈ [1,∞) as
each S(p)(t) is a bounded operator. To deal with the case p = ∞,
it suffices to consider f ≥ 0. Any such function can be written as a
monotone limit of functions in Cc(X). By the Markov property, the
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operators S(∞)(t) on `∞(X,m) are compatible with monotone limits
and the desired statement follows.

Symmetry. The symmetry property is clear for f, g ∈ Cc(X). It
then follows in the generality stated by approximating f ∈ `p(X,m)
and g ∈ `q(X,m), where 1/p + 1/q = 1, by sequences (fn) and (gn) in
Cc(X).

Strong continuity for p ∈ [1,∞). From the strong continuity of S
on `2(X,m) we infer pointwise continuity of pt for t→ 0+ in the sense
that we have

pt(x, y) =
1

m(y)
e−tL1y(x)→ 1

m(y)
1y(x)

as t→ 0+ for every x, y ∈ X.
We now treat the general case and let f ∈ `p(X,m) for p ∈ [1,∞).

In order to simplify the notation we set

ut(x) = S(p)(t)f(x) =
∑
y∈X

pt(x, y)f(y)m(y).

Let ε > 0. Since Cc(X) is dense in `p(X,m) for p ∈ [1,∞) we can
choose as finite subset K ⊆ X with

‖(1− 1K)f‖pp < ε

so that

‖1Kf‖pp > ‖f‖pp − ε.
For t sufficiently close to 0, we then infer from the pointwise continuity
and the finiteness of K that

‖1K(ut − f)‖pp < ε.

Therefore, combining with the above, we obtain

‖1Kut‖pp > ‖f‖pp − 2ε.

Moreover, as each S(p)(t) has norm not exceeding 1 we also have

‖ut‖pp ≤ ‖f‖pp.

Therefore, for small enough t > 0, we infer from the last two inequalities

‖f‖pp ≥ ‖ut‖pp = ‖1Kut‖pp + ‖(1− 1K)ut‖pp > ‖f‖pp − 2ε+ ‖(1− 1K)ut‖pp.

Hence,

‖(1− 1K)ut‖pp < 2ε.

This gives the desired continuity at 0 as

‖ut − f‖p ≤ ‖(1− 1K)ut‖p + ‖1K(ut − f)‖p + ‖(1− 1K)f‖p.

Weak* continuity for p =∞. This follows from the strong continu-
ity for p = 1 and the symmetry of the family. �
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As, by the previous theorem, S(p) is a strongly continuous contrac-
tion semigroup for all p ∈ [1,∞), it follows that S(p) has a generator,
see Definition 2.3. We denote the generator of this semigroup by L(p).
For p =∞, we do not have a strongly continuous semigroup. However,
we can define L(∞) to be the Banach space adjoint of L(1), i.e.,

L(∞) = (L(1))∗.

After this discussion of semigroups we now turn to resolvents. We
start by discussing the resolvent on `2(X,m) and the connection be-
tween the resolvent and the semigroup in this case. We recall that
as a Laplacian L associated to a graph comes from a positive form,
it follows that σ(L) ⊆ [0,∞), where σ(L) denotes the spectrum of L,
see the discussion in Appendix B. In particular, for every α > 0, the
resolvent (L+ α)−1 exists and is a bounded operator on `2(X,m). We
define G : (0,∞) −→ B(`2(X,m)) by

G(α) = (L+ α)−1

and refer to it as the resolvent associated L. For L = L(D) we denote
G by Gb,c,m and call it the resolvent associated to the graph (b, c).

Proposition 2.10 (Markov property on `2(X,m) – resolvents).
Let (b, c) be a graph over (X,m) and let L be an operator associated to
the graph. Then, G is a strongly continuous contraction resolvent with
generator L which takes values in the bounded self-adjoint operators.
Moreover, for α > 0,

G(α) = (L+ α)−1 =

∫ ∞
0

e−tαS(t)dt, (“Laplace transform”)

where S is the semigroup associated to L. If the form associated to L
is a Dirichlet form, then G is even a Markov resolvent. This holds, in
particular, for L(D) and L(N).

Proof. The spectral theorem easily gives that G is a strongly con-
tinuous contraction resolvent, see Proposition A.34 in Appendix A. The
Laplace transform formula can also be shown by the spectral theorem,
see Theorem A.35 in Appendix A. Finally, the Markov property follows
from the Markov property of the semigroup, Proposition 2.6. �

Theorem 2.9 shows that the semigroup S on `2(X,m) can be ex-
tended to all `p(X,m) for p ∈ [1,∞]. An analogous extension theorem
for the resolvents is discussed next.

Theorem 2.11 (Extension theorem – resolvents). Let (b, c) be a
graph over (X,m). Let G be the resolvent of L which is associated to
the graph and arises from a Dirichlet form. Then, there exists a unique
family of strongly continuous contraction Markov resolvents G(p) on
`p(X,m) for p ∈ [1,∞] satisfying the following properties:

• G(2) = G. (“Extension”)
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• For all α > 0 and all p, q ∈ [1,∞] with 1/p+ 1/q = 1

(G(p)(α)f, g) = (f,G(q)(α)g)

for f ∈ `p(X,m) and g ∈ `q(X,m). (“Symmetry”)
• For all α > 0 and all p, q ∈ [1,∞]

G(p)(α)f = G(q)(α)f

for f ∈ `p(X,m) ∩ `q(X,m). (“Consistency”)

If S(p) is the contraction Markov semigroup with generator L(p), then
G(p) satisfies

G(p)(α) = (L(p) + α)−1 =

∫ ∞
0

e−tαS(p)(t)dt

for all α > 0 and p ∈ [1,∞]. (“Laplace transform”)
In particular, L(p) is also the generator of G(p).

Proof. Uniqueness. This is easy by the statement on the genera-
tor.

Existence. We define the resolvent, for α > 0 and p ∈ [1,∞), by

G(p)(α) =

∫ ∞
0

e−tαS(p)(t)dt

and we define the resolvent for p =∞ to be the dual of G(1)

G(∞)(α) = (G(1))∗(α)

for α > 0. As S(p) is a strongly continuous contraction semigroups for
p ∈ [1,∞) by Theorem 2.9, from Theorem D.18 and Proposition D.21
G(p) are strongly continuous contraction resolvents. They are Markov
since S(p)(t) is Markov for every t ≥ 0 and all p ∈ [1,∞]. Then,
integrating the corresponding statements of Theorem 2.9, we find that
this family has the claimed properties.

The Laplace transform. We first consider the case p ∈ [1,∞). Then,
in the existence part of the proof we have defined

G(p)(α) =

∫ ∞
0

e−tαS(p)(t)dt

for α > 0. Now, as L(p) is the generator of S(p), Theorem D.18 directly
gives the formula ∫ ∞

0

e−tαS(p)(t)dt = (L(p) + α)−1.

We now turn to the case p =∞. Here, by Proposition D.21, we have

G(∞)(α) = (G(1)(α))∗ = ((L(1)+α)−1)∗ = ((L(1))∗+α)−1 = (L(∞)+α)−1,

where the last equality follows by the definition of L(∞). This finishes
the proof. �
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Remark. It is also possible to base a direct proof of the previous
result on Lemma 2.8 and the properties of G given in Proposition 2.10
(Exercise 2.12).

1.3. Minimal solutions and the action of the generators.
Given the generators on `p(X,m), we now extend several results pre-
viously proven for `2(X,m) to `p(X,m) for general p. In particular,
we show the existence of minimal solutions to the Poisson and heat
equations and describe the action of the generators on `p(X,m).

We start with the Poisson equation. Here, we show that the resol-
vent on `p(X,m) generates the minimal solution. For p = 2, this was
already shown in Lemma 1.23 in Section 3 by using exhaustion tech-
niques. We now extend this result to cover all `p(X,m) spaces and all
operators associated to graphs. To this end, we denote the extension

of the resolvent Gb,c,m associated to L(D) to `p(X,m) by G
(p)
b,c,m.

Theorem 2.12 (Resolvents as minimal solutions to (L+α)u = f).
Let (b, c) be a graph over (X,m) and let L be an associated operator
arising from a Dirichlet form. Let p ∈ [1,∞] and let G(p) be the resol-
vent on `p(X,m) associated to L. If f ∈ `p(X,m), α > 0 and

u = G(p)(α)f,

then u belongs to F and satisfies the Poisson equation

(L+ α)u = f. (“Poisson equation”)

Furthermore, if additionally f ≥ 0, then u ≥ 0 and for the resolvent
Gb,c,m associated to L(D) we have that

u = G
(p)
b,c,m(α)f

is the smallest v ∈ F with v ≥ 0 and (L+ α)v ≥ f.

Proof. Let f ∈ `p(X,m) for p ∈ [1,∞]. Without loss of generality,
we assume f ≥ 0. For a general f ∈ `p(X,m), we can decompose
f = f+ − f− into its negative and positive parts.

Let (Kn) be an increasing sequence of finite subsets of X with
X =

⋃
nKn and let fn = f1Kn so that fn ∈ Cc(X) for all n ∈ N. Let

un = G(p)(α)fn.

As G(p) is Markov by Theorem 2.11, un ≥ 0 for all n ∈ N and
the sequence (un) is monotonically increasing and converges to u =
G(p)(α)f ∈ `p(X,m) by the monotone convergence theorem.

As the resolvents agree on their common domain due to the consis-
tency statement in Theorem 2.11 and fn ∈ Cc(X) ⊆ `p(X,m) for all
p ∈ [1,∞], we have

un = G(p)(α)fn = G(2)(α)fn
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for all n ∈ N. By Theorem 1.12, we infer that L = L on D(L) =
G(2)(α)`2(X,m) ⊇ G(2)Cc(X) and thus

(L+ α)un = (L+ α)G(2)(α)fn = fn

for all n ∈ N. We conclude that u ∈ F solves the Poisson equation by
taking monotone limits, Lemma 1.8. Furthermore, u = G(p)(α)f ≥ 0
for f ≥ 0 since G(p) is Markov and, therefore, positivity preserving by
Theorem 2.11.

Now, let v ∈ F with v ≥ 0 satisfy (L + α)v ≥ f . Therefore,

(L + α)v ≥ fn for all n ∈ N and as un = G
(2)
b,c,m(α)fn is the minimum

positive solution of this inequality by Lemma 1.23 we obtain un ≤ v
for all n ∈ N. Taking the limit gives u ≤ v. �

We now turn to determining the action of the generators on `p(X,m)
for p ∈ [1,∞]. We will show that the generators are restrictions of the
formal Laplacian. This generalizes Theorem 1.6, dealing with L(D) on
`2(X,m), and Theorem 1.12, which deals with all associated operators
on `2(X,m). We recall by Theorem 2.11 that the generators of the
extended semigroup and the extended resolvent on `p(X,m) agree.

Theorem 2.13 (Action of the generators on `p(X,m)). Let (b, c)
be a graph over (X,m) and let L be an associated operator arising from
a Dirichlet form. For p ∈ [1,∞], the generator L(p) of the semigroup
(and the resolvent) extended to `p(X,m) is a restriction of the formal
operator L. In particular, D(L(p)) ⊆ F .

Proof. If f ∈ D(L(p)), then g = (L(p)+α)f ∈ `p(X,m). Moreover,
by Theorem 2.12, f = G(p)(α)g = (L(p) + α)−1g solves

(L+ α)f = g = (L(p) + α)f.

This gives Lf = L(p)f for all f ∈ D(L(p)) and p ∈ [1,∞]. �

Remark. It is a non-trivial problem to determine explicitly the
domains of the generators L(p). We will have more to say about this
topic in the next subsection for the case of bounded operators as well
as in Sections 2, 2 and 3.

We now show that the semigroups generate minimal solutions of the
heat equation. This extends the result of Lemma 1.24 from `2(X,m)
to D(L(p)) ⊆ `p(X,m). In order to show existence, we restrict our
attention to the case of p ∈ [1,∞) and use the general theory found
in Appendix D for strongly continuous semigroups. The case of p =
∞, when the semigroup is not strongly continuous, will be handled in
Chapter 7, where we explore bounded solutions of the heat equation.

We recall that a function u : [0,∞) ×X −→ R is called a solution
of the heat equation with initial condition f if ut = u(t, ·) ∈ F for all
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t > 0, t 7→ ut(x) is continuous on [0,∞) and differentiable on (0,∞)
for all x ∈ X and u satisfies

(L+ ∂t)ut(x) = 0

for x ∈ X and t > 0 with u0 = f . Furthermore, u is called a supersolu-
tion with initial condition f if u satisfies the inequality (L + ∂t)u ≥ 0
instead of equality in the above. For the proof of the next theorem, we
invoke general semigroup theory, which is developed in Theorem D.6.

Theorem 2.14 (Semigroups as minimal solutions to (L+∂t)u = 0).
Let (b, c) be a graph over (X,m). Let p ∈ [1,∞) and let S(p) be the
semigroup on `p(X,m) to an associated operator arising from a Dirich-
let form. If f ∈ D(L(p)), t ≥ 0 and

ut = S(p)(t)f,

then u is a solution of the heat equation

(L+ ∂t)ut(x) = 0

with initial condition u0 = f . (“Heat equation”)
Furthermore, if additionally f ≥ 0, then u ≥ 0 and for the semi-

group Sb,c,m associated to L(D) we have that

u = S
(p)
b,c,m(α)f

is the smallest positive supersolution of the heat equation with initial
condition greater than or equal to f .

Proof. By Theorem 2.9, S(p) is a strongly continuous semigroup
for p ∈ [1,∞) with generator L(p). Hence, by Theorem D.6 in Appen-
dix D, ut = S(p)(t)f is a solution of the equation (L(p) + ∂t)ut = 0 with
u0 = f and has the required differentiability and continuity properties.
Now, by Theorem 2.13 directly above, L(p) is a restriction of L. Thus,
ut ∈ F is a solution of the heat equation with initial condition f . This
shows the first statement.

If f ≥ 0, then u is positive as S(p) is Markov by Theorem 2.9. We

now show the minimality of ut = S
(p)
b,c,m(t)f for the semigroup associated

to the Dirichlet Laplacian. Let w be a positive supersolution of the heat
equation with w0 ≥ f . Let (Kn) be an increasing sequence of finite
subsets of X with X =

⋃
nKn and let fn = f1Kn so that fn ∈ Cc(X)

for all n ∈ N. Let
u

(n)
t = S

(p)
b,c,m(t)fn.

As S
(p)
b,c,m(t) is Markov for every t ≥ 0 by Theorem 2.9, the sequence

(u
(n)
t ) consists of positive functions, is monotonically increasing and

converges to u ∈ `p(X,m) by the monotone convergence theorem.
From what we have shown above, u(n) satisfies

(L+ ∂t)u
(n)
t = 0
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for t > 0 and u
(n)
0 = fn for all n ∈ N. Furthermore, u

(n)
t = S

(2)
b,c,m(t)fn

by Theorem 2.9 as fn ∈ Cc(X) ⊆ `2(X,m) for n ∈ N. As w is a positive
supersolution of the heat equation with w0 ≥ fn we obtain u(n) ≤ w
by Lemma 1.24. Letting n → ∞ gives u ≤ w, which completes the
proof. �

1.4. Boundedness of the `p generators. Having determined
the action of the generators on `p in the previous subsection, we now
characterize when the generators are bounded. We also give applica-
tions to graphs with standard weights. This extends the considerations
of Section 5 from `2 to `p.

Given a graph (b, c) over (X,m), we recall the definition of the
weighted degree as

Deg(x) =
1

m(x)

(∑
y∈X

b(x, y) + c(x)

)
.

In Section 5 we have shown that any associated Laplacian on `2(X,m) is
a bounded operator if and only if Deg is a bounded function on X. We
now extend this result to all `p(X,m) spaces. Furthermore, we show
that if the formal Laplacian is a bounded operator on one `p(X,m)
space, then it is a bounded operator on all `p(X,m) spaces. In order
to achieve this, we need the Riesz–Thorin interpolation theorem, see
Theorem E.21 in Appendix E.

Theorem 2.15 (Boundedness of L(p)). Let (b, c) be a graph over
(X,m). Let p ∈ [1,∞] and L(p) be the generator of the extended semi-
group of an associated operator arising from a Dirichlet form. Then,
the following statements are equivalent:

(i) The weighted degree Deg is a bounded function on X.
(ii) The operator L and, thus, L(p) is bounded on `p(X,m) for all

p ∈ [1,∞].
(iii) The operator L and, thus, L(p) is bounded on `p(X,m) for some

p ∈ [1,∞].

Specifically, if Deg is bounded by D <∞, then L and L(p) are bounded
by 2D on `p(X,m) for p ∈ [1,∞].

In order to prove the theorem we first show a duality statement.

Lemma 2.16 (Duality and boundedness). Let (b, c) be a graph over
(X,m) and let p, q ∈ [1,∞] be such that 1/p+1/q = 1. If `p(X,m) ⊆ F
and the restriction of L to `p(X,m) is bounded, then `q(X,m) ⊆ F and
the restriction of L to `q(X,m) is bounded with the same bound.
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Proof. We denote the dual pairing of p and q with 1/p+ 1/q = 1
by (·, ·), i.e., for f ∈ `p(X,m) and g ∈ `q(X,m),

(f, g) =
∑
x∈X

f(x)g(x)m(x).

To prove the statement of the lemma we treat the cases p = 1 and
p > 1 separately.

For p = 1, we first notice that `∞(X) ⊆ F . Then, from Green’s
formula, Proposition 1.5, and Hölder’s inequality, we infer that for all
f ∈ `∞(X) and ϕ ∈ Cc(X)∣∣∣∣∣∑

x∈X

(Lf)(x)ϕ(x)m(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
x∈X

f(x)(Lϕ)(x)m(x)

∣∣∣∣∣ ≤ C‖ϕ‖1‖f‖∞,

where C is a bound for L on `1(X,m). Letting ϕ = 1x/m(x) gives that

|Lf(x)| ≤ C‖f‖∞
for all x ∈ X so that C is a bound for L on `∞(X,m).

For p > 1, let ϕ ∈ Cc(X) ⊆ `q(X,m) and let f ∈ `p(X,m). Then,
again by Green’s formula, Proposition 1.5, we get∣∣∣∣∣∑

x∈X

(Lϕ)(x)f(x)m(x)

∣∣∣∣∣ =

∣∣∣∣∣∑
x∈X

ϕ(x)(Lf)(x)m(x)

∣∣∣∣∣ ≤ C‖ϕ‖q‖f‖p,

where C is a bound for L on `p(X,m). As ‖g‖q = suph∈`p(X,m)(h, g)
for ‖h‖p = 1, the inequality above shows that LCc(X) ⊆ `q(X,m) and
‖Lϕ‖q ≤ C‖ϕ‖q for all ϕ ∈ Cc(X). This yields that L is a bounded
operator on a dense subspace of `q(X,m). Thus, L can be extended to
a bounded operator on `q(X,m) with C as a bound for L on `q(X,m).

Since functions in `q(X,m) can be approximated monotonically
from below by functions in Cc(X), this bounded operator can be seen
to agree with the restriction of L to `q(X,m) by monotone convergence.
This proves the lemma. �

We now turn to the proof of our boundedness result.

Proof of Theorem 2.15. By Theorem 2.13 the generator L(p)

of an extended semigroup on `p(X,m) is a restriction of L. Thus,
boundedness of L on `p(X,m) implies boundedness of L(p) for p ∈
[1,∞].

(i) =⇒ (ii): Assume that Deg is bounded. Then, for f ∈ `∞(X)
and x ∈ X,

Lf(x) ≤ 1

m(x)

∑
y∈X

b(x, y) (|f(x)|+ |f(y)|) +
c(x)

m(x)
|f(x)|

≤ 2‖f‖∞Deg(x).
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Thus, if Deg is bounded, then the restriction of L to `∞(X) is bounded.
By Lemma 2.16, we obtain that the restriction of L to `1(X,m) is
bounded. By the Riesz–Thorin interpolation theorem, Theorem E.21,
we obtain that the restriction of L to `p(X,m) is a bounded operator
for all p ∈ [1,∞]. Furthermore, we note that if Deg is bounded above
by D, then the bound on the operator is 2D. This proves (ii) and the
“specifically” statement at the end of the theorem.

(ii) =⇒ (iii): This is obvious.

(iii) =⇒ (i): Assume L is bounded on `p(X,m) for some p ∈ [1,∞].
By Lemma 2.16, L is then also bounded on `q(X,m) for q such that
1/p + 1/q = 1. By the Riesz–Thorin interpolation theorem, Theo-
rem E.21, L is bounded on `s(X,m) for all s between p and q and,

in particular, for s = 2. Then, with ex = 1x/
√
m(x) for x ∈ X, we

deduce from the boundedness of L on `2(X,m) that

C ≥ 〈Lex, ex〉 = L1x(x) = Deg(x)

for all x ∈ X. Thus, Deg is a bounded function. �

We end this section by discussing the case of graphs with standard
weights and counting measure.

Example 2.17 (Graphs with standard weights and counting mea-
sure). We let m = 1 and denote the Banach spaces `p(X, 1) for p ∈
[1,∞] by `p(X). We consider a graph with standard weights, i.e.,
b : X × X −→ {0, 1} and c = 0. As in Section 6, we denote the

Laplacian L
(D)
b,0,1 associated to Q

(D)
b,0,1 by ∆. Then, ∆ is a restriction of

∆̃ : C(X) −→ C(X) acting as

∆̃f(x) =
∑

y∈X,y∼x

(f(x)− f(y)).

Furthermore, we denote the generators of the semigroup of ∆ on `p(X)
by ∆(p). By Theorem 2.13, the operators ∆(p) are also restrictions of

∆̃. Moreover, we recall that the combinatorial degree deg : X −→ N0

is given by
deg(x) = #{y ∈ X | y ∼ x},

which is equal to the weighted degree Deg = deg in this case. Then, we
obtain by Theorem 2.15 the equivalence of the following statements:

(i) The combinatorial degree deg is a bounded function on X.
(ii) The operator ∆(p) is bounded for all p ∈ [1,∞].

(iii) The operator ∆(p) is bounded for some p ∈ [1,∞].

2. Forms associated to graphs and restrictions to subsets

In this section we consider the restrictions of the energy form to
subsets of X. We have already encountered one iteration of this idea
in Section 3, where we restricted the form to finite sets. Here, we
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restrict to arbitrary sets, thus extending this theory. Furthermore, we
also discuss the idea of extending a form.

Excavation Exercises 2.4 and 2.5, which recall facts about weakly
convergent subsequences in a Hilbert space and the Banach–Saks the-
orem, will be used in this section.

Let (b, c) be a graph over (X,m) and let Q = Qb,c be the energy
form overX. The main focus of our investigations is onQ(D). This form
comes about as a restriction of Q to the smallest subspace of `2(X,m)
containing Cc(X) and giving a closed form. However, restrictions to
other subspaces are also of interest. For example, we have already
encountered the form Q(N). This is the restriction of Q to the largest
subspace of `2(X,m) giving a closed form, that is, all functions of finite
energy in `2(X,m). A study of various relevant restrictions is provided
in this section.

We will first develop some pieces of the general theory of restricting
forms and then apply this theory to our setting of graphs. Let Q
be a form on `2(X,m), which we assume is positive and symmetric
throughout, with domain D(Q) such that Cc(X) ⊆ D(Q). Let U ⊆ X
and let C(U) denote the set of real-valued functions on U . Furthermore,
let mU denote the restriction of m to U . Then, we can define the
restriction of Q to U , denoted by QU , as the restriction of Q to those
functions which are supported in U . More specifically, we let

iU : C(U) −→ C(X)

be the extension by zero of functions on U to X and define QU as a
form with domain D(QU) defined by

D(QU) = {f ∈ `2(U,mU) | iUf ∈ D(Q)}
and

QU(f) = Q(iUf)

for f ∈ D(QU) and QU(f) =∞ for f /∈ D(QU).

We now establish some properties of QU which follow from proper-
ties of Q.

Proposition 2.18 (What QU inherits from Q). Let Q be a form
on `2(X,m) with Cc(X) ⊆ D(Q) and let U ⊆ X.

(a) If Q is a closed form, then QU is a closed form with Cc(U) ⊆
D(QU).

(b) If Q is a Dirichlet form, then QU is a Dirichlet form.
(c) If Q is a regular Dirichlet form, then QU is a regular Dirichlet

form.

Proof. (a) From the definitions, it is clear that Cc(U) ⊆ D(QU)
if Cc(X) ⊆ D(Q) and that QU is a form if Q is a form. We now show
that QU is closed if Q is closed. This amounts to showing that QU is
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lower semi-continuous on `2(U,mU), see Theorem B.9. Therefore, let
fn → f in `2(U,mU) as n → ∞. Then, iUfn → iUf in `2(X,m) as
n→∞ and from the assumption that Q is closed, we have

QU(f) = Q(iUf) ≤ lim inf
n→∞

Q(iUfn) = lim inf
n→∞

QU(fn).

(b) Let f ∈ D(QU) and let C be a normal contraction. As f ∈
`2(U,mU), it follows that C ◦f ∈ `2(U,mU). Furthermore, iUf ∈ D(Q)
by definition and so C ◦ iUf ∈ D(Q) as Q is a Dirichlet form. As
iU(C ◦ f) = C ◦ iUf since C(0) = 0, it follows that C ◦ f ∈ D(QU).
Finally, as Q is compatible with normal contractions, we find

QU(C ◦ f) = Q(iU(C ◦ f)) = Q(C ◦ iUf) ≤ Q(iUf) = QU(f).

This shows that QU is a Dirichlet form.

(c) In (b) we have already shown that QU is a Dirichlet form if Q is a
Dirichlet form. To establish the regularity of QU under the assumption
that Q is regular requires some work. Note, however, that we will later
only need the case when U is finite or cofinite, i.e., the case when X \U
is finite, and these two cases can be treated with substantially less work
(Exercise 2.13).

Let f ∈ D(QU) so that iUf ∈ D(Q). As Q is regular, there exists
a sequence (ϕn) in Cc(X) with

ϕn → iUf in `2(X,m) and Q(iUf − ϕn)→ 0

as n → ∞. We will modify ϕn to become a sequence with support in
U and which still satisfies the above properties. This will prove the
statement.

To this end, we define

ψn = (|iUf | ∧ ϕn) ∨ (−|iUf |).

As iUf has support in U , it follows that ψn has support in U . Fur-
thermore, |f − ψn| ≤ |f − ϕn| and, hence, ψn → f in `2(U,m) and
ψn → iUf in `2(X,m).

For functions g, h ∈ C(X) it is easy to see that

g ∧ h =
g + h− |g − h|

2
and g ∨ h =

g + h+ |g − h|
2

.

As Q is positive, it follows that Q(g ± h) ≤ 2(Q(g) + Q(h)) for g, h ∈
D(Q). Therefore, if g, h ∈ D(Q) we find, using that Q is a Dirichlet
form,

Q(g ∧ h) ≤ 1

2
(Q(g + h) +Q(|g − h|))

≤ 1

2
(Q(g + h) +Q(g − h))

= Q(g) +Q(h),
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and similarly,
Q(g ∨ h) ≤ Q(g) +Q(h).

Given this, it is immediate that the sequence (Q(ψn)) is bounded since
(Q(ϕn)) is bounded.

Note that 〈g, h〉Q = Q(g, h) + 〈g, h〉 is an inner product on D(Q)
with associated norm ‖ · ‖Q. Moreover, as Q is a closed form, D(Q) is
complete with respect to this inner product. Hence, by Theorem B.9,
HQ = (D(Q), 〈·, ·〉Q) is a Hilbert space.

The boundedness of (Q(ψn)) and the fact that (ψn) converges in
`2(X,m) then gives that we can consider (ψn) as a bounded sequence
in the Hilbert space HQ. Hence, it contains a weakly convergent sub-
sequence. Without loss of generality, we assume that the sequence
itself converges weakly to some g ∈ D(Q). Now, by the Banach–Saks
theorem we can find a subsequence (ψnk) such that

ψ̃N =
1

N

N∑
k=1

ψnk → g

in the Hilbert space HQ as N → ∞. Then, ψ̃N must also converge to
g in `2(X,m). As ψn converges to iUf in `2(X,m), we conclude that

iUf = g. So, we conclude that ψ̃N converges in ‖ · ‖Q to iUf . Clearly,

ψ̃N are still supported on U and this finishes the proof. �

Remark. The considerations of the preceding proposition can be
adapted to treat restrictions to substantially more general subspaces
than `2(U,mU) (Exercise 2.14).

Remark. Subspaces of the form `2(U,mU) are clearly invariant
under normal contractions. In particular, they are closed under taking
the modulus. In fact, they may be characterized by the order ideal or
the multiplicative ideal properties (Exercise 2.15).

If Q is a closed form, then QU is closed by the previous proposition
for U ⊆ X. Hence, the restriction of Q to Cc(U) × Cc(U) is closable

and we denote its closure by Q
(D)
U .

As follows by Lemma 1.15, part (c) of Proposition 2.18 says that the
form QU can also be defined as a closure when Q is a regular Dirichlet
form. In this sense, restriction to subsets and taking closures commute.
We note that when Q is a regular Dirichlet form, Q must come from a
graph by Theorem 1.18.

Corollary 2.19 (Closure of restriction equals restriction of clo-
sure). Let Q be a regular Dirichlet form on `2(X,m) and U ⊆ X.
Then,

QU = Q
(D)
U .

Proof. By Lemma 1.15 and the proposition above we have Cc(U) ⊆
D(QU). Since iUCc(U) = Cc(U), the restriction of Q and QU coincide
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on Cc(U) and the result follows as QU is closed by the previous propo-
sition. �

The preceding results give not only information on restrictions of
regular forms but also on restrictions of any form associated to a graph.
Recall that a form Q on `2(X,m) is associated to a graph (b, c) if Q
is closed, D(Q(D)) ⊆ D(Q) ⊆ D(Q(N)) and Q is a restriction of Q(N).
Equivalently, Q is a closed restriction of Qb,c with Cc(X) ⊆ D(Q).

Corollary 2.20. Let (b, c) be a graph over (X,m). Let Q be a
form associated to (b, c) and let U ⊆ X. Then, QU is an extension of

Q
(D)
U .

Proof. As Q is associated to (b, c), the domain D(Q) of Q contains
Cc(X) and Q is a restriction of Q(N). So, the domain of QU must
contain Cc(U) from Proposition 2.18 (a) and QU is a restriction of Q.

We now show that QU must be an extension of Q
(D)
U . Let f ∈

D(Q
(D)
U ). Then f ∈ `2(U,mU) and iUf ∈ D(Q(D)) ⊆ D(Q) as Q is

associated to the graph. In particular, f ∈ D(QU). Furthermore,

Q
(D)
U (f) = Q(D)(iUf) = Q(iUf) = QU(f).

Therefore, QU is an extension of Q
(D)
U . �

The preceding result naturally raises the question if the form QU

is associated to a graph whenever Q is associated to a graph. This is
indeed the case. We now give the details on this connection.

Let (b, c) be a graph and let U ⊆ X. We define the graph (bU , cU +
dU) over (U,mU) by bU : U × U −→ [0,∞) via

bU(x, y) = b(x, y),

cU via the restriction of c to U and dU : U −→ [0,∞) via

dU(x) =
∑

y∈X\U

b(x, y).

Then we show next that Qb,c(f) = QbU ,cU+dU (f) for all f ∈ D with
support contained in U .

Proposition 2.21 (Restricting energy forms to subsets). Let (b, c)
be a graph over (X,m) and let U ⊆ X. Then, the restriction of Qb,c to
the set of functions in D with support in U is given by QbU ,cU+dU .
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Proof. Let f ∈ D have support in U . Then, a short calculation
gives that

Qb,c(f) =
1

2

∑
x,y∈X

b(x, y)(f(x)− f(y))2 +
∑
x∈X

c(x)f 2(x)

=
1

2

∑
x,y∈U

b(x, y)(f(x)− f(y))2 +
1

2

∑
y∈U

∑
x∈X\U

b(x, y)f 2(y)

+
1

2

∑
x∈U

∑
y∈X\U

b(x, y)f 2(x) +
∑
x∈U

c(x)f 2(x)

=
1

2

∑
x,y∈U

b(x, y)(f(x)− f(y))2 +
∑
x∈U

(c(x) + dU(x))f 2(x),

which proves the statement. �

Denote the formal operator associated to QbU ,cU+dU by LU and its
domain by FU . Specifically,

FU = {f ∈ C(U) |
∑
y∈U

bU(x, y)|f(y)| <∞ for all x ∈ U}

with

LUf(x) =
1

m(x)

∑
y∈U

bU(x, y)(f(x)− f(y)) +
cU(x) + dU(x)

m(x)
f(x)

for all f ∈ FU and x ∈ U .
Applying the above to forms associated to graphs gives the following

result.

Corollary 2.22 (Restricting forms associated to graphs). Let
(b, c) be a graph over (X,m). Let Q be a form associated to (b, c)
and let U ⊆ X. Then, QU is associated to the graph (bU , cU + dU) and
the self-adjoint operator associated to QU is a restriction of LU .

It is worth noting that the action of LU on a function f can essen-
tially be though of as the action of L on iUf . More specifically, the
following is true.

Proposition 2.23 (Action of the restriction of L). Let (b, c) be a
graph over (X,m) and let U ⊆ X. Then,

LUf(x) =
1

m(x)

∑
y∈X

b(x, y)(iUf(x)− iUf(y)) +
c(x) + dU(x)

m(x)
iUf(x)

for all x ∈ U and f ∈ FU .

Proof. Due to iUf = 0 on X \ U and, by the definition of dU , we
have

dU(x)f(x) =
∑

y∈X\U

b(x, y)iUf(x) =
∑

y∈X\U

b(x, y)(iUf(x)− iUf(y))
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for x ∈ U . Now, a direct computation gives

LUf(x) =
1

m(x)

∑
y∈U

bU(x, y)(f(x)− f(y)) +
cU(x) + dU(x)

m(x)
f(x)

=
1

m(x)

∑
y∈X

b(x, y)(iUf(x)− iUf(y)) + c(x)iUf(x)

for x ∈ U , which proves the proposition. �

Remark. It is very tempting to write the equality in the proposi-
tion above as

LUf = (LiUf)|U .
Indeed, this is just the statement of the proposition whenever iUf be-
longs to F . However, in general, iUf will not belong to F when f ∈ FU
and LiUf is not defined in this case.

Whenever Q is a form on `2(X,m) and U is a proper subset of X,
the form QU is defined on a different Hilbert space than Q. This poses
a problem if we want to compare Q and QU . For this reason, it is
sometimes desirable to extend QU to a form on `2(X,m). Here, the
natural extension is by setting the form to be zero on `2(X\U,mX\U) ⊂
`2(X,m). We finish this section by discussing some details of this
extension process.

For U ⊆ X, we let πU : C(X) −→ C(U), πUf(x) = f |U(x) = f(x)
for x ∈ U and f |U is the restriction of f ∈ C(X) to U . We define the

extension Q̂U of QU by

D(Q̂U) = {f ∈ `2(X,m) | πUf ∈ D(QU)}

and, for f ∈ D(Q̂U),

Q̂U(f) = QU(πUf).

Now, clearly iUπUf = 1Uf , where 1U is the characteristic function

of U . So, we arrive at the following representation of Q̂U

D(Q̂U) = {f ∈ `2(X,m) | 1Uf ∈ D(Q)}

and, for f ∈ D(Q̂U),

Q̂U(f) = Q(1Uf).

Proposition 2.24. Let Q be a closed form on `2(X,m) and let

U ⊆ X. Then, Q̂U is a closed form on `2(X,m). Moreover, identifying
`2(X,m) with `2(U,mU)⊕ `2(X \ U,mX\U), we have

D(Q̂U) = D(QU)⊕ `2(X \ U,mX\U) and Q̂U = QU ⊕ 0.

In particular, we have

L̂U = LU ⊕ 0

for the operators L̂U and LU associated to Q̂U and QU .
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Proof. We first show that Q̂U is closed. As usual, we extend all
forms by ∞ outside of their domain. Let now fn → f in `2(X,m) as
n→∞. Then, clearly 1Ufn → 1Uf in `2(U,mU) as n→∞. Hence, by
the fact that Q is closed, we obtain that

Q̂U(f) = Q(1Uf) ≤ lim inf
n→∞

Q(1Ufn) = lim inf
n→∞

Q̂U(fn).

This shows that Q̂U is closed. The other statements follow easily. �

3. The curse of non-locality: Leibniz and chain rules

A major difficulty in applying methods from analysis on manifolds
and partial differential equations to discrete settings is the absence of
a pointwise Leibniz rule and the absence of a chain rule. In this section
we collect several estimates which allow us to circumvent this absence.

We first briefly discuss what we mean by non-locality. A form Q
is called local if Q(f, g) = 0 whenever f and g have disjoint supports.
Unlike in the case of energy forms appearing in the context of mani-
folds, this property clearly fails for the energy form on graphs whenever
the supports are disjoint but are connected by an edge. This has con-
sequences for local rules such as the Leibniz and the chain rule.

For the Leibniz rule, there exist three alternative formulas which
follow from basic algebraic manipulations. Furthermore, we have an
integrated Leibniz rule. We discuss this in Subsection 3.1.

For the missing chain rule, a first remedy is provided by the mean
value theorem. More specifically, the mean value theorem states that
for a given differentiable function ϕ : R −→ R and f : X −→ R and
x, y ∈ X there exists a ξ ∈ (f(x) ∧ f(y), f(x) ∨ f(y)) such that

ϕ(f(x))− ϕ(f(y)) = ϕ′(ξ)(f(x)− f(y)).

As ξ is, for the most part, not given explicitly, ϕ′(ξ) has to be estimated,
for example, by ϕ′(f(x) ∧ f(y)) or ϕ′(f(x) ∨ f(y)) if ϕ is monotone.
However, this is often not sufficient for the purpose at hand. Therefore,
we give more explicit estimates for functions ϕ that will find application
in the chapters that follow. We address this in Subsection 3.2.

3.1. The Leibniz rule. We first discuss variants of the Leibniz
rule on graphs.

In the continuous setting, there is a canonical Leibniz rule. In the
discrete setting, this is not the case. Instead there are several options
for the Leibniz rule. We list three such options in the lemma below.
For a function f : X −→ R and x, y ∈ X, to shorten notation we write

∇x,yf = f(x)− f(y).
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Lemma 2.25 (Pointwise Leibniz rule). Let f, g ∈ C(X) and let
x, y ∈ X. Then,

∇x,y(fg) = f(x)∇x,yg + g(y)∇x,yf

= f(y)∇x,yg + g(x)∇x,yf

= f(x)∇x,yg + g(x)∇x,yf −∇x,yf · ∇x,yg.

Proof. The statement follows by direct computation. �

We next present an integrated form of the Leibniz rule.

Lemma 2.26 (Integrated Leibniz rule). Let w : X × X −→ [0,∞)
be symmetric and let f, g, h ∈ C(X). Then,∑
x,y∈X

w(x, y)∇x,y(fg) · ∇x,yh

=
∑
x,y∈X

w(x, y)f(x)∇x,yg · ∇x,yh+
∑
x,y∈X

w(x, y)g(x)∇x,yf · ∇x,yh

whenever any two of the above sums converge absolutely.

Proof. The statement follows from the first equality in the lemma
above and symmetry. �

3.2. Alternatives for the chain rule. We now give some alter-
natives for the chain rule. We first use the mean value theorem to give
an estimate. Afterwards, we present more elaborate inequalities for
powers and exponentials.

We start with a mean value theorem estimate.

Lemma 2.27 (Mean value estimate). Let ϕ : R −→ R be differen-
tiable, f ∈ C(X), x, y ∈ X and I = (f(x) ∧ f(y), f(x) ∨ f(y)). Then,

inf
ξ∈I
ϕ′(ξ)|∇x,yf | ≤ |∇x,y(ϕ ◦ f)| ≤ sup

ξ∈I
ϕ′(ξ)|∇x,yf |.

Proof. By the mean value theorem,

∇x,y(ϕ ◦ f) = ϕ′(ξ)∇x,yf

for some ξ ∈ I. Thus, the statement follows. �

The next lemma deals with differences of powers of a function.

Lemma 2.28 (Estimates for differences of fp). Let f ∈ C(X) with
f ≥ 0 and let x, y ∈ X. Furthermore, assume that f > 0 whenever
p ∈ [0, 1] in the statements below.

(a) For all p ∈ [0,∞),

|∇x,yf
p| ≤ Cp

(
fp−1(x) + fp−1(y)

)
|∇x,yf |,

where Cp = p/2 for p ∈ [0, 1] ∪ [2,∞) and Cp = 1 for p ∈ (1, 2).
(b) For all p ∈ [1,∞),

|∇x,yf
p| ≥ (1 ∧ p/2)

(
fp−1(x) + fp−1(y)

)
|∇x,yf |.
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(c) For all p ∈ [0,∞),

|∇x,yf
p| ≥ (1 ∧ p) (f(x) ∨ f(y))p−1 |∇x,yf |.

Proof. We assume, without loss of generality, that f(y) ≤ f(x)
and let a = f(y) and b = f(x). Furthermore, recall that we assume
a > 0 if p ∈ [0, 1] and note that the only non-trivial cases are 0 < a < b
and p 6= 0, 1, 2, which we assume from now on.

The key identity for the proofs of (a) and (b) is

bp − ap = (b− a)
(
bp−1 + ap−1

)
+ ab

(
bp−2 − ap−2

)
.

Therefore, the main goal is to estimate ab(bp−2 − ap−2), which we do
by cases below.

For p ∈ (1,∞), the function t 7→ t1−p is convex, i.e., concave up-
wards, on (0,∞). Thus, its image lies below the line segment connect-
ing the points (b−1, bp−1) and (a−1, ap−1). So the integral of the function
can be estimated from above by the sum of the area of a triangle and
the area of a rectangle. Therefore, we estimate, for p > 1, p 6= 2,

1

p− 2

(
bp−2 − ap−2

)
=

∫ a−1

b−1

t1−pdt

≤
(
a−1 − b−1

)(bp−1 − ap−1

2
+ ap−1

)
=

1

2ab
(b− a)

(
bp−1 + ap−1

)
.

For p ∈ (0, 1), the function t 7→ t1−p is concave, i.e., concave down-
wards, on (0,∞) and, therefore, by the same arguments as above, we
can estimate the integral from below by an area so that

1

p− 2

(
bp−2 − ap−2

)
=

∫ a−1

b−1

t1−pdt ≥ 1

2ab
(b− a)

(
bp−1 + ap−1

)
.

To prove (a), observe that the case p > 2 is given by the first
inequality combined with the equality given at the beginning of the
proof. The case p ∈ (0, 1) is given by the second inequality since p−2 <
0 in this case. Finally, for p ∈ (1, 2), we observe that bp−2 − ap−2 < 0,
which immediately implies the statement of (a) in this case. This
finishes the proof of (a).

For (b), we note that the statement for p ∈ (1, 2) follows from the
first inequality and the equality in the beginning of the proof since
p− 2 < 0 in this case. For p > 2 we observe that bp−2−ap−2 > 0 which
immediately implies the statement of (b) in this case from the equality.

For (c), note that the case p > 1 follows directly as bp − ap >
bp − abp−1 = bp−1(b − a). The case p ∈ [0, 1] follows from the mean
value theorem. �
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Finally, we turn to the exponential function. The proof uses the
lemma above.

Lemma 2.29 (Estimates for differences of ef ). Let f ∈ C(X) and
let x, y ∈ X.

(a) Then, ∣∣∇x,ye
f
∣∣ ≤ 1

2

(
ef(x) + ef(y)

)
|∇x,yf |.

(b) If |∇x,yf | ≤ 1 and β > 0, then

∣∣∇x,ye
βf
∣∣ ≤ (eβ − 1)

(
e2βf(x) + e2βf(y)

)1/2

(1 + e2β|∇x,yf |2)1/2
|∇x,yf |.

Proof. For part (a) assume, without loss of generality, that f(x) >
f(y). Secondly, we may also assume without loss of generality that
f(y) ≥ 0, since, if f(y) < 0, then we multiply the inequality by e−f(y)

and we estimate |∇x,ye
g| with g(x) = ∇x,yf ≥ 0 and g(y) = 0.

(a) Noting that the inequality

|∇x,yf
p| ≤ p

2

(
fp−1(x) + fp−1(y)

)
|∇x,yf |

from Lemma 2.28 (a) for p ≥ 2 is also true for p = 1 we get

∇x,ye
f =

∞∑
p=1

∇x,yf
p

p!
≤ 1

2
∇x,yf

∞∑
p=1

fp−1(x) + fp−1(y)

(p− 1)!

=
1

2
(ef(x) + ef(y))∇x,yf.

This gives the desired inequality.

(b) Assume as in (a) that f(x) > f(y). Let t ∈ [0, 1] and β > 0.
First, observe that

eβt − 1 =
∞∑
k=1

(βt)k

k!
≤ t

∞∑
k=1

βk

k!
= t(eβ − 1).

Secondly, the function r 7→ r2/(1+(r+1)2) is monotonically increasing
on [0,∞). Applying this with r = eβt − 1 ≤ t(eβ − 1) we conclude

(eβt − 1)2

1 + e2βt
=

(eβt − 1)2

1 + (eβt − 1 + 1)2
≤ t2(eβ − 1)2

1 + (t(eβ − 1) + 1)2
≤ t2(eβ − 1)2

1 + t2e2β
.

Letting t = f(x) − f(y) and multiplying both sides of the inequality
by e2βf(y) and taking square roots we obtain the statement. �
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4. Creatures from the abyss*

The main focus of our investigation is on the spectral geometry
of graphs over measure spaces. Indeed, we need a measure on the
underlying set in order to have a Hilbert space and to define self-adjoint
operators. It turns out, however, that certain parts of the basic theory
can be set up without reference to a measure. We discuss this approach
in this section. We will start to work in a slightly more general setting
than is needed for graphs and only return to graphs at the very end.
Neither the results nor the notation used in this section are necessary
to understand the remaining parts of the book.

Consider a discrete topological space X. Let C(X) denote the
set of all real-valued function on X and let Cc(X) be the set of real-
valued functions with finite support. For any finite subset K ⊆ X, the
space C(K) of real-valued functions on K can naturally be embedded
into Cc(X) by setting the functions equal to zero outside of K. This
embedding is denoted by

iK : C(K) −→ Cc(X).

Let C(K) have the topology arising from the supremum norm. The
embeddings iK then induce on Cc(X) the inductive limit topology. By
definition, this is the largest topology making the embedding iK con-
tinuous for each K ⊆ X finite. This topology can be understood in
a number of ways. In particular, a set U is open in Cc(X) with the
inductive limit topology if and only if i−1

K (U) is open in C(K) for all
K finite. Furthermore, a map T from Cc(X) into a topological space
is continuous if and only if T ◦ iK is continuous for any finite K ⊆ X.
Finally, a sequence (ϕn) converges to ϕ if and only if ϕn → ϕ pointwise
and there exists a finite K ⊆ X which contains the supports of ϕn and
ϕ for all n (Exercise 2.16).

By the Riesz–Markov theorem, the dual space of Cc(X), i.e., the
space of all linear continuous mappings from Cc(X) into R, is the space
M(X) of all signed Radon measures on X. Thus, any element µ in the
dual space can be uniquely written as µ+ − µ− and we have

µ(ϕ) = µ+(ϕ)− µ−(ϕ)

for all ϕ ∈ Cc(X), where µ± are positive measures on X assigning finite
mass to finite sets of points and satisfying µ(ϕ) =

∑
x∈X ϕ(x)µ({x}).

Of course, any such measure can naturally be identified with a function
fµ ∈ C(X) with fµ(x) = µ+({x}) − µ−({x}) for all x ∈ X. In this
sense, M(X) is naturally isomorphic to C(X). In fact, it is easy to
see directly that C(X) can be seen as the dual of Cc(X) in a natural
way. For a structural understanding of the subsequent considerations,
however, it will be useful to rather think of the dual of Cc(X) as a
space of measures.
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Consider now a bilinear form

Q : D ×D −→ R
such that the domain of definition D of Q contains the space Cc(X).
Then, for any f ∈ D, we can consider the map

Cc(X) −→ R, ϕ 7→ Q(f, ϕ).

The restriction of this map to any C(K) with K ⊆ X finite is a linear
map on a finite-dimensional space and, hence, continuous. Thus, this
map is continuous. Hence, by the Riesz–Markov theorem, there exists
a unique measure µf ∈M(X) with

µf (ϕ) = Q(f, ϕ)

for all ϕ ∈ Cc(X). Clearly, the map f 7→ µf is linear as Q is bilinear.
Thus, we can define a linear operator LD : D −→M(X) via

LDf = µf

with
Q(f, ϕ) = (LDf)(ϕ)

for all ϕ ∈ Cc(X). Letting ϕ = 1x be the characteristic function of
x ∈ X, we then obtain

(LDf)({x}) = Q(f, 1x).

For any measure µ ∈ M(X), we let |µ| be the absolute value of µ,
i.e., |µ| is the positive measure with |µ|({x}) = |µ({x})| for all x ∈ X.
Thus, for any ϕ ∈ Cc(X), we have

`1(X, |(LDϕ)|) = {f ∈ C(X) |
∑
x∈X

|f(x)(LDϕ)({x})| <∞}.

We then define
F =

⋂
ϕ∈Cc(X)

`1(X, |LDϕ|).

For any f ∈ F and ϕ ∈ Cc(X), we define

(LDϕ)(f) =
∑
x∈X

(LDϕ)({x})f(x),

where the sum exists by the definition of F . Clearly, the map

Cc(X) −→ R, ϕ 7→ (LDϕ)(f)

is continuous for each fixed f ∈ F as its restriction to C(K) for K ⊆ X
finite is continuous by the same reasoning as given above. Thus, there
exists a unique operator

LF : F −→M(X)

with
(LFf)(ϕ) = (LDϕ)(f)

for all f ∈ F and ϕ ∈ Cc(X).
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To develop the theory further we now make the following two ad-
ditional assumptions:

(A1) Q is symmetric, i.e., Q(f, g) = Q(g, f) for all f, g ∈ D.
(A2) For any f ∈ D and x ∈ X,∑

y∈X

f(y)Q(1x, 1y) = Q(1x, f),

where the sum is absolutely convergent.

The second assumption is a form of continuity. It implies, in par-
ticular, that

Q(1x, f) = lim
n→∞

Q(1x, fn)

whenever (fn) is a sequence in Cc(X) satisfying

• fn(x)→ f(x) for all x ∈ X
• |fn| ≤ |f |.
Indeed, this is a direct consequence of the dominated convergence the-
orem. In fact, it turns out that (A2) is equivalent to this form of
continuity (Exercise 2.17).

Remark. It is not hard to see that both assumptions are satisfied
by the form Qb,c arising from a graph (b, c) over X on its domain Db,c.
We will discuss this at the end of this section.

We now give some consequences of the additional assumptions.

Theorem 2.30. Assume (A1) and (A2). Then, the following state-
ments hold:

(a) F = {f ∈ C(X) |
∑

y∈X |f(y)Q(1x, 1y)| <∞ for all x ∈ X}.
(b) We have D ⊆ F and LF is an extension of LD.
(c) “Green’s formula”

(LFf)(ϕ) = (LFϕ)(f)

holds for all f ∈ F and all ϕ ∈ Cc(X). If f belongs to D, then

Q(f, ϕ) = (LFf)(ϕ).

(d) If fn, f ∈ F with |fn| ≤ |f | and fn → f pointwise for n→∞, then

lim
n→∞

(LFfn)({x}) = (LFf)({x})

for all x ∈ X.

Proof. (a) We clearly have

F =
⋂
x∈X

`1(X, |LD1x|).

Now, as shown above,

LD1x({y}) = Q(1x, 1y).
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Combining these observations, we easily obtain the desired statement
for F .

(b) By (A2) and (a) we have D ⊆ F . Moreover, for f ∈ D we find
that for all ϕ ∈ Cc(X),

LFf(ϕ) = LDϕ(f)

(definition of LD) =
∑
x∈X

(LDϕ)({x})f(x)

=
∑
x∈X

Q(ϕ, 1x)f(x)

(A2) = Q(ϕ, f)

(A1) = Q(f, ϕ)

= LDf(ϕ).

This shows that LF and LD agree on D.

(c) From the definition of LF and (b) we obtain

LFf(ϕ) = LDϕ(f) = LFϕ(f)

for all f ∈ F and ϕ ∈ Cc(X). Similarly, from the definition of LD and
(b) we obtain

Q(f, ϕ) = LDf(ϕ) = LFf(ϕ)

for all f ∈ D and ϕ ∈ Cc(X).

(d) This follows from the definitions and Lebesgue’s dominated con-
vergence theorem. Namely, since fn → f pointwise, |fn| ≤ |f | and
f ∈ F so that

∑
y∈X |(LD1x)(y)f(y)| <∞ for all x ∈ X, we get

LFfn({x}) = LD1x(fn)

(definition of LD) =
∑
y∈X

(LD1x)({y})fn(y)

→
∑
y∈X

(LD1x)(y)f(y)

= (LD1x)(f)

= LFf(x).

This completes the proof. �

If (b, c) is a graph over X, then the previous theorem can be applied
to Q = Qb,c on D = Db,c. Indeed, in this case we have

Q(1x, 1y) = −b(x, y)

for x 6= y and

Q(1x) =
∑
z∈X

b(x, z) + c(x)
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for all x ∈ X. From these equations we easily find that (A1) and (A2)
are satisfied. Moreover, from these equations we can also directly infer

F = Fb,c and LF = Lb,c.

This gives a structural understanding of how Fb,c and Lb,c come about
in our theory. Along the way, we also obtain that the form Qb,c has
the continuity property (A2).

Furthermore, the local finiteness of the graph is equivalent to the
fact that LD(Cc(X)) ⊆ Cc(X), which is equivalent to F = C(X) (Ex-
ercise 2.18). Also, it is possible to elaborate a theory of the dual of an
operator in this context (Exercise 2.19).

Finally, we mention that the question of when a form Q arises
from a graph can be addressed via the associated operator satisfying a
maximum principle (Exercise 2.20).

5. Markov processes and the Feynman–Kac formula redux*

In this section we establish a connection between Dirichlet forms
and the corresponding Markov processes. In particular, we prove a
Feynman–Kac formula. Although the focus of the book is analytic
rather than probabilistic, this connection is one of the major historical
motivations for the theory and, therefore, of great conceptual impor-
tance. The intention of this section is to give a glimpse of these proba-
bilistic aspects. However, in most of the book, we will not refer to this
section, so it can safely be skipped by the reader only interested in the
analytic aspects.

The proof of the Feynman–Kac formula is mainly an approximation
argument that uses considerations for finite graphs. We briefly recall
the construction of the process and refer to Section 10 for background
and further details.

Let (b, c) be a graph over the measure space (X,m). Let Q =

Q
(D)
b,c,m be the associated form and L = L

(D)
b,c,m be the associated Dirichlet

Laplacian. We first construct the Markov process X = Xb associated
to b.

Let Y = (Yn)n∈N0 be a discrete time Markov chain on X over a
probability space (Ω,F ,P) such that

P (Yn = y |Yn−1 = x) =
b(x, y)

deg(x)

for n ∈ N and x, y ∈ X, where the degree is given by deg(x) =∑
y∈X b(x, y) since we work with b only.
To define the sequence of holding times Sn for n ∈ N and jumping

times Jn for n ∈ N0, we let (ξn)n∈N be a sequence of independent
exponentially distributed random variables of parameter 1 which are
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also independent of Y and let

Sn =
1

Deg(Yn−1)
ξn, Jn = S1 + . . .+ Sn

with the convention that J0 = 0 where Deg(x) = deg(x)/m(x).
Since X is assumed to be infinite, the random variable

ζ = sup
n∈N0

Jn,

which is called the lifetime or explosion time of the process, may take
a finite value with positive probability. Characterizations of this phe-
nomenon will be discussed in the context of stochastic completeness of
graphs in Section 9 of Chapter 7.

The Markov process X = Xb : [0,∞)× Ω −→ X is defined via

Xt = Yn if t ∈ [Jn, Jn+1).

For an event A, we define Ex(A) = E(A | X0 = x).
The Feynman–Kac formula on infinite graphs reads as follows.

Theorem 2.31 (Feynman–Kac formula). Let (b, c) be a graph over
(X,m) with associated Laplacian L = L(D) and let X = Xb be the
process associated to b. Then,

e−tLf(x) = Ex
(

1{t<ζ}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
for all f ∈ `2(X,m), x ∈ X and t ≥ 0.

We need the following lemma to transfer the Feynman–Kac formula
proven in Section 10 to infinite graphs. In particular, Theorem 0.72 is
shown for processes on finite graphs which are restricted to subgraphs.
In what follows we consider restrictions to finite graphs first, however,
the background process is defined on an infinite graph. We show that
each process on an infinite graph restricted to a finite subgraph can be
replaced by a process on a finite graph.

We recall the definition of the Dirichlet Laplacian on subsets. For
a finite subset K ⊆ X, we let πK : `2(X,m) −→ `2(K,mK) be the
canonical projection, iK : `2(K,mK) −→ `2(X,m) be the canonical
embedding which is continuation by zero on X \K and let

L
(D)
K = iKLπK .

In particular,

L
(D)
K f(x) =

1

m(x)

(∑
y∈K

b(x, y)(f(x)− f(y)) +
(
dK(x) + c(x)

)
f(x)

)
for all f ∈ `2(K,mK) and x ∈ K where dK(x) =

∑
y∈X\K b(x, y). See

Section 3 for further details.
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For the process X = Xb we define the first exit time for K ⊆ X to
be the random variable τK given by

τK = inf{t ≥ 0 | Xt ∈ X \K}.

Lemma 2.32. Let (b, c) be a graph over (X,m) and let X = Xb

be the process associated to b. For a subset K ⊆ X, let L
(D)
K be the

Dirichlet Laplacian and let τK be the first exit time for K. Then,

e−tL
(D)
K f(x) = Ex

(
1{t<τK∧ζ}e

−
∫ t
0 (c/m)(Xs)dsf(Xt)

)
for all f ∈ `2(K,m), x ∈ K and t ≥ 0.

Proof. For a finite set K ⊆ X, let K̃ = K ∪ {∞}. Let m̃ be
defined by m̃ = m on K and with m̃(∞) arbitrary, say m̃(∞) = 1. We

define a graph (̃b, c̃) over the measure space (K̃, m̃) by letting c̃ be the

extension of c to K̃ by zero and letting b̃ = b on K ×K with

b̃(x,∞) = b̃(∞, x) =
∑

y∈X\K

b(x, y).

We denote the Laplacian for the graph (̃b, c̃) over the finite measure

space (K̃, m̃) by L̃ and the restriction of L̃ to K with Dirichlet bound-

ary conditions by L̃
(D)
K . By construction, we have for the restriction of

L to K with Dirichlet boundary conditions,

L̃
(D)
K = L

(D)
K

on `2(K,mK) and, in particular,

e−tL̃
(D)
K = e−tL

(D)
K

for t ≥ 0.
Furthermore, let X̃ be the process associated to b̃ over the finite

measure space (K̃, m̃) and let X be the process associated to b over

(X,m). Conditioning the processes X̃ and X on not leaving K, these
processes are equivalent. More specifically, these conditioned processes
are Markov processes associated to graphs on the finite set K, how-
ever, this time with a non-vanishing killing term, see Subsection 10.3.
Furthermore, c = c̃ on K and, therefore,

Ẽx
(

1{t<τ̃K}e
−

∫ t
0 (c/m)(X̃s)dsf(X̃t)

)
= Ex

(
1{t<τK}e

−
∫ t
0 (c/m)(Xs)dsf(Xt)

)
,

where τ̃K is the exit time of the process X̃ for K̃ and Ẽx is the expec-

tation with regard to the probability measure of X̃ conditioned on X
starting at x.
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Thus, we obtain from Lemma 0.72

e−tL
(D)
K f(x) = e−tL̃

(D)
K f(x)

= Ẽx
(

1{t<τ̃K}e
−

∫ t
0 (c/m)(X̃s)dsf(X̃t)

)
= Ex

(
1{t<τK}e

−
∫ t
0 (c/m)(Xs)dsf(Xt)

)
.

Since the event {ζ < τK} has probability zero, the events {t < τK} and
{t < τK ∧ ζ} have the same measure. This completes the proof of the
statement. �

Proof of Theorem 2.31. Let Xk for k ∈ N0 be an exhausting
sequence of X, i.e., Xk ⊆ X are finite subsets with Xk ⊆ Xk+1 for
k ∈ N0 and X =

⋃
kXk. Let πk : `2(X,m) −→ `2(Xk,mXk) be the

canonical projection and ik be its dual, i.e., the canonical embedding.

Then, the Laplacians L
(D)
k = ikLπk with Dirichlet boundary con-

ditions form a sequence of operators on the finite dimensional Hilbert
spaces `2(Xk,mXk). By Lemma 1.21, we have

lim
k→∞

e−tL
(D)
k ϕ = e−tLϕ

for all ϕ ∈ Cc(X). By the uniform boundedness in t of the semigroups
and the density of Cc(X) in `2(X,m), we get

lim
k→∞

e−tL
(D)
k fk = e−tLf

for all f ∈ `2(X,m) and fk = 1Xkf . By Lemma 2.32, the Feynman–Kac
formula holds on Xk, so, we are left to show the convergence

Ex
(

1{t<τXk∧ζ}e
−

∫ t
0 (c/m)(Xs)dsfk(Xt)

)
→ Ex

(
1{t<ζ}e

−
∫ t
0 (c/m)(Xs)dsf(Xt)

)
as k →∞ for all f ∈ `2(X,m) and x ∈ X.

Assume first that f ≥ 0. Since the sequence τXk ∧ ζ converges
monotonically increasingly to ζ and fk(Xt) converges monotonically
increasingly to f(Xt), the statement follows by monotone convergence.

Now, let f ∈ `2(X,m) be arbitrary. We then split f into positive
and negative parts and apply the argument above. This completes the
proof. �
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Exercises

Excavation exercises.

Exercise 2.1 (The Banach spaces `p). Let (X,m) be a discrete
measure space. Define, for p ∈ [1,∞),

`p(X,m) = {f : X −→ R |
∑
x∈X

|f(x)|pm(x) <∞}

with

‖f‖p =

(∑
x∈X

|f(x)|pm(x)

)1/p

.

For p =∞, let

`∞(X,m) = {f : X −→ R | f is bounded }
with

‖f‖∞ = sup
x∈X
|f(x)|.

(a) Show that the `p(X,m) are subspaces of C(X) for any p ∈ [1,∞].
(b) Let p, q ∈ [1,∞] with 1/p+ 1/q = 1 (where the cases p = 1, q =∞

and p = ∞, q = 1 are allowed). Show that for any f ∈ `p(X,m)
and g ∈ `q(X,m) the product fg belongs to `1(X,m) and satisfies

‖fg‖1 ≤ ‖f‖p‖g‖q.
(Hint: You may (why?) restrict attention to f, g with ‖f‖p =

1 = ‖g‖q and use the inequality ab ≤ ap/p+ bq/q which is valid for
all a, b ≥ 0.)

(c) Show that ‖ · ‖p is a norm on `p(X,m) for any p ∈ [1,∞] which
makes `p(X,m) into a Banach space, i.e., a complete normed space.

Exercise 2.2 (Dual spaces of the `p-spaces). Let (X,m) be a
discrete measure space. Consider p ∈ [1,∞) and q ∈ (1,∞] with
1/p + 1/q = 1 (where the case p = 1, q = ∞ is allowed). Show
that `q(X,m) is the dual space of `p(X,m) in the sense that the map
J : `q(X,m) −→ (`p(X,m))∗ defined by

(Jf)(g) =
∑
x∈X

f(x)g(x)m(x)

is bijective and isometric.

Exercise 2.3 (Inclusions among the `p-spaces). Let (X,m) be a
discrete measure space. Set

I = inf
x∈X

m(x) and S =
∞∑
x∈X

m(x).

Show the following statements for 1 ≤ p < q <∞:
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(a) Assume that I > 0. Then, `p(X,m) ⊆ `q(X,m) and

sup{‖f‖q | f ∈ `p(X,m), ‖f‖p ≤ 1} = I1/q−1/p.

(b) Assume that S <∞. Then, `q(X,m) ⊆ `p(X,m) and

sup{‖f‖p | f ∈ `q(X,m), ‖f‖q ≤ 1} = S1/p−1/q.

(c) For I = 0 or S = ∞, the inclusions given in (a) and (b) do not
hold.

Exercise 2.4 (Weakly convergent subsequences). LetH be a Hilbert
space. Show that any bounded sequence in H has a weakly convergent
subsequence.

Exercise 2.5 (Banach–Saks theorem). Let H be a Hilbert space.
Let (fn) be a sequence in H which converges weakly to f . Show that
there exists a subsequence (fnk) of (fn) such that the Cesàro means

f̃N =
1

N

N∑
k=1

fnk

converge in norm to f .

Example exercises.

Exercise 2.6 (L ◦ iU 6= LU). Give an example of a graph (b, c)
over (X,m) with U ⊆ X and f ∈ FU such that iUf does not belong to
F . In particular, this shows that LiUf = LUf does not hold.

(Hint: Consider the infinite star graph and let U consist of all
vertices other than the center of the star.)

Extension exercises.

Exercise 2.7 (Solving the heat equation for bounded generators).
Let E be a Banach space, B(E) denote the space of bounded linear
operators on E and A ∈ B(E).

(a) Show that for every t ∈ R, the series

SA(t) =
∞∑
n=0

(−t)n

n!
An

is absolutely convergent with ‖SA(t)‖ ≤ e−t‖A‖.
(b) Show that the map SA : [0,∞) −→ B(E) given by (a) is a strongly

continuous semigroup which is continuously differentiable with

∂tSA(t) = −ASA(t) = −SA(t)A

for any t ∈ [0,∞).
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Exercise 2.8 (Uniqueness of semigroups). Let E be a Banach
space, B(E) denote the space of bounded linear operators on E and

A ∈ B(E) with SA(t) =
∑∞

n=0
(−t)n
n!

An for t ≥ 0. Show the following
statements:

(a) If w : [0,∞) −→ E is a solution of

∂tw = −Aw
with w(0) = u, then w(t) = SA(t)u for all t ≥ 0.

(b) If T is a semigroup with generator B ∈ B(E) and B ⊆ A, then
T = SA and B = A.

Exercise 2.9 (Characterizing generators of semigroups). Let A be
a closed operator on a Banach space E with dense domain of definition
such that A+α is bijective with ‖(A+α)−1‖ ≤ 1/α for all α > 0. Show
that A is the generator of a uniquely determined strongly continuous
semigroup.

Exercise 2.10 (Strongly continuous resolvents). Let (X,m) be a
discrete measure space. Let G be a strongly continuous resolvent on
`p(X,m). Show that strong continuity of the resolvent implies that the
map (0,∞) −→ [0,∞)

α 7→ ‖Gαf‖p
is continuous for all f ∈ `p(X,m).

Exercise 2.11 (Weak* continuity and pointwise continuity). Let
S be contraction semigroup on `∞(X) for a discrete measure space
(X,m). Show that the following statements are equivalent:

(i) S is weak* continuous, i.e., t 7→ (S(t)f, g) is continuous on [0,∞)
for all f ∈ `∞(X) and g ∈ `1(X,m).

(ii) S is pointwise continuous, i.e., t 7→ S(t)f(x) is continuous on [0,∞)
for all f ∈ `∞(X) and x ∈ X.

Exercise 2.12 (Direct proof of resolvent properties). Give a direct
proof of Theorem 2.11 by using Lemma 2.8 and the properties of Gb,c

established in Proposition 2.10.

Exercise 2.13 (Restrictions to cofinite sets inherit regularity). Let
(X,m) be a discrete measure space. Consider a closed form Q with
domain D(Q) ⊆ `2(X,m) with Cc(X) ⊆ D(Q). Let U ⊆ X be such
that X \ U is finite. Show that the following statements hold:

(a) The restriction f |U of f ∈ D(Q) belongs to D(QU), so that the
map πU : D(Q) −→ D(QU) given by πUf = f |U is well-defined.
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(b) The map πU is continuous, where the form domains are equipped
with the corresponding form norms.
(Hint: Use the closed graph theorem.)

(c) If Cc(X) is dense in D(Q) with respect to ‖ · ‖Q, then Cc(U) is
dense in D(QU) with respect to ‖ · ‖QU .
(Hint: Use (b).)

Exercise 2.14 (Extending Proposition 2.18 to general subspaces).
Let (X,m) be a discrete measure space and let Q be a closed form
on `2(X,m). Let W be a not necessarily closed subspace of `2(X,m).
Show the following:

(a) The restriction of Q to W ∩D(Q) admits closed extensions. Denote
the smallest such extension by QW .

(b) Consider the Hilbert space W ∩D(Q), where the closure is taken
in `2(X,m). Show that QW is a closed form on this Hilbert space.

(c) If Q is a Dirichlet form and W is invariant under normal contrac-
tions, then QW is a Dirichlet form.
(Hint: For (c) you can mimic the reasoning in the proof of (c) of
Proposition 2.18.)

Exercise 2.15 (Characterizing subspaces of the form `2(U,mU)).
Let (X,m) be a discrete measure space.

(a) Show that the following three assertions for a closed subspace V of
`2(X,m) are equivalent:
(i.a) There exists a U ⊆ X with V = `2(U,mU).
(ii.a) The subspace V is invariant under taking the absolute value

| · | and if g ∈ `2(X,m) with 0 ≤ g ≤ f for some f ∈ V , then
g ∈ V . (“Order ideal property”)

(iii.a) For any f ∈ V and g ∈ `2(X,m) ∩ `∞(X) the product fg
also belongs to V . (“Multiplicative ideal property”).
(Hint: Define

U = {x ∈ X | there exists an f ∈ V with f(x) 6= 0}.
Show that (ii.a)/(iii.a) imply that V contains Cc(U).)

(b) Show by counterexamples that a closed subspace:
(i.b) May be invariant under taking modulus without satisfying

(ii.a) or (iii.a).
(ii.b) May satisfy that Cc(X) ∩ V is dense in V without being of

the form `2(U,mU).
(Hint: V = {f ∈ `2(X,m) | f(x1) = f(x2) for x1 6= x2}.)

Exercise 2.16 (Inductive limit topology). Let X be a discrete set.
Let Cc(X) have the inductive limit topology induced by the embeddings
iK : C(K) −→ Cc(X) for finite K ⊆ X. Here, iK extends a function by
0 and C(K) is given the topology arising from the supremum norm.
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(a) Show that U ⊆ Cc(X) is open if and only if i−1
K (U) is open in C(K)

for every finite K ⊆ X.
(b) If Y is a topological space, show that any mapping T : Cc(X) −→ Y

is continuous if and only if T ◦ iK is continuous for every finite
K ⊆ X.

(c) Show that ϕn → ϕ in the inductive limit topology if and only if
ϕn → ϕ pointwise and there exists a finite K ⊆ X such that the
supports of ϕn and ϕ are contained in K for all n.

Exercise 2.17 (Characterizing (A2)). Let Q : D × D −→ R be a
bilinear form over a discrete set X with Cc(X) ⊆ D. Show that the
following statements are equivalent:

(i) For any f ∈ D and x ∈ X,∑
y∈X

f(y)Q(1x, 1y) = Q(1x, f),

where the sum is absolutely convergent.
(ii) For any f ∈ D and x ∈ X,

Q(1x, f) = lim
n→∞

Q(1x, ϕn)

whenever (ϕn) is a sequence in Cc(X) satisfying ϕn(x)→ f(x) for
all x ∈ X and |ϕn| ≤ |f | for all n.

Exercise 2.18 (Characterizing local finiteness). Let (b, c) be a
graph over X. Show that the following statements are equivalent:

(i) The graph (b, c) over X is locally finite.
(ii) LD(Cc(X)) ⊆ Cc(X).

(iii) F = C(X).

(Hint: Show that `1(X, g) 6= C(X) if and only if the support of g is
infinite.)

Exercise 2.19 (Domains of dual operators). Let X be a discrete
set. For any subset V of C(X) define V ∗ by

V ∗ = {f ∈ C(X) |
∑
x∈X

|f(x)ϕ(x)| <∞ for all ϕ ∈ V }.

Show that:

(a) (Cc(X))∗ = C(X) and C(X)∗ = Cc(X).
(b) (`2(X,m))∗ = `2(X, 1/m) for any measure m on X with full sup-

port.

Furthermore, for a linear operator L : Cc(X) −→ C(X) define the dual
operator L∗ as having domain

D(L∗) = (LCc(X))∗
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and L∗f as the unique element of C(X) with∑
x∈X

L∗f(x)ϕ(x) =
∑
x∈X

f(x)Lϕ(x)

for all ϕ ∈ Cc(X). Show that:

(c) V ∗ ⊆ D(L∗) for any subspace V of C(X) with L(Cc(X)) ⊆ V .
(d) L(Cc(X)) ⊆ V for any subspace V of C(X) with V ∗ ⊆ D(L∗) and

(V ∗)∗ = V .
(e) L(Cc(X)) ⊆ Cc(X) if and only if D(L∗) = C(X).
(f) L(Cc(X)) ⊆ `2(X,m) if and only if `2(X,m) ⊆ D(L∗).

Exercise 2.20 (Maximum principle). Let X be a discrete set and
let Q be a bilinear form on Cc(X). Let L be a linear operator acting
as

Lϕ(x) = Q(f, 1x)

for ϕ ∈ Cc(X) and x ∈ X. Show the following statements:

(a) There exists a graph (b, c) over X such that

Q(ϕ) =
1

2

∑
x,y∈X

b(x, y)(ϕ(x)− ϕ(y))2 +
∑
x∈X

c(x)ϕ2(x)

for all ϕ ∈ Cc(X) if and only if Lϕ(x) ≥ 0 at every non-negative
maximum x of ϕ with ϕ ∈ Cc(X).

(b) There exists a graph (b, 0) over X such that

Q(ϕ) =
1

2

∑
x,y∈X

b(x, y)(ϕ(x)− ϕ(y))2

for all ϕ ∈ Cc(X) if and only if Lϕ(x) ≥ 0 at every maximum x of
ϕ with ϕ ∈ Cc(X).



Notes 183

Notes

With the exception of Section 4, the material found in this chapter
is certainly known to experts.

The theory of semigroups and their generators as well as the appli-
cations to Dirichlet forms and Markov processes is standard, see e.g.
the book [HP57] for a discussion of semigroups and the work [FŌT11]
for a treatment of semigroups in the context of Dirichlet forms. In Sec-
tion 1 we apply this general theory to extend semigroups and resolvent
to all `p spaces.

Restriction to compact subsets play a prominent role in the inves-
tigation of regular Dirichlet forms. Accordingly, as discussed in the
notes to Section 3, restrictions to finite subsets of graphs appear in
many places in the literature. As for restrictions to arbitrary subsets,
we have not been able to locate a source covering the material presented
in Section 2.

The Laplace–Beltrami operator on a manifold leads to a local Dirich-
let form. Non-locality is the crucial feature of the Dirichlet form as-
sociated to a graph. Various tools and concepts have been developed
for different applications in order to deal with this non-locality. In
Section 3 we bring them together in a systematic way. The non-local
Leibniz rules are standard. We also present various estimates that can
be used instead of a chain rule for specific functions such as powers and
the exponential function. While these estimates are certainly known
in some context or other, we were particular inspired by calculations
found in [HS97] and [Amg03].

The material presented in Section 4 is new.
Feynman–Kac type formulae, as discussed in Section 5, are valid

for rather general Dirichlet forms [FŌT11]. Specific treatments for
graphs can be found in the Diploma thesis of Metzger [Met98] and
the article by Güneysu/Keller/Schmidt [GKS16] where the main focus
lies on a more general model including magnetic fields. Moreover, on
graphs there is also a path integral formula for the unitary group which
can famously be formulated only heuristically in the continuum setting
[GK20].

For complementary textbooks on infinite graphs we refer the reader
to the corresponding comments at the end of the notes of Chapter 0.
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Markov Uniqueness and Essential Self-Adjointness

... let it be applied, Unique drop that science ...
ODB.

The uniqueness of self-adjoint and Markov extensions of a symmet-
ric operator on a Hilbert space is a classical topic in operator theory.
In this chapter we consider these problems from the viewpoint of so-
lutions to equations involving the Laplacian and the viewpoint of the
domains of both the operators and the forms.

In Section 1 we characterize the equality of the Dirichlet and Neu-
mann form domains in terms of the Dirichlet Laplacian domain, a
Green’s formula and the triviality of α-harmonic functions in the Neu-
mann form domain for positive α. In Section 2 we study essential
self-adjointness via the Dirichlet Laplacian domain and the triviality
of α-harmonic functions in `2(X,m) for positive α. Finally, Section 3
addresses the question of when the form arising from a self-adjoint
positive restriction of the formal Laplacian is a Dirichlet form. In par-
ticular, we show that the case when such a form is unique, a property
which we call Markov uniqueness, is equivalent to the equality of the
Dirichlet and Neumann form domains discussed in Section 1.

We note that `p(X,m) theory, as developed in Section 1, appears in
some places in Sections 1 and 2. The reader who has skipped Section 1
can safely let p = 2 for all statements presented in these sections as
then the statements do not require the material on `p(X,m) spaces.

1. Uniqueness of associated forms

In this section we characterize the equality of the Dirichlet and
Neumann forms. One characterization involves the absence of non-
trivial α-harmonic functions in the Neumann form domain for α > 0.
Further characterizations involve explicitly describing the domain of
the Dirichlet Laplacian and the validity of a Green’s formula.

Throughout this section various basic facts about self-adjoint op-
erators are used. Some of these facts are recalled in Excavation Exer-
cise 3.1 which is used in the proof of Theorem 3.2. For basic definitions
of operator theory, see Appendix A.

We start by recalling the definition of α-harmonic functions and
variants of this notion called α-super(sub)harmonic. These notions will
play a prominent role in the forthcoming considerations in this chapter

185
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and beyond. For a graph (b, c) over (X,m) and α ∈ R, a function u ∈ F
is called α-harmonic (α-superharmonic or α-subharmonic, respectively)
if

(L+ α)u = 0 ((L+ α)u ≥ 0 or (L+ α)u ≤ 0, respectively).

We will show that the triviality of α-harmonic functions in the
Neumann form domain for α > 0 is equivalent to Q(D) = Q(N). We
recall that Q(D) is the minimal closed restriction ofQ which has domain

D(Q(D)) = Cc(X)
‖·‖Q

and that Q(N) is the maximal closed restriction of Q with domain

D(Q(N)) = D ∩ `2(X,m).

Furthermore, we recall that a form Q with domain D(Q) is associated
to a graph if Q is a closed restriction of Q such that

D(Q(D)) ⊆ D(Q) ⊆ D(Q(N)).

Hence, if Q(D) = Q(N), then there is a unique form associated to a
graph.

We have shown in Proposition 1.4 (b) that the space of functions
of finite energy D is included in the formal domain of the Laplacian
F , i.e., D ⊆ F . Therefore, as D(Q(N)) = D ∩ `2(X,m) by definition,
it follows that D(Q) ⊆ F for any form associated to the graph. This
allows us to apply Green’s formula, Proposition 1.5, in various places
below.

For the sake of contrast with the definition of D(Q(N)), we recall
that by Theorem 1.19 we have D(Q(D)) = D0 ∩ `2(X,m), where D0

is the space of functions in D which can be approximated by finitely
supported functions pointwise and with respect to Q. Hence, in the
case that Q(D) = Q(N) we see that D and D0 give the same spaces when
intersected with `2(X,m). The question of when they are actually
equivalent, that is, when D = D0, will be taken up in the study of
recurrence in Chapter 6.

We recall that an operator L is associated to a graph or just associ-
ated if it arises from a form which is associated to a graph and that any
such operator L is a restriction of L by Theorem 1.12. Furthermore,
by general theory,

D(L) =

{
f ∈ D(Q)

∣∣∣∣ there exists a g ∈ `2(X,m) such that
Q(h, f) = 〈h, g〉 for all h ∈ D(Q)

}
in which case Lf = g, see Theorem B.11 in Appendix B for more
details. Therefore, Q(h, f) = 〈h, Lf〉 for all f ∈ D(L) and h ∈ D(Q).
In particular, these statements apply to L(D) and L(N).

Let us also highlight the following immediate statement, which will
be used several times below.
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Lemma 3.1. Let (b, c) be a graph over (X,m). Let L be an operator
associated to the graph with domain D(L). Then,

D(L) ⊆ {f ∈ D(Q) | Lf ∈ `2(X,m)}.
Proof. This follows from the facts that L maps D(L) ⊆ D(Q)

into `2(X,m) and that L is a restriction of L by Theorem 1.12. �

With these preparations, we now state and prove our characteriza-
tions of form equality.

Theorem 3.2 (Characterization of Q(D) = Q(N)). Let (b, c) be a
graph over (X,m). Then, the following statements are equivalent:

(i) D(Q(D)) = D(Q(N)).
(ii) D(L(D)) = {f ∈ D(Q(N)) | Lf ∈ `2(X,m)}.
(iii) For all f, g ∈ D(Q(N)) such that Lf ∈ `2(X,m) we have

Q(N)(f, g) = 〈Lf, g〉. (“Green’s formula”)

(iv) If u ∈ D(Q(N)) is α-harmonic for α > 0, then u = 0.
(iv.a) If u ∈ D(Q(N)) ∩ `p(X,m) for all p ∈ [1,∞] is α-harmonic

for α > 0 and u ≥ 0, then u = 0.

Proof. (i) =⇒ (ii): It is immediate that D(L(D)) = D(L(N)) if
D(Q(D)) = D(Q(N)). As L(N) is an associated operator, it follows that
D(L(N)) ⊆ {f ∈ D(Q(N)) | Lf ∈ `2(X,m)} by Lemma 3.1. Therefore,
it suffices to show

{f ∈ D(Q(D)) | Lf ∈ `2(X,m)} ⊆ D(L(D)).

Now, for f ∈ D(Q(D)) with Lf ∈ `2(X,m) from Green’s formula,
Proposition 1.5, we have

Q(D)(ϕ, f) = 〈ϕ,Lf〉

for all ϕ ∈ Cc(X). As D(Q(D)) = Cc(X)
‖·‖Q

it follows that

Q(D)(g, f) = 〈g,Lf〉
for all g ∈ D(Q(D)). We thus conclude f ∈ D(L(D)), which completes
the proof.

(ii) =⇒ (iii): As D(L(N)) ⊆ {f ∈ D(Q(N)) | Lf ∈ `2(X,m)} by
Lemma 3.1, we have D(L(N)) ⊆ D(L(D)) by assumption. As both L(D)

and L(N) are restrictions of L by Theorem 1.12, the operator L(N) is
a restriction of L(D) and thus L(D) = L(N) as both operators are self-
adjoint. Hence, for all f, g ∈ D(Q(N)) with Lf ∈ `2(X,m), we have
f ∈ D(L(D)) = D(L(N)) and, therefore,

Q(N)(f, g) = 〈L(N)f, g〉 = 〈Lf, g〉.

(iii) =⇒ (iv): If u ∈ D(Q(N)) is α-harmonic for α > 0, then Lu =
−αu ∈ `2(X,m) since u ∈ `2(X,m). Therefore, by (iii), we get

0 ≤ Q(N)(u) = 〈Lu, u〉 = −α‖u‖2 ≤ 0
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since α > 0. Hence, u = 0.

(iv) =⇒ (iv.a): This is immediate.

(iv.a) =⇒ (i): Assume that Q(D) 6= Q(N). It follows that L(D) 6=
L(N) and, therefore, (L(D) + α)−1 6= (L(N) + α)−1 for α > 0. Since the
set consisting of functions 1x for x ∈ X is total in `2(X,m), there exists
an x ∈ X such that

u =
(
(L(N) + α)−1 − (L(D) + α)−1

)
1x 6= 0.

To finish the proof we argue that u is a positive α-harmonic func-
tion in D(Q(N)) ∩ `p(X,m) for all p ∈ [1,∞]: Since L(D) and L(N)

are restrictions of L by Theorem 1.12 and the resolvents map into the
corresponding domains of the operators, we infer that u is α-harmonic.
Furthermore, as Q(D) and Q(N) are Dirichlet forms, both (L(D)+α)−11x
and (L(N) + α)−11x are positive as both resolvents are positivity pre-
serving by Proposition 2.10. This also follows by the general theory
of Dirichlet forms, see Theorem C.4 in Appendix C. Thus, both of
these functions are positive solutions of the equation (L + α)v = 1x.
However, (L(D) + α)−11x is the smallest such solution by Lemma 1.23.
Thus, we have u ≥ 0. Furthermore, both resolvent map into D(Q(N)) as
D(Q(D)) ⊆ D(Q(N)) so that u ∈ D(Q(N)). Finally, both resolvents ex-
tend to Markov resolvents on `p(X,m) for p ∈ [1,∞] by Theorem 2.11.
Thus, u ∈ `p(X,m) for all p ∈ [1,∞]. �

Remark. In the proof of the implication (iv.a) =⇒ (i) presented di-
rectly above, we constructed a positive non-trivial α-harmonic function
whenever Q(D) 6= Q(N). It turns out that such functions are automati-
cally strictly positive when they exist and the graph is connected. This
theme will be taken up in the next chapter as a consequence of the local
Harnack inequality, see Corollary 4.2.

Remark. We can also characterize D(Q(D)) = D(Q(N)) in terms
of α-subharmonic functions with additional properties (Exercise 3.8).

We note the following immediate corollary which gives the domain
of all operators associated to graphs in the case that the Dirichlet and
Neumann restrictions agree.

Corollary 3.3. Let (b, c) be a graph over (X,m). Let L be an
operator associated to the graph. Then, Q(D) = Q(N) if and only if

D(L) = {f ∈ D ∩ `2(X,m) | Lf ∈ `2(X,m)}.

Proof. If L is an operator associated to the graph and Q is the
associated form, then D(Q(D)) ⊆ D(Q) ⊆ D(Q(N)) and all forms are
restrictions of Q. Hence, if D(Q(D)) = D(Q(N)), then all forms agree
so that D(L) = D(L(D)) and the statement follows by Theorem 3.2.

On the other hand, assume D(L) = {f ∈ D ∩ `2(X,m) | Lf ∈
`2(X,m)} for an operator L associated to the graph. Now, let u ∈



2. ESSENTIAL SELF-ADJOINTNESS 189

D(Q(N)) be α-harmonic for α > 0. Then, Lu = −αu ∈ `2(X,m)
since u ∈ `2(X,m) and, therefore, u ∈ D(L) ⊆ D(Q) for the form Q
associated to L. We thus obtain

0 ≤ Q(u) = 〈Lu, u〉 = −α‖u‖2 ≤ 0

since α > 0. Hence, u = 0. Thus, we have shown statement (iv) of
Theorem 3.2 and, therefore, D(Q(D)) = D(Q(N)). This completes the
proof. �

2. Essential self-adjointness

In this section we consider the question of the uniqueness of self-
adjoint extensions of the restriction of the formal Laplacian to the
finitely supported functions. In order for this question to make sense,
we have to make an additional assumption on our graphs. Our charac-
terization will then be in terms of the Dirichlet Laplacian domain and
the triviality of square summable α-harmonic functions for α > 0.

The reader may wish to consult Excavation Exercises 3.1 and 3.2 for
some general facts about adjoint operators and essential self-adjointness
which will be used in the proof of Theorem 3.6.

A symmetric operator defined on a dense subspace of a Hilbert
space is called essentially self-adjoint if the operator has a unique self-
adjoint extension. For further details on the general theory of adjoints
and self-adjointness, see Appendix A.

In our situation, it is natural to consider the question of whether
the restriction of L to Cc(X) is essentially self-adjoint. Of course, this
question only makes sense if LCc(X) ⊆ `2(X,m) and, in this case, this
restriction is indeed symmetric by Green’s formula, Proposition 1.5.
Another natural question in our situation is if the Dirichlet Laplacian
is the “maximal” restriction of L to an operator on `2(X,m), i.e., if

D(L(D)) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}.
It turns out that the essential self-adjointness of the restriction of L
to Cc(X) is equivalent to the maximality of the Dirichlet Laplacian.
Furthermore, both of these questions are equivalent to the absence of
non-trivial α-harmonic functions in `2(X,m) for α > 0. This is the
content of Theorem 3.6.

The characterization of the maximality of the Laplacian domain in
terms of α-harmonic functions is not restricted to the `2(X,m) setting
but rather works for the generators of semigroups on all `p(X,m). This
is the content of Theorem 3.8.

After this summary of results, we start by discussing some of the
properties of the restriction of L to Cc(X). Specifically, we let Lmin

denote the restriction of L to

D(Lmin) = Cc(X)
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whenever LCc(X) ⊆ `2(X,m). By Green’s formula, Proposition 1.5,
Lmin is then a symmetric operator.

We recall that LCc(X) ⊆ `2(X,m) is characterized in Theorem 1.29.
In particular, some conditions equivalent to LCc(X) ⊆ `2(X,m) are
that `2(X,m) ⊆ F or that Cc(X) ⊆ D(L(D)). In particular, this condi-
tion is always satisfied if the graph is locally finite or if infx∈X m(x) > 0.
As a consequence, if LCc(X) ⊆ `2(X,m), then there exists at least one
self-adjoint extension of Lmin, namely, L(D). The question of essen-
tial self-adjointness then boils down to if there exist other self-adjoint
extensions of Lmin.

By the definition of the adjoint operator and Lmin = L on Cc(X),
the domain of the adjoint of Lmin is given by

D(L∗min) =

{
f ∈ `2(X,m)

∣∣∣∣ there exists a g ∈ `2(X,m) such that
〈Lϕ, f〉 = 〈ϕ, g〉 for all ϕ ∈ Cc(X)

}
in which case L∗minf = g. As Lmin is symmetric, it follows that L∗min is
an extension of Lmin. We now give an explicit description of D(L∗min)
and the action of L∗min.

Lemma 3.4 (Domain and action of L∗min). Let (b, c) be a graph over
(X,m) such that LCc(X) ⊆ `2(X,m). Let Lmin be the restriction of L
to D(Lmin) = Cc(X). Then,

D(L∗min) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}

and L∗min is a restriction of L.

Proof. Let f ∈ D(L∗min), which is a subspace of `2(X,m) by def-
inition. As LCc(X) ⊆ `2(X,m), it follows that `2(X,m) ⊆ F by
Theorem 1.29. Therefore, f ∈ F .

Furthermore, by the definition of D(L∗min) it follows that 〈Lϕ, f〉 =
〈ϕ, g〉 for some g ∈ `2(X,m) and all ϕ ∈ Cc(X). Using f ∈ F and
invoking Green’s formula, Proposition 1.5, we then obtain∑

x∈X

ϕ(x)g(x)m(x) = 〈ϕ, g〉 = 〈Lϕ, f〉

=
∑
x∈X

Lϕ(x)f(x)m(x)

=
∑
x∈X

ϕ(x)Lf(x)m(x).

As this holds for all ϕ ∈ Cc(X) we infer Lf = g ∈ `2(X,m). Hence,
we have f ∈ `2(X,m) ∩ F and Lf ∈ `2(X,m). Furthermore, L∗minf =
g = Lf and thus L∗min is a restriction of L.

On the other hand, if f ∈ `2(X,m) ⊆ F is such that Lf ∈ `2(X,m),
then

〈Lϕ, f〉 = 〈ϕ,Lf〉
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for all ϕ ∈ Cc(X) by Green’s formula, Proposition 1.5. Therefore,
f ∈ D(L∗min) with L∗minf = Lf by definition. �

As an immediate corollary of the above, we can explicitly determine
the self-adjoint extensions of Lmin. It turns out that these are exactly
the self-adjoint restrictions of L.

Corollary 3.5 (Self-adjoint extensions of Lmin). Let (b, c) be a
graph over (X,m) such that LCc(X) ⊆ `2(X,m). Let Lmin be the
restriction of L to D(Lmin) = Cc(X) and let L be an operator with
domain D(L) ⊆ `2(X,m). Then, L is a self-adjoint extension of Lmin

if and only if L is a self-adjoint restriction of L.

Proof. Any self-adjoint extension of Lmin is a restriction of L∗min by
general properties of adjoint operators. Therefore, if L is a self-adjoint
extension of Lmin, then L is a restriction of L by Lemma 3.4.

On the other hand, if L is a self-adjoint restriction of L, then clearly
D(L) ⊆ D(L∗min) as D(L∗min) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)} by
Lemma 3.4. Thus, D(L∗∗min) ⊆ D(L∗). Furthermore, it is easy to see
from the definition of the adjoint and Green’s formula that Cc(X) ⊆
D(L∗∗min). In summary, we obtain

Cc(X) ⊆ D(L∗∗min) ⊆ D(L∗) = D(L).

So that Cc(X) ⊆ D(L) and L is an extension of Lmin. �

With this preliminary discussion of the domain and action of L∗min

we can now state and prove our characterization of the essential self-
adjointness of Lmin. As L∗min is an extension of Lmin, by general theory
the essential self-adjointness of Lmin is equivalent to the self-adjointness
of L∗min. This will be used in the proof below.

Theorem 3.6 (Characterization of essential self-adjointness). Let
(b, c) be a graph over (X,m) such that LCc(X) ⊆ `2(X,m). Then, the
following statements are equivalent:

(i) The restriction of L to Cc(X) is essentially self-adjoint.
(ii) D(L(D)) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}.
(iii) If u ∈ `2(X,m) is α-harmonic for α > 0, then u = 0.

Remark. We remark that in contrast to Theorem 3.2 (iv.a), we
cannot assume that u ≥ 0 in statement (iii) above. The reason is that
we do not know if forms associated to self-adjoint extensions of Lmin

are necessarily Dirichlet forms and, as such, have positivity preserving
resolvents. A necessary condition for the arising form to be a Dirichlet
form will be given in Theorem 3.11 in Section 3.

Proof. (i) =⇒ (ii): Let Lmin denote the restriction of L to Cc(X).
Since LCc(X) ⊆ `2(X,m), it follows that Cc(X) ⊆ D(L(D)) by Theo-
rem 1.29, so that L(D) is a self-adjoint extension of Lmin. As we assume



192 3. MARKOV UNIQUENESS AND ESSENTIAL SELF-ADJOINTNESS

that Lmin is essentially self-adjoint, L∗min is also a self-adjoint extension
of Lmin by general theory so that L(D) = L∗min and, therefore,

D(L(D)) = D(L∗min) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}
by Lemma 3.4.

(ii) =⇒ (iii): If u ∈ `2(X,m) is α-harmonic, then Lu = −αu ∈
`2(X,m) so that u ∈ D(L(D)) by assumption. As D(L(D)) ⊆ D(Q(D)),
we get

0 ≤ Q(D)(u) = 〈L(D)u, u〉 = −α‖u‖2 ≤ 0

since α > 0. Therefore, u = 0.

(iii) =⇒ (i): Assume that there exist two distinct self-adjoint ex-
tensions L1 and L2 of Lmin. Then (L1 +α)−1 6= (L2 +α)−1 on `2(X,m)
for α > 0. As the set of functions 1x for x ∈ X is total in `2(X,m),
there exists an x ∈ X such that

u =
(
(L1 + α)−1 − (L2 + α)−1

)
1x 6= 0.

Clearly, u ∈ `2(X,m). Furthermore, since both L1 and L2 are restric-
tions of L by Corollary 3.5 we infer that

(L+ α)u = (L1 + α)(L1 + α)−11x − (L2 + α)(L2 + α)−11x = 0.

Hence u is a non-trivial, α-harmonic function in `2(X,m). �

Remark. The result above can also be formulated in terms of asso-
ciated operators. More specifically, essential self-adjointness is equiva-
lent to

D(L) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}
for some (all) associated operators L (Exercise 3.9).

Combining the characterizations above with Theorem 3.2 gives the
following immediate corollary.

Corollary 3.7 (Essential self-adjointness implies form equality).
Let (b, c) be a graph over (X,m) such that LCc(X) ⊆ `2(X,m). If the
restriction of L to Cc(X) is essentially self-adjoint, then

D(Q(D)) = D(Q(N)).

Remark. It can be shown by example that the opposite implication
does not hold, see Exercise 3.6.

Part (ii) of Theorem 3.6 above determines the domain of the Dirich-
let Laplacian explicitly when α-harmonic functions in `2(X,m) are triv-
ial for α > 0. We now prove a similar statement for the generators of
semigroups and resolvents on `p(X,m) for p ∈ [1,∞). These genera-
tors L(p) were obtained by extending the semigroups e−tL of L = L(D)

to `p(X,m) and then taking the generator of each semigroup, see Sec-
tion 1. The domain of the operators is then defined via either the
semigroup or the resolvent by general theory.
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Theorem 3.8 (Domain of L(p)). Let (b, c) be a graph over (X,m)
and let p ∈ [1,∞). Then, the following statements are equivalent:

(i) D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)}.
(ii) If u ∈ `p(X,m) is α-harmonic for α > 0, then u = 0.

Proof. (i) =⇒ (ii): If u ∈ `p(X,m) is α-harmonic for p ∈ [1,∞)
and α > 0, then Lu = −αu ∈ `p(X,m) so that u ∈ D(L(p)) by
assumption. Since L(p) = L on D(L(p)) by Theorem 2.13, we infer from
the existence of resolvents, Theorem 2.11, that

u = (L(p) + α)−1(L(p) + α)u = (L(p) + α)−1(L+ α)u = 0.

This gives the conclusion.

(ii) =⇒ (i): Let

Dp = {f ∈ `p(X,m) | Lf ∈ `p(X,m)}.

By Theorem 2.13, the generator satisfies L(p) = L on D(L(p)). This
easily implies D(L(p)) ⊆ Dp.

On the other hand, let f ∈ Dp and let α > 0. Then, (L + α)f ∈
`p(X,m) so that we may apply the resolvent to get

(L(p) + α)−1(L+ α)f ∈ D(L(p)).

We let g = (L(p) + α)−1(L+ α)f . By Theorem 2.13 again, we see that

(L+ α)g = (L+ α)f.

Therefore, f − g ∈ `p(X,m) is α-harmonic and so f − g = 0 by as-
sumption. This implies f ∈ D(L(p)) and completes the proof. �

3. Markov uniqueness

In this section we consider the uniqueness of Markov restrictions
of the formal Laplacian. By definition, these restrictions are such that
the arising forms are Dirichlet forms. We will see that there is a unique
such Markov restriction if and only if the Dirichlet and Neumann forms
agree.

We will draw heavily from Appendix C, which develops the theory
of Dirichlet forms. We will also need Excavation Exercises 2.4 and 2.5,
which recall a basic fact about the existence of weakly convergent se-
quences and the Banach–Saks theorem.

In Section 1 we considered the question of when there is a unique
form associated to a graph. In Section 2 we similarly explored the
question of when the restriction of the formal Laplacian to the finitely
supported functions has a unique self-adjoint extension under the as-
sumption that the formal Laplacian maps finitely supported functions
to square summable functions. In this section we will consider the
question of when restrictions of the formal Laplacian have a unique
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Dirichlet form, i.e., a unique positive closed form which is compatible
with normal contractions.

It is intuitively clear that when there is a unique positive self-adjoint
operator, then both the associated form and the arising Dirichlet form
should be unique and this is indeed the case. Let us highlight, however,
that we do not know if the forms arising from restrictions of the formal
Laplacian L are restrictions of the energy form Q in general. Hence, as
we do not know the action of the form on all functions in the domain,
we must take particular care throughout our considerations and rely
on the general theory of Dirichlet forms.

On the other hand, it is relatively easy to establish that a Dirichlet
form coming from a restriction of the formal Laplacian acts as the
energy form on the finitely supported functions. Furthermore, let us
note that we have already seen in Section 2 that there is a one-to-one
correspondence between graphs and regular Dirichlet forms. In this
section, we drop the regularity assumption, which makes the analysis
significantly more difficult. However, we will use the results of Section 2
along the way to our understanding of more general forms arising from
the formal Laplacian in that we use approximating forms, which are
regular forms, and then pass to the limit.

After this preliminary discussion, we start by defining the restric-
tions which will be of interest.

Definition 3.9 (Markov realization and Markov uniqueness). Let
(b, c) be a graph over (X,m). A positive operator L with form Q is
called a realization of L if

L = L on D(L) and Cc(X) ⊆ D(Q).

An operator L is called a Markov realization of L if L is a realization of
L and Q is a Dirichlet form. The operator L is said to satisfy Markov
uniqueness if there exists a unique Markov realization of L.

We start by pointing out that we have seen at least two Markov
realizations thus far.

Example 3.10 (L(D) and L(N) are Markov realizations). An oper-
ator L is associated to a graph if L comes from a closed form Q which
is a restriction of the energy form Q and whose domain D(Q) contains
Cc(X). As Q is a symmetric positive closed form, it follows that L
is positive. Furthermore, any such operator is a restriction of L by
Theorem 1.12. Hence, any associated L is a realization of L. If Q
is additionally a Dirichlet form, it follows that L is a Markov realiza-
tion of L. In particular, as both Q(D) and Q(N) are Dirichlet forms,
see Lemma 1.16 and Proposition 1.14, both L(D) and L(N) are Markov
realizations.



3. MARKOV UNIQUENESS 195

Remark. We observe that if L with form Q is a realization of L,
then for all f ∈ D(L) and ϕ ∈ Cc(X) ⊆ D(Q),

Q(f, ϕ) = 〈Lf, ϕ〉 = 〈Lf, ϕ〉 = Q(f, ϕ),

where the first equality follows by the connection between Q and L,
see Corollary B.12, the second equality holds since L is a restriction of
L and the third equality is Green’s formula, Proposition 1.5.

Using the reasoning of Theorem 1.29, if LCc(X) ⊆ `2(X,m), then
Cc(X) ⊆ D(L) (Exercise 3.10). In this case the formula above holds for
all f ∈ Cc(X). By approximation we can, therefore, show Q = Q(D)

on D(Q(D)) in this case. For the general case this is not clear but
in the case when L is a Markov realization we will show this below.
Furthermore, we give a lower bound on Q by Q(N) on D(Q) in this
case.

Forms on `2(X,m) can be naturally ordered as follows: If Q1 and
Q2 are forms with domains D(Q1) and D(Q2) in `2(X,m), then we will
write

Q1 ≤ Q2

if

D(Q2) ⊆ D(Q1) and Q1(f) ≤ Q2(f)

for all f ∈ D(Q2).
Having established the relevant concepts and notations, we now

state the main result of this section.

Theorem 3.11 (Characterization of Markov restrictions). Let (b, c)
be a graph over (X,m). If L is a Markov realization of L and Q is the
associated Dirichlet form, then

Q(N) ≤ Q ≤ Q(D).

Remark. We note that it follows from Q(N) ≤ Q ≤ Q(D) that

Q(N)(f) ≤ Q(f) ≤ Q(D)(f) = Q(N)(f) = Q(f)

for all f ∈ D(Q(D)). In particular, this determines the action of Q on
Cc(X).

Remark. Naively, one might think that the form Q associated to
a Markov realization of L is a restriction of Q. However, the point of
this section is that this naive view is not clear as Green’s formula only
allows us to test with functions in Cc(X).

Remark. We note that not all forms associated to realizations of L
satisfy the inequalities in Theorem 3.11, as can be shown by example,
see Exercise 3.7. In particular, not all operators which are realizations
of L are Markov.
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The proof of Theorem 3.11 will require some work. However, let us
note the following immediate consequence, which states that Markov
uniqueness is equivalent to uniqueness of associated forms.

Theorem 3.12 (Characterization of Markov uniqueness). Let (b, c)
be a graph over (X,m). Then, L satisfies Markov uniqueness if and
only if Q(D) = Q(N).

Proof. If L satisfies Markov uniqueness, then L(D) = L(N) as both
are Markov realizations of L so that Q(D) = Q(N). On the other hand,
if Q(D) = Q(N) and L is a Markov realization of L with associated form
Q, then, by Theorem 3.11, we have

D(Q(D)) ⊆ D(Q) ⊆ D(Q(N)) = D(Q(D))

and

Q(N) ≤ Q ≤ Q(D) = Q(N)

so that Q = Q(D) = Q(N). �

Therefore, to characterize Markov uniqueness, we may use any of
the equivalent statements found in Theorem 3.2. We also highlight the
following immediate connection between essential self-adjointness and
Markov uniqueness.

Corollary 3.13 (Essential self-adjointness and Markov unique-
ness). Let (b, c) be a graph over (X,m) with LCc(X) ⊆ `2(X,m). If
the restriction of L to Cc(X) is essentially self-adjoint, then L satisfies
Markov uniqueness.

Proof. Combine Theorem 3.12 with Corollary 3.7. �

We now begin the proof of Theorem 3.11. We will have several
occasions to use the following lemma, which gives a Green’s formula
for forms associated to Markov realizations. Here and throughout the
section the space `∞(X) of bounded functions on X plays an important
role.

Lemma 3.14 (Green’s formula). Let (b, c) be a graph over (X,m).
Let L be a Markov realization of L and Q be the associated Dirichlet
form with domain D(Q). If ϕ ∈ Cc(X) and f ∈ D(Q) ∩ `∞(X) ⊆ F ,
then

Q(ϕ, f) =
∑
x∈X

ϕ(x)Lf(x)m(x).

Proof. This is essentially a consequence of Lebesgue’s dominated
convergence theorem and the functional calculus, see Proposition A.26
and Lemma B.7. More specifically, for f ∈ D(Q) we have (L+α)−1f ∈
D(L) and ϕ ∈ Cc(X) ⊆ D(Q) by assumption. By the spectral calculus
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we get

Q(ϕ, f) = lim
α→∞

Q(ϕ, α(L+ α)−1f)

= lim
α→∞
〈ϕ,Lα(L+ α)−1f〉

= lim
α→∞

∑
x∈X

ϕ(x)L(α(L+ α)−1f)(x)m(x),

where we use that L is a restriction of L in the last line.
We now note that, as Q is a Dirichlet form, α(L+α)−1 is contract-

ing, i.e., |α(L+ α)−1f(x)| ≤ ‖f‖∞ for all x ∈ X and f ∈ `2(X,m), see
Theorem C.4 in Appendix C. Moreover, α(L+α)−1f → f as α→∞ by
Theorem A.34 in Appendix A. Consequently, by Lebesgue’s dominated
convergence theorem, we get

lim
α→∞

∑
y∈X

b(x, y)α(L+ α)−1f(y) =
∑
y∈X

b(x, y)f(y)

and, therefore,

lim
α→∞

L(α(L+ α)−1f)(x) = Lf(x).

Putting all of this together, we obtain

Q(ϕ, f) = lim
α→∞

∑
x∈X

ϕ(x)L(α(L+ α)−1f)(x)m(x) =
∑
x∈X

ϕ(x)Lf(x)m(x),

where the sum has finitely many non-zero terms since ϕ ∈ Cc(X). This
completes the proof. �

We now prove the upper bound by Q(D) in Theorem 3.11 by using
the previous lemma.

Proposition 3.15 (Q ≤ Q(D)). Let (b, c) be a graph over (X,m).
If L is a Markov realization of L and Q is the associated Dirichlet form
with domain D(Q), then Q = Q(D) on Cc(X) and

Q ≤ Q(D).

Proof. By Lemma 3.14 we get

Q(ϕ) =
∑
x∈X

Lϕ(x)ϕ(x)m(x)

for all ϕ ∈ Cc(X) ⊆ D(Q)∩ `∞(X). Furthermore, by Green’s formula,
Proposition 1.5, and the fact that Q(D) is a restriction ofQ by definition
we get

Q(D)(ϕ) = Q(ϕ) =
∑
x∈X

Lϕ(x)ϕ(x)m(x) = Q(ϕ).

As Q is a closed form and Q andQ agree on Cc(X), we get that they

agree on D(Q(D)) = Cc(X)
‖·‖Q ⊆ D(Q). Therefore, Q is an extension

of Q(D) so that Q ≤ Q(D). �
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In order to proceed further, we will need two general facts about
Dirichlet forms. The first one states that the set of bounded functions
in the domain of a Dirichlet form is an algebra, i.e.,

D(Q) ∩ `∞(X)

satisfies fg ∈ D(Q) ∩ `∞(X) whenever f, g ∈ D(Q) ∩ `∞(X). For the
space of functions of finite energy, this can be shown directly (Exer-
cise 3.11). The general case follows from abstract theory, see Corol-
lary C.6 in Appendix C.

The second general fact, which is proven next, states that the al-
gebra D(Q) ∩ `∞(X) is dense in D(Q) with respect to the form norm
‖ · ‖Q which arises from the scalar product

〈f, g〉Q = Q(f, g) + 〈f, g〉.

We denote this Hilbert space by

HQ = (D(Q), 〈·, ·〉Q).

Lemma 3.16. Let (b, c) be a graph over (X,m). Let Q be a Dirichlet
form with domain D(Q) ⊆ `2(X,m) and let f ∈ D(Q).

(a) For n ∈ N the functions fn = (f ∧ n) ∨ −n are in D(Q) ∩ `∞(X)
and converge to f with respect to ‖ · ‖Q as n→∞.

(b) For α > 0 the functions fα = f − ((f ∧ α) ∨ −α) are in D(Q) and
converge to f with respect to ‖ · ‖Q as α→ 0+.

Proof. (a) Let f ∈ D(Q). For n ∈ N, let fn = (f∧n)∨−n. Then,
clearly each fn is bounded and since Q is a Dirichlet form and cutting
above by a positive number and below by a negative number are normal
contractions we have fn ∈ D(Q). Thus, fn ∈ D(Q) ∩ `∞(X).

Observe that since fn → f pointwise and |fn(x)| ≤ |f(x)| for all
x ∈ X, it follows that fn → f in `2(X,m) by Lebesgue’s dominated
convergence theorem.

We will show that every subsequence of (fn) has a further subse-
quence that converges to f with respect to ‖ · ‖Q, which will complete
the proof. We first note that as Q is a Dirichlet form, it follows that
Q(fn) ≤ Q(f), so that (fn) is a bounded sequence in the Hilbert space
HQ. Now, any subsequence of (fn) is also bounded in HQ, so it has
a weakly convergent subsequence, say (gk) with weak limit g. By the
Banach–Saks theorem, there exists a subsequence (glk) of (gl) whose
Cesàro means converge to g strongly, i.e.,

1

N

N∑
k=1

glk → g

strongly as N →∞. In particular, since fn → f pointwise and (glk) is
a subsequence of (fn), it follows that f = g, so that f is the weak limit
of (gl).
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Therefore, using the fact thatQ is a Dirichlet form and thus ‖gl‖Q ≤
‖f‖Q, we obtain

‖gl − f‖2
Q = ‖gl‖2

Q − 2〈gl, f〉Q + ‖f‖2
Q ≤ 2‖f‖2

Q − 2〈gl, f〉Q → 0

as l → ∞. So, if (fn) does not converge to f in ‖ · ‖Q it has a sub-
sequence where each element has a uniformly positive distance to f .
However, this is not possible since every subsequence has a convergent
subsequence.

(b) The proof follows exactly along the same lines as the proof of
(a) by noting that the functions (f ∧ α) ∨ −α for α > 0 are in D(Q)
and converge to 0 with respect to ‖ · ‖Q. �

Remark. The convergence above can also be obtained via other
means (Exercise 3.12).

Corollary 3.17 (Bounded functions are dense in the form do-
main). Let (b, c) be a graph over (X,m). Let Q be a Dirichlet form
with domain D(Q). Then D(Q)∩ `∞(X) ⊆ D(Q) is dense with respect
to the form norm ‖ · ‖Q.

Proof. Use the sequence constructed in (a) of Lemma 3.16, i.e.,
for any f ∈ D(Q), fn = (f ∧ n) ∨ −n ∈ D(Q) ∩ `∞(X) converges to f
with respect to ‖ · ‖Q. �

The corollary is significant as it allows us to reduce all arguments for
D(Q) to those for D(Q)∩`∞(X), which is an algebra by Corollary C.6.
In particular, we will prove that Q ≥ Q(N) for functions in D(Q) ∩
`∞(X) and then pass to D(Q) by using the corollary.

By the fact that D(Q) ∩ `∞(X) is an algebra, we can make the
following definition. For f, g ∈ D(Q) ∩ `∞(X) and ψ ∈ D(Q) with
0 ≤ ψ ≤ 1, we let

Qψ(f, g) = Q(ψf, ψg)−Q(ψfg, ψ).

As Q is a symmetric form, it follows easily that Qψ is a symmetric form
as well. In particular,

Qψ(f) = Q(ψf)−Q(ψf 2, ψ)

is a quadratic form.
We note that we do not assume that ψ is finitely supported. How-

ever, when ψ is finitely supported we get the following proposition for
the energy form by a direct computation.

Proposition 3.18. Let (b, c) be a graph over (X,m). Then,

Q(ψf)−Q(ψf 2, ψ) =
1

2

∑
x,y∈X

b(x, y)ψ(x)ψ(y)(f(x)− f(y))2

for all ψ ∈ Cc(X) and f ∈ C(X).
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Proof. We have

Q(ψf) =
1

2

∑
x,y∈X

b(x, y)((ψf)(x)− (ψf)(y))2 +
∑
x∈X

c(x)(ψf)2(x)

and

Q(ψf 2, ψ)

=
1

2

∑
x,y∈X

b(x, y)((ψf 2)(x)−(ψf 2)(y))(ψ(x)−ψ(y))+
∑
x∈X

c(x)(ψf)2(x).

Now, a direct computation shows

((ψf)(x)− (ψf)(y))2 −
(
(ψf 2)(x)− (ψf 2)(y)

)
(ψ(x)− ψ(y))

= ψ(x)ψ(y)(f(x)− f(y))2.

Putting this together, we arrive at the statement of the proposition. �

Remark. Letting

Qψ(f) =
∑
x,y∈X

b(x, y)ψ(x)ψ(y)(f(x)− f(y))2

and invoking the Green’s formula we obtain from the proposition

Q(ψf) = Qψ(f) + 〈f, (ψLψ)f〉

for all ψ, f ∈ Cc(X). Now, it is not hard to see that this can be
extended by simple limiting procedures to an arbitrary ψ ∈ F with
ψ ≥ 0 and f ∈ Cc(X). In particular, if Lψ = λψ for some non-negative
ψ ∈ F and λ ∈ R, we obtain

Q(ψf) = Qψ(f) + λ‖ψf‖2.

This is the starting point of the technique of the ground state transform,
to be investigated in the next chapter.

We can apply the preceding proposition to calculate Qψ for ψ equal
to the characteristic function of a finite set.

Lemma 3.19. Let (b, c) be a graph over (X,m). Let W ⊆ X be a
finite set. If L is a Markov realization of L and Q is the associated
Dirichlet form with domain D(Q), then

Q1W (f) =
1

2

∑
x,y∈W

b(x, y)(f(x)− f(y))2

for all f ∈ D(Q) ∩ `∞(X).

Proof. We note that by definition

Q1W (f) = Q(1Wf)−Q(1Wf
2, 1W ).
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As W is a finite set, 1Wf ∈ Cc(X). Therefore, as Q = Q(D) on Cc(X)
by Proposition 3.15, we get

Q(1Wf) = Q(D)(1Wf) = Q(1Wf) and Q(1Wf
2, 1W ) = Q(1Wf

2, 1W ).

Now, the statement follows from the previous proposition. �

We now decompose our Dirichlet form into two parts. For f ∈
D(Q) ∩ `∞(X), we define

QM(f) = sup
ψ∈D(Q)
0≤ψ≤1

Qψ(f)

as the main part of Q and let

QK(f) = Q(f)−QM(f)

denote the killing part of Q. Therefore,

Q(f) = QM(f) +QK(f).

Before we justify these definitions, let us mention the main idea. As
already seen in Lemma 3.19, when we let ψ = 1W for a finite set
W ⊆ X, we get that Q1W (f) gives the energy of f coming from b over
W . Thus, taking the supremum over all such functions shows that
QM(f) bounds Qb,0(f) from above. We will show later that the killing
part QK(f) controls the part of the energy coming from the killing
term c, that is, QK(f) ≥ Q0,c(f). Combining these two estimates gives
that Q(f) ≥ Q(f), which will finish the proof of our main result.

These estimates will be proven after some preliminary technicalities.
In particular, we first have to justify that QM and QK take finite values
and establish several properties listed in Lemma 3.21. In order to carry
out the proof, we will use the general theory of approximating forms
for a quadratic form. Specifically, for a quadratic form Q with operator
L and α > 0, we let

Qα(f, g) = α〈f, (I − α(L+ α)−1)g〉

denote the approximating form. These are bounded forms which satisfy

lim
α→∞

Qα(f, g) = Q(f, g)

for all f, g ∈ D(Q), which is a consequence of the spectral calculus and
is proven in Corollary B.14 in Appendix B. Furthermore, when Q is a
Dirichlet form, it follows that Qα is a Dirichlet form for every α > 0,
see Corollary C.5 in Appendix C for details.

As Qα are bounded, they are defined on all of `2(X,m) and, as
such, they are regular Dirichlet forms whenever Q is a Dirichlet form.
Therefore, we may apply the theory developed in Section 2, which
says that every such form on a discrete space is given by a graph, see
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Theorem 1.18. In particular, to every Qα there exists a graph (bα, cα)
over (X,m). By the proof of Lemma 1.17, this graph satisfies

bα(x, y) = −Qα(1x, 1y)

for x 6= y with bα(x, x) = 0 and

cα(x) = Qα(1x) +
∑
y 6=x

Qα(1x, 1y),

where the sum is absolutely convergent.
We now calculate the action of (Qα)ψ on functions of finite support

and compare the results to those for Qα. In particular, for ϕ ∈ Cc(X)
with W = suppϕ being the finite support of ϕ, we get by a direct
calculation that

(Qα)ψ(ϕ) =
1

2

∑
x,y∈W

bαψ(x, y)(ϕ(x)− ϕ(y))2 +
∑
x∈W

cαψ(x)ϕ2(x),

where

bαψ(x, y) = −(Qα)ψ(1x, 1y)

for x 6= y and bαψ(x, x) = 0 and

cαψ(x) =
∑
y∈W

(Qα)ψ(1x, 1y) = (Qα)ψ(1x, 1W ).

We will compare the coefficients bα(x, y) with bαψ(x, y) and cα(x) with
cαψ(x) over W , which gives the core of the argument in the lemma below.

To this end, we observe that resolvents associated to operators com-
ing from Dirichlet forms are both positivity preserving and contracting,
see Theorem C.4. In particular,

0 ≤ α(L+ α)−1ψ ≤ 1

for all ψ ∈ `2(X,m) with 0 ≤ ψ ≤ 1, where the lower bound comes
from the positivity preserving property and the upper bound from the
contracting property.

We next calculate the action of (Qα)ψ explicitly. In particular, we
show that (Qα)ψ is bounded.

Lemma 3.20. Let (b, c) be a graph over (X,m). Let L be a Markov
realization of L and Q be the associated Dirichlet form with domain
D(Q). Let f, g, ψ ∈ `2(X,m) ∩ `∞(X) with 0 ≤ ψ ≤ 1. Then

(Qα)ψ(f, g) = α
(〈
ψfg, α(L+ α)−1ψ

〉
−
〈
ψf, α(L+ α)−1ψg

〉)
.

In particular, (Qα)ψ gives rise to a bounded form on `2(X,m).
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Proof. As (Qα)ψ(f, g) = Qα(ψf, ψg) − Qα(ψfg, ψ), we calculate
directly that

(Qα)ψ(f, g)

= α
〈
ψf,

(
I − α(L+ α)−1

)
ψg
〉
− α

〈
ψfg,

(
I − α(L+ α)−1

)
ψ
〉

= α
(〈
ψfg, α(L+ α)−1ψ

〉
−
〈
ψf, α(L+ α)−1ψg

〉)
for f, g, ψ ∈ `2(X,m) ∩ `∞(X) with 0 ≤ ψ ≤ 1.

Setting g = f , for f, ψ ∈ `2(X,m) ∩ `∞(X) with 0 ≤ ψ ≤ 1 we
obtain

(Qα)ψ(f) = α
(〈
ψf, fα(L+ α)−1ψ

〉
−
〈
ψf, α(L+ α)−1ψf

〉)
.

Therefore, we estimate, using the Cauchy–Schwarz inequality and the
fact that the operator norm of α(L+ α)−1 is bounded by 1,

(Qα)ψ(f) ≤ α
(
‖ψf‖‖fα(L+ α)−1ψ‖+ ‖ψf‖‖α(L+ α)−1ψf‖

)
≤ α

(
‖ψ‖∞‖α(L+ α)−1ψ‖∞‖f‖2 + ‖α(L+ α)−1‖‖ψ‖2

∞‖f‖2
)

≤ 2α‖f‖2.

The boundedness of (Qα)ψ follows directly as `2(X,m)∩`∞(X) is dense
in `2(X,m). �

With these preparations, we can now state and prove our main
technical lemma concerning Qψ, QM and QK .

Lemma 3.21 (Basic properties of QM and QK). Let (b, c) be a graph
over (X,m). Let L be a Markov realization of L and Q be the associated
Dirichlet form with domain D(Q). Let f, g ∈ D(Q) ∩ `∞(X).

(a) If ψ1, ψ2 ∈ D(Q) with 0 ≤ ψ1 ≤ ψ2 ≤ 1, then

0 ≤ Qψ1(f) ≤ Qψ2(f).

(b) 0 ≤ QM(f) ≤ Q(f) and 0 ≤ QK(f) ≤ Q(f).
(c) QM and QK are quadratic forms.
(d) If |f(x)| ≤ |g(x)| for all x ∈ X, then

QK(f) ≤ QK(g).

Proof. (a) From the discussion above for the form (Qα)ψ and ϕ ∈
Cc(X) with finite support W we get

(Qα)ψ(ϕ) =
1

2

∑
x,y∈W

bαψ(x, y)(ϕ(x)− ϕ(y))2 +
∑
x∈W

cαψ(x)ϕ2(x),

where bαψ(x, y) = −(Qα)ψ(1x, 1y) for x 6= y, bαψ(x, x) = 0 and cαψ(x) =
(Qα)ψ(1x, 1W ) for all ψ ∈ D(Q) with 0 ≤ ψ ≤ 1.

Applying Lemma 3.20 with f = 1x and g = 1y for x 6= y, we see
that

(Qα)ψ(1x, 1y) = −α
〈
α(L+ α)−1ψ1x, ψ1y

〉
.
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Therefore,

bαψ(x, y) = α
〈
α(L+ α)−1ψ1x, ψ1y

〉
for all x 6= y. From this it follows that if 0 ≤ ψ1 ≤ ψ2 ≤ 1 are in D(Q),
then

0 ≤ bαψ1
(x, y) ≤ bαψ2

(x, y)

as resolvents associated to Dirichlet forms are positivity preserving.
We now calculate cα,Wψ (x) =

∑
y∈W (Qα)ψ(1x, 1y) = (Qα)ψ(1x, 1W )

for x ∈ W , where we emphasize the dependence on W in the nota-
tion. Using the symmetry of the resolvent, we see from the general
calculation of (Qα)ψ(f, g) above that for x ∈ W

(Qα)ψ(1x, 1W ) = α
(〈
ψ1x1W , α(L+ α)−1ψ

〉
−
〈
ψ1x, α(L+ α)−1ψ1W

〉)
= α

〈
ψ1x, α(L+ α)−1(ψ − ψ1W )

〉
= α

〈
ψ1x, α(L+ α)−1ψ1X\W

〉
.

From this, it follows that if 0 ≤ ψ1 ≤ ψ2 ≤ 1 for ψ1, ψ2 ∈ D(Q), then

0 ≤ cα,Wψ1
(x) ≤ cα,Wψ2

(x)

for all x ∈ W as (L+ α)−1 is positivity preserving.
Combining all of the above, if 0 ≤ ψ1 ≤ ψ2 ≤ 1 for ψ1, ψ2 ∈ D(Q)

and ϕ ∈ Cc(X) with support in W , then

0 ≤ (Qα)ψ1(ϕ) =
1

2

∑
x,y∈W

bαψ1
(x, y)(ϕ(x)− ϕ(y))2 +

∑
x∈W

cα,Wψ1
(x)ϕ2(x)

≤ 1

2

∑
x,y∈W

bαψ2
(x, y)(ϕ(x)− ϕ(y))2 +

∑
x∈W

cα,Wψ2
(x)ϕ2(x)

= (Qα)ψ2(ϕ).

As (Qα)ψ are bounded by Lemma 3.20, we obtain 0 ≤ (Qα)ψ1(f) ≤
(Qα)ψ2(f) for all f ∈ `2(X,m). Finally, 0 ≤ Qψ1 ≤ Qψ2 by letting
α→∞.

(b) Similar to the proof of (a) above, we can calculate for x 6= y

bα(x, y) = −Qα(1x, 1y) = α
〈
1x, α(L+ α)−11y

〉
.

Since

bαψ(x, y) = α
〈
ψ1x, α(L+ α)−1ψ1y

〉
we get

bαψ(x, y) ≤ bα(x, y)

for all 0 ≤ ψ ≤ 1 with ψ ∈ D(Q) and all x 6= y as resolvents associated
to Dirichlet forms are positivity preserving.

Similarly, letting W ⊆ X be any finite set such that x ∈ W and
using the symmetry of the resolvent we obtain

cα,W (x) = Qα(1x, 1W ) = α
〈
1x, 1W − α(L+ α)−11W

〉
.
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Furthermore, for ψ ∈ D(Q) with 0 ≤ ψ ≤ 1 we get from the above

cα,Wψ (x) = Qα
ψ(1x, 1W ) = α

〈
ψ1x, α(L+ α)−1ψ1X\W

〉
≤ α

〈
1x, α(L+ α)−1ψ1X\W

〉
as resolvents are positivity preserving. Combining these two calcula-
tions, we obtain

1

α

(
cα,W (x)− cα,Wψ (x)

)
≥
〈
1x, 1W − α(L+ α)−1(1W − ψ1X\W )

〉
≥ 0

since 1W − ψ1X\W ≤ 1 implies that α(L+ α)−1(1W − ψ1X\W ) ≤ 1.

From the above, we see that bαψ(x, y) ≤ bα(x, y) and that cα,Wψ (x) ≤
cα,W (x) for all x, y ∈ W so that

(Qα)ψ(ϕ) ≤ Qα(ϕ)

for ϕ ∈ Cc(X) with support in W and ψ ∈ D(Q) with 0 ≤ ψ ≤ 1.
Therefore, since (Qα)ψ are bounded by Lemma 3.20, we get (Qα)ψ(f) ≤
Qα(f) for all f ∈ `2(X,m) ∩ `∞(X) and letting α→∞ we obtain

Qψ(f) ≤ Q(f)

for all f ∈ D(Q) ∩ `∞(X) and ψ ∈ D(Q) such that 0 ≤ ψ ≤ 1.
This shows

QM(f) = sup
ψ∈D(Q)
0≤ψ≤1

Qψ(f) ≤ Q(f)

for all f ∈ D(Q)∩`∞(X). As we have shown thatQψ(f) ≥ 0 in part (a),
it follows that QM(f) ≥ 0. Therefore, we obtain 0 ≤ QM(f) ≤ Q(f).
As QK(f) = Q(f)−QM(f) it follows that 0 ≤ QK(f) ≤ Q(f) as well.

(c) We now show that QM and QK are quadratic forms. As Q is
a quadratic form and QK = Q−QM , it suffices to show that QM is a
quadratic form, that is,

QM(af) = a2QM(f)

for all a ∈ R and f ∈ D(Q) ∩ `∞(X) and

QM(f + g) +QM(f − g) = 2 (QM(f) +QM(g))

for all f, g ∈ D(Q) ∩ `∞(X).
Since Q is a quadratic form, it follows that Qψ is a quadratic form

for all ψ ∈ D(Q) with 0 ≤ ψ ≤ 1. Therefore,

QM(af) = sup
ψ∈D(Q)
0≤ψ≤1

Qψ(af) = sup
ψ∈D(Q)
0≤ψ≤1

a2Qψ(f) = a2QM(f).
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Furthermore, using that Qψ is a quadratic form again, we get

QM(f + g) +QM(f − g) = sup
ψ∈D(Q)
0≤ψ≤1

Qψ(f + g) + sup
ψ∈D(Q)
0≤ψ≤1

Qψ(f − g)

≥ sup
ψ∈D(Q)
0≤ψ≤1

(Qψ(f + g) +Qψ(f − g))

= 2 sup
ψ∈D(Q)
0≤ψ≤1

(Qψ(f) +Qψ(g))

= 2(QM(f) +QM(g)).

This gives half of the required equality. The other half is obtained by
what we have already shown as follows

4 (QM(f) +QM(g)) = QM(2f) +QM(2g)

= QM((f + g) + (f − g)) +QM((f + g)− (f − g))

≥ 2 (QM(f + g) +QM(f − g)) .

Combining the two inequalities we obtain

QM(f + g) +QM(f − g) = 2 (QM(f) +QM(g)) ,

which completes the proof.

(d) Let f, g ∈ D(Q)∩`∞(X) be such that |f | ≤ |g|. We have to show
that QK(f) ≤ QK(g). We break down the proof into two steps. We
first assume that there exists a ψ0 ∈ D(Q) such that 1supp g ≤ ψ0 ≤ 1.

Let ε > 0. As we have already shown that Qψ is monotone in ψ in
part (a) and since QM is the supremum over all ψ ∈ D(Q) such that
0 ≤ ψ ≤ 1 by definition, for all ψ ∈ D(Q) with ψ0 ≤ ψ ≤ 1 large
enough, we have

QM(g)−Qψ(g) < ε.

Using QK = Q−QM as well as Q−QM ≤ Q−Qψ and the definition
of Qψ, we get for all ψ ∈ D(Q) with ψ0 ≤ ψ ≤ 1 large enough that

QK(g)−QK(f) = Q(g)−QM(g)− (Q(f)−QM(f))

≥ Q(g)−Qψ(g)− (Q(f)−Qψ(f))− ε
= Q(g)−Q(ψg) +Q(ψg2, ψ)

−
(
Q(f)−Q(ψf) +Q(ψf 2, ψ)

)
− ε.

Since the support of f is included in the support of g, we note that
ψ = 1 on both the support of f and the support of g. Therefore,
f = ψf and g = ψg. Hence, we conclude

QK(g)−QK(f) ≥ Q(g2, ψ)−Q(f 2, ψ)− ε = Q(g2 − f 2, ψ)− ε.

As g2 − f 2 ≥ 0, 0 ≤ ψ ≤ 1 with ψ = 1 on the support of g2, we get for
any s > 0 that (ψ + s(g2 − f 2)) ∧ 1 = ψ. Since Q is a Dirichlet form,
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it follows that, for s > 0,

Q(ψ) = Q
((
ψ + s(g2 − f 2)

)
∧ 1
)

≤ Q
(
ψ + s(g2 − f 2)

)
= Q(ψ) + 2sQ

(
ψ, g2 − f 2

)
+ s2Q

(
g2 − f 2

)
.

Therefore,

−sQ
(
g2 − f 2

)
≤ 2Q

(
ψ, g2 − f 2

)
= 2Q

(
g2 − f 2, ψ

)
for all s > 0 and letting s→ 0, we get that

0 ≤ Q
(
g2 − f 2, ψ

)
.

Putting everything together, we get

QK(g)−QK(f) ≥ −ε
and, thus,

QK(g) ≥ QK(f)

as ε > 0 was arbitrary. This completes the proof in the case that there
exists a ψ0 ∈ D(Q) such that 1supp g ≤ ψ0 ≤ 1.

In the general case, we argue as follows. We let

fα = f − ((f ∧ α) ∨ −α) and gα = g − ((g ∧ α) ∨ −α)

for α > 0. By Lemma 3.16 (b) we get fα → f and gα → g as α → 0+

with respect to ‖·‖Q. Now, as |f | ≤ |g|, we get |fα| ≤ |gα|. Furthermore,
we let

ψα =

(
|gα|
α

)
∧ 1.

Clearly 0 ≤ ψα ≤ 1. Furthermore, we observe that x is in the support
of gα if and only if ((g ∧ α) ∨ −α) (x) 6= g(x), that is, if and only if
|g(x)| > α and for all such x we get that ψα(x) = 1. Hence, we have
1supp gα ≤ ψα ≤ 1. Finally, as Q is a Dirichlet form, we get ψα ∈ D(Q).
Therefore, we infer

QK(gα) ≥ QK(fα)

by what we have already shown above. Now, since QK ≤ Q as we have
already shown in part (b) and since Q(g− gα)→ 0 and Q(f − fα)→ 0
as α→ 0, we get QK(g − gα)→ 0 and QK(f − fα)→ 0 as α→ 0. By
(c) we know that QK is a quadratic form, so, we obtain

QK(gα)→ QK(g) and QK(fα)→ QK(f)

as α→ 0. Therefore, we conclude

QK(g) ≥ QK(f),

which completes the proof. �

Remark. In the proof of (c) above we see that in order for a form
to be quadratic it suffices that one of the equalities only has to be an
inequality. This is, in fact, true for both inequalities (Exercise 3.13).
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Given the lemma above, we can now give the lower estimate on Q
as follows.

Proposition 3.22 (Q(N) ≤ Q). Let (b, c) be a graph over (X,m).
If L is a Markov realization of L with associated Dirichlet form Q, then

Q(N) ≤ Q.

Proof. We will show

QM(f) ≥ Qb,0(f) and QK(f) ≥ Q0,c(f)

for all f ∈ D(Q) ∩ `∞(X). Assuming we have shown this, we get, as
both QM(f) and QK(f) are finite by Lemma 3.21 (b) and (c),

Qb,c(f) = Qb,0(f) +Q0,c(f) <∞,

so that f ∈ D ∩ `2(X,m) = D(Q(N)) and

Q(N)(f) = Q(f) ≤ QM(f) +QK(f) = Q(f)

for all f ∈ D(Q) ∩ `∞(X).
Now, for f ∈ D(Q) it follows from Corollary 3.17 that there exists a

sequence fn ∈ D(Q)∩ `∞(X) such that fn → f in ‖ · ‖Q. In particular,
by what we have already shown above, fn ∈ D(Q(N)) and using the
lower semi-continuity of Q(N) we infer

Q(N)(f) ≤ lim inf
n→∞

Q(N)(fn) ≤ lim inf
n→∞

Q(fn) = Q(f) <∞,

which shows f ∈ D(Q(N)) and Q(N)(f) ≤ Q(f) for all f ∈ D(Q).

We now show the two required inequalities.
QM(f) ≥ Qb,0(f): Let Wn ⊆ X be finite with X =

⋃
nWn. Then,

by Lemma 3.19, we get

QM(f) = sup
ψ∈D(Q)
0≤ψ≤1

Qψ(f) ≥ Q1Wn
(f) =

1

2

∑
x,y∈Wn

b(x, y)(f(x)− f(y))2.

Now, letting n→∞ gives the required inequality.

QK(f) ≥ Q0,c(f): Let ε > 0. Since Qψ is monotone in ψ by
Lemma 3.21 (a), we get that there exists a ψ0 ∈ D(Q) with 0 ≤ ψ0 ≤ 1
such that

QM(f) ≤ Qψ(f) + ε

for all ψ ∈ D(Q) with ψ0 ≤ ψ ≤ 1. Let W ⊆ X be finite and choose
ψ0 such that ψ0 ≥ 1W . As |f | ≥ |1Wf |, it follows from Lemma 3.21 (d)
that

QK(f) ≥ QK(1Wf) = Q(1Wf)−QM(1Wf) ≥ Q(1Wf)−Qψ(1Wf)− ε

for all ψ ∈ D(Q) with ψ0 ≤ ψ ≤ 1. Now, as ψ1W = 1W for all ψ with
1W ≤ ψ ≤ 1, we see that

Qψ(1Wf) = Q(ψ1Wf)−Q(ψ(1Wf)2, ψ) = Q(1Wf)−Q(1Wf
2, ψ).
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Therefore,

QK(f) ≥ Q(1Wf)−Qψ(1Wf)− ε = Q(1Wf
2, ψ)− ε

for all ψ ∈ D(Q) with ψ0 ≤ ψ ≤ 1.
As 1Wf

2 ∈ Cc(X) and ψ ∈ D(Q) ∩ `∞(X), applying Lemma 3.14,
we get

Q(1Wf
2, ψ) =

∑
x∈X

1W (x)f 2(x)Lψ(x)m(x) =
∑
x∈W

f 2(x)Lψ(x)m(x).

Now, we can apply the above estimate to a sequence ψn which satisfies
ψ0 ≤ ψn ≤ 1 and such that ψn → 1 pointwise as n→∞. By applying
the Lebesgue dominated convergence theorem to such a sequence, it
follows that

Lψn(x)m(x)→ c(x)

as n→∞. This gives

Q(1Wf
2, ψn) =

∑
x∈W

f 2(x)Lψn(x)m(x)→
∑
x∈W

c(x)f 2(x)

as n→∞. Therefore,

QK(f) ≥ Q(1Wf
2, ψn)− ε→

∑
x∈W

c(x)f 2(x)− ε,

which implies

QK(f) ≥
∑
x∈W

c(x)f 2(x).

Finally, as W ⊆ X is an arbitrary finite set, we conclude

QK(f) ≥
∑
x∈X

c(x)f 2(x) = Q0,c(f).

This completes the proof. �

Proof of Theorem 3.11. To show that Q(N) ≤ Q ≤ Q(D) sim-
ply combine Proposition 3.15, which gives the upper bound, and Propo-
sition 3.22, which gives the lower bound. �
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Exercises

Excavation exercises.

Exercise 3.1 (Adjoint operator inclusions). Let H be a Hilbert
space and let A1 and A2 be densely defined operators with domains
D(A1) and D(A2), respectively. We say that A2 is an extension of
A1 if D(A1) ⊆ D(A2) and A2f = A1f for all f ∈ D(A1). We write
A1 ⊆ A2 in this case.

(a) Show that if A1 ⊆ A2, then A∗2 ⊆ A∗1.
(b) Show that if A1 and A2 are self-adjoint and A1 ⊆ A2, then A1 = A2.

Exercise 3.2 (Adjoint operators and essential self-adjointness).
Let H be a Hilbert space and let A be a densely defined symmetric
operator with domain D(A) ⊆ H. Let A denote the closure of A, that
is, the smallest closed extension of A. Show that:

(a) A = A∗∗.
(b) A is essentially self-adjoint if and only if A is self-adjoint.
(c) A is essentially self-adjoint if and only if A∗ is self-adjoint.

Exercise 3.3. Let H be a Hilbert space and L be a positive op-
erator with associated form Q. Let (ψn) be a sequence of bounded
real-valued functions which converges pointwise to a bounded function
ψ. Show that ψn(L)f → ψ(L)f for all f ∈ D(Q) with respect to ‖ · ‖Q,
where ‖f‖2

Q = Q(f) + ‖f‖2.

Example exercises.

Exercise 3.4 (Infinite star graphs). Let (b, c) be an infinite star
graph over (X,m). That is, let X = N0 with b(0, n) = b(n, 0) > 0 for
all n ∈ N such that

∑
n∈N b(0, n) <∞ and b = 0 otherwise.

(a) Show that D(Q(D)) = D(Q(N)).
(b) Characterize the condition LCc(X) ⊆ `2(X,m).
(c) Show that the restriction of L to Cc(X) is essentially self-adjoint

when LCc(X) ⊆ `2(X,m).

Exercise 3.5 (Q(D) 6= Q(N)). Give an example of a graph which
satisfies LCc(X)
⊆ `2(X,m) but for which Q(D) 6= Q(N) so that, in particular, Lmin is
not essentially self-adjoint and L does not satisfy Markov uniqueness.

(Hint 1: Consider α-harmonic functions on an infinite path graph.)
(Hint 2: If you have tried for a sufficiently long time without success,

then try to work out the following: Let (b, 0) be an infinite path graph
over (X,m). That is, let X = N0 with b(n, n+ 1) = b(n+ 1, n) > 0 for



EXERCISES 211

all n ∈ N and b = 0 otherwise. Assume, additionally, that m(X) <∞
and that

∞∑
n=0

1

b(n, n+ 1)
<∞.

Show by induction that any u ∈ F = C(X) such that (L+α)u = 0
for α > 0 satisfies

u(n+ 1)− u(n) =
α

b(n, n+ 1)

n∑
k=0

u(k)m(k).

Use this to show that, under the additional assumptions on b and m,
u has finite energy and is bounded.)

Exercise 3.6 (Equality of form domains does not imply essential
self-adjointness). Give an example of a graph for which Q(D) = Q(N)

and LCc(X) ⊆ `2(X,m) and for which Lmin is not essentially self-
adjoint.

(Hint 1: Try a two-sided path graph.)
(Hint 2: If you have tried for a sufficiently long time without suc-

cess, then try to work out the following: Let (b, 0) be the two-sided
path graph over (X,m) with standard weights. That is, let X = Z
with b(n, n + 1) = b(n + 1, n) = 1 for all n ∈ Z and b = 0 otherwise.
First, show that there do not exist any non-trivial α-harmonic func-
tions with finite energy on this graph for α > 0. Then, consider the
function u(x) = x, which is α-harmonic for α = 0, and show that for
an appropriate measure, u ∈ D(L∗min). However, u does not have finite
energy.)

Exercise 3.7 (Non-Markov operator). Give an example of a self-
adjoint operator which is a realization of L but is not Markov.

(Hint 1: Use Exercise 3.6 above.)
(Hint 2: If you have tried for a sufficiently long time without success,

then try to work out the following: Take the example above and let L0

be the restriction of L to D(L0) = Cc(X) + Lin{u}. Show that L0 is
symmetric and take the Friedrichs extension of L0.)

Extension exercises.

Exercise 3.8 (Form uniqueness and α-subharmonic functions).
Let (b, c) be a graph over (X,m). Show that D(Q(D)) = D(Q(N)) if
and only if every u ∈ D with u ≥ 0 such that Lu ∈ `2(X,m) and
(L+ α)u ≤ 0 for α > 0 satisfies u = 0.
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Exercise 3.9 (Essential self-adjointness and associated operators).
Let (b, c) be a graph over (X,m) with LCc(X) ⊆ `2(X,m). Show that
the restriction of L to Cc(X) is essentially self-adjoint if and only if

D(L) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}
for some (all) associated operators L.

Exercise 3.10 (Realizations and finitely supported functions). Let
(b, c) be a graph over (X,m). Let L be a realization of L. Show that
LCc(X) ⊆ `2(X,m) if and only if Cc(X) ⊆ D(L).

Exercise 3.11 (Bounded functions of finite energy form an alge-
bra). Let (b, c) be a graph over X. Let D denote the functions of finite
energy and let `∞(X) denote the bounded functions on X. Show that
D∩ `∞(X) is an algebra, i.e., fg ∈ D∩ `∞(X) for all f, g ∈ D∩ `∞(X).

Exercise 3.12 (Convergence in ‖ · ‖Q). Let (b, c) be a graph over
(X,m). Let Q be a Dirichlet form with domain D(Q) ⊆ `2(X,m) and

let ‖f‖Q = (Q(f) + ‖f‖2)
1/2

for all f ∈ D(Q). Show that fn → f in
‖ · ‖Q if and only if

‖fn − f‖ → 0 and lim sup
n→∞

Q(fn) ≤ Q(f).

Exercise 3.13 (Quadratic forms). Let q be a form on `2(X,m)
with domain D(q). Show that q is a quadratic form, i.e., q satisfies
q(af) = a2q(f) and q(f + g) + q(f − g) = 2(q(f) + q(g)) for all a ∈ R
and f, g ∈ D(q) if and only if

q(af) ≤ a2q(f) and q(f + g) + q(f − g) ≤ 2(q(f) + q(g))

if and only if

q(af) ≤ a2q(f) and q(f + g) + q(f − g) ≥ 2(q(f) + q(g))

for all a ∈ R and f, g ∈ D(q).
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Notes

In large part, the material in this chapter can be understood as
working out the general abstract theory of form uniqueness as well as
the uniqueness of self-adjoint and Markov extensions in the concrete
setting of weighted graphs. For the general theory, we merely reference
some standard textbooks such as [FŌT11, RS75, RS80, Wei80] as
well as the historical works [Fri34, vN30].

For the concrete setting that we consider, the equivalence of (i)
and (ii) in Theorem 3.2 can be inferred from [Sch17b]. The equiva-
lence of (i) and (iv) in Theorem 3.2 can be found as Corollary 4.3 in
[HKLW12]. The equivalences found in Theorem 3.6 are worked out in
the proof of Theorem 6 in [KL12]. The characterization in Theorem 3.8
is used in the proof of Theorem 5 in [KL12]. The characterization of
Markov realizations as presented in Theorem 3.11 is proven for locally
finite graphs as Theorem 5.2 in [HKLW12]. The general case, that
is, for not necessarily locally finite graphs, is shown as Theorem 11.6.5
in [Sch20b] found within [KLW20]. In particular, the theory of the
main and killing part of a Dirichlet form is developed more generally in
Chapter 3 of [Sch17a], see [Sch20a] as well. We follow the presenta-
tion in [Sch20b]. Some further general connections between essential
self-adjointness and Liouville properties can be found in [HMW21].





CHAMBER 4

Agmon–Allegretto–Piepenbrink and Persson
Theorems

Shake the ground while my beats just break you down.
Raekwon.

In this chapter we take a first step towards studying the spectral

theory of the Laplacian L = L
(D)
b,c,m associated to the regular form

Q = Q
(D)
b,c,m of a graph (b, c) over (X,m). We will characterize the

bottom of the spectrum and the bottom of the essential spectrum of
L via strictly positive generalized eigenfunctions. The corresponding
results are known as Agmon–Allegretto–Piepenbrink theorems. Along
the way, we will also show a Persson theorem relating the essential
spectrum of L to the spectra of restrictions of L to complements of
finite sets.

More specifically, we let σ(L) denote the spectrum of L and let

λ0(L) = inf σ(L)

denote the bottom of the spectrum of L. We will characterize λ0(L)
in terms of the existence of positive α-superharmonic functions for
α ≥ −λ0(L) on X. We recall that for α ∈ R a function u is called
α-harmonic if u ∈ F and (L + α)u = 0 (and α-superharmonic if
(L+ α)u ≥ 0), where L = Lb,c,m. Furthermore, u is called positive
if u ≥ 0. On connected graphs, we will show that any positive non-
trivial α-harmonic function u is automatically strictly positive, i.e.,
satisfies u > 0. We then present the characterization of the bottom of
the spectrum in terms of such functions in Section 3.

The proof uses techniques that are interesting on their own. On one
hand, the ground state transform shows that if a positive α-harmonic
function exists, then α ≥ −λ0(L). We establish this in Section 2.
On the other hand, in Section 1 we prove a Harnack inequality which
allows us to construct strictly positive α-superharmonic functions for
α ≥ −λ0(L) via a limiting procedure. Combining these two results
yields our characterization of λ0(L) in terms of strictly positive α-
superharmonic functions.

In Section 4 we study the bottom of the essential spectrum of L.
The essential spectrum is the complement in the spectrum of the iso-
lated eigenvalues of finite multiplicity. We will denote the essential

215
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spectrum by σess(L) and the bottom of the essential spectrum by

λess
0 (L) = inf σess(L).

By general theory, see Theorem E.7, the essential spectrum is stable
under compact perturbations. Now, under a suitable condition on the
graph, the removal of a compact, i.e., finite, set is a compact pertur-
bation and this allows us to prove a Persson theorem which gives

λess
0 (L) = sup

K⊆X,K finite
λ0(L

(D)
X\K).

Here, L
(D)
X\K denotes the Laplacian associated to the closure of the re-

striction of Q to Cc(X \K), denoted by Q
(D)
X\K . Combining the Persson

result with the characterization of the infimum of the spectrum shown
in Section 3, we can then characterize the infimum of the essential
spectrum via functions which are strictly positive and α-superharmonic
outside of a finite set.

1. A local Harnack inequality and consequences

In this section we first present a local Harnack inequality for pos-
itive α-superharmonic functions. A slight extension of this statement
allows us to then prove a Harnack principle which yields a procedure
for constructing α-superharmonic functions for α ≥ −λ0(L) via two
approximation procedures. These procedures involve approximating
on both the level of α and on the level of geometry as we exhaust
the vertex set by finite connected subsets. Finally, we show that α-
superharmonicity can be improved to α-harmonicity under certain ad-
ditional assumptions such as local finiteness.

The reader may consult Excavation Exercise 4.1 to recall the diag-
onal subsequence trick which will be used in the proof of Theorem 4.4.

We start with a local Harnack inequality that allows us to estimate
the maximum of a positive α-superharmonic function u on a finite
connected set by the minimum.

Theorem 4.1 (Local Harnack inequality). Let (b, c) be a graph
over (X,m) and let W ⊆ X be finite and connected. Then, there exists
a monotonically increasing function CW : R −→ [0,∞) such that for
every α ∈ R and every u ∈ F with u ≥ 0 and

(L+ α)u ≥ 0

on W we have

max
x∈W

u(x) ≤ CW (α) min
x∈W

u(x).

In particular, u > 0 whenever u 6= 0 on W .
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Proof. Let α ∈ R and let u ≥ 0 satisfy (L+ α)u ≥ 0 on W ⊆ X.
Rewriting (L+ α)u(x) ≥ 0 we arrive at the inequality

(deg +αm)(x)u(x) ≥
∑
y∈X

b(x, y)u(y) ≥ b(x, z)u(z)

for all x ∈ W and z ∼ x, where deg(x) =
∑

y∈X b(x, y) + c(x). Let
x, y ∈ W and let x = x0 ∼ x1 ∼ . . . ∼ xn = y be a path in W . Iterating
the above gives

u(x0) ≤ (deg +αm)(x1)

b(x0, x1)
u(x1) ≤

(
n−1∏
j=0

(deg +αm)(xj+1)

b(xj, xj+1)

)
u(xn).

Using the finiteness and connectedness of W , we can then define
cW (α) for α ∈ R via

cW (α) = max
x,y∈W

min
x=x0∼...∼xn=y

n−1∏
j=0

(deg +αm)(xj+1)

b(xj, xj+1)
.

Choosing x to be the vertex where u attains its maximum on W and
y to be the vertex where u attains its minimum on W we find

max
W

u ≤ cW (α) min
W

u.

The function cW is clearly monotonically increasing with respect
to α. If cW (α) ≤ 0, then there are no non-trivial positive functions
with (L + α)u ≥ 0 on W by what we have shown. Hence, we can
set CW = cW ∨ 0. The “in particular” statement is clear since if u is
non-trivial on W , then CW > 0. �

The local Harnack inequality has some immediate consequences.
The first states that positive non-trivial α-superharmonic functions
are immediately strictly positive whenever the underlying graph is con-
nected.

Corollary 4.2. Let (b, c) be a connected graph over (X,m). Let
α ∈ R and let u ≥ 0 be a non-trivial α-superharmonic function. Then,
u > 0.

Proof. Since u ≥ 0 is non-trivial there exists an x ∈ X such
that u(x) > 0. Let y ∈ X. By connectedness, there exists a path
x = x0 ∼ . . . ∼ xn = y. Let W = {x0, . . . , xn}. By Theorem 4.1
we obtain u > 0 on W and, in particular, u(y) > 0. As y ∈ X was
arbitrary, u > 0. �

We recall that an operator is called positivity improving if the op-
erator maps positive non-trivial functions to strictly positive functions.
As a second consequence of the local Harnack inequality we show that
(L+ α)−1 is positivity improving for α > −λ0(L). This extends one of
the implications of connectedness found in Theorem 1.26.
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We recall by the variational characterization of the bottom of the
spectrum that

λ0(L) = inf
f∈D(Q),‖f‖=1

Q(f),

see Theorem E.8. In particular, Q ≥ λ0(L), i.e., Q(f) ≥ λ0(L)‖f‖2 for
all f ∈ D(Q).

Corollary 4.3. Let (b, c) be a connected graph over (X,m). Let
α > −λ0(L) and let f ∈ `2(X,m) with f ≥ 0 be non-trivial. Then,

(L+ α)−1f > 0.

Proof. As α > −λ0(L), it follows that −α is not in the spectrum
of L so that (L + α)−1 exists. Furthermore, as Q ≥ λ0(L), (L + α)−1

is positivity preserving for α > −λ0(L) by Corollary 1.25. Thus, (L+
α)−1f ≥ 0. As L is a restriction of L by Theorem 1.6 we obtain

(L+ α)(L+ α)−1f = (L+ α)(L+ α)−1f = f ≥ 0.

Therefore, (L+α)−1f is positive α-superharmonic and non-trivial and
thus
(L+ α)−1f is strictly positive by Corollary 4.2. �

From the local Harnack inequality we now deduce the Harnack prin-
ciple. This principle gives a procedure for creating strictly positive
α-(super)harmonic functions on X from a sequence of non-trivial pos-
itive, and, thus, strictly positive by Corollary 4.2, αn-(super)harmonic
functions on connected increasing sets Kn with X =

⋃
nKn and α =

limn→∞ αn. This allows us to pass from local properties of solutions to
global properties.

In what follows, we call any sequence of increasing connected sets
Kn such that X =

⋃
nKn an exhaustion sequence of X. In particular,

we note that we do not require the Kn to be finite sets for the Harnack
principle.

Theorem 4.4 (Harnack principle). Let (b, c) be a connected graph
over (X,m). Let o ∈ X and let (Kn) be an exhaustion sequence of X
with o ∈ Kn for all n. Let (αn) be a sequence in R with α = limn→∞ αn.
Let (un) be a sequence of positive functions in F satisfying

(L+ αn)un ≥ 0

on Kn with un(o) = 1 for all n ∈ N. Then, there exists a subse-
quence (unk) of (un) that converges pointwise to a strictly positive α-
superharmonic function u on X.

Furthermore, assume that one of the following properties holds:

• The graph is locally finite.
• The subsequence (unk) is monotonically increasing in k.
• There exists an f ∈ F such that unk ≤ f on Knk for all k.
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Then,

lim
k→∞
Lunk = Lu.

In particular, under any of the additional assumption above, if unk are
αnk-harmonic on Knk , then u is α-harmonic on X.

Proof. Let x ∈ X. We claim that there exists a constant Cx > 0
such that un(x) ≤ Cx for all n ∈ N. Let n0 ∈ N be the smallest
index such that x ∈ Kn0 . Then, by the connectedness of Kn0 , there
exists a path o = x0 ∼ . . . ∼ xk = x in Kn0 connecting o and x. Let
W = {x0, . . . , xk}. As (Kn) is an increasing sequence of subsets of X,
it follows that W ⊆ Kn for all n ≥ n0.

Now, as (L+αn)un ≥ 0 on W , un ≥ 0 and un(o) = 1, it follows that
un > 0 on W by the last statement of Theorem 4.1. Thus, applying
the rest of Theorem 4.1, we get

1

CW (αn)
≤ miny∈W un(y)

maxy∈W un(y)
≤ un(x)

un(o)
≤ maxy∈W un(y)

miny∈W un(y)
≤ CW (αn),

where

CW (αn) =
k−1∏
i=0

(deg +αnm)(xi)

b(xi, xi+1)
.

Since CW (αn) → CW (α) as n → ∞, it follows that (CW (αn)) is a
bounded sequence and letting

Cx = sup
n
CW (αn) ∨max{u1(x), u2(x), . . . , un0−1(x)}

we get
1

Cx
≤ un(x) ≤ Cx

for all n ∈ N as un(o) = 1 for all n ∈ N. Therefore, by a diagonal
subsequence argument, it follows that there exists a subsequence (unk)
of (un) such that unk → u pointwise as k →∞.

We are left to check that u > 0 and that u is α-superharmonic.
The functions unk satisfy (L+ αnk)unk ≥ 0 on Knk . Let x ∈ X. There
exists an N ∈ N such that x ∈ Knk for all nk ≥ N so that∑

y∈X

b(x, y)unk(y) ≤ (deg +αnkm)(x)unk(x)

for all nk ≥ N . Therefore, by Fatou’s lemma, we infer∑
y∈X

b(x, y)u(y) ≤ lim inf
k→∞

∑
y∈X

b(x, y)unk(y)

≤ lim
k→∞

(deg +αnkm)(x)unk(x) = (deg +αm)(x)u(x).

Thus, u ∈ F and (L+α)u ≥ 0. Since unk ≥ 0 and unk(o) = 1, we have
u ≥ 0 and u(o) = 1. Hence, u > 0 by Corollary 4.2. This finishes the
proof of the first part of the theorem.
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We now prove the convergence statements, that is, Lunk → Lu
as k → ∞ under the additional assumptions. If the graph is locally
finite, then all sums involve only finitely many terms. Therefore, we
can interchange the sum with the limit by Fatou’s lemma. If (unk) is
monotonically increasing in k (respectively, unk ≤ f ∈ F for all k),
then we can apply the monotone convergence theorem of Beppo Levi
(respectively, the dominated convergence theorem of Lebesgue) to get
the convergence Lunk → Lu as k →∞. This completes the proof. �

We now present two ways to apply the Harnack principle to con-
struct positive α-superharmonic functions for α ≥ −λ0(L). Both con-
structions involve resolvents. In the first construction, we use the re-
solvent of the Laplacian on the entire space and in the second con-
struction, we use the resolvent of the Dirichlet Laplacian associated to
a finite subset of X.

For the first construction we recall that for α > −λ0(L) the resol-
vent (L+α)−1 is positivity improving by Corollary 4.3. This is relevant
for the definition of the sequence.

Corollary 4.5. Let (b, c) be a connected graph over (X,m). Let
αn > −λ0(L), n ∈ N, be a sequence which converges to α. Let xn ∈ X
for n ∈ N0. Then, the sequence

un =
1

(L+ αn)−11xn(x0)
(L+ αn)−11xn

for n ∈ N has a subsequence which converges pointwise to a strictly
positive α-superharmonic function u.

Furthermore, if the graph is locally finite and (xn) is chosen to leave
every finite set, then u is α-harmonic.

Proof. For αn > −λ0(L), the resolvent (L + αn)−1 is positivity
improving by Corollary 4.3. Thus, the definition of un makes sense.
As L is a restriction of L by Theorem 1.6, it follows that un satisfies
(L + αn)un ≥ 0 on X. As un(x0) = 1 for all n ∈ N, we may ap-
ply the Harnack principle, Theorem 4.4, with Kn = X for all n ∈ N
to obtain the required subsequence converging to a strictly positive
superharmonic function u.

Furthermore, we note that, (L + αn)un = 0 on X \ {xn}. Hence,
if (xn) eventually leaves every finite set, we can take an exhaustion
sequence (Kn) such that xn 6∈ Kn for all n ∈ N. In this case, the
functions un are αn-harmonic on Kn so that u is α-harmonic when the
graph is locally finite by the additional statements in Theorem 4.4. �

For the second construction we will use the resolvent of the Dirichlet
Laplacian on a finite subset of X. We now briefly recall the basic
properties of this operator. We recall that for a finite set K ⊆ X,

we let Q
(D)
K be the restriction of Q to Cc(K) = `2(K,mK) where mK
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denotes the restriction of m to K. It follows that Q
(D)
K is a Dirichlet

form and the associated operator L
(D)
K is the restriction of L to Cc(K).

See Section 3 for a thorough discussion.

Corollary 4.6. Let (b, c) be a connected graph over an infinite
measure space (X,m). Let (Kn) be an exhaustion sequence of X con-

sisting of finite sets and let xn ∈ Kn for n ∈ N. Then, L
(D)
Kn

+ α is
invertible for α ≥ −λ0(L) and the sequence

u(D)
n =

1

(L
(D)
Kn

+ α)−11xn(x0)
(L

(D)
Kn

+ α)−11xn

for n ∈ N has a subsequence which converges pointwise to a strictly
positive α-superharmonic function u.

Furthermore, if the graph is locally finite and (xn) is chosen to leave
every finite set, then u is α-harmonic.

Proof. Let K ⊆ X be finite. Since Q
(D)
K is a restriction of Q, it

follows directly from the variational characterization of the bottom of

the spectrum, Theorem E.8, that λ0(L) ≤ λ0(L
(D)
K ). In fact, we can

even show

λ0(L) < λ0(L
(D)
K )

as follows: Suppose that λ0(L) = λ0(L
(D)
K ). As K is finite, there exists

a normalized eigenfunction fK ∈ `2(K,mK) corresponding to λ0(L
(D)
K ).

Now, considering |fK | we get

λ0(L
(D)
K ) ≤ Q

(D)
K (|fK |) ≤ Q

(D)
K (fK) = λ0(L

(D)
K ),

where we used the variational characterization for the first inequality

and that Q
(D)
K is a Dirichlet form for the second. Thus, |fK | is also an

eigenfunction corresponding to λ0(L
(D)
K ) by Theorem E.8. Hence, by

replacing fK by |fK |, we can assume that fK ≥ 0. We can then extend

fK ≥ 0 to be zero outside of K and, as Q
(D)
K and Q agree on K, we

obtain

λ0(L) ≤ Q(fK) = Q
(D)
K (fK) = λ0(L

(D)
K ) = λ0(L).

Thus, by Theorem E.8 again, fK is an eigenfunction for L correspond-
ing to λ0(L). As fK is positive and the graph is connected, it follows
by Corollary 4.2 that fK is strictly positive on X, which contradicts

that fK is zero outside of K. This implies λ0(L) < λ0(L
(D)
K ).

Hence, L
(D)
K +α is invertible and the inverse is positivity improving

for α ≥ −λ0(L) > −λ0(L
(D)
K ) by Corollary 4.3. In particular, this

shows that the definition of u
(D)
n makes sense for all n ∈ N and that

u
(D)
n ≥ 0. Since L

(D)
Kn

and L agree when applied to u
(D)
n , it follows

that (L + α)u
(D)
n ≥ 0 on Kn. Furthermore, u

(D)
n (x0) = 1 for all n ∈

N. Therefore, by the Harnack principle, Theorem 4.4, we obtain a
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subsequence of (u
(D)
n ) converging pointwise to a strictly positive α-

superharmonic function u.
In the locally finite case, when (xn) leaves every finite subset, we

can consider u
(D)
n as defined above and restrict u

(D)
n to an exhaustion

sequence K ′n ⊆ Kn such that xn 6∈ K ′n. In this case, u
(D)
n satisfies

(L + α)u
(D)
n = 0 on K ′n so that u is α-harmonic by the additional

statements in Theorem 4.4. �

Remark. We note that if X is finite and α > −λ0(L), then the
limiting functions u in the corollaries above are only superharmonic
and not harmonic for α > −λ0(L) (Exercise 4.5). This shows one
of the contrasts between finite and infinite graphs, as from Corollar-
ies 4.5 and 4.6 above, for infinite locally finite graphs, there always
exist α-harmonic functions for all α ≥ −λ0(L).

Remark. We will show later in Lemma 6.27 in Section 4 that the
sequences (un) and (u

(D)
n ) constructed above converge for α = 0 without

choosing subsequences.

2. The ground state transform

In this section we prove variants of a ground state transform. A
generalized ground state is a strictly positive generalized eigenfunction
for the bottom of the spectrum. Such a generalized eigenfunction yields
a transform of the operator. However, this transform not only works
for a generalized ground state but also for more general functions. This
is how we present it in this section.

Excavation Exercise 4.2 introduces the form associated to multipli-
cation by a function and recalls the fact that this form is closed if the
function is bounded below.

The starting point for the material in this section is the following
observation: Whenever L = Lb,c,m is the formal Laplacian and Uf is
the formal operator of multiplication by a function f ∈ C(X), then for
any u > 0 with u ∈ F , the operator U−1

u LUu − Uw with w = Lu/u
is also a formal Laplacian arising from a graph which does not have a
killing term. A precise formulation of this in the context of forms is
given by the equality

Qb,c(uϕ)− 〈wuϕ, uϕ〉 = Qbu,0(ϕ)

for all ϕ ∈ Cc(X) with a suitable modification bu of b.
This formula is most often applied with u being a generalized ground

state, i.e., u ∈ F with u > 0 and Lu = λ0u for the bottom of the spec-
trum λ0 = λ0(L). Accordingly, this formula is often referred to as
a ground state transform. As Qbu,0 is an energy form arising from a
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graph, Qbu,0(ϕ) ≥ 0 for all ϕ ∈ Cc(X). Thus, as a corollary of the
ground state transform, we obtain the lower bound

Qb,c,m(ϕ) ≥ 〈wϕ, ϕ〉
for any u > 0 and any ϕ ∈ Cc(X) where w = Lu/u. In particular, if
u > 0 is α-harmonic, i.e., w = Lu/u = −α, we find

Qb,c,m ≥ −α
and this gives that the spectrum of the Laplacian associated to Qb,c,m is
bounded below by −α. A closer inspection of the underlying consider-
ations gives that this inequality persists for α-superharmonic functions
and we can also bound the bottom of the spectrum in terms of such
functions. A converse to this was discussed in the last section and the
combination of these two results then gives a version of the Agmon–
Allegretto–Piepenbrink theorem in the next section.

As usual, we will denote Lb,c,m by L, Qb,c by Q and Qb,c,m by Q.
However, we will write the subscripts when they are not the standard
ones or when we want to emphasize the dependence on the graph, as
will often happen throughout this section.

After this preliminary discussion, we now work towards making the
concepts introduced above precise. In order to state our results we will
need two ingredients. One ingredient is the operator of multiplication
by a function. The other is the modification of the original graph.

For a function u ∈ C(X), we let Uu denote the formal operator of
multiplication by u. That is, we define Uu : C(X) −→ C(X) by

Uuf = uf.

The restriction of Uu to `2(X, u2m) will be denoted by Uu and can be
seen to map into `2(X,m), i.e.,

Uu : `2(X, u2m) −→ `2(X,m)

via Uuf = uf. By direct calculation, if u(x) 6= 0 for all x ∈ X, then Uu
is unitary and

U−1
u = U1/u = U∗u .

This gives the first ingredient. For the second ingredient, let u ∈ C(X)
and define

bu(x, y) = b(x, y)u(x)u(y)

for all x, y ∈ X. Clearly, bu is symmetric and has vanishing diagonal.
Moreover, bu ≥ 0 if u ≥ 0 or u ≤ 0. Furthermore, if u ∈ F , then it
follows directly that

∑
y∈X bu(x, y) < ∞ for all x ∈ X. Hence, bu is a

graph over X whenever u ∈ F and u ≥ 0 or u ≤ 0. Finally, u2m is a
measure of full support whenever u > 0 or u < 0.

Summarizing the above considerations, bu is a graph over (X, u2m)
and `2(X, u2m) is unitarily equivalent to `2(X,m) whenever u ∈ F and
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u > 0 or u < 0. This is the required modification of the underlying
graph.

We now show that the operator U−1
u LUu − Uw acts like the formal

Laplacian of the graph bu on Cc(X) when w = Lu/u for u ∈ F with
u > 0. This can be seen as a first version of the ground state transform
in terms of formal Laplacians.

Lemma 4.7. Let (b, c) be a graph over (X,m), L = Lb,c,m and let
u ∈ F . Then, for all f ∈ C(X) such that Uuf ∈ F ,

LUuf(x) = f(x)Lu(x) +
1

m(x)

∑
y∈X

b(x, y)u(y)(f(x)− f(y))

for all x ∈ X. If, additionally, u > 0 or u < 0 and w = Lu/u, i.e.,
Lu = wu, then Lu = Lbu,0,u2m satisfies

Lu = U−1
u LUu − Uw

on Cc(X).

Proof. The first statement follows by a direct computation using
(uf)(x)− (uf)(y) = (u(x)−u(y))f(x)+u(y)(f(x)−f(y)), which gives

LUuf(x) =
1

m(x)

(∑
y∈X

b(x, y)((uf)(x)− (uf)(y)) + c(x)(uf)(x)

)

= f(x)Lu(x) +
1

m(x)

∑
y∈X

b(x, y)u(y)(f(x)− f(y)).

If u > 0 or u < 0 and w = Lu/u, then dividing this formula by
u(x), applying Lu = wu and rearranging the terms gives the second
statement. �

The preceding lemma deals with formal operators. Using Green’s
formula we can then easily derive a variant in terms of forms. This is
the content of the next lemma.

Lemma 4.8. Let (b, c) be a graph over (X,m). Let u ∈ F with
u ≥ 0 or u ≤ 0 and let w ∈ C(X) satisfy Lu ≥ wu. Then, for all
ϕ ∈ Cc(X),

Qbu,0(ϕ) ≤ Q(Uuϕ)− 〈wUuϕ,Uuϕ〉.

If Lu = wu, then we get equality in the above equation.

Proof. If ϕ ∈ Cc(X), then Uuϕ = uϕ ∈ Cc(X) ⊆ F ∩ `2(X,m).
By Green’s formula, Proposition 1.5, we obtain

Q(Uuϕ)− 〈wUuϕ,Uuϕ〉 =
∑
x∈X

Uuϕ(x)(L − w)(Uuϕ)(x)m(x).
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Now, by the first statement in Lemma 4.7 and the assumption that
Lu ≥ wu, we obtain

Uuϕ(x)(LUuϕ)(x) ≥ (wϕ2u2)(x)+
ϕ(x)

m(x)

∑
y∈X

b(x, y)u(x)u(y)(ϕ(x)−ϕ(y)).

Putting these together, we get

Q(Uuϕ)− 〈wUuϕ,Uuϕ〉 ≥
∑
x∈X

ϕ(x)
∑
y∈X

b(x, y)u(x)u(y)(ϕ(x)− ϕ(y))

= Qbu,0(ϕ).

The statement for equality in the case Lu = wu follows analogously.
This proves the lemma. �

For later use we state the following convenient reformulation of the
second statement of the lemma.

Corollary 4.9. Let (b, c) be a graph over (X,m). Let u ∈ F with
u > 0 or u < 0 and set w = Lu/u. Then, for all ϕ ∈ Cc(X),

Qbu,0
(ϕ
u

)
= Q(ϕ)− 〈wϕ, ϕ〉.

We now turn to consequences for Laplacians and forms on Hilbert
spaces. We first discuss a direct consequence of the previous lemma.
We note that when u is α-harmonic, i.e., u ∈ F and (L+α)u = 0, then
−α = Lu/u whenever u > 0. We denote by

Lu = Lbu,0,u2m

the operator associated to the form

Qu = Qbu,0,u2m

acting on `2(X, u2m).

Corollary 4.10 (Ground state transform – preliminary version).
Let (b, c) be a graph over (X,m) and let α ∈ R. Let u ∈ F with u > 0
be α-harmonic. Then, the forms Qu = Qbu,0,u2m and Q+α are unitarily
equivalent via Uu and so are the associated operators. Specifically,

D(Qu) = U−1
u D(Q), Qu(f) = Q(Uuf) + α‖Uuf‖2

for all f ∈ D(Qu) and for the operator Lu = Lbu,0,u2m

D(Lu) = U−1
u D(L), Lu = U−1

u LUu + α.

Proof. As unitary equivalence is passed on from forms to opera-
tors, it suffices to show the statement for the forms. As Uu is a unitary
operator mapping Cc(X) ⊆ `2(X, u2m) onto Cc(X) ⊆ `2(X,m) and
Cc(X) is dense in the form domains, it suffices to show the statement
about forms for ϕ ∈ Cc(X). This is a direct consequence of the equality
statement in Lemma 4.8, that is,

Qu(ϕ) = Q(Uuϕ) + α‖Uuϕ‖2



226 4. AGMON–ALLEGRETTO–PIEPENBRINK AND PERSSON THEOREMS

for all ϕ ∈ Cc(X). �

Remark. We note that in the corollary above, we trade a graph
with an arbitrary killing term c for a graph without a killing term.
This is achieved by changing the edge weight and the measure using
the α-harmonic function. This is particularly convenient for α = 0.

In fact, Lemma 4.8 allows us to derive a substantial generalization
of Corollary 4.10. This generalization gives a more complete version of
the ground state transform.

In order to state this generalization, we need one more piece of
notation. For w ∈ C(X) bounded below, we denote by qw the form
associated to the operator of multiplication by w. That is,

D(qw) = {f ∈ `2(X,m) |
∑
x∈X

w(x)f 2(x)m(x) <∞}

with
qw(f) = 〈f, wf〉

for all f ∈ D(qw). It is of the essence for the arguments below that
qw is closed and, therefore, lower semi-continuous, see Theorem B.9 for
the equivalence between closed and semi-continuous forms.

Theorem 4.11 (Generalized ground state transform). Let (b, c) be
a graph over (X,m). Let u ∈ F with u > 0 be such that Lu/u is
bounded below and let Qu = Qbu,0,u2m. Then, for any w ∈ C(X) which
is bounded below with w ≤ Lu/u, we obtain

U−1
u D(Q) ⊆ D(Qu)

and for all f ∈ D(Q),

Qu(U
−1
u f) ≤ Q(f)− qw(f).

Furthermore, if w is bounded and w = Lu/u, then we get equality of
the form domains and equality in the estimate above.

Remark. The assumption that Lu/u is bounded below is non-
trivial. The most relevant situation in which it is true is when u > 0
is α-superharmonic for some α ∈ R, in which case Lu/u ≥ −α. This
includes the case α = 0, i.e., Lu ≥ 0.

Proof. Let u ∈ F , u > 0 and w ∈ C(X) bounded below be such
that w ≤ Lu/u.

From Lemma 4.8 we immediately obtain the following:

Fact 1: For all ϕ ∈ Cc(X),

Qu(U
−1
u ϕ) ≤ Q(ϕ)− qw(ϕ).

We will extend this to all functions in D(Q) using the regularity of Q,
i.e., the density of Cc(X) in D(Q). Some care has to be exercised as
both the behavior of Qu and of qw has to be controlled.
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Let C be a lower bound for w. The control on qw which we need is
stated in the next fact.

Fact 2: For all ϕ ∈ Cc(X),

C‖ϕ‖2 ≤ qw(ϕ) ≤ Q(ϕ).

Here, the first estimate follows as w is bounded below by C and the
second estimate is a direct consequence of the inequality above and
Qu ≥ 0.

Consider now an arbitrary f ∈ D(Q). By regularity, there exists
a sequence (ϕn) in Cc(X) with ‖f − ϕn‖ → 0 and Q(f − ϕn) → 0 as
n→∞. As qw is a closed form, we obtain from Fact 2 that qw(f) <∞
since qw is lower semi-continuous. Therefore, f ∈ D(qw). Furthermore,
using the fact that qw is closed again, as well as that ‖f − ϕn‖ → 0
and qw(ϕn − ϕk) → 0 as n, k → ∞, it follows that qw(f − ϕn) → 0 as
n→∞.

As Qu is a closed form and ϕn → f in `2(X,m), so that U−1
u ϕn →

U−1
u f in `2(X, u2m) as n→∞, we then find using Fact 1

Qu(U
−1
u f) ≤ lim inf

n→∞
Qu(U

−1
u ϕn)

≤ lim inf
n→∞

(Q(ϕn)− qw(ϕn))

= Q(f)− qw(f).

As Q(f) − qw(f) < ∞ this implies Qu(U
−1
u f) < ∞ and since Q(f −

ϕn)→ 0 and qw(f−ϕn)→ 0 as n→∞, it follows that U−1
u ϕn → U−1

u f
in ‖ · ‖Qu . Therefore, U−1

u f ∈ D(Qu) as well as

Qu(U
−1
u f) ≤ Q(f)− qw(f).

This proves the first statement.

The last statement can be proven along very similar lines using the
additional assumptions as follows: By w = Lu/u and Lemma 4.8 we
obtain equality in the statement above, i.e.,

Qu(U
−1
u ϕ) = Q(ϕ)− qw(ϕ)

for all ϕ ∈ Cc(X). As w is both bounded below and bounded above
there exists a C > 0 with

−C‖f‖2 ≤ qw(f) ≤ C‖f‖2

for all f ∈ `2(X,m). Given this, the equality above easily gives that a
sequence (ϕn) in Cc(X) converges to f with respect to ‖·‖Q if and only
if (Uu−1ϕn) converges to Uu−1f with respect to ‖ · ‖Qu . This implies the
desired statement. �

Remark (Note on the name of the ground state transform). As
mentioned in the introduction, a generalized ground state is a general-
ized strictly positive eigenfunction for the bottom of the spectrum, i.e.,
a function u ∈ F with u > 0 and Lu = λ0u where λ0 = λ0(L) is the
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bottom of the spectrum of L. Note that, in contrast to other contexts,
we do not assume any minimality properties of u.

In general, such a generalized ground state may or may not exist.
For locally finite connected graphs, it exists by Corollaries 4.5 and 4.6.
In this case, we can use Corollary 4.10 as u is −λ0-harmonic and strictly
positive. More generally, if we assume that the graph is connected but
not necessarily locally finite, then there still exists a strictly positive
superharmonic function for the bottom of the spectrum by Corollar-
ies 4.5 and 4.6. We think of such functions as generalized ground states
and use them in Theorem 4.11. However, let us reiterate that both re-
sults hold for much more general functions.

Theorem 4.11 has two immediate corollaries. The first one will be
used in our study of recurrence later.

Corollary 4.12. Let (b, c) be a graph over (X,m). Let u ∈ F with
u > 0 be such that Lu/u is bounded below. Then, for any w ∈ C(X)
which is bounded below and satisfies w ≤ Lu/u, we get

Q(f) ≥ qw(f)

for all f ∈ D(Q).

Proof. This is an immediate consequence of Theorem 4.11 as
Qu = Qbu,0,u2m ≥ 0. �

The second corollary will be used in the proof of the Agmon–
Allegretto–Piepenbrink theorem found in the next section.

Corollary 4.13. Let (b, c) be a graph over (X,m). Let u ∈ F
with u > 0 be α-superharmonic. Then,

Q(f) ≥ −α‖f‖2

for all f ∈ D(Q).

Proof. This is a direct consequence of the previous corollary with
w = −α ≤ Lu/u. �

3. The bottom of the spectrum

In this section we provide a characterization of the bottom of the
spectrum in terms of strictly positive α-superharmonic functions. More
specifically, we show that energies α ≥ −λ0(L) are characterized by the
existence of strictly positive α-superharmonic functions.

Excavation Exercise 4.3 recalls a basic fact about the spectrum of
an orthogonal sum of operators which will be used in the proof below.

In this section we prove the Agmon–Allegretto–Piepenbrink theo-
rem for the bottom of the spectrum. This theorem characterizes λ0(L)
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in terms of α-superharmonic functions, i.e., u ∈ F with u > 0 and
(L+α)u ≥ 0 for α ∈ R, where L = Lb,c,m. The proof naturally reduces
to:

• Proving the existence of strictly positive α-superharmonic functions
for α ≥ −λ0(L).
• Showing that −λ0(L) is bounded above by α whenever there exists

a strictly α-superharmonic function.

For connected graphs, this characterization is a direct consequence
of the results of the preceding two sections with Section 1 giving the
first point and Section 2 giving the second. In fact, the results in
Section 2 do not even require connectedness of the graph, in contrast
to the existence statements in Section 1.

Now, for the applications in the next section, we need a version for
graphs without a connectedness assumption. For this reason, we state
and prove a statement without such an assumption. The only remain-
ing task in the proof is to reduce the general case to the connected case
by restricting attention to connected components.

Theorem 4.14 (Agmon–Allegretto–Piepenbrink – spectrum). Let
(b, c) be a graph over (X,m) and let α ∈ R. Then, the following state-
ments are equivalent:

(i) α ≥ −λ0(L).
(ii) There exists a strictly positive α-superharmonic function.

Furthermore, if the graph is infinite and locally finite, then the above
are also equivalent to the following statement:

(iii) There exists a strictly positive α-harmonic function.

Proof. As the operator L decomposes into an orthogonal sum of
restrictions of L to the connected components of the graph, we can
assume that the graph is connected.

(i) =⇒ (ii)/(iii): We apply Corollary 4.5 (or Corollary 4.6) to con-
clude the existence of a strictly positive α-(super)harmonic function.
This finishes the proof of this direction.

(ii)/(iii) =⇒ (i): Assume that there exists a strictly positive α-
superharmonic function u. Then, the desired statement follows from
Corollary 4.13, i.e., Q(f) ≥ −α‖f‖2 and the variational characteriza-
tion of the bottom of the spectrum, i.e., λ0(L) = inf Q(f), where the
infimum is taken over all normalized f ∈ D(Q), see Theorem E.8. �

Remark. If the graph is connected, then we can replace the as-
sumption of strict positivity of the α-(super)harmonic function in (ii)
and (iii) by non-triviality together with positivity. This follows by
Corollary 4.2.

Remark. We can deduce from the theorem above that if the graph
is connected, then the only possible eigenvalue of L with positive eigen-
function is λ0(L) (Exercise 4.6).
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Remark. Clearly, (iii) fails in the case of finite graphs for α >
−λ0(L) as α-harmonic functions are eigenfunctions for finite graphs.
We next give an example that shows that also in the non-locally finite
case there do not always exist non-trivial α-harmonic functions for all
α ≥ −λ0(L).

Example 4.15 (No α-harmonic function for α > 0). Let X = N0,
m = 1 and let b be an infinite star graph with center 0, i.e., b(0, k) =
b(k, 0) > 0 for k ∈ N satisfying

∑∞
k=1 b(0, k) < ∞ and b(k, n) = 0

otherwise and c = 0. Let u ≥ 0 be α-harmonic for α > 0. Then,

(L+ α)u(0) =
∞∑
k=1

b(0, k)(u(0)− u(k)) + αu(0) = 0

and

(L+ α)u(k) = b(k, 0)(u(k)− u(0)) + αu(k) = 0

for k ∈ N. Hence, as b(0, k)(u(0)− u(k)) = αu(k) from the second set
of equations above, we get in the first equation that

α

(
u(0) +

∞∑
k=1

b(0, k)u(k)

)
= 0,

which implies that u = 0 as u ≥ 0 and α > 0.

4. The bottom of the essential spectrum

In this final section we turn to characterizations of the bottom of
the essential spectrum. We will present two such characterizations.
One is given in terms of the spectra of restrictions of the operator
to complements of finite sets. Combined with the Agmon–Allegretto–
Piepenbrink theorem for the bottom of the spectrum, this then gives the
second characterization via functions which are both α-superharmonic
and strictly positive outside of a finite set.

We recall that the essential spectrum is the complement in the spec-
trum of the isolated eigenvalues of finite multiplicity. We will denote
the essential spectrum by σess(L) and denote the bottom of the essential
spectrum of L by

λess
0 (L) = inf σess(L).

A basic fact about the essential spectrum is that it is not altered by
compact perturbations of the operator. In fact, this can even be shown
to characterize the essential spectrum, see Theorem E.7 and the sub-
sequent remark in Appendix 2. Hence, compactness in one form or an-
other is always crucial when dealing with the essential spectrum. In our
considerations below this is reflected in the fact that changes on com-
pact, i.e., finite sets lead to compact perturbations, see Lemma 4.18. As
a consequence, such changes do not alter the essential spectrum, which
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is proven in Corollary 4.19. Given this, we can easily obtain a Pers-
son result which characterizes the bottom of the essential spectrum in
terms of the bottom of the spectrum of the perturbed operators. Com-
bining this theorem with the Agmon–Allegretto–Piepenbrink result of
the previous section, we then obtain a characterization of the bottom of
the essential spectrum via positive α-superharmonic functions outside
of a finite set.

Indeed, we need to specify what we mean by α-superharmonic out-
side of a finite set. Given a finite set K ⊆ X, the most intuitive way
to say u ≥ 0 is α-superharmonic on X \K is to assume u is in F and
satisfies

(L+ α)u ≥ 0 on X \K.

There are, however, two modifications we have to make in order to
define α-superharmonicity outside of a set K. First we have to assume
that u = 0 on K. Secondly, we do not need that u is in F , which
imposes the assumption

∑
y∈X b(x, y)|u(y)| < ∞ for all x ∈ X. We

only need to assume that
∑

y∈X\K b(x, y)|u(y)| <∞ for all x ∈ X \K
since we evaluate Lu only outside of K and u = 0 on K.

This space of functions already has appeared in Section 2 as FX\K
on which the operator LX\K acts similarly to L. Now, we say that
a function u is α-superharmonic outside of K if u = 0 on K, the
restriction u|X\K is in FX\K and

(LX\K + α)u|X\K ≥ 0.

Similarly, we say that u is α-harmonic outside of K if u satisfies the
above and (LX\K +α)u|X\K = 0. In summary we say that there exists
an α-(super)harmonic function outside of a finite set whenever there
is a finite K ⊆ X and a function u such that u is α-(super)harmonic
outside of K.

The basic argument connecting compactness in space with com-
pactness of the operators can be seen as establishing the compatibility
of geometry with operator theory. This requires an additional assump-
tion, namely that

LCc(X) ⊆ `2(X,m).

This assumption is characterized in Theorem 1.29 and is for example
satisfied if the graph is locally finite or if infx∈X m(x) > 0.

Following this preliminary discussion and these definitions, we now
state the theorem, which we will ultimately prove in this section, giving
a characterization of the bottom of the essential spectrum in terms of
functions which are superharmonic outside of a finite set.

Theorem 4.16 (Agmon–Allegretto–Piepenbrink – essential spec-
trum). Let (b, c) be a connected graph over (X,m) such that LCc(X) ⊆
`2(X,m).
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(a) If α > −λess
0 (L), then there exists a strictly positive α-superharmonic

function outside of a finite set. If the graph is locally finite, then
this function can be chosen to be α-harmonic.

(b) If there exists a strictly positive α-superharmonic function outside
of a finite set, then α ≥ −λess

0 (L).

In particular,

λess
0 (L) = sup

{
−α ∈ R

∣∣∣∣ there exists a strictly positive function
α-superharmonic outside of a finite set

}
.

Remark (Idea of the proof). Before we turn to the actual proof
of the theorem we present the core of the argument in a nutshell: As
is clear from the statement, the theorem deals with restrictions of op-
erators to complements of finite sets. Thus, the proof of the theorem
will rely on a closer look at such restrictions. Such restrictions can
be seen as the difference between the operator acting on the entire
space X and the operator on a finite subset. The assumption that
LCc(X) ⊆ `2(X,m) allows us to show the smallness, in the sense of
compactness of the operator, of this difference from the finiteness of the
set. Compactness, in turn, is the crucial property underlying the stabil-
ity of the essential spectrum. To make all of this precise we need some
further notation and concepts to deal with restrictions to complements
of sets.

We will need the restriction of the form Q to subsets U of X with
X \ U being finite. An extensive discussion of restrictions of forms to
arbitrary subsets of X was given in Section 2. Here, we briefly discuss
the essential points and the simplifications arising from the finiteness
of X \ U . In particular, we also include a proof of regularity in our
situation as this is substantially easier than the proof given in Section 2
for the case of general subsets.

For U ⊆ X, we recall the definition of QU with domain

D(QU) = {g ∈ `2(U,mU) | iUg ∈ D(Q)}
and acting as

QU(g) = Q(iUg).

In the definition
iU : C(U) −→ C(X)

is extension by zero. The associated self-adjoint operator to QU is

denoted by LU . Since Q = Q
(D)
b,c,m is a regular Dirichlet form, we have

by Corollary 2.19

QU = Q
(D)
U

where Q(D) is the closure of the restriction of Q to Cc(U)×Cc(U) and,
therefore,

LU = L
(D)
U ,
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where L
(D)
U is the associated operator to Q

(D)
U .

For f ∈ C(X) the restriction of f to U is denoted by f |U . We

will also need the extension Q̂U of QU to `2(X,m). This extension is
defined on the set

D(Q̂U) = {f ∈ D(Q) | f |U ∈ D(QU)}
via

Q̂U(f) = QU(f |U).

By construction, Q̂U may be viewed as an orthogonal sum of QU on
`2(U,mU) and 0 on `2(X \ U,mX\U) and this implies that the self-

adjoint operator L̂U associated to Q̂U is the orthogonal sum of LU and
the zero operator on `2(X \ U,mX\U).

If X \U is finite, then we can say much more. We collect some facts
next. Although parts of this result are contained already in Section 2
we give a short proof here as well.

Lemma 4.17. Let (b, c) be a graph over (X,m). Let U ⊆ X be such
that X \ U is finite. Then, QU is a regular Dirichlet form with

D(QU) = {f |U | f ∈ D(Q)}
as well as

D(Q̂U) = D(Q) and Q̂U(f) = Q(1Uf).

Proof. Note that whenever g belongs to D(QU) we have g =
(iUg)|U with iUg ∈ D(Q) and, conversely, whenever f belongs to D(Q)
we find

iU(f |U) = 1Uf = f − 1X\Uf ∈ D(Q)

as 1X\Uf ∈ Cc(X) ⊆ D(Q). This implies the first statement and, in
particular, that the map πU : D(Q) −→ D(QU) given by

πUf = f |U
is well-defined. Since both iU and πU commute with normal contrac-
tions, QU is a Dirichlet form.

If we equipD(Q) with ‖·‖Q andD(QU) with ‖·‖QU , we see that πU is
closed. Hence, the closed graph theorem implies that πU is continuous.
This allows us to show the regularity of QU in the following simple
manner: Let g ∈ D(QU) be arbitrary and set f = iUf for f ∈ D(QU).
Then, by the regularity of Q there exists a sequence (ϕn) in Cc(X)
with ϕn → f with respect to ‖ · ‖Q. As πU is continuous, this implies
convergence of πUϕn → πUf in ‖ · ‖QU for n → ∞ and this gives the
desired regularity statement. Thus, QU is a regular Dirichlet form.
Since f |U belongs to D(Q) for any f ∈ D(Q) and iu(f |U) = 1Uf we

then conclude the equality of the domains of Q̂U and Q. �

Having this description of Q̂U at our disposal, we can now provide
the necessary perturbation theory.
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Lemma 4.18. Let (b, c) be a graph over (X,m). Let U ⊆ X be such
that X \ U is finite. If LCc(X) ⊆ `2(X,m), then there exists a unique
self-adjoint compact operator A with

(Q− Q̂U)(f, g) = 〈f, Ag〉

for all f, g ∈ D(Q) = D(Q̂U). In particular, L = L̂U + A.

Proof. By the preceding lemma, D(Q̂U) = D(Q). Hence, Q− Q̂U

is also defined on D(Q). By Cc(X) ⊆ D(Q) we then directly infer the
uniqueness of A.

We now turn to showing existence. Set K = X \ U . Then, K
is a finite set. Hence, 1Kh belongs to D(Q) for any h ∈ `2(X,m) as
1Kh ∈ Cc(X). Moreover, by the previous lemma again, we have that

Q̂U(f, g) = Q(1Uf, 1Ug) for all f, g ∈ D(Q). Thus, we obtain for all
f, g ∈ D(Q),

Q(f, g)− Q̂U(f, g) = Q(1Uf + 1Kf, 1Ug + 1Kg)−Q(1Uf, 1Ug)

= Q(1Uf, 1Kg) +Q(1Kf, 1Ug) +Q(1Kf, 1Kg).

Now, as K is finite, the operator associated to the form (f, g) 7→
Q(1Kf, 1Kg) can easily be seen to be finite-dimensional and, hence,
compact. So, it remains to consider the forms (f, g) 7→ Q(1Uf, 1Kg)
and (f, g) 7→ Q(1Kf, 1Ug).

We first deal with the form (f, g) 7→ Q(1Uf, 1Kg). Using the as-
sumption on L we can define for x ∈ X the function

vx = L1x ∈ `2(X,m).

By Green’s formula, Proposition 1.5, we then find that Q(1Uf, 1x) =
〈1Uf,L1x〉 = 〈1Uf, vx〉. Therefore,

Q(1Uf, 1Kg) =
∑
x∈K

g(x)Q(1Uf, 1x)

=
∑
x∈K

g(x)〈1Uf, vx〉

= 〈f,
∑
x∈K

g(x)1Uvx〉

= 〈f, AU,Kg〉.
Here, AU,K is the finite-dimensional and, hence, compact operator de-
fined by

AU,Kg =
∑
x∈K

g(x)1Uvx.

As for the form (f, g) 7→ Q(1Kf, 1Ug), an analogous computation can
be carried out yielding

Q(1Kf, 1Ug) = 〈f, AK,Ug〉
with the compact operator AK,U = A∗U,K .
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The last statement follows from the preceding considerations by
standard theory. For the convenience of the reader we include a proof:
Let f ∈ D(L). By the definition of L, there exists an h = Lf ∈
`2(X,m) with Q(f, g) = 〈h, g〉 for all g ∈ D(Q). By what we have
shown already this implies

Q̂U(f, g) = 〈h, g〉+ 〈f, Ag〉 = 〈(h+ Af), g〉

for all g ∈ D(Q) = D(Q̂U). By the definition of L̂U we infer that

f ∈ D(L̂U) with L̂Uf = Lf + Af . Analogously, we can show that any

f ∈ D(L̂U) belongs to D(L) and Lf = L̂U + Af . �

By the last lemma and the fact that compact perturbations do
not effect the essential spectrum we obtain the following immediate
corollary.

Corollary 4.19 (Stability of essential spectrum under removing
finite sets). Let (b, c) be a graph over (X,m). Let U ⊆ X be such that
X \ U is finite. If LCc(X) ⊆ `2(X,m), then

σess(L) = σess(LU).

Proof. By the previous lemma, the Laplacians associated to Q

and Q̂U differ only by A, which is a compact operator, i.e., we have

L = L̂U + A. This implies

σess(L) = σess(L̂U)

as a compact operator does not change the essential spectrum, see

Theorem E.7. By definition, we furthermore have that L̂U = LU⊕0X\U
and, hence, σess(L̂U) = σess(LU) ∪ σess(0X\U). As X \ U is finite, the
essential spectrum of 0X\U is empty. Putting all of this together, we
obtain the desired statement. �

As alluded to above, we need one more ingredient in order to prove
our main result. This ingredient is a Persson theorem.

Theorem 4.20 (Persson theorem). Let (b, c) be a graph over (X,m).
If LCc(X) ⊆ `2(X,m), then

λess
0 (L) = sup

K⊆X,K finite
λ0(L

(D)
X\K).

Proof. Set
α = sup

K⊆X,Kfinite
λ0(LX\K)

and recall that LX\K = L
(D)
X\K . We show two inequalities:

α ≤ λess
0 (L): Invoking the preceding corollary, with U = X \K for

K finite, we find that

λ0(LX\K) ≤ λess
0 (LX\K) = λess

0 (L).
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Thus, the desired inequality follows.

λess
0 (L) ≤ α: We first note the following monotonicity property of

the infimum of the spectrum. For K1 ⊆ K2 we have

λ0(LX\K1) = inf
ϕ∈Cc(X\K1)

QX\K(ϕ)

‖ϕ‖2
≤ inf

ϕ∈Cc(X\K2)

QX\K2(ϕ)

‖ϕ‖2
= λ0(LX\K2)

as QX\K2 and QX\K1 agree on Cc(X \K2). From this monotonicity we
obtain that we can, without loss of generality, increase the finite sets
K in question in our subsequent considerations.

Choose a sequence of finite sets (Kn) with

α = lim
n→∞

λ0(LX\Kn).

By increasing the sets if necessary, we can then assume without loss
of generality that the sets Kn are an exhaustion, i.e., Kn ⊆ Kn+1 and⋃
nKn = X. Choose ϕn in Cc(X \Kn) with ‖ϕn‖ = 1 and

QX\Kn(ϕn) ≤ λ0(LX\Kn) +
1

n
for all n ∈ N.

As the sets Kn are increasing and their union covers the space we
can assume, without loss of generality, that the support of ϕn is con-
tained in Kn+1 for all n as otherwise we can pass to a subsequence.
Hence, the supports of the ϕn are pairwise disjoint, so that the ϕn
themselves are pairwise orthogonal. Note that, by construction, the ϕn
are normalized. Altogether we then find that the ϕn form an orthonor-
mal sequence and this gives that they converge weakly to 0, i.e.,

〈f, ϕn〉 → 0 as n→∞
for all f ∈ `2(X,m). Given this, the desired inequality follows directly
from Theorem E.12. �

Proof of Theorem 4.16. (a) Let α > −λess
0 (L). By the Persson

theorem, Theorem 4.20, there exists a finite set K ⊆ X such that

α > −λ0(L
(D)
X\K).

By the Agmon–Allegretto–Piepenbrink theorem for the bottom of the
spectrum, Theorem 4.14, there exists a u > 0 which is α-superharmonic
on X \K. Furthermore, by the additional statements in Theorem 4.14,
if the graph is locally finite, then u > 0 is even α-harmonic.

(b) Let K be a finite set and let u be a function on X which vanishes
on K and is strictly positive and α-superharmonic function on X \K.

Then, u is α-superharmonic for L
(D)
X\K . Thus, the Agmon–Allegretto–

Piepenbrink theorem for the bottom of the spectrum, Theorem 4.14,
gives that

α ≥ −λ0(L
(D)
X\K).

Moreover, from the Persson theorem, Theorem 4.20, we find
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λ0(L
(D)
X\K) ≤ λess

0 (L)

so the desired statement follows. �
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Exercises

Excavation exercises.

Exercise 4.1 (Diagonal subsequence). Let (fn) be a sequence with
fn ∈ C(X) such that for every x ∈ X there exists a constant Cx with
|fn(x)| ≤ Cx for all n ∈ N. Show that there exists a subsequence of
(fn) which converges pointwise at all x ∈ X.

Exercise 4.2 (Multiplication by a lower bounded function gives
a closed form). Let (X,m) be a measure space. Let w ∈ C(X) be
bounded below. Let Qw be the form associated to multiplication by w
on `2(X,m), i.e.,

D(Qw) = {f ∈ `2(X,m) |
∑
x∈X

w(x)f 2(x)m(x) <∞}

with

Qw(f) = 〈f, wf〉
for f ∈ D(Qw). Show that Qw is a closed form.

Exercise 4.3 (Spectrum and orthogonal sums). Let H be a Hilbert
space and let A be an operator on H with domain D(A). Suppose that
A can be written as an orthogonal sum of operators, i.e., A =

⊕∞
n=0An.

Show that

σ(A) =
∞⋃
n=0

σ(An).

Example exercises.

Exercise 4.4 (λ0 for anti-trees). Let (b, 0) be a graph with stan-
dard weights over (X, 1). That is, b(x, y) ∈ {0, 1} with c = 0 and m =
1. Let X =

⋃∞
n=0 Sn, where Sn are disjoint sets with #Sn = (n + 1)2.

Suppose that b(x, y) = 1 for all x ∈ Sn and y ∈ Sn+1 for n ∈ N0. Show
that λ0(L) ≥ 2.

(Hint: Apply the Agmon–Allegretto–Piepenbrink theorem for the
bottom of the spectrum to the function u which takes the value (n+1)2

on Sn.)

Extension exercises.

Exercise 4.5 (α-harmonic functions for finite graphs). Let (b, c)
be a connected graph over a finite measure space (X,m). Let L denote
the Laplacian associated to (b, c) over (X,m). Show that for every
α > −λ0(L) any α-superharmonic function u is not harmonic.
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Exercise 4.6 (Positive eigenfunctions). Let (b, c) be a connected
graph over a measure space (X,m). Let L denote the Laplacian as-
sociated to (b, c) over (X,m). If there is an eigenvalue λ of L with a
positive eigenfunction, then λ = λ0(L). Show that this statement is
false if the graph is not connected.
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Notes

There is a long history for the corresponding results on (subsets
of) Euclidean space, manifolds and strongly local Dirichlet forms. As
for graphs, various parts of the results in this chapter are scattered
around the literature. Our main inspiration is [HK11]. We give a
more specific discussion of each section below.

The Harnack inequality goes back to work of Harnack [Har87]. In
the context of graphs, it appears already in the work of Dodziuk in
[Dod84]. A Harnack principle can be found (in a special case) in the
book of Woess [Woe00]. Our presentation in Section 1 mainly follows
[HK11]. In the discrete setting such a Harnack inequality is surpris-
ingly simple to obtain, while it requires a much more thorough analysis
in the setting of strongly local Dirichlet forms, see e.g. [BM95].

The ground state transform is well known for Schrödinger operators
and the Laplacian on manifolds. A recent treatment in the non-linear
case along with various classical references is contained in [FS08]. In
the discrete setting it appeared for the first time in [FSW08] in the
context of Jacobi matrices. For general regular Dirichlet forms, the
ground state transform is discussed in [FLW14]. In probability the-
ory, the corresponding method is often discussed under the name of
h-transform or Doob-transform. For functions with finite support on
graphs, a treatment is given in [HK11]. Our considerations in Sec-
tion 2 extend this discussion.

A characterization of the infimum of the spectrum via positive solu-
tions for Schrödinger operators on Euclidean domains appears in work
of Agmon in [Agm83]. For the Laplacian on manifolds, it is dis-
cussed in [CY75, FCS80, Sul87]. A generalization to strongly local
Dirichlet forms can be found in [LSV09]. The result for connected
graphs with standard weights and counting measure can be found in
[Woj08, Woj09] and for general weights and measure in [HK11]. In
the generality presented in Section 3, the results seem to be new. In
the context of random walks or, more generally, positive matrices, a
corresponding result is known as the Perron–Frobenius Theorem, see
[Pru64, VJ67, VJ68, Woe00].

The investigation of the infimum of the essential spectrum via
positive solutions outside of finite sets for Schrödinger operators on
Euclidean domains goes back to the work of Allegretto [All74] and
Piepenbrink [Pie74]. For Laplacians on locally finite graphs it can be
found in [BG15] and for Schrödinger operators on graphs in [KPP20].
Our treatment in Section 4 is similar to these last two works. In the
continuum setting the Persson theorem goes back to [Per60]. For local
Dirichlet forms, see [Gri98], and for general regular Dirichlet forms, see
[LS19]. On a different note, the existence of a positive supersolution at
the bottom of the essential spectrum can be characterized by finiteness
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of the number of eigenvalues below the essential spectrum [Sim11], see
also [Dev12] and [FCS80, FC85] for the case of manifolds.

A word about the name Agmon–Allegretto–Piepenbrink theorem
may be in order: The original work of Allegretto [All74] and Piepen-
brink [Pie74], see also [MP78], deals with Schrödinger operators on
Euclidean space. It provides a characterization of the infimum of the
essential spectrum in terms of superharmonic functions. Thus, it is
basically a precursor of the results in Section 4. However, it seems
that subsequent to their work, the name Allegretto–Piepenbrink theo-
rem was often assigned to results like those in Section 3 dealing with
the infimum of the spectrum. In fact, this is how the names are given
in the influential monograph [CFKS87] and subsequent articles, e.g.,
[LSV09]. On the other hand, the work of Agmon [Agm83] treats
the bottom of the spectrum of Schrödinger operators and provides a
characterization in terms of superharmonic functions. Thus, it is a
precursor of the results in Section 3. Clearly, the results in Section 3
and Section 4 and their proofs are related. For this reason, one may
speak about Agmon–Allegretto–Piepenbrink theorems as we do in this
chapter.





CHAMBER 5

Large Time Behavior of the Heat Kernel

We out for the Gusto, and we gon’ keep it raw.
Ghostface Killah.

In this chapter we study the large time behavior of the semigroup.
We will show two convergence results: In the first result, the limit is
either the `2 ground state, i.e., the strictly positive normalized eigen-
function corresponding to the bottom of the spectrum, or zero, in the
case that there is no `2 ground state. In the second result, the limit
is the ground state energy, i.e., the bottom of the spectrum. To this
end, we consider kernels of the semigroup. These convergence results
are presented in Section 2

The statements on convergence hold not only for the Dirichlet and
Neumann Laplacians L(D) and L(N) but also for all operators arising
from Dirichlet forms associated to graphs. In order to carry out the
proofs for all such operators, we extend certain previously established
positivity properties of the semigroup associated to L(D). We also show
that if the ground state exists for such operators, then it is unique. We
carry this out in Section 1.

Finally, in Section 3 we turn our focus to the Neumann Laplacian
L(N). We characterize when the bottom of the spectrum of L(N) is zero
in terms of finiteness of the measure of the entire space. We combine
this characterization with the large time convergence results to discuss
when the heat kernel associated to L(N) converges to zero.

1. Positivity improving semigroups and the ground state

Any semigroup coming from an operator associated to a Dirichlet
form is positivity preserving. In this section, we will show that if the
operator comes from a Dirichlet form which is associated to a connected
graph, then the semigroup is positivity improving. We will also show
that for any such operator, if there exists a ground state, then there
exists a unique strictly positive normalized ground state.

We start with some general facts. For any self-adjoint operator
L associated to a positive symmetric closed form Q on `2(X,m), the
semigroup e−tL for t ≥ 0 is a bounded self-adjoint positive operator,
see Appendices A and B for more details. By the discreteness of the
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space X, the semigroup has a kernel, i.e., there exists a map

p : [0,∞)×X ×X −→ R

such that

e−tLf(x) =
∑
y∈X

pt(x, y)f(y)m(y)

for all f ∈ `2(X,m), x ∈ X and t ≥ 0. We call p the heat kernel
associated to L. An easy calculation gives that

pt(x, y) =
1

m(x)m(y)
〈1x, e−tL1y〉

for all x, y ∈ X and t ≥ 0.
These are general facts concerning all forms and operators on dis-

crete spaces. We will now focus on the case of graphs. If (b, c) is a graph

over (X,m), Q(D) = Q
(D)
b,c,m is the minimal form and Q(N) = Q

(N)
b,c,m is

the maximal form, then recall that a form Q with domain D(Q) is
associated to (b, c) if Q is closed, D(Q(D)) ⊆ D(Q) ⊆ D(Q(N)) and
Q = Q(N) on D(Q). We say that the self-adjoint operator L arising
from Q is also associated to (b, c) and note that by Theorem 1.12, L is
a restriction of the formal Laplacian L.

We recall that an operator is called positivity preserving if the op-
erator maps positive functions to positive functions and positivity im-
proving if the operator maps nontrivial positive functions to strictly
positive functions. By the general theory of Dirichlet forms, see The-
orem C.4 in Appendix C, the semigroup of an operator associated to
a Dirichlet form is positivity preserving. Furthermore, we have pre-
viously shown that the semigroup associated to the Laplacian L(D) is
even positivity improving if the graph is connected. Combining this
with the fact that L(D) generates the minimal semigroup gives the fol-
lowing result.

Lemma 5.1 (Positivity improving semigroups). Let (b, c) be a con-
nected graph over (X,m). Let Q be a Dirichlet form associated to (b, c)
with operator L. Then, the semigroup e−tL is positivity improving for
all t > 0.

Proof. As L is an operator associated to a Dirichlet form, it fol-
lows that e−tL is positivity preserving for all t ≥ 0, see Theorem C.4.
Therefore, e−tLg ≥ 0 for all g ∈ `2(X,m) with g ≥ 0. As L is a re-
striction of L by Theorem 1.12, it follows that v = e−tLg is a positive
solution of the heat equation with initial condition g, i.e., −Lv = ∂tv

with v0 = g, see Theorem A.33. Since e−tL
(D)
g is the minimal positive

solution by Lemma 1.24, we have

e−tLg ≥ e−tL
(D)

g
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for all g ∈ `2(X,m) with g ≥ 0 and t > 0. As the graph is connected,

by Theorem 1.26 we get e−tL
(D)
g > 0 if g ≥ 0 and g 6= 0. This shows

that the semigroup e−tL is positivity improving for all t > 0. �

As we assume that the form Q is a Dirichlet form, it follows by
general theory that the semigroup is also contracting, i.e., e−tLf ≤ 1
whenever f ≤ 1, see Theorem C.4. That e−tL is positivity improv-
ing and contracting for any L arising from a Dirichlet form which is
associated to a graph and any t > 0 will be used repeatedly below.

We denote the spectrum of an operator L by σ(L) and the bottom
of the spectrum by

λ0 = inf σ(L).

By the variational characterization of the bottom of the spectrum, The-
orem E.8, it follows that

λ0 = inf
f∈D(Q),‖f‖=1

Q(f) = inf
f∈D(L),‖f‖=1

〈f, Lf〉.

The following lemma considers the bottom of the spectrum for con-
nected graphs. Specifically, whenever the bottom of the spectrum is
an eigenvalue, then there exists a unique strictly positive normalized
eigenfunction.

Lemma 5.2 (Uniqueness of eigenfunctions to λ0). Let (b, c) be a
connected graph over (X,m). Let Q be a Dirichlet form associated
to (b, c) with operator L such that the bottom of the spectrum λ0 =
inf σ(L) is an eigenvalue. Then, there exists a unique strictly positive
normalized eigenfunction corresponding to λ0.

Proof. Let u ∈ D(L) be a normalized eigenfunction corresponding
to λ0. We will show that u must be strictly positive or strictly negative.
Without loss of generality, we may assume that u(x) > 0 for some
x ∈ X. Let u+ = u ∨ 0 and u− = −u ∨ 0 so that u = u+ − u− and
|u| = u+ + u−. From the variational characterization of the bottom of
the spectrum, Theorem E.8, and the fact that Q is a Dirichlet form we
get

λ0 ≤ Q(|u|) ≤ Q(u) = λ0

so that Q(|u|) = Q(u). Therefore, |u| is also a normalized eigenfunction
corresponding to λ0 by Theorem E.8. As both u and |u| are eigenfunc-
tions corresponding to λ0, we get that

u+ =
u+ |u|

2

is also an eigenfunction corresponding to λ0. We note that u+ is non-
zero as we assumed that u(x) > 0 for some x ∈ X.

The semigroup e−tL on a connected graph is positivity improving
by Lemma 5.1. Therefore, as u+ ≥ 0 satisfies Lu+ = λ0u+ and is non-
zero, by the functional calculus and the positivity improving property
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we obtain

0 < e−tLu+ = e−tλ0u+

for any t > 0. Hence, u+ > 0 so that u = u+ > 0. Therefore, any
eigenfunction corresponding to λ0 which is positive at some vertex is
strictly positive.

From the argument above, it follows that any eigenfunction cor-
responding to λ0 has a strict sign, i.e., is strictly positive or strictly
negative. It is clear that any two functions of strict sign are not or-
thogonal in `2(X,m). This gives the uniqueness of u. �

If L is a self-adjoint operator arising from a Dirichlet form asso-
ciated to a connected graph and λ0 is an eigenvalue, then we have a
unique strictly positive eigenfunction which minimizes the energy by
the lemma above. In this context, we will refer to this eigenfunction as
the ground state and λ0 as the ground state energy.

We now discuss the case when the ground state energy is zero.

Example 5.3 (When λ0 = 0 is an eigenvalue). Suppose that (b, c)
is a connected graph over (X,m) and L is an operator coming from a
Dirichlet form Q associated to (b, c). If λ0 = 0 is an eigenvalue for L,
then c = 0 and m(X) <∞.

Indeed, this follows as if u > 0 is a ground state for λ0 = 0 given
by the lemma above, then

0 = λ0 = Q(u) =
1

2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 +
∑
x∈X

c(x)u2(x).

This shows that u is constant and c = 0. As u ∈ D(L) ⊆ `2(X,m), it
follows that m(X) < ∞. In particular, as u is normalized, we obtain

u = 1/
√
m(X).

We will see that c = 0 and m(X) < ∞ implies that λ0 = 0 is an
eigenvalue for the Neumann Laplacian, i.e., L = L(N) in Section 3.

Furthermore, in the next chapter we will see that λ0 = 0 is an
eigenvalue for L(D) if and only if c = 0, m(X) <∞ and the underlying
graph is recurrent.

Remark. Recall that a function u ∈ F is called α-superharmonic
for α ∈ R if (L + α)u ≥ 0. It is called α-harmonic if the above is an
equality. In the case of locally finite connected graphs, by the spectral
version of the Agmon–Allegretto–Piepenbrink theorem, Theorem 4.14,
we get that there exists a −λ0(L(D))-harmonic function. This gives a
generalized ground state at the bottom of the spectrum for L(D). To
be a ground state, we additionally require that the function is in the
domain of the operator.

Furthermore, Theorem 4.14 also gives the existence of a strictly
positive α-superharmonic function if and only if α ≥ −λ0(L(D)). Com-
bining this with Lemma 5.2 above we immediately obtain that the only
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eigenvalue of L(D) which has a positive eigenfunction is λ0(L(D)). In the
next section, we will extend this to all operators arising from Dirichlet
forms associated to graphs.

2. Theorems of Chavel–Karp and Li

In this section we prove two convergence results. The first result
implies that the heat kernel decays at a certain rate. In particular, if the
bottom of the spectrum of the operator is positive, then the heat kernel
must decay exponentially. The second result gives the convergence of
the logarithm of the heat kernel to the bottom of the spectrum.

Both convergence results hinge on the use of the spectral theorem,
see Appendix A for the necessary background. Furthermore, Exca-
vation Exercise 5.1 recalls a standard fact concerning superadditive
functions which will be used in the proof of Theorem 5.6.

We now present the first of our convergence results. We recall that
the heat kernel of an operator L on `2(X,m) is given by

pt(x, y) =
〈1x, e−tL1y〉
m(x)m(y)

.

The following result connects the heat kernel, the bottom of the spec-
trum and the ground state.

Theorem 5.4 (Theorem of Chavel–Karp). Let (b, c) be a connected
graph over (X,m). Let Q be a Dirichlet form associated to (b, c) with
operator L. Let λ0 = inf σ(L). Then, there exists a function u : X −→
[0,∞) such that

lim
t→∞

eλ0tpt(x, y) = u(x)u(y)

for all x, y ∈ X. If λ0 is not an eigenvalue, then u = 0. If λ0 is
an eigenvalue, then u is the ground state, i.e., the unique normalized
positive eigenfunction corresponding to λ0.

Proof. The proof is a direct application of the spectral theorem.
Let E = 1{λ0}(L) be the spectral projection onto the eigenspace of λ0.
By Proposition E.2, E = 0 if λ0 is not an eigenvalue and, if λ0 is an
eigenvalue, then E = 〈u, ·〉u, where u is the unique positive normalized
eigenfunction corresponding to λ0 given by Lemma 5.2.

Let µ be the signed spectral measure of L associated to 1x, 1y for
x, y ∈ X. That is, µ is the unique signed measure which is characterized
by

〈1x, ψ(L)1y〉 =

∫ ∞
λ0

ψ(s)dµ(s)

for all bounded measurable functions on [λ0,∞), see Proposition A.26.
Assume that λ0 is an eigenvalue so that 1{λ0}(L) = 〈u, ·〉u. We then
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get

m(x)m(y)|eλ0tpt(x, y)− u(x)u(y)| = |〈1x, (eλ0te−tL − 1{λ0}(L))1y〉|

=

∣∣∣∣∫ ∞
λ0

(
e−t(s−λ0) − 1{λ0}(s)

)
dµ(s)

∣∣∣∣
→ 0

as t → ∞ by Lebesgue’s dominated convergence theorem. Note that
µ is a finite measure so that the bounding function can be chosen
as 1. If λ0 is not an eigenvalue, then a similar argument gives the
conclusion. �

We highlight one immediate corollary of the theorem above which
characterizes when there exists a ground state.

Corollary 5.5 (Characterization of existence of a ground state).
Let (b, c) be a connected graph over (X,m). Let Q be a Dirichlet form
associated to (b, c) with operator L. Let λ0 = inf σ(L). Then, λ0 is an
eigenvalue for L if and only if

lim
t→∞

eλ0tpt(x, y) 6= 0

for any (all) x, y ∈ X.

We will now state and prove the second of our convergence state-
ments, which gives that the logarithm of the heat kernel converges to
the bottom of the spectrum.

Theorem 5.6 (Theorem of Li). Let (b, c) be a connected graph over
(X,m). Let Q be a Dirichlet form associated to (b, c) with operator L.
Let λ0 = inf σ(L). Then,

lim
t→∞

1

t
log pt(x, y) = −λ0

for all x, y ∈ X.

Proof. Let ex = 1x/
√
m(x), x ∈ X and observe that {ex}x∈X is

an orthonormal basis for `2(X,m). Let

at(x, y) = 〈ex, e−tLey〉

for x, y ∈ X, t ≥ 0 and let at(x) = at(x, x). We will show that the
function t 7→ log at(x) on [0,∞) is superadditive for all x ∈ X.

Note that, as L is an operator coming from a Dirichlet form, e−tL

is positivity improving for t > 0 by Lemma 5.1 above and clearly
positivity preserving for t = 0. Therefore, for all x ∈ X, s, t ≥ 0, we
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obtain

as+t(x) = 〈ex, e−(s+t)Lex〉
= 〈e−sLex, e−tLex〉

=
∑
y∈X

〈e−sLex, ey〉〈ey, e−tLex〉

≥ 〈e−sLex, ex〉〈ex, e−tLex〉
= as(x)at(x).

Lemma 5.1 implies at(x) > 0 for all t ≥ 0, thus, we may take the
logarithm of at(x) for all x ∈ X and t ≥ 0. The estimate above then
shows that t 7→ log at(x) is superadditive, i.e., satisfies

log as(x) + log at(x) ≤ log as+t(x)

for s, t ≥ 0. Furthermore, at(x) ≤ 1 since at(x) = e−tL1x(x) and
semigroups associated to operators coming from Dirichlet forms are
contracting by Theorem C.4. Therefore, log at(x) ≤ 0. Putting all of
this together, we get that the following limit exists for every x ∈ X

lim
t→∞

1

t
log at(x) = sup

t∈(0,∞)

1

t
log at(x).

Now, for t ≥ 1 and x, y ∈ X, by a similar reasoning as above we
obtain

at−1(x)a1(x, y) = 〈e−(t−1)Lex, ex〉〈ex, e−Ley〉

≤
∑
z∈X

〈e−(t−1)Lex, ez〉〈ez, e−Ley〉

= 〈e−(t−1)Lex, e
−Ley〉

= 〈ex, e−tLey〉
= at(x, y).

By the same arguments for t ≥ 0,

a1(x, y)at(x, y) ≤
∑
z∈X

〈e−Ley, ez〉〈ez, e−tLey〉 = at+1(y).

Hence, as a1(x, y) > 0, we get

at−1(x)a1(x, y) ≤ at(x, y) ≤ 1

a1(x, y)
at+1(y).

Combining this line of inequalities with the fact that limt→∞
1
t

log at(x)

exists and at(x, y) = at(y, x) gives that limt→∞
1
t

log at(x, y) exists and
is independent of x, y ∈ X.

Let

lim
t→∞

1

t
log at(x, y) = −λ.
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Since

at(x, y) = 〈ex, e−tLey〉 =
√
m(x)m(y)pt(x, y)

we conclude that

−λ = lim
t→∞

1

t
log at(x, y) = lim

t→∞

1

t
log pt(x, y).

We will now show that λ = λ0, which will complete the proof. First,
we note that

lim
t→∞

1

t
log
(
eλ0tpt(x, y)

)
= λ0 − λ

for all x, y ∈ X. If λ0 is an eigenvalue for L, it follows from Theorem 5.4
that limt→∞ e

λ0tpt(x, y) = u(x)u(y) > 0 so that

lim
t→∞

1

t
log
(
eλ0tpt(x, y)

)
= 0

and, hence, λ = λ0 in this case.
If λ0 is not an eigenvalue for L, then Theorem 5.4 states that

eλ0tpt(x, y) → 0 as t → ∞. Therefore, log
(
eλ0tpt(x, y)

)
< 0 for all

t large enough and since 1
t

log
(
eλ0tpt(x, y)

)
→ λ0 − λ as t → ∞, it

follows that λ0 ≤ λ.
We will now show that λ0 ≥ λ. Let ε > 0. From Proposition E.2

we get

1[λ0,λ0+ε](L) 6= 0

since λ0 ∈ σ(L). As the set of functions 1x for x ∈ X is total in
`2(X,m), it follows that there exists an x ∈ X such that

1[λ0,λ0+ε](L)1x 6= 0.

Let µx be the spectral measure of L associated to 1x. Proposition A.24
gives

pt(x, x)

m2(x)
= 〈1x, e−tL1x〉 =

∫ λ0+ε

λ0

e−tsdµx(s) ≥ e−t(λ0+ε)µx([λ0, λ0 + ε])

as the spectral measure µx is supported on [λ0, λ0 + ε] by Proposi-
tion A.29. Therefore,

−λ = lim
t→∞

1

t
log pt(x, x) ≥ −(λ0 + ε),

that is, λ ≤ λ0 + ε. As ε > 0 was arbitrary, it follows that λ ≤ λ0,
which concludes the proof. �

From the theorem above we immediately obtain the following corol-
lary which states that the existence of a positive eigenfunction implies
that the eigenvalue is the bottom of the spectrum.
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Corollary 5.7 (Positive eigenfunctions are multiples of ground
states). Let (b, c) be a connected graph over (X,m). Let Q be a Dirichlet
form associated to (b, c) with operator L. Let λ0 = inf σ(L). If there
exists a non-trivial u ≥ 0 with u ∈ D(L) such that

Lu = λu

i.e., u is a positive eigenfunction corresponding to λ, then λ = λ0.
Furthermore, u > 0 and u is the ground state.

Proof. As λ is an eigenvalue, λ ∈ σ(L) so that λ0 ≤ λ by defini-
tion. Now, if u ≥ 0 in D(L) is non-trivial and satisfies Lu = λu, then
the functional calculus gives

e−tLu = e−tλu.

Therefore, for an arbitrary x ∈ X, using the positivity of u we get

pt(x, x)u(x)m(x) ≤
∑
y∈X

pt(x, y)u(y)m(y) = e−tLu(x) = e−tλu(x).

Applying Theorem 5.6 and choosing x ∈ X such that u(x) 6= 0, we get

−λ0 = lim
t→∞

1

t
log (pt(x, x)u(x)m(x)) ≤ lim

t→∞

1

t
log
(
e−tλu(x)

)
= −λ

so that λ0 ≥ λ. Therefore, λ0 = λ.
The strict positivity of u follows from the proof of Lemma 5.2, which

shows that u = u+ > 0 and also gives the uniqueness of u. �

Remark. One criterion for the existence of such u is given in Corol-
lary 5.5. In the next section, we discuss this question for the Neumann
Laplacian L(N) when c = 0. Furthermore, such u exist whenever the
spectrum of L is discrete. Conditions for the discreteness of the spec-
trum will be given in later parts of the book, see Chapters 9 and 10.

Remark. There is an alternative approach to proving the corollary
above using the results of Chapter 4 (Exercise 4.6).

3. The Neumann Laplacian and finite measure

To conclude this chapter we take a look at the case of graphs with
finite measure, i.e., graphs with m(X) < ∞. We will show a charac-
terization of finiteness of the measure in terms of the domain of the
Neumann form Q(N), the domain of the Neumann Laplacian L(N) and
λ0 = 0 being an eigenvalue for L(N). We will then combine this charac-
terization with the convergence results presented in the previous section
to discuss when the heat kernel associated to the Neumann Laplacian
converges to 0.

We start by recalling some generalities about Q(N) and L(N). By
definition, Q(N) is a restriction of Q to D(Q(N)) = D∩ `2(X,m) where
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D denotes the functions of finite energy. Furthermore, by standard
theory,

D(L(N)) =

{
f ∈ D(Q(N))

∣∣∣∣ there exists a g ∈ D(Q(N)) with
Q(N)(h, f) = 〈h, g〉 for all h ∈ D(Q(N))

}
,

in which case L(N)f = g, see Theorem B.11.
We will write `1(X) for the space `1(X, 1) in what follows and 1 ∈

C(X) for the function which is 1 on all vertices. We note that as soon
as 1 is in a subspace of `2(X,m), then all constant functions are in that
subspace. Hence, our result below can also be phrased in terms of all
constant functions being in the corresponding domains.

We now characterize graphs over finite measure spaces.

Theorem 5.8 (Characterization of finite measure). Let (X,m) be a
discrete measure space. Then, the following statements are equivalent:

(i) m(X) <∞.

(ii) 1 ∈ D(Q
(N)
b,0,m) for all graphs (b, 0) over (X,m).

(ii′) 1 ∈ D(Q
(N)
b,c,m) for all graphs (b, c) over (X,m) with c ∈ `1(X).

(iii) 1 ∈ D(L
(N)
b,0,m) for all graphs (b, 0) over (X,m).

(iii′) 1 ∈ D(L
(N)
b,c,m) for all graphs (b, c) over (X,m) with c/m ∈ `2(X,m).

(iv) λ0 = 0 is an eigenvalue for L
(N)
b,0,m for all graphs (b, 0) over (X,m).

Remark (Reason for considering the Neumann Laplacian). We
briefly discuss the reason why the theorem above concerns L(N). As
already mentioned, D(Q(N)) = D ∩ `2(X,m). Therefore, if c = 0,
then 1 ∈ D so that 1 ∈ D(Q(N)) if and only if 1 ∈ `2(X,m) which
can be characterized by the finiteness of the measure. In contrast,
D(Q(D)) = D0∩`2(X,m), where D0 denotes those functions in D which
can be approximated by finitely supported functions pointwise and with
respect to energy. If c = 0, it turns out that 1 ∈ D0 is equivalent to
recurrence. The question of when a graph is recurrent will be taken
up in Chapter 6. However, aspects of the above result can still be
recovered for general operators associated to graphs (Exercise 5.4).

Proof. Throughout the proof, we use the fact that m(X) <∞ is
equivalent to 1 ∈ `p(X,m) for some (all) p ∈ [1,∞).

(i) =⇒ (ii): As noted above, m(X) <∞ implies 1 ∈ `2(X,m) and,

as Qb,0(1) = 0, it follows that 1 ∈ D(Q
(N)
b,0,m).

(ii) =⇒ (ii′): If 1 ∈ D(Q
(N)
b,0 ), then 1 ∈ `2(X,m). As Qb,c(1) =∑

x∈X c(x) <∞ if c ∈ `1(X), it follows that 1 ∈ D(Q
(N)
b,c,m).

(ii′) =⇒ (ii) and (ii) =⇒ (i): These are obvious.

(ii) =⇒ (iii): If 1 ∈ D(Q
(N)
b,0,m), then Q

(N)
b,0,m(h, 1) = 0 = 〈h, 0〉 for all

h ∈ D(Q
(N)
b,0,m). This implies 1 ∈ D(L

(N)
b,0,m).
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(iii) =⇒ (ii): This is obvious since D(L
(N)
b,0,m) ⊆ D(Q

(N)
b,0,m).

(iii) =⇒ (iii′): If 1 ∈ D(L
(N)
b,0,m), then m(X) < ∞. Therefore, if

c/m ∈ `2(X,m), then by the Cauchy–Schwarz inequality

∑
x∈X

c(x) ≤

(∑
x∈X

c2(x)

m(x)

)1/2(∑
x∈X

m(x)

)1/2

<∞,

which gives that c ∈ `1(X). Therefore, as (iii) implies (ii), which is

equivalent to (ii′) by what we have already shown, we get 1 ∈ D(Q
(N)
b,c,m).

Hence,

Q
(N)
b,c,m(h, 1) =

∑
x∈X

c(x)h(x) =
〈
h,

c

m

〉
for all h ∈ D(Q(N)) since c/m ∈ `2(X,m) by assumption. Therefore,

1 ∈ D(L
(N)
b,c,m) for all c with c/m ∈ `2(X,m).

(iii′) =⇒ (iii): This is obvious.

(iii) =⇒ (iv): If 1 ∈ D(L
(N)
b,0,m), then L

(N)
b,0,m1 = 0 so that 1 is an

eigenfunction corresponding to λ0 = 0.

(iv) =⇒ (i): If u is an eigenfunction corresponding to λ0 = 0 for

L
(N)
b,0,m where (b, 0) is a connected graph over (X,m), then

Q
(N)
b,0,m(u) = 〈L(N)

b,0,mu, u〉 = 0.

In particular, u is a nontrivial constant function in D(Q
(N)
b,0,m). As

u ∈ `2(X,m) is then constant, it follows that m(X) <∞. �

Remark. In the case of c = 0 and m(X) < ∞, it is possible

to characterize the dimension of the eigenspace of λ0 = 0 for L
(N)
b,0,m

geometrically by the number of connected components of the graph
(Exercise 5.5).

The following immediate corollary gives another way of thinking
of finiteness of the measure for the Neumann kernel in the case of no
killing term. Namely, the Neumann kernel goes to zero in the long term
if and only if the measure of the entire graph is infinite. This makes
precise the limit found in Corollary 5.5 for the case of the Neumann
Laplacian.

Corollary 5.9. Let (b, 0) be a connected graph over (X,m). Let
p be the heat kernel associated to L(N). If m(X) < ∞, then for all
x, y ∈ X

lim
t→∞

pt(x, y) =
1

m(X)
.

Furthermore, limt→∞ pt(x, y) = 0 for all x, y ∈ X if and only if m(X) =
∞.
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Proof. By Theorem 5.8 above, if m(X) < ∞, then the constant
functions for are eigenfunctions corresponding to the eigenvalue λ0 = 0
for L(N). The positive normalized eigenfunction u corresponding to this
eigenvalue is then u = 1/

√
m(X). Hence, by Theorem 5.4, we infer

lim
t→∞

pt(x, y) = lim
t→∞

eλ0tpt(x, y) = u(x)u(y) =
1

m(X)
.

This gives the conclusion in the case of finite measure.
On the other hand, if m(X) = ∞, then 0 is not an eigenvalue for

L(N) by Theorem 5.8. Now, if λ0 > 0, then as limt→∞ e
λ0tpt(x, y) exists

by Theorem 5.4, it follows that limt→∞ pt(x, y) = 0. If λ0 = 0, then
limt→∞ pt(x, y) = 0 by Corollary 5.5 since 0 is not an eigenvalue. �

Remark. Parts of the corollary above hold for more general oper-
ators coming from Dirichlet forms associated to graphs (Exercise 5.6).
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Exercises

Excavation exercises.

Exercise 5.1 (Superadditive functions). Let f : (0,∞) −→ (−∞, 0]
be a continuous function such that f(s) + f(t) ≤ f(s+ t). Show that

lim
t→∞

f(t)

t
= sup

t>0

f(t)

t
.

Example exercises.

Exercise 5.2 (Two-sided path graph). Let X = Z with b(x, y) = 1
if |x − y| = 1 and 0 otherwise. Let c = 0 and choose m such that
m(X) <∞. Show that:

(a) λ0(L(N)) = 0 is an eigenvalue for L(N).
(b) λ0(L(D)) = 0 is an eigenvalue for L(D).

(Hint: Construct a sequence ϕn ∈ Cc(X) such that ϕn → 1
pointwise and Q(ϕn)→ 0, i.e., show that 1 ∈ D0.)

(c) The function u(x) = x satisfies Lu = 0 but is not an eigenfunction
for L(D) or L(N) for any choice of m.

(Hint: Calculate the energy of u.)
(d) The function u(x) = x is an eigenfunction for the operator L∗min

which is a restriction of L to the set D(L∗min) = {f ∈ `2(X,m) |
Lf ∈ `2(X,m)} whenever

∑
x∈Z x

2m(x) <∞.

Extension exercises.

Exercise 5.3 (Theorem of Chavel–Karp for resolvents). Let Q be
a Dirichlet form associated to (b, c) with operator L and λ0 = inf σ(L).
Let

g : (0,∞)×X ×X −→ R
be such that

(L+ α)−1f(x) =
∑
y∈X

gα(x, y)f(y)m(y)

for all f ∈ `2(X,m), x ∈ X and α > 0. Show that gα > 0 and that
there exists a u : X −→ [0,∞) such that

lim
α→0+

αgα(x, y) = u(x)u(y)

for all x, y ∈ X. Show furthermore that λ0 = 0 is an eigenvalue of L if
and only if u 6= 0, in which case u is the ground state, i.e., the unique
normalized positive eigenfunction for λ0 = 0.

Exercise 5.4 (λ0 = 0 for general L). Let (b, c) be a graph over
(X,m) and let Q be an associated form with operator L. Show that
1 ∈ D(Q) and Q(1) = 0 if and only if 0 is an eigenvalue for L.



256 5. LARGE TIME BEHAVIOR OF THE HEAT KERNEL

Exercise 5.5 (Eigenspace of λ0 = 0 for the Neumann Laplacian).
Let b be a graph over (X,m) withm(X) <∞. Show that the dimension

of the eigenspace associated to the eigenvalue λ0 = 0 for L
(N)
b,0,m is equal

to the number of connected components of b.

Exercise 5.6 (Vanishing of the heat kernel). Let (b, c) be a con-
nected graph over (X,m) with m(X) =∞. Let Q be a Dirichlet form
associated to (b, c) with operator L. Let p be the heat kernel associated
to L. Show that

pt(x, y)→ 0

as t→∞ for all x, y ∈ X.
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Notes

The convergence results in this section are directly inspired by the
work of Chavel/Karp on Riemannian manifolds [CK91]. In particular,
Theorem 5.4 above is a counterpart to the Theorem in [CK91] while
Theorem 5.6 is a counterpart to Corollary 1 in [CK91]. The second
result is attributed to a paper of Li [Li86] which contains the statement
for compact manifolds. The argument for compact manifolds, however,
only involves eigenvalues and eigenfunctions of the Laplace–Beltrami
operator. This type of argument was already given for finite graphs
in Section 7. Let us also note that the argument of Chavel/Karp uses
exhaustion by compact sets, hence, their proof only carries over to
operators arising from regular Dirichlet forms.

Subsequently, Simon [Sim93] gave an argument for the result of
Chavel/Karp which only uses the spectral theorem and elliptic reg-
ularity. The proof of Simon was adapted to the discrete setting in
[HKLW12] and [KLVW15] and the proofs of Theorems 5.4 and 5.6
are adapted from the proof of Theorem 8.1 in [HKLW12]. The paper
[KLVW15] covers an even more general setting which only requires a
positivity improving self-adjoint semigroup which has a kernel. This
setting contains both Riemannian manifolds and infinite graphs. For
related results concerning differential operators which are not necessar-
ily self-adjoint, we refer to the review article of Pinchover [Pin13].

The uniqueness of the ground state when it exists, as presented in
Lemma 5.2, is a rather general phenomenon. It is well known in the
manifold case, see, for example, Theorem 2.8 in [Sul87] and can also
be found in textbooks such as [RS78]. For finite-dimensional spaces,
this is sometimes referred to as the Perron–Frobenius theorem, see the
notes to Section 7 for the relevant discussion in this case.

The characterization of finite measure found in Theorem 5.8 is an
extension of Theorem 6.1 in [GHK+15]. It is inspired by a result of
Yau which states that all positive harmonic functions on a complete
Riemannian manifold which are in Lp are constant, see Theorem 3 in
[Yau76]. Corollary 5.9 is adapted from Corollary 8.2 in [HKLW12],
which in turn was inspired by Corollary 2 in [CK91].





CHAMBER 6

Recurrence

... but the sun will still come out tomorrow and shine shine shine
like a gold mine.

GZA.

The topic presented in this chapter is recurrence. This concept can
be studied via probability, potential theory and operator theory and
has interpretations in each context. Classically, recurrence has been
studied for graphs b over X, i.e., graphs with c = 0, and is a measure-
independent property. However, the measure independence can also
be formulated by stating that certain properties hold for all measures
of full support on X. Furthermore, some implications also hold in the
case of non-vanishing c in the sense that the properties in question
already imply that c = 0. We will indicate this in the proofs.

We let Q = Qb,c denote the energy form. As usual, D denotes the
set of functions of finite energy, i.e.,

D = {f ∈ C(X) | Q(f) <∞}.
Furthermore, we let D0 be the vector space of all f ∈ D such that there
exists a sequence of finitely supported functions (ϕn) with Q(f−ϕn)→
0 and ϕn → f pointwise as n→∞.

For an arbitrary vertex o ∈ X, we introduce the map 〈·, ·〉o : D ×
D −→ R via

〈f, g〉o = Q(f, g) + f(o)g(o).

If (b, c) is connected, then this map is easily seen to be an inner product.
This inner product then gives a norm on the space D by

‖f‖o =
(
Q(f) + f 2(o)

)1/2
.

We will show that D is a Hilbert space with respect to this inner prod-
uct and that D0 is the closure of Cc(X) with respect to the norm ‖ · ‖o,
i.e.,

D0 = Cc(X)
‖·‖o

.

By definition, D0 is a subspace of D. We will see that recurrence is
equivalent to these two spaces being equal.

Whenever we consider a measure m of full support, we write

Q(D)
m = Q

(D)
b,c,m, Q(N)

m = Q
(N)
b,c,m,

Lm = L(D)
m = L

(D)
b,c,m, Lm = Lb,c,m.

259
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We note that Lm is usually denoted by L. At various points where the
measure does not play a role, we drop the subscript and write L to
denote the operator Lm with m = 1. We recall that

D(Q(N)
m ) = D ∩ `2(X,m)

by definition while

D(Q(D)
m ) = D0 ∩ `2(X,m)

by Theorem 1.19. We denote by σ(L
(D)
m ) the spectrum of L

(D)
m and by

λ0(L
(D)
m ) the bottom of the spectrum, i.e.,

λ0(L(D)
m ) = inf σ(L(D)

m ).

We will need to restrict forms and operators to subsets, as discussed
in Section 3. Specifically, for a finite set K, we denote the operator

associated to the restriction of the form Q
(D)
m to Cc(K) by L

(D)
K and note

that L
(D)
K is a restriction of Lm. Since L

(D)
K is a Laplacian with a killing

term which does not vanish at any vertex in K that has a neighbor in

X \K, the operator L
(D)
K is invertible by Proposition 1.20 whenever X

is infinite and the graph is connected. As usual, we understand Cc(K)
as a subspace of `2(X,m) by extending functions by 0.

We now introduce some new quantities which will play a central
role in our main characterization of recurrence. We first define the
Green’s function Gm, which is given by

Gm(x, y) =

∫ ∞
0

e−tLm1y(x)dt

for x, y ∈ X. Note that this function takes values in [0,∞] as the
semigroup e−tLm is positivity preserving by Corollary 1.22 and even
positivity improving whenever b is connected by Theorem 1.26. We
will be interested in the question if the value the Green’s function
takes is infinite or finite in what follows below.

We will show that the Green’s function can also be constructed by
approximating via resolvents either on the level of energy or on the
level of geometry. More specifically, we will show that

Gm(x, y) = lim
α→0+

(Lm + α)−11y(x) = lim
n→∞

(L
(D)
Kn

)−11y(x),

where (Kn) is any increasing sequence of finite connected sets with
X =

⋃
nKn.

Furthermore, for any x ∈ X we let the capacity of x be given by

cap(x) = inf{Q(ϕ) | ϕ ∈ Cc(X), ϕ(x) = 1}.
It is not hard to see that the capacity can also be defined by taking the
infimum over D0 instead of Cc(X). We will show that there exists a
unique minimizer u of Q over the set of f ∈ D0 with f(x) = 1 and that
this minimizer satisfies 0 ≤ u ≤ 1 and Q(u) = cap(x). This minimizer
is called the equilibrium potential for x ∈ X.
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Recall that a function u ∈ C(X) is called harmonic (superharmonic,
respectively) if u ∈ F and

Lu = 0 (Lu ≥ 0, respectively)

that is, if u is α-harmonic (α-superharmonic, respectively) for α = 0.
We will be particularly interested in superharmonic functions u with

Lu = 1x

for some x ∈ X. Such a function is called a monopole at x ∈ X. It
turns out that the existence of monopoles is a remarkable property for
a graph, whereas the existence of a dipole, i.e., a function u ∈ F with
Lu = 1x − 1y for x, y ∈ X and L is always true.

We now state our characterization of recurrence. This is followed by
an informal discussion of the contents of the theorem and a description
of how the proof is carried out in the remaining parts of this chapter.

Theorem 6.1 (Characterization of recurrence). Let b be a con-
nected graph over X. Then, the following statements are equivalent:

(i) D(Q
(D)
m ) = D(Q

(N)
m ) for all measures m.

(i.a) D0 = D.
(i.b) 1 ∈ D0.
(i.c) There exists a u ∈ D0 and a finite set K ⊆ X with

inf
x∈X\K

u(x) > 0.

(i.d) There exists a sequence of functions (en) in Cc(X) with
0 ≤ en ≤ 1 for all n ∈ N such that en → 1 pointwise
and Q(en)→ 0 as n→∞.

(i.e) There exists a sequence of functions (en) in Cc(X) with en →
1 pointwise as n→∞ and supn∈NQ(en) <∞.

(ii) D(L
(D)
m ) = {f ∈ D(Q

(N)
m ) | Lmf ∈ `2(X,m)} for all measures m.

(iii) If u ∈ D satisfies Lmu ∈ `1(X,m) and v ∈ D ∩ `∞(X), then

Q(u, v) =
∑
x∈X

Lmu(x)v(x)m(x)

for some (all) measure(s) m. (“Green’s formula”)
(iii.a) If u ∈ D satisfies Lmu ∈ `1(X,m), then∑

x∈X

Lmu(x)m(x) = 0

for some (all) measure(s) m.
(iii.b) If u ∈ `∞(X) satisfies Lmu ∈ `1(X,m), then∑

x∈X

Lmu(x)m(x) = 0

for some (all) measure(s) m.
(iv) All superharmonic functions u ≥ 0 are constant.
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(iv.a) All superharmonic functions u ∈ D0 are constant.
(iv.b) All superharmonic functions u ∈ D are constant.
(iv.c) All superharmonic functions u ∈ `∞(X) are constant.

(v) (D0,Q) is not a Hilbert space.
(v.a) Q is degenerate on D0.
(v.b) Q1/2 and ‖ · ‖o are not equivalent norms on Cc(X) for some

(all) o ∈ X.
(vi) The point evaluation map

δx : (D0,Q) −→ R, δx(f) = f(x)

is not continuous for some (all) x ∈ X.
(vii) cap(x) = 0 for some (all) x ∈ X.

(vii.a) The equilibrium potential for some (all) x ∈ X is given
by the constant function 1.

(viii) There does not exist a non-trivial positive function w ∈ C(X)
such that

Q(ϕ) ≥
∑
x∈X

w(x)ϕ2(x)

for all ϕ ∈ Cc(X). (“Hardy’s inequality”)
(viii.a) There does not exist a strictly positive function w ∈ C(X)

such that

Q(ϕ) ≥
∑
x∈X

w(x)ϕ2(x)

for all ϕ ∈ Cc(X).

(viii.b) λ0(L
(D)
m ) = 0 for all measures m on X.

(ix) There exists a non-trivial harmonic function u ∈ D0, i.e., Lm is
not injective on D0 for some (all) measure(s) m.

(x) For some (all) x ∈ X there does not exist a monopole in D0 at x.
(xi) For some (all) x, y ∈ X and some (all) measure(s) m,

Gm(x, y) =∞.
(“Green’s function”)

(xi.a) For some (all) x, y ∈ X and some (all) measure(s) m,

lim
α→0+

(Lm + α)−11y(x) =∞.

(xi.b) For some (all) x, y ∈ X and some (all) sequence(s) (Kn) of
increasing finite sets such that

⋃
nKn = X and some (all)

measure(s) m,

lim
n→∞

(L
(D)
Kn

)−11y(x) =∞.

Definition 6.2. A connected graph b over X that satisfies any of
the conditions in the theorem above is called recurrent. Otherwise, a
connected graph is called transient.
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Remark. We note that the order of the first four properties given
above mirrors the order of the properties listed for the equivalence of
Q(D) and Q(N) presented in Theorem 3.2.

In the subsequent sections of this chapter, we elaborate on various
aspects of recurrence. Along the way, we will prove the main theorem
above. Before diving into the details, we will pause for a moment to
discuss the intuitive meaning of the above conditions and the connec-
tions between them. At this stage, this discussion must be somewhat
vague. Still, we feel it will provide a valuable perspective on the con-
siderations below which, in some parts, become rather technical. All
points discussed next will be taken up and made precise in later proofs.

The main theme in (i) is that all elements of the space D can be
approximated pointwise and in terms of energy by functions with com-
pact support, i.e., that D = D0. This equality implies, in particular,
that the constant function 1 belongs to D0. This is quite remarkable
as, intuitively, we might expect some form of decay for functions in
D0. In fact, it turns out that the absence of this decay is the crucial
ingredient for the equality of D and D0. More specifically, this equality
is valid if and only if there exists a uniformly positive function in D0

which, in turn, holds if and only if the constant function 1 belongs
to D0. Roughly speaking, these approximation properties mean that
there is nothing happening at infinity that we cannot already see on
finite sets.

A precise version of already being able to see things happening at
infinity on finite sets is provided in the context of boundary terms. In
fact, it is natural to expect that all sorts of boundary terms in partial
integrations vanish when dealing with functions in Cc(X). So, the
approximability given in (i) should imply vanishing boundary terms for
functions in D. It turns out that this approximability is even equivalent
to vanishing boundary terms in various settings. This is the content of
(ii) and (iii). Specifically, (ii) characterizes the domain of the generators
for all measures and (iii) can be understood as a version of Green’s
formula.

Another way of understanding the equality of D and D0 is via su-
perharmonic functions. To make this precise, we consider D equipped
with the inner product 〈·, ·〉o for o ∈ X. Then, the orthogonal comple-
ment of D0 in D is given by functions u ∈ D with

Lu(x) = 0 for x 6= o and Lu(o) = −u(o).

This can be used to show that equality of D and D0 is equivalent to
the absence of superharmonic functions u ∈ D with Lu = 1o, i.e., of
monopoles at o ∈ X, which is (x). It turns out that the absence of
such superharmonic functions is equivalent to the absence of positive
superharmonic functions as well as bounded superharmonic functions.
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This extension requires quite some care and attention. This is the
content of (iv).

We give a different aspect of the equality of D and D0 in (v). This
aspect concerns (non-)degeneracy properties of Q. In the setting of
infinite graphs, Q is an inner product on Cc(X) but is not an inner
product on D since 1 belongs to D. Given this situation, a natural
question is whether Q is an inner product on D0. Obviously, Q cannot
be an inner product if D0 = D. It turns out that the converse also
holds, i.e., Q is an inner product if D0 6= D. In this case, (D0,Q) is
even a Hilbert space.

We give meaning to the (non-)degeneracy of Q on D0 by pointwise
estimates as follows: If Q is not degenerate, then point evaluation is
continuous. Therefore, for every x ∈ X, there exists a cx > 0 with
cxf

2(x) ≤ Q(f) for all f ∈ D0. This is the basic connection between
(v), (vii) and (viii). A short argument then shows that the constants
cx are nothing but the capacities of the vertices x ∈ X. This connects
(vi) and (vii). To actually prove the full equivalence between (v), (vi),
(vii) and (viii) we still have to argue that the cx are either all zero
or all non-zero. This is a consequence of the connectedness of the
graph. In this context, we also encounter the equilibrium potential
for x ∈ X, i.e., the unique minimizer of Q on the set of functions
f ∈ D0 with f(x) = 1. It turns out that this equilibrium potential is
given by 1 ∈ D0 if cap(x) = 0 and by a multiple of a monopole at x,
otherwise. This ultimately gives the equivalence of (vii) and (i). We
note in passing that when the inequality which is excluded in (viii) is
valid, it is known under the name of Hardy’s inequality.

In the considerations above we have focused on understanding the
(non-)degeneracy of the form Q. We now turn to operators. Here, the
(non-)degeneracy of Q on D0 is mirrored by the injectivity of Lm on
D0. Indeed, as all constant functions are harmonic in the case of a
connected graph b, the operator Lm is clearly injective on Cc(X) and
clearly not injective on D. It turns out that the equivalence between
the invertibility of Lm and the non-degeneracy of Q on D extends to
D0. This connects (v) and (ix).

Quite remarkably, we are also able to phrase the degeneracy of
L on D0 as a type of failure of surjectivity, i.e., the non-existence of
monopoles, see (x). The property (x) can then be understood by taking
a closer look at the failure of invertibility of Lm, as discussed in (xi):
We view the Green’s function G as the kernel of the inverse of Lm,
where the value∞ arises if and only if Lm is not invertible. The values
of G can therefore be determined by solving the equality Lmu = 1x
for all x ∈ X and by setting the solution to be ∞ if the equation is
not solvable. Now, there are two further natural ways to compute the
inverse. For one way, we take the limit α→ 0+ in (Lm + α)−1 and, for

the other way, we take the limit n→∞ in (L
(D)
Kn

)−1 for an exhaustion
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Kn of X via finite sets. It turns out that all three procedures give the
same result. This has nothing to do with recurrence but is generally
true. Recurrence then is the phenomenon that all of these values limits
explode. Of course, this is a strong version of non-invertibility.

We point out that the preceding discussion shows a close connec-
tion between monopoles, equilibrium potentials and the columns of the
Green’s function, i.e., the values when one variable is fixed. Indeed,
the existence of monopoles, the existence of non-trivial equilibrium po-
tentials and the finiteness of the Green’s functions are all equivalent.
Specifically, if valid, then the monopole at x ∈ X, the equilibrium po-
tential for x ∈ X and the column of the Green’s function in x ∈ X all
agree up to a multiple.

We also mention a stochastic perspective on recurrence. While this
is not the core focus of the book, it is nevertheless revealing and we
include a short discussion here as well as in the last section of the
chapter. In the stochastic interpretation, we are concerned with a
particle jumping from the vertices according to rules coming from the
edge weights. Now, there is a basic dichotomy: Either the particle
leaves any compact set for good or it returns to any such set again and
again. The latter property is what is captured by recurrence and is
also responsible for the name. By its definition, the Green’s function
Gm can then be seen as a summation or rather integration over all of
the returns. In particular, it describes an equilibrium situation and the
infinite number of returns to any fixed point is then also responsible
for the explosion of Gm(x, y) given in (xi).

The remaining sections of this chapter are organized as follows: We
first present in Section 1 some general preliminaries which are used
throughout this chapter. We then turn to a study of aspects of recur-
rence related to the form Q as a (pseudo) inner product on D and D0 in
Section 2. In Theorem 6.17 we prove the equivalence between (i), (ii),
(v), (vi), (vii) and (viii) of Theorem 6.1. In the subsequent Section 3
we then deal with superharmonic functions and provide the equivalence
between (i.b), (iv), (ix), (x) in Theorem 6.25. In Section 4 we deal with
the aspects of recurrence related to the Green’s function and prove the
equivalence between (i.b) and (xi) in Theorem 6.28. In the following
Section 5 we look at boundary terms and establish the equivalence be-
tween (i.b) and (iii) in Theorem 6.33. Finally, in Section 6 we discuss
the connection to the stochastic perspective on recurrence.

1. General preliminaries

In this section we provide some elementary properties of the norm
‖ · ‖o on the spaces D0 and D. These results will be used freely in the
remaining parts of this chapter.
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Excavation Exercises 6.1 and 6.2 recall basic facts about the exis-
tence of weakly convergent subsequences and the existence of unique
minimizers in Hilbert spaces which will be used in this section.

We recall that the space D of functions of finite energy is defined
via the form Q. This form is positive, i.e., Q takes non-negative values
on the diagonal but may be degenerate even if (b, c) is connected. This
follows since Q(f) = 0 for f ∈ D only implies that f is constant
whenever b is connected. On the other hand Q(f) = 0 does imply that
f = 0 whenever b is connected and c 6= 0. Hence, Q on its own does
not necessarily define a norm on D.

Given this situation, a natural notion of convergence of a sequence
(fn) to f ∈ D is that fn → f pointwise and Q(f − fn) → 0. Indeed,
the subspace D0 ⊆ D is defined as the closure of Cc(X) with respect
to this convergence, i.e., D0 denotes those functions in D that can be
approximated pointwise and in terms of energy by functions in Cc(X).

We will now show that this type of convergence can be phrased
using an inner product. In doing so, we encounter the following issue:
The convergence above is defined without reference to any distinguished
vertex. The inner product we are about to define, on the other hand,
will distinguish a vertex. However, it turns out that the induced notion
of convergence is independent of this vertex whenever the graph is
connected.

More specifically, if (b, c) is a connected graph over X and o ∈ X,
then we define a bilinear map

〈·, ·〉o : D ×D −→ R

by

〈f, g〉o = Q(f, g) + f(o)g(o).

The connectedness of (b, c) easily implies that 〈·, ·〉o is an inner product
for any o ∈ X. The associated norm is then given by

‖f‖o =
(
Q(f) + f 2(o)

)1/2
.

We now collect some basic properties of this norm.

Lemma 6.3. Let (b, c) be a connected graph over X.

(a) For all x, y ∈ X and f ∈ D there exists a C(x, y) ≥ 0 such that

(f(x)− f(y))2 ≤ C(x, y)Q(f).

(b) The norms ‖ · ‖o and ‖ · ‖o′ on D are equivalent for all o, o′ ∈ X.
(c) D0 is the closure of Cc(X) in D with respect to ‖·‖o for an arbitrary

o ∈ X, i.e.,

D0 = Cc(X)
‖·‖o

.

(d) (D, 〈·, ·〉o) and (D0, 〈·, ·〉o) are Hilbert spaces.
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(e) The point evaluation maps given by

δx : (D, ‖ · ‖o) −→ R, δx(f) = f(x)

are continuous for every x ∈ X.

Proof. (a) Let x, y ∈ X and let x = x0 ∼ . . . ∼ xn = y be a
path from x to y. We estimate by a telescoping sum argument and the
Cauchy–Schwarz inequality

|f(x)−f(y)|

≤
n−1∑
i=0

|f(xi)− f(xi+1)|

=
n−1∑
i=0

1

b(xi, xi+1)1/2
b(xi, xi+1)1/2|f(xi)− f(xi+1)|

≤

(
n−1∑
i=0

1

b(xi, xi+1)

)1/2(n−1∑
i=0

b(xi, xi+1)(f(xi)− f(xi+1))2

)1/2

≤

(
n−1∑
i=0

1

b(xi, xi+1)

)1/2

Q1/2(f).

Hence, taking

C(x, y) = inf
x=x0∼...∼xn=y

n−1∑
i=0

1

b(xi, xi+1)

we conclude the statement.

(b) Let o, o′ ∈ X. Then, by (a) and s2 ≤ 2(s − t)2 + 2t2, which
follows from (s− 2t)2 ≥ 0 for s, t ∈ R, we get

f 2(o) ≤ 2(f(o)− f(o′))2 + 2f 2(o′) ≤ 2C(o, o′)Q(f) + 2f 2(o′).

Hence,

‖f‖2
o = f 2(o) +Q(f) ≤ (2C(o, o′) + 1)Q(f) + 2f 2(o′) ≤ C ′‖f‖2

o′

for C ′ = (2C(o, o′) + 1) ∨ 2. The symmetry of the argument above
yields the conclusion.

(c) Clearly D0 ⊆ Cc(X)
‖·‖o

for an arbitrary o ∈ X by the definition
of D0. On the other hand, if ‖f−ϕn‖o → 0 as n→∞ for some (ϕn) in
Cc(X) and f ∈ D, then ϕn(o)→ f(o) and Q(f − ϕn)→ 0 as n→∞.
Since for arbitrary x ∈ X the norms ‖ · ‖o and ‖ · ‖x are equivalent,
we obtain that ϕn(x) → f(x) for all x ∈ X and thus f ∈ D0. Hence,

D0 = Cc(X)
‖·‖o

.

(d) Clearly, the norm ‖ · ‖o is associated with the scalar product

〈f, g〉o = Q(f, g) + f(o)g(o)
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for f, g ∈ D. The completeness of D with respect to ‖ · ‖o follows from
the lower semi-continuity of Q, Proposition 1.3. The completeness of
D0 then follows by part (c).

(e) This follows directly from (b) which gives that convergence in
‖ · ‖o implies pointwise convergence. �

Remark (Resistance metrics). From (a) of the previous lemma we
conclude that

r(x, y) = inf{C ≥ 0 | |f(x)− f(y)| ≤ CQ1/2(f) for all f ∈ D}

is finite for all x, y ∈ X. Now, clearly

r(x, y) = sup{f(x)− f(y) | f ∈ D,Q(f) ≤ 1}

and r is a metric. In fact, it is possible to show that r2 is also a metric.
Likewise we may define the metric r0 by replacing D with D0 (or even
Cc(X)) in the above formulae. The metrics r2 and r2

0 are known as
resistance metrics (Exercise 6.9).

Remark (Decomposing D for c = 0). Lemma 6.3 shows that the
norms ‖ · ‖o and ‖ · ‖o′ are equivalent. One way to understand this
for connected graphs b over X is the following: Let o ∈ X and define
Do = {f ∈ D | f(o) = 0}, which should not be confused with D0.
Then, Q is an inner product on Do and (Do,Q) is a Hilbert space. It
is not hard to see that

D = Do ⊕ Lin{1},

where Lin stands for the linear hull. On the other hand, the map

Do −→ D/Lin{1}, f 7→ [f ],

is bijective and isometric if Do is equipped with Q and D/Lin{1} is
equipped with Q([f ]) = Q(f). This shows that the inner product on
Do is in a certain sense independent of o ∈ X (Exercise 6.10).

As a consequence of the lemma above we obtain the desired char-
acterization of convergence with respect to ‖ · ‖o.

Corollary 6.4 (Convergence with respect to ‖ · ‖o). Let (b, c) be
a connected graph over X and let o ∈ X. Then, for functions fn and
f in D, fn → f with respect to ‖ · ‖o if and only if fn → f pointwise
and Q(f − fn)→ 0.

It turns out that even the following holds.

Lemma 6.5. Let (b, c) be a connected graph over X and let o ∈ X.
Let f ∈ D and (fn) be a sequence in D. Then, fn → f with respect to
‖ · ‖o if and only if fn → f pointwise and

lim sup
n→∞

Q(fn) ≤ Q(f).
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Proof. The “only if” direction follows directly from Corollary 6.4
above. For the other implication, if (fn) converges pointwise to f
and lim supn→∞Q(fn) ≤ Q(f), then (fn) is a bounded sequence in
(D, 〈·, ·〉o). As (D, 〈·, ·〉o) is a Hilbert space by Lemma 6.3 (d), every
ball is weakly compact, so there exists a weakly convergent subsequence
of (fn). By the pointwise convergence of (fn), we deduce that the limits
of all possible weakly converging subsequences coincide, i.e., there ex-
ists only one accumulation point. Hence, (fn) converges weakly. Now,

0 ≤ ‖f − fn‖2
o = Q(f) +Q(fn) + f 2(o) + f 2

n(o)− 2〈f, fn〉o.
Thus, invoking the assumption lim supn→∞Q(fn) ≤ Q(f) we find that
the right-hand side converges to 0 and this gives ‖f − fn‖o → 0. �

We now show that convergence in ‖ · ‖o respects taking maxima
and minima. In particular, we show that we can approximate positive
functions in D0 monotonically from below by functions in Cc(X). We
recall that

u+ = u ∨ 0 and u− = −u ∨ 0

so that u = u+ − u−.

Lemma 6.6 (Bounded and monotone approximation). Let (b, c) be
a graph over X. Let u ∈ D and (un) be a sequence in D such that
‖u− un‖o → 0 as n→∞.

(a) Then, vn = −u− ∨ un ∧ u+ also satisfies ‖u− vn‖o → 0 as n→∞.
(b) Furthermore, if u ≥ 0 and (un) consists of functions in Cc(X), then

there exists a sequence (ϕn) consisting of functions in Cc(X) which
is monotonically increasing such that 0 ≤ ϕn ≤ u and ‖u−ϕn‖o →
0 as n→∞. On the set where u > 0, we can even choose ϕn such
that 0 ≤ ϕn < u.

Proof. (a) We let fn = u − un and gn = u − vn. First, we note
that fn → 0 pointwise. Thus,

gn = −u− ∨ (u− un) ∧ u+

also converges to 0 pointwise and |gn| ≤ |fn|.
Next we show

|gn(x)− gn(y)| ≤ |fn(x)− fn(y)| ∨ |u(x)− u(y)|
as follows: First, if |gn(x)− gn(y)| > |u(x)− u(y)|, then u(x) and u(y)
must have the same sign since |gn| ≤ |u|, so without loss of generality
we may assume u(x) ≥ u(y) ≥ 0.

Now, if gn(x) > gn(y) ≥ 0, then gn(x)− gn(y) > u(x)− u(y) yields
gn(x) > u(x)− u(y) ≥ 0 and gn(y) < u(y). Therefore,

gn(x) = fn(x) ∧ u(x) ≤ fn(x)

gn(y) = 0 ∨ fn(y) ∧ u(y) ≥ fn(y),

which imply |gn(x)− gn(y)| ≤ |fn(x)− fn(y)|.
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The remaining case of gn(y) > gn(x) similarly leads to gn(x) <
2u(y)− u(x) and gn(y) > u(x)− u(y). These imply gn(x) ≥ fn(x) and
gn(y) ≤ fn(y), resulting in |gn(x)− gn(y)| ≤ |fn(x)− fn(y)|, which was
to be shown.

Since u ∈ D, we have

1

2

∑
x,y∈X

b(x, y)(u(x)− u(y))2 <∞.

This means that for every ε > 0 there exists a finite set Eε ⊆ X ×X
such that

1

2

∑
(x,y)/∈Eε

b(x, y)(u(x)− u(y))2 < ε.

Using |gn(x) − gn(y)| ≤ |fn(x) − fn(y)| ∨ |u(x) − u(y)|, we can now
easily prove

1

2

∑
(x,y)/∈Eε

b(x, y)(gn(x)− gn(y))2 ≤ 1

2

∑
x,y∈X

b(x, y)(fn(x)− fn(y))2 + ε.

Combining the above statements, we get since |gn| ≤ |fn|

Q(u− vn) = Q(gn) ≤ 1

2

∑
(x,y)∈Eε

b(x, y)(gn(x)− gn(y))2 +Q(fn) + ε.

Now,
∑

(x,y)∈Eε b(x, y)(gn(x) − gn(y))2 → 0 because Eε is finite and

gn → 0 pointwise. Furthermore, Q(fn) → 0 by assumption and since
ε > 0 was chosen arbitrarily, we have Q(u− vn)→ 0 as n→∞.

(b) Let (vn) be given as in (a), which consists of functions in Cc(X)
whenever (un) consists of functions in Cc(X) and satisfies vn ≥ 0 as
u ≥ 0. We choose (ηn) in Cc(X) with supp ηn = supp vn, 0 ≤ ηn ≤ vn
on supp ηn with ηn → 0 in ‖ · ‖o as n → ∞. For example, ηn can be
chosen as

ηn =
δn

n(Q(δn) ∨ 1)1/2
with δn =

(
min

x∈supp vn

vn(x)

2

)
1supp vn .

Note that 0 < ηn < vn if vn 6= 0. Then, vn − ηn is such that 0 ≤
vn − ηn ≤ u with a strict inequality on the set where u > 0 and when
vn 6= 0 and satisfies vn − ηn → u in ‖ · ‖o.

Furthermore, we extract a monotonically increasing subsequence
(ϕnk) of
(vn − ηn) as follows. Let n0 = 0. Given nk let

nk+1 = min{l > nk | (vl − ηl)(x) ≥ (vnk − ηnk)(x) for all x ∈ X}.

The minimum exists as vn − ηn < u on supp vn, vn − ηn → u as n →
∞ pointwise and vnk ∈ Cc(X). By definition (ϕnk) is monotonically
increasing, ϕnk → u and Q(ϕnk − u)→ 0 as n→∞. �
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Next we show that the space D0 is invariant under normal contrac-
tions.

Lemma 6.7 (D0 is invariant under normal contractions). Let (b, c)
be a graph over X. If f ∈ D0, then C ◦ f ∈ D0 for every normal
contraction C.

Proof. Let f ∈ D0 and letm be a measure such that f ∈ `2(X,m).

Then, f ∈ D0 ∩ `2(X,m) = D(Q
(D)
m ) by Theorem 1.19. Since Q

(D)
m is

a Dirichlet form by Theorem 1.18, we have C ◦ f ∈ D(Q
(D)
m ) ⊆ D0 for

every normal contraction. This proves the statement. �

Remark. Indeed, we can invoke the proof of Theorem 1.19 directly
to prove the statement above.

The preceding lemmas allow us to easily prove a Green’s formula
on D. In fact, as usual in measure theory, there are two versions of
Green’s formula. One can be thought of as an `1 version and the other
is a version for positive functions.

Lemma 6.8 (Green’s formula on D). Let (b, c) be a graph over X.
Let v ∈ D0 and u ∈ D with either

• Lu ≥ 0 or
•
∑

x∈X |Lu(x)| <∞ and v ∈ `∞(X).

Then, we have

Q(u, v) =
∑
x∈X

Lu(x)v(x)

with absolutely converging sum.

Proof. For v = ϕ ∈ Cc(X) this is clear from the Green’s formula
presented in Proposition 1.4. We note that this does not need any as-
sumption on u except for u ∈ D. Under the assumption Lu ≥ 0 we can
split v into v+ and v−, which are functions in D0 by Lemma 6.7. Thus,
we can apply Lemma 6.6 (b) to approximate v+ and v− monotonically
by functions in Cc(X). Hence, we obtain

Q(u, v±) =
∑
x∈X

Lu(x)v±(x),

where the right-hand sides are finite since the left-hand sides are. Then,
subtracting the terms yields the statement.

Under the assumptions
∑

x∈X |Lu(x)| < ∞ and v ∈ `∞(X) we
approximate v with functions in Cc(X) which are smaller in modulus
than v, which is possible by Lemma 6.6 (a). Then, the statement
follows from Lebesgue’s dominated convergence theorem. �

As another direct consequence of the Hilbert space methods applied
to 〈·, ·〉o we give a construction and basic properties of the equilibrium
potential at a vertex. We recall that the capacity is defined as an
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infimum over finitely supported functions. The result below shows
that this infimum is achieved by a function in D0.

Proposition 6.9 (Existence of equilibrium potentials). Let (b, c)
be a connected graph and let x ∈ X. Then,

cap(x) = inf{Q(f) | f ∈ D0, f(x) = 1}
and there exists a unique u ∈ D0 with u(x) = 1 and Q(u) = cap(x).
Furthermore, 0 ≤ u ≤ 1.

Proof. We start by showing the equality. By definition, the ca-
pacity of x is given as

inf{Q(ϕ) | ϕ ∈ Cc(X), ϕ(x) = 1}.
On the other hand, if f ∈ D0 with f(x) = 1, then there exists a
sequence (ϕn) in Cc(X) with ϕn → f pointwise and Q(f −ϕn)→ 0 as
n→∞. We can then assume without loss of generality that ϕn(x) = 1
for all n ∈ N. Combining these statements gives the equality.

It remains to show the statement on the minimizer. Consider the
set

A = {f ∈ D0 | f(x) = 1}.
This is clearly a convex closed set in (D0, 〈·, ·〉x). Hence, there is a
unique minimizer of ‖ · ‖x on A. Since f(x) = 1 for all f ∈ A, this
is then the unique minimizer of Q on A and the desired statement
follows.

Finally, to show 0 ≤ u ≤ 1 for the minimizer u we note that Q
is compatible with normal contractions and D0 is closed under normal
contraction by Lemma 6.7. Therefore, (0 ∨ u) ∧ 1 is also a minimizer
and we obtain u = (0 ∨ u) ∧ 1 by uniqueness. �

Given the previous proposition we can now provide the following
definition of the equilibrium potential, which was already mentioned in
the introduction to this chapter.

Definition 6.10 (Equilibrium potential). The unique function u ∈
D0 with u(x) = 1 and Q(u) = cap(x) is called the equilibrium potential
for x ∈ X.

2. The form perspective

In this section we start our investigation of recurrence. In partic-
ular, we focus on the form perspective. This means we consider those
properties which can be stated in terms of the space D0 equipped with
semi-inner product Q and the associated semi-norm Q1/2. Our overall
strategy is to show that certain assertions follow (rather easily) from
1 ∈ D0 and that the opposite assertions follow (again rather easily)
from 1 /∈ D0. Put together this establishes the desired equivalences for
recurrence.



2. THE FORM PERSPECTIVE 273

Before we deal with the finer properties of the space D0 equipped
with Q, we first address the question whether D0 and D agree. As,
clearly, the constant function 1 belongs to D, a necessary condition for
equality of D0 and D is that 1 belongs to D0. Quite remarkably the
converse is also true.

Proposition 6.11 (1 ∈ D0 implies D = D0). Let b be a graph over
X. If 1 ∈ D0, then D = D0.

Proof. It follows by definition and Lemma 6.6 (a) that if 1 ∈ D0,
then we can choose a sequence (en) in Cc(X) with en → 1 pointwise
and Q(1− en)→ 0 as n→∞ such that 0 ≤ en ≤ 1 for n ∈ N0.

Let f ∈ D∩`∞(X). Then, enf ∈ Cc(X) and by the simple algebraic
manipulation found in Lemma 2.25 we get

Q(f − enf) = Q(f(1− en))

≤
∑
x∈X

(1− en(x))2
∑
y∈X

b(x, y)(f(x)− f(y))2

+
∑
y∈X

f(y)2
∑
x∈X

b(x, y)(en(x)− en(y))2

≤
∑
x∈X

(1− en(x))2
∑
y∈X

b(x, y)(f(x)− f(y))2 + 2‖f‖2
∞Q(en)

→ 0,

where we use Lebesgue’s dominated convergence theorem for the first
term, which is applicable since f ∈ D and Q(en) → 0 as n → ∞ for
the second term. Therefore, D ∩ `∞(X) ⊆ D0.

Now, an arbitrary function f ∈ D can be approximated by the
bounded functions fk = −k ∨ f ∧ k for k ∈ N. We show that fk → f
in ‖ · ‖o as k → ∞. Clearly fk → f pointwise as k → ∞. By Fatou’s
lemma and the fact that Q is compatible with normal contractions, we
have

Q(f) ≤ lim inf
k→∞

Q(fk) ≤ lim sup
k→∞

Q(fk) ≤ Q(f).

Hence, Lemma 6.5 implies fk → f in ‖ · ‖o as k → ∞. Thus, by
combining the two convergence arguments given above, we get that
D = D0. �

The previous result suggests that we have a closer look at the con-
dition 1 ∈ D0. By the definition of D0, one rather easily finds the
following characterization.

Lemma 6.12 (Approximating 1). Let b be a graph over X. Then,
the following assertions are equivalent:

(i) 1 ∈ D0.
(ii) There exists a sequence (ϕn) in Cc(X) with 0 ≤ ϕn ≤ 1 for n ∈ N

such that ϕn → 1 pointwise and Q(ϕn)→ 0 as n→∞.
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(iii) There exists a sequence (ϕn) in Cc(X) with ϕn → 1 as n → ∞
pointwise and supn∈NQ(ϕn) <∞.

Proof. (i) =⇒ (ii): If 1 belongs to D0 there exists a sequence (ψn)
in Cc(X) with ψn → 1 as n→∞ pointwise which is a Cauchy sequence
with respect to Q1/2. Hence,

Q(ψn) = Q(ψn − 1) ≤ lim inf
k→∞

Q(ψn − ψk)→ 0

as n → ∞. The function ϕn = (1 ∧ ψn) ∨ 0 satisfies 0 ≤ ϕn ≤ 1
for n ∈ N. Moreover, as (ψn) converges to 1 pointwise, so does (ϕn).
Finally, as Q is compatible with normal contractions we find

Q(ϕn) ≤ Q(ψn)→ 0

as n→∞. This gives (ii).

(ii) =⇒ (iii): This is clear.

(iii) =⇒ (i): Without loss of generality we can assume that the
graph is connected as otherwise we work on each connected component
separately. Fix an arbitrary o ∈ X. By assumption, the sequence
(ϕn) is bounded in the Hilbert space (D, 〈·, ·〉o). Hence, without loss
of generality, we can assume that it converges weakly to some u ∈ D
as otherwise we could pass to a subsequence. Invoking the Banach–
Saks theorem, we then obtain a sequence ψn in Cc(X) consisting of
finite convex combinations of the ϕn with ψn → u in the Hilbert space
(D, 〈·, ·〉o). Note that the functions ψn must converge pointwise to 1
as the ϕn have this property. As point evaluation is continuous on the
Hilbert space (D, 〈·, ·〉o) by Lemma 6.3 (e), we find ψn(x) → u(x) for
x ∈ X. This gives u = 1 and finishes the proof. �

Having given a characterization of 1 ∈ D0, which implies D0 = D,
we now turn to some basic questions concerning the space D0 equipped
with the semi-inner product Q. As it may add a useful perspective to
keep in mind, we first discuss which questions we consider.

A very natural question is whether Q is actually an inner product
and, if so, whether (D0,Q) is complete, i.e., a Hilbert space. This is
clearly related to the question whether the seminorm Q1/2 and ‖ · ‖o
are equivalent.

Another natural question concerns lower bounds for Q. Here, we
say that w : X −→ [0,∞) is a lower bound for Q, written as Q ≥ w, if

Q(ϕ) ≥
∑
x∈X

w(x)ϕ2(x)

for all ϕ ∈ Cc(X). We can extend this inequality to D0. Indeed, by
approximating an arbitrary f ∈ D0 with respect to Q by ϕn ∈ Cc(X)
we obtain from Fatou’s lemma

Q(f) = lim
n→∞

Q(ϕn) ≥ lim inf
n→∞

∑
x∈X

w(x)ϕ2
n(x) ≥

∑
x∈X

w(x)f 2(x).
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We note that cap(x)1x is clearly a lower bound for Q as cap(x)ϕ2(x) ≤
Q(ϕ) for all ϕ ∈ Cc(X) and, conversely, whenever w is a lower bound
for Q we must have w(x) ≤ cap(x) for all x ∈ X.

Another very natural question is whether the point evaluation map
δx : D0 −→ R given by

δx(f) = f(x)

is continuous for x ∈ X with respect to Q1/2. We note that the answer
to this question is given by positivity of the capacity, as we now show.

Lemma 6.13 (Characterization of positive capacity). Let b be a
graph over X and let x ∈ X. Then, the point evaluation δx is continu-
ous on D0 with respect to Q1/2 if and only if cap(x) > 0. In this case,
‖δx‖ = cap(x)−1/2.

Proof. Clearly, continuity of δx on D0 with respect to Q1/2 is
equivalent to continuity of δx on Cc(X) with respect to Q1/2 and this
is equivalent to the finiteness of

‖δx‖ = sup{|ϕ(x)| | ϕ ∈ Cc(X) with Q(ϕ) ≤ 1}

= sup

{
|ϕ(x)|
Q1/2(ϕ)

| 0 6= ϕ ∈ Cc(X)

}
.

On the other hand, positivity of the capacity is equivalent to

0 < cap(x) = inf{Q(ϕ) | ϕ ∈ Cc(X) with ϕ(x) = 1}

= inf

{
Q(ϕ)

ϕ2(x)
| ϕ(x) 6= 0

}
.

Now, the equivalence follows easily. �

Having discussed the questions we have in mind, we now gather
some rather simple consequences for these questions if 1 ∈ D0. As
shown subsequently, each of these consequences is actually a charac-
terization of 1 ∈ D0 provided that the graph is connected.

Proposition 6.14 (Consequences of 1 ∈ D0). Let b be a graph over
X. If 1 ∈ D0, then the following statements hold:

(a) The point evaluation map δx : D0 −→ R, δx(f) = f(x) is not con-
tinuous with respect to Q1/2 for all x ∈ X.

(b) cap(x) = 0 for all x ∈ X.
(c) The norms Q1/2 and ‖ · ‖o are not equivalent on Cc(X).
(d) If Q ≥ w for some w ≥ 0, then w = 0.
(e) (D0,Q) is degenerate and, in particular, not a Hilbert space.

Proof. (a) If 1 ∈ D0, then the point evaluation map on D0 cannot
be continuous for each x ∈ X since we have 1 = 1(x) whereas 0 = Q(1).

(b) From Lemma 6.13 we know already that (a) and (b) are equiv-
alent. Alternatively, it is not hard to argue directly as follows: By
1 ∈ D0, there exists a sequence (ϕn) in Cc(X) with 0 ≤ ϕn ≤ 1 for
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n ∈ N which converges pointwise to 1 and satisfies Q(ϕn) → 0 as
n → ∞. Assuming that ϕn(x) 6= 0 for all n ∈ N, it follows that
ψn = ϕn/ϕn(x) belongs to Cc(X) and satisfies ψn(x) = 1 for all n ∈ N.
Hence, from the definition of the capacity we obtain

cap(x) ≤ Q(ψn) =
1

ϕ2
n(x)
Q(ϕn)→ 0

as n→∞, which completes the proof.

(c) If the norms are equivalent on Cc(X), then they have to be
equivalent on D0 as well. This, however, is not true, as can be seen by
considering the function 1.

(d) This follows easily by plugging in 1.

(e) This is clear as Q(1) = 0. �

To show that each of the preceding properties in fact characterizes
that 1 belongs to D0 we need one more ingredient. This is given by the
following lemma, which holds for connected graphs.

Lemma 6.15 (Consequence of zero capacity). Let b be a connected
graph over X. If there exists an x ∈ X with cap(x) = 0, then 1 ∈ D0.
In particular, cap(y) = 0 for all y ∈ X.

Proof. By the existence of an equilibrium potential for x, Proposi-
tion 6.9, there exists a unique u ∈ D0 with u(x) = 1 and cap(x) = Q(u).
Thus, u satisfies Q(u) = 0. As b is connected this implies that u is con-
stant and by u(x) = 1 we infer 1 = u ∈ D0. That cap(y) = 0 for all
y ∈ X follows from Proposition 6.14 (b) directly above. �

Remark. It is also possible to give a direct proof of the previous
result without the use of equilibrium potentials (Exercise 6.11).

Proposition 6.16 (Consequences of 1 /∈ D0). Let b be a connected
graph over X. If 1 /∈ D0, then the following statements hold:

(a) The point evaluation map δx : D0 −→ R, δx(f) = f(x) is continu-
ous with respect to Q1/2 for all x ∈ X.

(b) cap(x) > 0 for any x ∈ X.
(c) The norms Q1/2 and ‖ · ‖o are equivalent.
(d) There exists a w ≥ 0, w 6= 0, with Q ≥ w. In fact, there even

exists a w > 0 with Q ≥ w.
(e) (D0,Q) is a Hilbert space.

Proof. (a)/(b) By Lemma 6.13 we know that (a) and (b) are
equivalent. By Lemma 6.15, 1 /∈ D0 implies (b).

(c) This is clear from the fact that Q1/2 ≤ ‖ · ‖o and from (b) as

cap(o)‖ϕ‖2
o = cap(o)ϕ2(o) + cap(o)Q(ϕ) ≤ (1 + cap(o))Q(ϕ)

for all ϕ ∈ Cc(X).
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(d) This is also clear from (b). Indeed, cap(x)1x is a possible w and
so is then any sum of the form

∑
x∈X axcap(x)1x with ax > 0 for all

x ∈ X and
∑

x∈X ax = 1 as cap(x) > 0 for all x ∈ X by Lemma 6.15.

(e) As point evaluation is continuous with respect to Q1/2 by (a),
Q is non-degenerate, i.e., an inner product on D0. The completeness of
D0 with respect to Q1/2 is clear from the equivalence of the norms Q1/2

and ‖ · ‖o from part (c) and the fact that D0 is complete with respect
to ‖ · ‖o established in Lemma 6.3. �

As a consequence of the considerations so far we obtain the follow-
ing list of equivalences, which form part of our main characterization,
Theorem 6.1.

Theorem 6.17 (Characterization of recurrence – forms). Let b be a
connected graph over X. Then, the following statements are equivalent:

(i) D(Q
(D)
m ) = D(Q

(N)
m ) for all measures m.

(i.a) D0 = D.
(i.b) 1 ∈ D0.
(i.c) There exists u ∈ D0 and a finite set K ⊆ X with

inf
x∈X\K

u(x) > 0.

(i.d) There exists a sequence of functions (en) in Cc(X) with 0 ≤
en ≤ 1 for all n ∈ N such that Q(en) → 0 and en → 1
pointwise as n→∞.

(i.e) There exists a sequence of functions (en) in Cc(X) with en →
1 pointwise as n→∞ and supn∈NQ(en) <∞.

(ii) D(L
(D)
m ) = {f ∈ D(Q

(N)
m ) | Lmf ∈ `2(X,m)} for all measures m.

(v) (D0,Q) is not a Hilbert space.
(v.a) Q is degenerate on D0.
(v.b) Q1/2 and ‖ · ‖o are not equivalent norms on Cc(X) for some

(all) o ∈ X.
(vi) The point evaluation map δx : (D0,Q) −→ R given by δx(f) =

f(x) is not continuous for some (all) x ∈ X.
(vii) cap(x) = 0 for some (all) x ∈ X.

(vii.a) The equilibrium potential for some (all) x ∈ X is given by
the constant function 1.

(viii) There does not exist a non-trivial positive function w ∈ C(X)
such that

Q(ϕ) ≥
∑
x∈X

w(x)ϕ2(x)

for all ϕ ∈ Cc(X). (“Hardy’s inequality” )
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(viii.a) There does not exist a strictly positive function w ∈ C(X)
such that

Q(ϕ) ≥
∑
x∈X

w(x)ϕ2(x)

for all ϕ ∈ Cc(X).

(viii.b) λ0(L
(D)
m ) = 0 for all measures m on X.

Proof. (i) =⇒ (i.b): Let m be a finite measure, i.e., m(X) <∞.
Then, 1 ∈ `2(X,m). Furthermore, 1 ∈ D as c = 0 and, therefore,

applying the definition of D(Q
(N)
m ) and Theorem 1.19 gives

1 ∈ D ∩ `2(X,m) = D(Q(N)
m ) = D(Q(D)

m ) = D0 ∩ `2(X,m) ⊆ D0.

(i.b) =⇒ (i.a): This is shown in Proposition 6.11.

(i.a) =⇒ (i): This is clear as

D(Q(D)
m ) = D0 ∩ `2(X,m) = D ∩ `2(X,m) = D(Q(N)

m )

for all measures m if D0 = D.

(i.b) ⇐⇒ (i.d) ⇐⇒ (i.e): This is shown in Lemma 6.12.

(i.b) =⇒ (i.c): This is clear.

(i.c) =⇒ (i.b): By (i.c) and as Cc(X) ⊆ D0, we infer that v = u+1K
satisfies v ∈ D0 with v(x) ≥ C for all x ∈ X for a suitable C > 0. Hence
1 = (v/C) ∧ 1 belongs to D0 by Lemma 6.7.

(i) ⇐⇒ (ii): This follows from Theorem 3.2.

The remaining assertions follow easily from Propositions 6.14 and
Proposition 6.16:

(i.b)⇐⇒ (vi): This follows from (a) of the mentioned propositions.

(i.b)⇐⇒ (vii): This follows from (b) of the mentioned propositions.

(i.b)⇐⇒ (v.b): This follows from (c) of the mentioned propositions.

(i.b) ⇐⇒ (viii)/(viii.a): This follows from (d) of the mentioned
propositions.

(viii.a)⇐⇒ (viii.b): Failure of (viii.a) is equivalent to the existence
of a w > 0 with Q ≥ w on Cc(X). Failure of (viii.b) is equivalent to
existence of a measure m and λ > 0 with Q ≥ λm. In this case, we
can assume without loss of generality that λ = 1 after replacing m by
λm. Now, the desired equivalence is clear.

(i.b) ⇐⇒ (v)/(v.a): This follows from (e) of the mentioned propo-
sitions. �

We end this section with a series of remarks that extend the con-
siderations of the theorem above via exercises.

Remark. We first note that (i) is stated for all measures m. How-
ever, this is also equivalent to the condition on the forms for one finite
measure (Exercise 6.12).
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Remark. Conditions (i.d) and (i.e) show that various ways of
approximating the function 1 are equivalent to recurrence. Such se-
quences can be used to show that recurrence implies the existence of
a function of finite energy which goes to infinity (Exercise 6.13). Fur-
thermore, with the help the material presented in the Green’s function
section, Section 4, we can actually show that b is recurrent if and only if
there exists a sequence (en) in Cc(X) such that 0 ≤ en ≤ 1, en(x)→ 1
as n→∞ for every x ∈ X and

lim
n→∞

Q(en, f) = 0

for every f ∈ D0 (Exercise 6.14).

Remark. One useful consequence of the criteria for recurrence
above is that transience is stable under the operation of taking sub-
graphs (Exercise 6.15).

Remark. In view of (viii.b) there is yet another characterization
of recurrence. Specifically, the graph b is recurrent and the measure m

is finite if and only if 0 is an eigenvalue of the Dirichlet Laplacian L
(D)
m

associated with b over (X,m) (Exercise 6.16).

3. The superharmonic function perspective

In this section we look at the spaces D0 and D from the perspective
of Hilbert spaces and (super)harmonic functions. Large parts of this
section can be understood as a study of (super)harmonic functions in
D0 and the complement of D0 in D. This question is already of interest
on its own. In the context of the present chapter, we use these results
to prove various parts of our main characterization of recurrence.

Excavation Exercise 6.3, which recalls the invertibility of the Dirich-
let Laplacian on finite sets, and Excavation Exercise 6.4, which estab-
lishes some basic properties of superharmonic functions, will be used
in this section.

We start with a description of harmonic functions in D0.

Lemma 6.18 (Harmonic functions in D0). Let (b, c) be a connected
graph over X. Then any harmonic function in D0 is constant. In
particular, there exists a non-trivial harmonic function in D0 if and
only if 1 ∈ D0 and c = 0.

Proof. Let u ∈ D0 with Lu = 0. Then, by the Green’s formula
given in Lemma 6.8 we find

Q(u) =
∑
x∈X

Lu(x)u(x) = 0.

As b is connected, we find that u must be constant. Furthermore, c = 0
if u 6= 0. The last statement is then clear. �
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Having dealt with harmonic functions in D0, we now turn to super-
harmonic functions. As we have already discussed the case of constant
functions in the previous lemma, we focus on non-constant superhar-
monic functions next.

Lemma 6.19 (Superharmonic functions in D0). Let (b, c) be a con-
nected graph over X. Any non-constant superharmonic function u in
D0 satisfies u ≥ 0.

Proof. Let u be a non-constant superharmonic function in D0.
Then, v = u∧0 is superharmonic by Lemma 1.9, v ∈ D0 by Lemma 6.7
and v ≤ 0. It suffices to show v = 0. Assume the contrary. Then, as u
is not constant, v cannot be constant and this implies

0 < Q(v).

On the other hand, by the Green’s formula given in Lemma 6.8, we
clearly have

Q(v) =
∑
x∈X

Lv(x)v(x) ≤ 0

as Lv ≥ 0 and v ≤ 0. This gives a contradiction. �

The previous lemma provides a property of superharmonic functions
in D0. It does not deal with the existence of such functions. We
now study this existence. It turns out that equilibrium potentials, i.e.,
functions f ∈ D0 with f(x) = 1 and Q(f) = cap(x) provide examples
of such functions. In particular, we note that the following result gives
the existence of non-constant superharmonic functions whenever there
exists an x ∈ X with cap(x) > 0 which, by Theorem 6.17, is equivalent
to 1 /∈ D0.

Proposition 6.20 (Equilibrium potentials are superharmonic func-
tions in D0). Let (b, c) be a connected graph over X and let x ∈ X.
Then, there exists a unique superharmonic u ∈ D0 with u(x) = 1 and
Lu(y) = 0 for all y ∈ X with y 6= x. Furthermore, the function u
satisfies

• Lu(x) = cap(x) = Q(u).
• 0 ≤ u ≤ 1.

In particular, u is the equilibrium potential for x.

Proof. We first show uniqueness: Let u and v be two such func-
tions. Consider w = u− v. Then, w belongs to D0 with Lw(y) = 0 for
y 6= x and w(x) = 0. Hence, we obtain by Green’s formula, Lemma 6.8,

Q(w) =
∑
y∈X

Lw(y)w(y) = 0.

Thus, w must be constant. By w(x) = 0 we find w = 0 and this is the
desired uniqueness statement.
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We now discuss the existence of a function u with all of the stated
properties. We will show that the equilibrium potential from Proposi-
tion 6.9 is the required function. Recall that the equilibrium potential
for x ∈ X is the unique minimizer u of ‖ · ‖x on the convex closed set

{f ∈ D0 | f(x) = 1}.
Furthermore, u satisfies 0 ≤ u ≤ 1.

By the minimizing property of u we see that Q(u + s1y) ≥ Q(u)
for all s ∈ R and y 6= x and for all s ≥ 0 for y = x. This easily implies
that Lu(y) = 0 for y 6= x and Lu(x) ≥ 0. Hence, u is superharmonic.

From Proposition 6.9 we find

cap(x) = Q(u).

Furthermore, by Green’s formula, Lemma 6.8, we then obtain

cap(x) = Q(u) =
∑
y∈X

Lu(y)u(y) = Lu(x),

where we used Lu(y) = 0 for y 6= x as well as u(x) = 1 to obtain the
last equality. This completes the proof �

Remark. Note that it may well be that the function u appearing in
the previous proposition is a constant function. In fact, u is constant if
and only if cap(x) = 0: Indeed, if cap(x) > 0, then u cannot be constant
as Lu(x) = cap(x) > 0 whereas L1 = 0. Conversely, if cap(x) = 0,
then Lu = 0 so that u is harmonic and thus constant by Lemma 6.18.

As a consequence of the previous proposition we can set up a com-
plete solution theory for existence of monopoles in D0, i.e., solutions of
equations of the form

Lu = 1x

for x ∈ X and u ∈ D0. This is contained in the subsequent corollary.
We will come back to it in the next section from a different perspective.
This will show that the solutions in D0 we find here have a minimality
property among all solutions.

Corollary 6.21 (Existence of monopoles). Let (b, c) be a con-
nected graph over X and let x ∈ X. Then, the following statements
hold:

(a) If cap(x) > 0, then there exists a unique function gx ∈ D0 with
Lgx = 1x. This function gx satisfies 0 ≤ gx ≤ 1/cap(x).

(b) If cap(x) = 0, then there does not exist a solution of Lu = 1x in
D0.

Proof. Both (a) and (b) follow from the previous proposition and
Green’s formula. We now give the details.

(a) Let u ∈ D0 be the unique solution given by Proposition 6.20
above. The function gx = u/cap(x) clearly belongs to D0 and satisfies
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Lgx = 1x. Furthermore, as 0 ≤ u ≤ 1, we get 0 ≤ gx ≤ 1/cap(x). This
shows the existence of such a function.

To show uniqueness we observe that whenever gx ∈ D0 satisfies
Lgx = 1x, the function gx is non-constant and, hence, satisfies Q(gx) >
0. From Green’s formula, Lemma 6.8, we find

0 < Q(gx) = gx(x).

Then, u = gx/gx(x) satisfies the statement of Proposition 6.20 and is,
therefore, unique. Thus, gx is a multiple of u. Clearly, there can be
at most one multiple of u solving the equation in question. This gives
that gx is unique.

(b) Assume that there exists a u ∈ D0 with Lu = 1x. Then, u is
not constant and, hence, satisfies Q(u) > 0. From Green’s formula,
Lemma 6.8, we then find

0 < Q(u) = u(x).

Hence, we can consider the function v = u/u(x) and this function is
superharmonic and satisfies v(x) = 1 and Lv(y) = 0 for all y 6= x. So,
by Proposition 6.20, v is the unique superharmonic function with these
properties and

cap(x) = Lv(x) =
1

u(x)
> 0.

By contraposition, this completes the proof. �

Remark (Alternative proof of the existence of monopoles). We
note that an alternative reasoning for the existence of monopoles can
be given using the Riesz representation theorem (Exercise 6.17).

So far, we have dealt with superharmonic functions in D0. We can
also describe the orthogonal complement of D0 in D using superhar-
monic functions.

Lemma 6.22 (Orthogonal complement of D0 in D). Let (b, c) be a
connected graph over X. Let o ∈ X. Then, u ∈ D satisfies u ⊥ D0

with respect to 〈·, ·〉o if and only if

Lu(y) = 0 for all y 6= o and Lu(o) = −u(o).

In particular, (Lu(o))u is superharmonic whenever u belongs to the
orthogonal complement of D0 in D.

Proof. As Cc(X) is dense in D0 with respect to ‖ · ‖o, we obtain
that u ∈ D is orthogonal to D0 if and only if

〈u, ϕ〉o = Q(u, ϕ) + u(o)ϕ(o) = 0

for all ϕ ∈ Cc(X). As any ϕ ∈ Cc(X) can be written as a sum of a
ψ ∈ Cc(X) with ψ(o) = 0 and a multiple of 1o we see that u ∈ D is
orthogonal to D0 if and only if both

Q(u, ψ) = 0 and Q(u, 1o) + u(o) = 0
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for all ψ ∈ Cc(X) with ψ(o) = 0. From Green’s formula, Lemma 6.8,
we find that these statements are equivalent to

Q(u, ψ) =
∑
y∈X

Lu(y)ψ(y) = 0

and

−u(o) = Q(u, 1o) = Lu(o).

From these equivalences, the desired statements follow. �

So far our results have not made any assumptions on the graph.
We now turn to study the case of 1 ∈ D0 and assume that the graph
is connected.

Proposition 6.23 (Superharmonic functions in D are constant).
Let b be a connected graph over X. If 1 ∈ D0, then any superharmonic
function in D is constant.

Proof. We proceed in two steps. As a first step, we show that
any superharmonic function in D must be harmonic. Thus, let u be a
superharmonic function in D. Then, from Green’s formula, Lemma 6.8,
we find

0 = Q(u, 1) =
∑
x∈X

Lu(x).

As Lu(x) ≥ 0 for all x ∈ X the desired harmonicity follows.

We now show that any harmonic function in D is constant: Let
u ∈ D be harmonic. Let o ∈ X and consider v = u − u(o)1. Then,
clearly v ∈ D is harmonic and vanishes at o. It suffices to show v = 0.

As v is harmonic, the function−|v| is superharmonic, see Lemma 1.9.
Hence, −|v| must be harmonic by what we have shown in the first step.
Thus, |v| is harmonic as well. As both |v| and v are harmonic, we con-
clude that both v± = (±v) ∨ 0 = (|v| ± v)/2 are harmonic. Clearly,
both v+ and v− are non-negative. By connectedness, each of them must
then either be strictly positive or vanish identically, see Corollary 4.2.
By v(o) = 0 we have v+(o) = 0 = v−(o) and both v+ and v− must
vanish identically. This shows v = 0, which completes the proof. �

Remark (Approximation free proof of D0 = D for 1 ∈ D0). As
shown in Proposition 6.11 via approximation, we have D = D0 when-
ever 1 ∈ D0. Thus, it is interesting to note that the preceding two
results give another, approximation free, proof of the equality of D0

and D under the condition 1 ∈ D0: Let u ∈ D. Then, considering the
Hilbert space D with inner product 〈·, ·〉o for o ∈ X, we can decompose
u as u = v + r with v ∈ D0 and r ⊥ D0. By Lemma 6.22, we can then
conclude that either r or −r is superharmonic. By Proposition 6.23 this
gives that r is constant. Hence, r belongs to D0 as well and, therefore,
has to be 0. Thus, u = v belongs to D0.
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In the preceding considerations we have dealt with (super)harmonic
functions in D using methods from Hilbert space theory. It is remark-
able that the conclusion of the previous proposition continues to hold
for general superharmonic functions well outside any context of Hilbert
spaces. This is the content of the next proposition.

Proposition 6.24 (Positive superharmonic functions are constant).
Let b be a connected graph. Assume 1 ∈ D0. If u ≥ 0 is superharmonic,
then u is constant.

Proof. If u = 0 there is nothing left to show. Thus, we can
assume that there exists an x ∈ X with u(x) > 0. By Lemma 4.2, we
then have u > 0. As 1 ∈ D0, there exists a sequence (en) in Cc(X)
approximating 1 with respect to ‖ · ‖o. Hence, by the ground state
transform, Corollary 4.9, we infer

0 ≤ 1

2

∑
x,y∈X

b(x, y)u(x)u(y)
(en
u

(x)− en
u

(y)
)2

≤ Q(en).

As en(x) → 1 for each x ∈ X as n → ∞ and Q(en) → Q(1) = 0, we
infer from Fatou’s lemma that

0 ≤ 1

2

∑
x,y∈X

b(x, y)u(x)u(y)

(
1

u
(x)− 1

u
(y)

)2

≤ 0.

As b is connected this implies that u is constant. �

Our study of superharmonic functions now easily allows us to prove
the following result which forms part of Theorem 6.1.

Theorem 6.25 (Characterization of recurrence – superharmonic
functions). Let b be a connected graph over X. Then, the following
statements are equivalent:

(i.b) 1 ∈ D0.
(iv) All superharmonic functions u ≥ 0 are constant.

(iv.a) All superharmonic functions u ∈ D0 are constant.
(iv.b) All superharmonic functions u ∈ D are constant.
(iv.c) All superharmonic functions u ∈ `∞(X) are constant.

(ix) There exists a non-trivial harmonic function u ∈ D0, i.e., Lm is
not injective on D0 for some (all) measure(s) m.

(x) For some (all) x ∈ X there does not exist a monopole in D0 at x.

Proof. (i.b) =⇒ (iv.b): This is shown in Proposition 6.23.

(iv.b) =⇒ (iv.a): This is clear as D0 ⊆ D.

(iv.a)/(iv) =⇒ (i.b): Let x ∈ X. By Proposition 6.20 there exists a
positive superharmonic function u ∈ D0 with u(x) = 1. By (iv.a)/(iv)
we must then have u = 1 and, hence, 1 belongs to D0.

(i.b) =⇒ (iv): This is shown in Proposition 6.24.
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(iv) =⇒ (iv.c): Let u ∈ `∞(X) be superharmonic. Then, u+C1 is
a superharmonic positive function for sufficiently large C > 0. Hence,
u+ C1 is constant by (iv) and thus u is constant as well.

(iv.c) =⇒ (iv): This follows easily as superharmonicity is stable
under cutoff. More specifically, whenever u is superharmonic so is
u ∧ k for any number k ≥ 0 by Lemma 1.9.

(i.b) ⇐⇒ (ix): This is immediate from Lemma 6.18.

(i.b)⇐⇒ (x): We already know by Theorem 6.17 that (i.b) is equiv-
alent to cap(x) = 0 for some (all) x ∈ X. Now, the desired statement
follows directly from Corollary 6.21. �

Remark. One use of non-trivial positive superharmonic harmonic
functions is to derive a Hardy inequality (Exercise 6.18). Now, any
Hardy inequality can always be extended from Cc(X) to D0. In the
recurrent case, one can even extend a Hardy inequality to D (Exer-
cise 6.19).

4. The Green’s function perspective

In this section we study properties of the Green’s function. We
first show that there are three possible ways of introducing the Green’s
function. More specifically, the Green’s function can be defined via the
semigroup, as the limit of resolvents or as the limit of the inverses of the
Dirichlet Laplacians. We will then show that a graph is recurrent if and
only if the Green’s functions is finite at one (equivalently, all) pair(s) of
vertices. We will also provide alternative approaches to various topics
discussed in preceding sections, including the existence of monopoles as
well as approximating the constant function 1 by a sequence in Cc(X).

Excavation Exercises 6.3 and 6.4 will be used in this section.

Let (b, c) be a connected graph over (X,m). We recall that the
Green’s function G = Gm : X ×X −→ [0,∞] is given by

Gm(x, y) =

∫ ∞
0

e−tLm1y(x)dt

where Lm = L
(D)
m . The theorem below gives some basic properties of

the Green’s function. In particular, we show that the Green’s function
can also be defined via resolvents or via the inverse of the Dirichlet
Laplacians for any exhaustion sequence of the graph. Furthermore, we
show that if the Green’s function is finite at some pair of vertices, then
it is finite for all pairs of vertices.

Theorem 6.26 (Basic properties of Gm). Let (b, c) be a connected
graph over (X,m). Then, for all ϕ ∈ Cc(X) and x ∈ X, we have

lim
α→0+

(Lm + α)−1ϕ(x) =

∫ ∞
0

e−tLmϕ(x)dt = lim
n→∞

(L
(D)
Kn

)−1ϕ(x),
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where (Kn) is an arbitrary sequence of increasing finite sets such that⋃
nKn = X. In particular, for all x, y ∈ X,

Gm(x, y) = lim
α→0+

(Lm + α)−11y(x) = lim
n→∞

(L
(D)
Kn

)−11y(x).

Furthermore,

(a) Gm(x, y)m(x) = Gm(y, x)m(y) for all x, y ∈ X.
(b) Gm > 0.
(c) If Gm(x, y) = ∞ for some x, y ∈ X, then Gm(x, y) = ∞ for all

x, y ∈ X.
(d) If Gm(x, y) < ∞ for some x, y ∈ X, then Gm(x, y) < ∞ for all

x, y ∈ X and, for an arbitrary o ∈ X, the function Gm(·, o) is
superharmonic with

LmGm(·, o) = 1o.

Furthermore, Gm(·, o) is the smallest u ∈ F with u ≥ 0 such that
Lmu ≥ 1o.

(e) If Gm(x, y) <∞ for some x, y ∈ X and c(o) = 0 for some o ∈ X,
then Gm(·, o) is not constant. Furthermore, if Gm(·, o) is constant,
then Gm(·, o′) is not constant for all o′ 6= o.

Remark. We note that it is possible that Gm(·, o) is actually con-
stant for one o ∈ X (Exercise 6.20).

Remark. There is yet another way to introduce the Green’s func-
tion Gm(·, o) for a connected transient graph. Consider the smallest
solution uλ ≥ 0 to (Lm + λw)uλ = 1o for λ > 0 and w ≥ 0 non-trivial.
Then, Gm(x, o) = limλ→0 uλ(x) (Exercise 6.21).

Proof. By decomposing into positive and negative parts, we can
assume that ϕ ≥ 0. The spectral theorem gives

(Lm + α)−1 =

∫ ∞
0

e−αte−tLmdt,

see Theorem A.35 in Appendix A. Therefore, the first formula follows
by monotone convergence since e−tLm for t ≥ 0 is positivity preserving
by Corollary 1.22. Furthermore, for any Kn such that ϕ ∈ Cc(Kn) we
have by the spectral theorem(

L
(D)
Kn

)−1

ϕ =

∫ ∞
0

e−tL
(D)
Knϕdt.

By decomposing into negative and positive parts and using Lemma 1.21

it follows that e−tL
(D)
Knϕ↗ e−tLmϕ pointwise so that the right-hand side

converges to
∫∞

0
e−tLmϕdt by monotone convergence arguments. Hence,

the second equality also holds and the main statement follows.

We now turn to the additional statements.

(a) The symmetry follows directly from the equality

e−tLm1x(y)m(y) = 〈e−tLm1x, 1y〉 = 〈1x, e−tLm1y〉 = e−tLm1y(x)m(x)
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for all x, y ∈ X.

(b) The strict positivity Gm > 0 follows directly from the definition
of Gm and the fact that the semigroup is positivity improving for t > 0
by Theorem 1.26 as we assume connectedness.

(c) To show that Gm(x, y) = ∞ for all x, y ∈ X if Gm(x, y) = ∞
for some x, y ∈ X let ex = 1x/

√
m(x) for x ∈ X. Let x, y, x0 ∈ X. We

calculate for t > 1,

e−tLm1y(x) = e−Lme−(t−1)Lm1y(x)

=
1

m(x)
〈e−Lme−(t−1)Lm1y, 1x〉

=
1

m(x)

∑
z∈X

〈e−(t−1)Lm1y, ez〉〈e−Lm1x, ez〉

≥ 1

m(x)
〈e−(t−1)Lm1y, ex0〉〈e−Lm1x, ex0〉

=
m(x0)

m(x)
e−(t−1)Lm1y(x0)e−Lm1x(x0).

Since the semigroups are positivity improving on a connected graph
by Theorem 1.26, we infer that C = e−Lm1x(x0)m(x0)/m(x) > 0.
Then,

Gm(x, y) =

∫ ∞
0

e−tLm1y(x)dt

≥
∫ ∞

1

e−tLm1y(x)dt

≥ C

∫ ∞
0

e−tLm1y(x0)dt

= CGm(x0, y).

By the symmetry shown in (a) and repeating the calculation allows us
to estimate Gm(x0, y) by Gm(x0, y0) for any y0 ∈ X. As x, y, x0, y0 ∈ X
were chosen arbitrarily, the statement follows.

(d) That Gm(x, y) < ∞ for all x, y ∈ X if Gm(x, y) < ∞ for some
x, y ∈ X follows from part (c) directly shown above.

Now, the function α 7→ (Lm + α)−11y(x) can be seen to be mono-
tonically decreasing by the resolvent identity

(Lm + α)−1 − (Lm + β)−1 = (β − α)(Lm + α)−1(Lm + β)−1

for α, β > 0 as the resolvents are positivity preserving, Corollary 1.22.
We calculate for z, o ∈ X,

Lm(Lm + α)−11o(z) = Lm(Lm + α)−11o(z)

= 1o(z)− α(Lm + α)−11o(z).
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Taking the limit α → 0+ we see that the right-hand side converges to
1o(z) from the spectral theorem, see Proposition A.24 in Appendix A.
Moreover, for the left-hand side, we have limα→0+(Lm + α)−11o(z) =
Gm(z, o) < ∞ as we assume that Gm(x, y) < ∞ for some x, y ∈ X.
Since the limit on the right-hand side exists and

lim
α→0+

Deg(z)(Lm + α)−11o(z) = Deg(z)Gm(z, o)

we infer that Gm(·, o) ∈ F and

LmGm(·, o)(z) = 1o(z)

by monotone convergence, cf. Lemma 1.8.
We now show that Gm(·, o) is the smallest function u ∈ F such that

u ≥ 0 and Lmu ≥ 10. Let o ∈ X, let (Kn) be an arbitrary sequence of
increasing finite sets such that

⋃
nKn = X and o ∈ Kn for all n ∈ N.

Let gn = (L
(D)
Kn

)−11o and let u ≥ 0 satisfy Lmu ≥ 1o. Then, vn = u−gn
is superharmonic on Kn, satisfies vn ≥ 0 outside of Kn and vn ∧ 0
assumes its minimum on the finite set Kn. Hence, by the minimum
principle, Theorem 1.7, we infer that vn ≥ 0 and, therefore, u ≥ gn.
Since gn converges to Gm(·, o), it follows that u ≥ Gm(·, o).

(e) By (d) we have LmGm(·, o) = 1o. So, if c(o) = 0, then it is clear
that Gm(·, o) is not constant.

We now prove the remaining statement. Assume that Gm(·, x) are
constant for x = o, o′ ∈ X. Then, this implies

LmGm(·, x) =
c

m
Gm(·, x).

We will show that o = o′. We deduce from (a), the constancy and from
LmGm(·, x) = 1x for x = o, o′ that

c(o)

m(o′)
Gm(o, o′) =

c(o)

m(o)
Gm(o′, o)

=
c(o)

m(o)
Gm(o, o)

= LmGm(·, o)(o)
= 1

= LmGm(·, o′)(o′)

=
c(o′)

m(o′)
Gm(o, o′).

We infer c(o) = c(o′) 6= 0 and 1 = c(o′)Gm(o, o′)/m(o′) from this
calculation. Using this, (a) and that Gm(·, o) is constant we obtain

1 =
c(o′)

m(o′)
Gm(o, o′) =

c(o)

m(o)
Gm(o′, o) = LmGm(·, o)(o′) = 1o(o

′).

Hence, 1o(o
′) = 1, and, therefore, o = o′. �
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To study further properties of the Green’s function associated to a
graph, we normalize the approximating sequences of Theorem 6.26 at
one vertex. It is clear that, in the case of Gm(x, y) < ∞, normalizing
the approximating sequences of Gm(·, o) at a vertex o ∈ X yields a
limiting function g = Gm(·, o)/Gm(o, o). It turns out that even in the
case of Gm(x, y) =∞, these normalizing sequences yield a finite limit.

Indeed, we have seen this phenomenon before. In Corollary 4.5 and
Corollary 4.6 from Chapter 4, we obtained superharmonic functions g
and g(D) via pointwise limits of subsequences of the functions

gn =
1

(Lm + αn)−11o(o)
(Lm + αn)−11o

and

g(D)
n =

1

(L
(D)
Kn

)−11o(o)
(L

(D)
Kn

)−11o,

where αn > 0 for n ∈ N0 is a sequence with αn → 0 as n→∞ and (Kn)
is an increasing sequence of finite sets with

⋃
nKn = X and o ∈ X is

such that o ∈ Kn for n ∈ N0.
Clearly, in the case Gm(x, y) < ∞ for all x, y ∈ X, we have

g = g(D) = Gm(·, o)/Gm(o, o) by Theorem 6.26 above and the lim-
its are independent of the choice of (αn) and (Kn). The next lemma
shows that also in the case that Gm(x, y) = ∞ for all x, y ∈ X, these
limits also exist, coincide and are independent of the choice of (αn) and
(Kn). Furthermore, we show that this pointwise convergence is even
convergence with respect to ‖ · ‖o. As a fundamental consequence, the

limit g = g(D) is in D0 as g
(D)
n ∈ Cc(X) so that

Gm(·, o) ∈ D0

in the case of Gm(x, y) <∞ for all x, y ∈ X. Furthermore, we compute
Q(g) and we will later show that Q(g) = cap(o). In particular, g is the
equilibrium potential at o as discussed in Propositions 6.9 and 6.20.

Lemma 6.27. Let (b, c) be a connected graph over (X,m) and let

o ∈ X. Let gn, g
(D)
n be given as above. Then, there exists a g ∈ D0 with

g
(D)
n → g and gn → g with respect to ‖ · ‖o as n→∞. Moreover,

Q(g) =
m(o)

Gm(o, o)
.

Furthermore, we have the following case distinction:

(a) If Gm(x, y) = ∞ for some (all) x, y ∈ X, then c = 0 and g = 1 is
harmonic.

(b) If Gm(x, y) <∞ for some (all) x, y ∈ X, then the function

g = Gm(·, o)/Gm(o, o)
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is superharmonic and satisfies

Lmg =
1o

Gm(o, o)
.

In particular, Gm(·, o) ∈ D0 in this case.

As a consequence, the limit g is independent of the choice of the se-
quences (αn) and (Kn).

Proof. By Corollaries 4.5 and 4.6 there exist subsequences of the

gn and the g
(D)
n that converge pointwise irrespective of the choice of

αn and Kn. By the local Harnack inequality, Theorem 4.1, any such
subsequence is pointwise bounded. Our subsequent considerations will
show that any pointwise convergent subsequence actually converges
with respect to ‖ · ‖o and that all possible limits agree. This will
establish the existence of the limit along all sequences αn → 0 and
increasing finite Kn ⊆ X with

⋃
nKn = X.

To avoid cumbersome index notation we assume without loss of
generality that

g = lim
n→∞

gn, g(D) = lim
n→∞

g(D)
n

exist pointwise.

We first show that g(D), g ∈ D. Let g
(D)
n be given as above. Since

g
(D)
n ∈ Cc(X), we obtain by the use of Green’s formula, Proposition 1.5,

and the facts that L
(D)
Kn

is a restriction of Lm and g
(D)
n (o) = 1 that

Q(g(D)
n ) =

∑
x∈Kn

(
L

(D)
Kn
g(D)
n

)
(x)g(D)

n (x)m(x) =
m(o)

(L
(D)
Kn

)−11o(o)
.

By lower semi-continuity and Theorem 6.26 we get

Q(g(D)) ≤ lim inf
n→∞

Q(g(D)
n ) =

m(o)

Gm(o, o)
,

which implies that g(D) ∈ D.
By a similar argument, as gn ∈ D(Lm) and gn(o) = 1, we have

Q(gn) = 〈Lmgn, gn〉 =
〈1o, gn〉 − αn‖gn‖2

(Lm + α)−11o(o)
≤ m(o)

(Lm + αn)−11o(o)
.

Again, by lower semi-continuity and Theorem 6.26, as αn → 0 when
n→∞, we get

Q(g) ≤ lim inf
n→∞

Q(gn) ≤ m(o)

Gm(o, o)
,

which implies that g ∈ D.

If Gm(o, o) =∞, the estimates above give thatQ(g(D)) = Q(g) = 0.
As g(D), g > 0 by Corollaries 4.5 and 4.6, it follows that c = 0 in this
case and hence, g and g(D) are constant so that g = g(D) = 1 since
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gn(o) = g
(D)
n (o) = 1. Furthermore, the convergence with respect to

‖ · ‖o follows as we have pointwise convergence and

Q(g) = lim
n→∞

Q(gn) = lim
n→∞

Q(g(D)
n ) = Q(g(D)) = 0.

If Gm(o, o) < ∞, we obtain g = g(D) = Gm(·, o)/Gm(o, o) directly
from Theorem 6.26 above. Moreover, by Theorem 6.26 (d) we have

Lmg =
1

Gm(o, o)
LmGm(·, o) =

1o
Gm(o, o)

.

Since g
(D)
n ∈ Cc(X) and g ∈ D ⊆ F we have by Green’s formula,

Proposition 1.5, and g
(D)
n (o) = 1 that

Q(g − g(D)
n ) = Q(g)− 2Q(g, g(D)

n ) +Q(g(D)
n )

= Q(g)− 2
∑
x∈X

(g(D)
n Lmg)(x)m(x) +

∑
x∈X

(g(D)
n Lmg(D)

n )(x)m(x)

= Q(g)− 2
m(o)

Gm(o, o)
+

m(o)

(L
(D)
Kn

)−11o(o)

→ Q(g)− m(o)

Gm(o, o)
≤ 0

as n → ∞, where the last inequality follows by the estimate on Q(g)

established above. Hence, g
(D)
n → g = g(D) with respect to ‖ · ‖o and

we deduce that g ∈ D0. Therefore, as g = Gm(·, o)/Gm(o, o) in this
case, we get that Gm(·, o) ∈ D0 as a consequence.

The independence of this construction on the choice of sequences
follows directly from the considerations above. �

The preceding lemma ties in with various further considerations. In
particular, (a) is connected to 1 ∈ D0, as we will see below, and (b) is
connected to solutions of Lu = 1x, i.e., to monopoles.

So, after these discussions it is not hard to connect (xi) with (i.b)
in our main characterization of recurrence, Theorem 6.1. This is done
next.

Theorem 6.28 (Characterization of recurrence – Green’s function).
Let b be a connected graph over X. Then, the following statements are
equivalent:

(i.b) 1 ∈ D0.
(xi) Gm(x, y) =∞ for some (all) x, y ∈ X and some (all) measure(s)

m.
(xi.a) limα→0+(Lm + α)−11y(x) =∞ for some (all) x, y ∈ X and

some (all) measure(s) m.

(xi.b) limn→∞(L
(D)
Kn

)−11y(x) = ∞ for some (all) x, y ∈ X and
some (all) sequence(s) (Kn) of increasing sets such that⋃
nKn = X and some (all) measure(s) m.
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Proof. By Theorem 6.26 the statements (xi), (xi.a) and (xi.b) are
all equivalent. So, to prove the theorem it suffices to show that (i.b)
is equivalent to (xi). This is carried out next, based on Lemma 6.27.
Note that we show that (i.b) implies (xi) for all measures m and that
the validity of (xi) for some measure implies (i.b). This gives that the
validity of (xi) for some measure is equivalent to the validity of (xi) for
all measures.

(i.b) =⇒ (xi): Assume Gm(x, y) < ∞ for some measure m and
some x, y ∈ X. Then, we obtain from (b) of Lemma 6.27 that there
exists a superharmonic g ∈ D0 with Lg 6= 0. This, however, implies
1 /∈ D0, as otherwise we have from Green’s formula, Lemma 6.8,

0 <
∑
x∈X

Lg(x) = Q(g, 1) = 0,

which is clearly a contradiction.

(xi) =⇒ (i.b): From (xi) and (a) of Lemma 6.27 we immediately
obtain (i.b). �

We end this section by proving three properties of the Green’s func-
tion and show that each of them indeed is a characterization of the
Green’s function. While these are not used in the subsequent consid-
erations they are of interest in their own right.

Theorem 6.29 (Characterizations of the Green’s function). Let
(b, c) be a connected graph over (X,m). Assume that Gm(x, y) < ∞
for some x, y ∈ X and let o ∈ X.

(a) The function Gm(·, o) is the unique function u ∈ D0 such that

Lmu = 1o.

(b) The function Gm(·, o) is the unique function u ∈ D0 such that for
all f ∈ D0,

Q(u, f) = f(o)m(o).

(c) The function Gm(·, o) is the unique minimizer of Q on

{u ∈ D0 | u(o) = Gm(o, o)}.

Proof. (a) Existence is a direct consequence of (b) of Lemma 6.27.
Uniqueness is easy to show: Let u, v be two such functions in D0. Then,
u−v is a harmonic function in D0 and, hence, constant by Lemma 6.18.
By Theorem 6.28 this constant must be zero.

(b) This follows directly from (a) and Green’s formula, Lemma 6.8.

(c) Recall that for an exhaustion sequence (Kn) with o ∈ Kn we
defined

g(D)
n =

1

(L
(D)
Kn

)−11o(o)
(L

(D)
Kn

)−11o
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and in Lemma 6.27 (b) we have shown that g = limn→∞ g
(D)
n satisfies

g = Gm(·, o)/Gm(o, o) in the case that Gm(x, y) <∞.
Hence, it suffices to show that g is the unique minimizer of Q on

{u ∈ D0 | u(o) = 1}. Note that g
(D)
n solves the Dirichlet problem

L
(D)
Kn
u = 0 on A = Kn \ {o}
u = 1 on B = {o}.

So, by standard arguments, cf. Theorem 0.41, the function g
(D)
n is the

unique minimizer of the restriction Q
(D)
Kn

of Q to {u ∈ C(Kn) | u(o) =

1}. Furthermore, by the convergence g
(D)
n → g with respect to ‖ · ‖o,

we have for all ψ ∈ Cc(X) with ψ(o) = 1,

Q(g) = lim
n→∞

Q(g(D)
n ) = lim

n→∞
Q

(D)
Kn

(g(D)
n ) ≤ lim

n→∞
Q

(D)
Kn

(ψ) = Q(ψ).

Since Cc(X) is dense in D0, the function g is a minimizer of Q on
{u ∈ D0 | u(o) = 1}.

Finally, we show that g is the unique such minimizer. So, let v ∈ D0

be another minimizer and let vn ∈ Cc(X) be such that vn → v with
respect to ‖ · ‖o. Then, applying Green’s formula gives

Q(v − g) = lim
n→∞

Q(vn − g)

= Q(v)− 2 lim
n→∞

Q(vn, g) +Q(g)

≤ 2Q(g)− 2 lim
n→∞

∑
x∈X

Lg(x)vn(x)

= 2Q(g)− 2
m(o)

Gm(o, o)

≤ 0,

where the last equality follows from Q(g) = m(o)/Gm(o, o) shown in
Lemma 6.27. As b is connected this shows that v − g is constant. As
v and g agree on o, they must then be equal. �

By statement (c) of the preceding theorem we get an immediate

consequence for the function g = limn→∞ g
(D)
n = limn→∞ gn which ap-

pears in the proof of the theorem. More specifically, we obtain that g
is the equilibrium potential for o first constructed in Proposition 6.9.
In particular, this allows us to connect the capacity of points with the
Green’s function.

Corollary 6.30 (Green’s function and equilibrium potentials).
Let (b, c) be a connected graph over (X,m) and let o ∈ X. Let g =

limn→∞ g
(D)
n = limn→∞ gn. Then g is the equilibrium potential for o,

i.e., the unique minimizer of Q on {u ∈ D0 | u(o) = 1} which satisfies
0 ≤ g ≤ 1 and

Q(g) = cap(o).
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Furthermore, cap(o) = 0 if and only if Gm(x, y) = ∞ for some (all)
x, y ∈ X.

Proof. The fact that cap(o) is given by the energy of the mini-
mizer follows from Proposition 6.9. Now, if Gm(x, y) < ∞, for some
(all) x, y ∈ X, then Q(g) = cap(o) > 0 follows by Lemma 6.27 (b)
and Theorem 6.29 (c) above as g(·) = Gm(·, o)/Gm(o, o) ∈ D0 is su-
perharmonic in this case. If Gm(x, y) = ∞, for some (all) x, y ∈ X,
Lemma 6.27 (a) yields c = 0 and g = 1 ∈ D0. This immediately gives
Q(g) = cap(o) = 0. �

5. The Green’s formula perspective

In this section we study recurrence from the point of view of Green’s
formulas. In particular, we will see that a variant of Green’s formula
which allows us to pair functions of finite energy whose Laplacian is in
`1 with bounded functions of finite energy is equivalent to recurrence.

In Lemma 6.8 we have already encountered a Green’s formula in
the form

Q(u, v) =
∑
x∈X

Lu(x)v(x)

with absolutely converging sum for v ∈ D0 and u ∈ D with either
Lu ≥ 0 or

∑
x∈X |Lu(x)| <∞ and v ∈ `∞(X). Indeed, this formula has

been used in the previous sections in various places. The main message
of this section is that the validity of this formula with v ∈ D ∩ `∞(X)
instead of v ∈ D0 is a characterization of recurrence. In fact, it even
suffices to consider v = 1, in which case the formula simplifies to

0 =
∑
x∈X

Lu(x).

A basic insight behind the reasoning in this section is that this type
of formula actually excludes the existence of superharmonic functions
which are not harmonic.

We will need certain consequences of the previous sections in order
to provide a proof of the remaining parts of our main theorem. These
are discussed next.

Proposition 6.31. Let b be a connected graph over (X,m). If∑
x∈X

Lmu(x)m(x) = 0

for all bounded u ∈ D0 with u ≥ 0 and Lmu ∈ `1(X,m), then 1 ∈ D0.

Proof. By Proposition 6.20 there exists for any x ∈ X a super-
harmonic function u ∈ D0 with u(x) = 1, 0 ≤ u ≤ 1, Lu(y) = 0 for all
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y 6= x and Lu(x) = Q(u). From our assumption we find

0 =
∑
z∈X

Lu(z) = Lu(x) = Q(u).

By connectedness we infer that u is constant. As u(x) = 1, we obtain
1 = u ∈ D0. �

From 1 ∈ D0 and the definition of D0 we obtain the existence
of a sequence in Cc(X) converging to 1 with respect to ‖ · ‖o. The
considerations on the Green’s functions as the limit of restrictions from
the preceding section actually provide a specific such sequence with
additional features. This is the content of the next proposition.

Proposition 6.32. Let (b, c) be a connected graph over (X,m).
Assume that 1 ∈ D0 and let (Kn) be an arbitrary sequence of finite
subsets of X with Kn ⊆ Kn+1 for all n ∈ N and

⋃
nKn = X. Then,

there exists a sequence (en) in Cc(X) with 0 ≤ en ≤ 1 and Lmen ≥ 0
on Kn for each n ∈ N and en → 1 as n→∞ with respect to ‖ · ‖o for
any o ∈ K1.

Proof. From 1 ∈ D0 and Theorem 6.28 we obtain Gm(x, y) = ∞
for all x, y ∈ X. Consider

g(D)
n =

1

(L
(D)
Kn

)−11o(o)
(L

(D)
Kn

)−11o

for n ∈ N. By Gm(x, y) = ∞ it follows that g
(D)
n → g = 1 in ‖ · ‖o by

Lemma 6.27 (a). Now define

en = g(D)
n ∧ 1,

which satisfies en ∈ Cc(X) and 0 ≤ en ≤ 1 for n ∈ N. Moreover, en → 1
as n → ∞ with respect to ‖ · ‖o for an arbitrary o ∈ X and we have
Lmen ≥ 0 on Kn for all n ∈ N as the minimum of two superharmonic
functions is superharmonic by Lemma 1.9. �

After these preparations we conclude the proof of the main result,
Theorem 6.1.

Theorem 6.33 (Characterization of recurrence – Green’s formula).
Let b be a graph over (X,m). Then, the following statements are equiv-
alent:

(i.b) 1 ∈ D0.
(iii) If u ∈ D satisfies Lmu ∈ `1(X,m) and v ∈ D ∩ `∞(X), then

Q(u, v) =
∑
x∈X

Lmu(x)v(x)m(x)

for some (all) measure(s) m. (“Green’s formula”)
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(iii.a) If u ∈ D satisfies Lmu ∈ `1(X,m), then∑
x∈X

Lmu(x)m(x) = 0

for some (all) measure(s) m.
(iii.b) If u ∈ `∞(X) satisfies Lmu ∈ `1(X,m), then∑

x∈X

Lmu(x)m(x) = 0

for some (all) measure(s) m.

Proof. The fact that statements (iii), (iii.a), (iii.b) hold for all
measures m if they hold for one measure m is clear from the definition
of Lm.

(iii)/(iii.a)/(iii.b) =⇒ (i.b): Each of (iii), (iii.a) and (iii.b) clearly
implies ∑

x∈X

Lmu(x)m(x) = 0

for all bounded u ∈ D with u ≥ 0 and Lmu ∈ `1(X,m). That 1 ∈ D0

now follows from Proposition 6.31.

(i.b) =⇒ (iii)/(iii.a): The assumption 1 ∈ D0 implies D0 = D by
Proposition 6.11 and now (iii) is a direct consequence of the Green’s
formula, Lemma 6.8. Furthermore, (iii.a) clearly follows from (iii).

(i.b) =⇒ (iii.b): Let (Kn) be a sequence of finite subsets of X with
Kn ⊆ Kn+1 for all n ∈ N and

⋃
nKn = X. By Proposition 6.32 there

exists a sequence (en) in Cc(X) such that en → 1 as n → ∞ with
respect to ‖ · ‖o for arbitrary o ∈ X and Lmen ≥ 0 on Kn for all n ∈ N.

Let u ∈ `∞(X) with Lmu ∈ `1(X,m) and assume, without loss of
generality, that 0 ≤ u ≤ 1. We infer by Green’s formula, Proposi-
tion 1.5, and the third pointwise Leibniz rule in Lemma 2.25 applied
to f = g = en, that∑
x∈X

e2
n(x)Lmu(x)m(x) =

∑
x∈X

Lme2
n(x)u(x)m(x)

= 2
∑
x∈Kn

en(x)Lmen(x)u(x)m(x)−
∑
x,y∈X

b(x, y)u(x)(en(x)− en(y))2.

By Lebesgue’s dominated convergence theorem and the fact that
en ≤ 1 we conclude, for the first term above, that

lim
n→∞

∑
x∈X

e2
n(x)Lmu(x)m(x) =

∑
x∈X

Lmu(x)m(x).

Furthermore, as u ≤ 1, the last term above satisfies

0 ≤
∑
x,y∈X

b(x, y)u(x)(en(x)− en(y))2 ≤ 2Q(en)→ 0
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as n→∞. These consideration together with Lmen ≥ 0 on Kn and
en, u ≥ 0 for n ∈ N give∑

x∈X

Lmu(x)m(x) = 2 lim
n→∞

∑
x∈Kn

en(x)Lmen(x)u(x)m(x) ≥ 0.

The same argument applied to the function 1− u gives∑
x∈X

Lmu(x)m(x) ≤ 0

and, hence, (iii.b) follows. �

Remark. We note that the equivalence of (iii.a) and degeneracy of
the form Q on D0, condition (v) in Theorem 6.1, also holds for general
c (Exercise 6.22).

Remark (Existence of dipoles). In the two previous sections we
have discussed how recurrence is equivalent to the existence of mono-
poles. The material of this section allows us to easily conclude the
existence of dipoles for an arbitrary graph. Indeed, whenever b is a
connected graph over X and x, y ∈ X then there exists a solution of
Lu = 1x − 1y in D0.

We now prove this statement. To avoid trivialities we only con-
sider the case x 6= y. If 1 /∈ D0, then we have cap(x), cap(y) > 0
from Lemma 6.15 and from Corollary 6.21 we obtain the existence of
monopoles gx and gy for x and y, respectively. Therefore, u = gx − gy
has the desired property.

If 1 ∈ D0, then we consider the minimizer u of Q on A = {f ∈
D0 | f(x) ≥ 1, f(y) ≤ −1}. As in the proof of Proposition 6.20, we
infer that Lu(z) = 0 for z 6= x, y as well as Lu(x) ≥ 0 and Lu(y) ≤ 0.
As u(x) ≥ 1 and u(y) ≤ −1 we obtain u(x) 6= u(y) and thus u is
not constant. As all harmonic functions in D0 are constant due to
1 ∈ D0 by Lemma 6.18, we infer that u cannot be harmonic. So, it is
not possible that both Lu(x) = 0 and Lu(y) = 0 hold. Moreover, by
Green’s formula, Lemma 6.8, we have

0 = Q(u, 1) =
∑
z∈X

Lu(z)

and this shows Lu(x) = −Lu(y) 6= 0. Hence, v = u/Lu(x) has the
desired properties.

6. A probabilistic point of view*

In this section we connect recurrence and random walks. For this
purpose, we focus on the normalizing measure in this section.
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Let (b, c) be a graph over X. In Section 5, we introduced a Markov
chain (Yn) with transition probabilities

p(x, y) =
b(x, y)∑

z∈X b(x, z) + c(x)

for x, y ∈ X. To these probabilities we associate the transition operator

P0ϕ(x) =
∑
y∈X

p(x, y)ϕ(y)

for ϕ ∈ Cc(X) and x ∈ X. The next lemma shows that this operator
extends to a bounded operator on `2(X,n), where n is the normalizing
measure n(x) =

∑
x∈X b(x, y) + c(x) for x ∈ X.

Lemma 6.34 (Transition operator). Let (b, c) be a graph over X.
Then, the operator P0 extends to a bounded self-adjoint operator P : `2(X,n) −→
`2(X,n) with operator norm bounded by 1.

Proof. A direct calculation shows that P0 is symmetric. Further-
more, for ϕ, ψ ∈ Cc(X),

|〈P0ϕ, ψ〉| =

∣∣∣∣∣ ∑
x,y∈X

p(x, y)ϕ(y)ψ(x)n(x)

∣∣∣∣∣
≤

(∑
x∈X

ψ2(x)n(x)
∑
y∈X

p(x, y)

)1/2(∑
y∈X

ϕ2(y)n(y)
∑
x∈X

p(y, x)

)1/2

≤ ‖ψ‖‖ϕ‖,
where we used that p(x, y) = p(y, x)n(y)/n(x) in the second line.
Hence, P0 is bounded on Cc(X) by 1 in `2(X,n) and can, therefore, be
extended to a bounded operator P on `2(X,n). �

By virtue of the lemma above, we can define powers of P and let

pk(x, y) = P k1y(x)

for x, y ∈ X and k ∈ N0. Notice that P k1y(x) is the probability that
the random walker of the Markov chain (Yk) starting at x is at y after
k jumps, i.e.,

Px(Yk = y) = P k1y(x),

where for an event A we define

Px(A) = P(A | Y0 = x).

Furthermore, we denote the conditioned expectation by

Ex(A) = E(A | Y0 = x).

We now present the connection between the Markov chain and the
notion of recurrence as presented in the preceding sections. Note, in
particular, that recurrence is equivalent to the Markov chain visiting
every vertex infinitely often, regardless of the starting vertex.
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Theorem 6.35 (Random walk perspective on recurrence). Let (b, c)
be a connected graph over (X,n). Then, for all x, y ∈ X,

Gn(x, y) =

∫ ∞
0

e−tLn1y(x)dt =
∞∑
k=0

pk(x, y).

Moreover, for c = 0, the following statements are equivalent:

(xi) For some (all) x, y ∈ X and some (all) measure(s) m,

Gm(x, y) =∞.
(xi.c) For some (all) x, y ∈ X,

Ex(#{k ∈ N0 | Yk = y}) =∞.
(xi.d) For some (all) x, y ∈ X,

Px(Yk = y for some k ∈ N) = 1.

(xi.e) For some (all) x, y ∈ X,

Px (Yk = y for infinitely many k ∈ N0) = 1.

Remark. For a graph (b, c) over (X,m) with the counting measure
m = 1 and associated self-adjoint operator L we have the following
corresponding formula∫ ∞

0

e−tL1y(x)dt =
1

deg(x)

∞∑
k=0

pk(x, y)

for x, y ∈ X which relates the Green’s function to the transition matrix
(Exercise 6.23).

We start by proving the equality for the Green’s function in the
theorem above.

Lemma 6.36. Let (b, c) be a connected graph over (X,n). For all
x, y ∈ X,

Gn(x, y) =

∫ ∞
0

e−tLn1y(x)dt =
∞∑
k=0

pk(x, y).

Proof. Let (Kj) be an increasing sequence of sets such that X =⋃
jKj. Let PKj be the restriction of P to Cc(Kj) which extends to

an operator on `2(X,n) by projecting onto Cc(Kj) first and extending
by zero after applying PKj , j ≥ 1. Since p(x, y) ≥ 0 for all matrix
elements of P , we have

P k
Kj

1x ≤ P k
Kj+1

1x ≤ P k1x

for all x ∈ X, j ∈ N0 and k ∈ N0.
On the other hand, for fixed x, y ∈ X and k ∈ N0, there exists a j0

such that for all Kj with j ≥ j0,

P k
Kj

1x(y) = P k1x(y).
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Namely, one chooses N such that KN includes every combinatorial path
of length k starting in x. Hence,

lim
j→∞

∞∑
k=0

P k
Kj
ϕ(x) =

∞∑
k=0

P kϕ(x)

for all ϕ ∈ Cc(X) and x ∈ X by monotone convergence and decompo-
sition of ϕ into positive and negative parts.

Now, the operator Ln on `2(X,n) can be written as Ln = I − P ,
where I is the identity operator and the same is true for any restriction
of Ln. In particular, denoting the Dirichlet restriction of Ln to Kj by
LKj , a direct algebraic computation now shows that

L−1
Kj

= (IKj − PKj)−1 =
∞∑
k=0

P k
Kj
.

Applying this to a function ϕ ∈ Cc(X) and evaluating it at some x ∈
X, the left-hand side converges to

∫∞
0
e−tLϕ(x)dt by Theorem 6.26.

Furthermore, the right-hand side converges to
∑∞

k=0 P
kϕ(x) by the

considerations above. This finishes the proof. �

For the proof of the equivalences in Theorem 6.35 we need some
notation. First we introduce the following stopping times

sx(y) = min{k ∈ N0 | Yk = y, Y0 = x}
tx(y) = min{k ∈ N | Yk = y, Y0 = x},

where min ∅ =∞. Moreover, we define the functions

gy(x) =
∞∑
k=0

P(sx(y) = k) = Px (Yk = y for some k ∈ N0)

uy(x) =
∞∑
k=0

P(tx(y) = k) = Px(Yk = y for some k ∈ N),

which we relate to the Green’s function and show that gy is superhar-
monic.

Lemma 6.37. Let (b, c) be a connected graph over (X,n). For all
x, y ∈ X,

Gn(y, y)gy(x) = Gn(x, y).

Furthermore, for all y ∈ X,

Lngy = 1y(gy(y)− uy(y)) ≥ 0.

Proof. We calculate

pk(x, y) = Px(Yk = y) =
k∑
l=0

P(sx(y) = l)Py(Yk−l = y).



6. A PROBABILISTIC POINT OF VIEW* 301

Then, we get by the Cauchy product formula

Gn(x, y) =
∞∑
k=0

pk(x, y)

=
∞∑
k=0

k∑
l=0

P(sx(y) = l)Py(Yk−l = y)

=

(
∞∑
k=0

Py(Yk = y)

)(
∞∑
l=0

P(sx(y) = l)

)
= Gn(y, y)gy(x).

Furthermore, for x 6= y,

Pgy(x) =
∑
z∈X

p(x, z)gy(z)

=
∑
z∈X

Px(Y1 = z)
∞∑
k=0

P(sz(y) = k)

=
∞∑
k=0

∑
z∈X

Px(Y1 = z)P(sz(y) = k)

=
∞∑
k=0

P(sx(y) = k + 1)

= gy(x),

where we use P(sx(y) = 0) = 0 for x 6= y in the last step. Analogously,
we get for x = y,

Pgy(y) = uy(y).

Hence,

Lngy = 1y(gy(y)− uy(y)).

This completes the proof. �

We introduce another function related to the return probability of
the random walk. Let

vy(x) = Px(Yk = y for infinitely many k ∈ N0).

We relate this function to the function gy introduced above as follows.

Lemma 6.38. Let (b, c) be a graph over (X,n). For all x, y ∈ X,

vy(x) = vy(y)gy(x).

In particular, vy is superharmonic for all y.
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Proof. We calculate

vy(x) = Px(Yl = y for infinitely many l ∈ N0)

=
∞∑
k=0

P(sx(y) = k)Px(Yl+k = y for infinitely many l ∈ N0 | Yk = y)

= Py(Yl = y for infinitely many l ∈ N0)
∞∑
k=0

P(sx(y) = k)

= vy(y)gy(x).

The “in particular” now follows from Lemma 6.37 above. �

Proof of Theorem 6.35. The first equality follows from Lemma
6.36. We now prove the remaining equivalences.

(xi) ⇐⇒ (xi.c): By virtue of Lemma 6.36, we have

Gn(x, y) =
∞∑
k=0

pk(x, y) =
∞∑
k=0

Px(Yk = y).

On the other hand,

Ex(#{k ∈ N0 | Yk = y}) =
∞∑
k=0

Px(Yk = y).

(xi) =⇒ (xi.d)/(xi.e): Assume Gn(y, y) = ∞ for some (all) y ∈
X. Then, all positive superharmonic functions are constant by Theo-
rem 6.1. Specifically, gy and vy are constant. We will show that gy = 1,
which is equivalent to (xi.d), and vy = 1, which is equivalent to (xi.e)
as y is chosen arbitrarily.

Obviously,

gy(x) = gy(y) = Py(Yk = y for some k ∈ N0) = 1

for all x ∈ X, which yields (xi.d).
Moreover, let

v(l)
y (x) = Px(Yk = y for at least l numbers k ∈ N0).

Then, by definition of uy,

v(l)
y (y) =Py(Yk = y for some k ∈ N)

· Py(Yk = y for at least l − 1 numbers k ∈ N0)

=uy(y)v(l−1)
y (y) = . . . = uy(y)lv(0)

y (y)

=uy(y)l

since v
(0)
y (y) = 1. Hence,

vy(y) = lim
l→∞

v(l)
y (y) = lim

l→∞
uy(y)l,
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which is either 0 or 1. Since vy is constant it is either 0 or 1. Clearly,

uy(y) = Py(Yk = y for some k ∈ N) = 1,

which implies vy = 1, which is (xi.e).

(xi.e) ⇐⇒ (xi.d): This is clear.

(xi.d) =⇒ (xi): Assume gy = 1 and Gn(y, y) <∞. By Lemma 6.37,
this implies that Gn(·, y) is constant. However, this is impossible by
Theorem 6.26 (e) as c = 0. �
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Exercises

Excavation exercises.

Exercise 6.1 (Weakly convergent subsequence). LetH be a Hilbert
space. Show that any bounded sequence (fn) in H has a weakly con-
vergent subsequence.

Exercise 6.2 (Minimizers on closed convex sets). Let H be a
Hilbert space with norm ‖ · ‖ and let U be a closed convex subset.
Show the map U −→ [0,∞) given by f 7→ ‖f‖ admits a unique mini-
mizer.

Exercise 6.3 (Invertibility and positivity of the Dirichlet Lapla-
cian). Let (b, c) be a connected graph over (X,m). Let K ⊆ X be a

finite subset of X and let L
(D)
K be the associated Dirichlet Laplacian.

Show that L
(D)
K is an invertible operator. Furthermore, show that if

o ∈ K, then (L
(D)
K )−11o > 0 on K.

Exercise 6.4 (Staying within the set of superharmonic functions).
Let b be a graph over X. Show the following statements:

(a) The pointwise infimum of a set of superharmonic functions is su-
perharmonic whenever it is a finite function.

(b) The sum of two superharmonic functions is superharmonic. More
generally, the limit of any monotonically increasing sequence of
superharmonic functions is superharmonic whenever the limit is
pointwise finite.

(c) The composition ϕ ◦ u of a monotonically increasing concave func-
tion
ϕ : [0,∞) −→ [0,∞] with a positive superharmonic function u is
a superharmonic function which is non-harmonic whenever ϕ is
strictly concave.

Example exercises.

Exercise 6.5 (Bounded degree and finite measure implies recur-
rence). Let b be a graph over (X,m) such that m(X) < ∞ and
Deg(x) = (1/m(x))

∑
y∈X b(x, y) is bounded. Show that the graph

is recurrent.
(Hint: Look for a sequence of functions en as needed to show recur-

rence.)
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Exercise 6.6 (Hardy’s inequality on the natural numbers*). Let
X = N and let b be a graph over N with b(x, y) = 1 if and only if
|x− y| = 1 and 0 otherwise. Prove that

∞∑
n=0

(ϕ(n)− ϕ(n+ 1))2 ≥
∞∑
n=1

4

n2
ϕ2(n)

for all ϕ : N0 −→ R with ϕ(0) = 0.
(Hint: Show the statement first for corresponding functions in

Cc(X) with the help of Exercises 6.18 and 6.4 (c). Then, extend to
D via Exercise 6.19.)

Exercise 6.7 (Hardy’s inequality for trees). Let b be a k-regular
tree with standard weights over X (recall that a tree is a cycle-free
graph which is called k-regular if all vertices have exactly k + 1 neigh-
bors). Show that there exist a non-constant function w ≥ (k+1)−2

√
k

such that Q ≥ w on Cc(X).

Exercise 6.8 (Pólya’s theorem*). Let d ∈ N and consider the
graph with standard weights over Zd. That is, the vertex set is given
by {x = (x1, . . . , xd) | xj ∈ Z, j = 1, . . . , d} and

b(x, y) =

(
2−

d∑
j=1

|xj − yj|

)
+

for x 6= y and b(x, x) = 0. Show that this graph is recurrent for d = 1, 2
and transient for d ≥ 3.

(Hint: This is hard.)

Extension exercises.

Exercise 6.9 (Resistance metrics). Let b be a graph over X with
associated form Q.

(a) Show that

r(x, y) = sup{|f(x)− f(y)| | f ∈ D,Q(f) ≤ 1}
and

r0(x, y) = sup{|f(x)− f(y)| | f ∈ D0,Q(f) ≤ 1}
are metrics on X.

(b) Show that r2 and r2
0 are also metrics on X.

Exercise 6.10 (Decomposing D). Consider a connected graph b
over X. Let o ∈ X. Define Do = {f ∈ D | f(o) = 0}. Show that the
following statements hold:
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(a) The form Q provides an inner product on Do and (Do,Q) is a
Hilbert space with

D = Do ⊕ Lin{1}.
(b) The map

Do −→ D/Lin{1}, f 7→ [f ],

is bijective and isometric whereDo is equipped withQ andD/Lin{1}
is equipped with Q([f ]) = Q(f).

Exercise 6.11 (The capacity dichotomy). Let b be a connected
graph over X and let x ∈ X. Consider a sequence ϕn ∈ Cc(X) such
that ϕn(x) = 1 and Q(ϕn)→ 0 as n→∞. Use Lemma 6.3 (a) to show
that ϕn(y)→ 1 for all y ∈ X. Use this to conclude that the capacities
of points in X either all vanish or are all positive.

Exercise 6.12 (Recurrence for finite measures). Let b be a con-
nected graph over X. Show that the graph is recurrent if and only if

there exists a finite measure m such that D(Q
(D)
m ) = D(Q

(N)
m ).

Exercise 6.13 (Recurrence and uniformly unbounded functions of
finite energy). Let b be a connected recurrent graph over X. Show that
there exists a function f ∈ D such that f(x) → ∞ as x → ∞ where
X ∪ {∞} is the one point compactification of X.

(Hint: Consider f =
∑∞

n=1(1−en) where (en) is a suitable sequence
of finitely supported functions approximating 1.)

Exercise 6.14 (Recurrence in terms of sequences∗). Let b be a
connected graph over (X,m). Show that b is recurrent if and only if
there exists a sequence (en) in Cc(X) such that 0 ≤ en ≤ 1, en(x)→ 1
as n→∞ for every x ∈ X and

lim
n→∞

Q(en, f) = 0

for every f ∈ D0. Show, furthermore, that it suffices to consider f ∈ D0

such that there exists a g > 0 in `1(X,m) such that

f(x) =
∑
y∈X

Gm(x, y)g(y)m(y)

for x ∈ X (this is actually a hint).

Exercise 6.15 (A transient subgraph implies transience). Show
that a connected graph is transient if and only if it contains a tran-
sient subgraph. In this context, a subgraph of a graph b over X is a
restriction b|Y×Y of b to some subset Y ⊆ X.
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Exercise 6.16 (0 is an eigenvalue of L(D)). Let (b, c) be a connected
graph over (X,m). Show that the following are equivalent:

(i) 0 is an eigenvalue for L(D).
(ii) The graph b is recurrent, c = 0 and m(X) <∞.

Exercise 6.17 (Existence of monopoles). Show that cap(x) > 0
implies the existence of a monopole at x in the following way: If
cap(x) > 0, then (D0,Q) is a Hilbert space and point evaluation is
continuous. Thus, by the Riesz representation theorem, there exists an
element gx ∈ D0 with

Q(gx, f) = f(x)

for all f ∈ D0. Now, Green’s formula easily shows that gx must solve
Lgx = 1x.

Exercise 6.18 (Hardy inequalities for general c). Let (b, c) be a
graph over X. Let u be a non-trivial positive superharmonic function.
Show that there exists a function w ≥ 0 with Q ≥ w on Cc(X) such
that w is non-trivial whenever u is non-constant.

(Hint: Use the ground state transform.)

Exercise 6.19 (Hardy inequalities on D). Let (b, c) be a graph
over X such that there exists a w ≥ 0 with Q ≥ w on Cc(X). Assume
that b over X is recurrent. Show that Q ≥ w on D.

Exercise 6.20 (Constant Green’s function). Let X = N0 with
b(x, y) = 1 if and only if |x − y| = 1 and 0 otherwise. Let c = 10 and
m = 1. Show that the function Gm(·, 0) is constant, where Gm denotes
the associated Green’s function.

(Hint: Show that the function 1 is the unique function u in D which
satisfies Lmu = 10.)

Exercise 6.21 (Green’s function for L+ λw). Let (b, c) be a con-
nected graph over (X,m) and let w ≥ 0 be non-trivial. Show that for
all non-trivial ϕ ∈ Cc(X), ϕ ≥ 0 and λ > 0 there exists a solution
uλ : X −→ (0,∞) to

(Lm + λw)uλ = ϕ

and that for the smallest of these solutions uλ,

lim
λ→0

uλ(x) =
∑
y∈X

Gm(x, y)ϕ(y)

for x ∈ X, where the limit is infinite if the Green’s function Gm is
infinite.
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Exercise 6.22 (Green’s formula for general c). Let (b, c) be a con-
nected graph over (X,m). Show that the form Q is degenerate on D0

if and only if whenever u ∈ D with Lmu ∈ `1(X,m), then∑
x∈X

Lmu(x)m(x) = 0

for some (all) measure(s) m.

Exercise 6.23 (Green’s function and the counting measure). Let
(b, c) be a graph over (X,m) with m = 1 and associated operator L.
Denote by pk(x, y) for x, y ∈ X and k ∈ N the matrix elements of
the k-th power of the transition matrix p whose elements are given by
p(x, y) = b(x, y)/ deg(x) where deg(x) =

∑
z∈X b(x, z) + c(x). Show

that, for all x, y ∈ X,∫ ∞
0

e−tL1y(x)dt =
1

deg(x)

∞∑
k=0

pk(x, y).
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Notes

Recurrence is a classical and well-established topic going back at
least to the work of Pólya [Pól21]. As such, we do not even attempt to
give an exhaustive nor detailed historical overview of the development
of the subject. We only mention some major summarizing works and
refer the reader to them for further historical background.

For Riemannian manifolds, a list of equivalences for recurrence can
be found in the works of Grigor′yan [Gri99, Gri09], which also give a
rather extensive historical overview starting with the work of Ahlfors
on Riemannian surfaces [Ahl52]. For random walks on graphs, we
mention the books of Woess [Woe00] as well as Soardi [Soa94] and
Doyle/Snell [DS84], which also provide a connection to electrical net-
works, see also [LP16, JP]. These works also have a strong proba-
bilistic focus which we only touch upon in Section 6, which is basically
taken from [Woe00]. Let us mention that the works above for graphs
deal mostly with discrete time. The connection between recurrence for
discrete and continuous time can be found, for instance, in [Sch17b].

Fundamental to our approach is the form perspective on recurrence
based on the idea of the extended Dirichlet space which appears asD0 in
our presentation. This approach goes back to work of Silverstein [Sil74]
and was further developed in the work of Fukushima/Ōshima/Takeda
[FŌT11] and Chen/Fukushima [CF12].

Let us also mention the approach via potential theory, for which a
historical overview is provided in the book edited by Brelot [Bre10].
Potential theory focuses on the study of the Green’s function in the
context of superharmonic functions. For a classical overview of poten-
tial theory we refer to the book of Helms [Hel14], for the graph case
see the book of Soardi [Soa94] and Anandam [Ana11].

There are a few non-classical characterization of recurrence in The-
orem 6.1. The first involves the Green’s formula (iii), which is devel-
oped in Section 5. This goes back to the work of Grigor′yan/Masamune
[GM13] for manifolds and Schmidt [Sch17b] for graphs. In the form
presented here, this characterization can be found in [HKL+17], where
it is shown for general Dirichlet forms. Moreover, the characterization
in terms of Hardy’s inequality found in (viii) does not seem to appear
in the standard textbooks and originates in the work of Fitzsimmons
[Fit00]. For some more recent characterizations of recurrence in the
graph setting, see Theorem 11.6.15 in [Sch20b].

We also note that our equivalent notions of recurrence also hold
more generally for Schrödinger operators. In this case, this is referred
to as criticality theory, see [Pin88] for elliptic operators on domains in
Euclidean space, [Tak14] for Schrödinger forms and [KPP20] for the
graph setting.





CHAMBER 7

Stochastic Completeness

All the math got me open like fallopian tubes.
RZA.

In this chapter we study a phenomenon called stochastic complete-
ness. At a basic level, this phenomenon concerns the heat equation
on `∞(X) and the preservation of heat for a graph b over (X,m). We
will give a variety of perspectives on this property. In particular, we
will show that a Green’s formula, uniqueness of bounded solutions of
the Poisson equation, triviality of α-harmonic bounded functions for
α > 0, a maximum principle and uniqueness of bounded solutions of
the heat equation and stochastic completeness are all equivalent. We
also introduce the more general notion of stochastic completeness at
infinity, which allows us to carry out a similar analysis for the heat
equation on `∞(X) for graphs (b, c) with a general killing term over
(X,m).

We start by recalling some basic definitions concerning the heat
equation. Let (b, c) be a graph over a discrete measure space (X,m).
A function u : [0,∞)×X −→ R is called a solution of the heat equation
with initial condition f ∈ C(X) if

• t 7→ ut(x) is continuous on [0,∞) and differentiable on (0,∞) for all
x ∈ X
• ut belongs to F for all t > 0

and u satisfies u0 = f as well as

(L+ ∂t)ut(x) = 0

for all x ∈ X and t > 0.
A solution of the heat equation u is said to be bounded if u is a

bounded function, i.e., supt∈[0,∞) supx∈X |ut(x)| < ∞. The function u0

is called the initial condition for the solution u and (L + ∂t)u = 0 is
called the heat equation. If u instead satisfies

(L+ ∂t)u ≥ 0,

then u is called a supersolution of the heat equation.
We now recall the basics of the `2(X,m) theory for the heat equation

in order to motivate our discussion of the heat equation for bounded

functions. Let L = L
(D)
b,c,m be the Laplacian of the regular Dirichlet form

Q = Q
(D)
b,c,m. As can be seen from the spectral theorem, for f ∈ `2(X,m),

311
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the heat equation admits a solution ut = e−tLf which is in `2(X,m)
for all t ≥ 0 and has initial condition u0 = f . Furthermore, it can be
shown that this is the unique solution in D(L) which has f as the initial
condition. This case is discussed in detail in Appendices A and D, see,
in particular, Theorems A.33 and D.6.

As we are interested in bounded solutions of the heat equation for
bounded initial conditions, we have to extend the above discussion
to the space of bounded functions. Thus, we now recall the neces-
sary basics of the extension theory of the semigroups and resolvents on
`2(X,m) to all `p(X,m) spaces for p ∈ [1,∞], see Section 1 for further
details. We recall that

`p(X,m) = {f ∈ C(X) |
∑
x∈X

|f(x)|pm(x) <∞}

for p ∈ [1,∞) and

`∞(X) = {f ∈ C(X) | sup
x∈X
|f(x)| <∞}.

As shown in Theorems 2.9 and 2.11, the semigroup e−tL for t > 0 and
the resolvent α(L + α)−1 for α > 0 on `2(X,m) extend to bounded
operators on `p(X,m) for all p ∈ [1,∞]. The extensions to different
`p(X,m) spaces agree on the intersection of the `p(X,m) spaces in ques-
tion. Therefore, with a slight abuse of notation, we do not distinguish
in notation between the semigroup (or resolvent) on `p(X,m) and the
semigroup (or resolvent) on `2(X,m) in this chapter.

These extended semigroups and resolvents are Markov, i.e., they
map positive functions to positive functions and functions bounded
above by 1 to functions bounded above by 1. Furthermore, the semi-
groups and resolvents are also contractions in the sense that

‖e−tL‖ ≤ 1 and ‖α(L+ α)−1‖ ≤ 1

for all t ≥ 0 and α > 0.
We will use throughout that the semigroup on `p(X,m) and the

semigroup on `q(X,m) for 1/p + 1/q = 1 are dual to each other.
Specifically, if f ∈ `p(X,m) and g ∈ `q(X,m) with 1/p + 1/q = 1
and (f, g) =

∑
x∈X f(x)g(x)m(x) denotes the dual pairing between

these spaces, then

(e−tLf, g) = (f, e−tLg)

for all t ≥ 0. As they are Markov, the semigroup and resolvent admit a
positive kernel. As a consequence, for a positive function f ∈ `p(X,m)
for p ∈ [1,∞] the semigroup e−tLf and the resolvent (L + α)−1f can
be obtained via monotone limits e−tLϕn and (L + α)−1ϕn, where ϕn
are positive functions in Cc(X) such that ϕn ↗ f pointwise.

We now focus on the heat equation and introduce the property of
interest in this chapter. As is the case for `2(X,m), we will show that if
f ∈ `∞(X), then ut = e−tLf is a bounded solution of the heat equation



7. STOCHASTIC COMPLETENESS 313

with initial condition f . This applies, in particular, to the constant
function 1 which is equal to 1 everywhere on X. Since the semigroup
and the resolvent are Markov on `∞(X), we have

0 ≤ e−tL1 ≤ 1 and 0 ≤ α(L+ α)−1 ≤ 1

for t ≥ 0 and α > 0.

Definition 7.1 (Stochastic completeness). A graph (b, c) over (X,m)
which satisfies one (equivalently, both) of the following equalities

e−tL1 = 1 and α(L+ α)−11 = 1

is called stochastically complete or conservative for all t ≥ 0 and α > 0.
Otherwise, (b, c) over (X,m) is called stochastically incomplete.

It is not hard to show that whenever c 6= 0 neither of the equalities
hold, see the remark after the proof of Theorem 7.2 below. So, The-
orem 7.2 characterizes the validity of the equalities in the case c = 0,
that is, in the case of no killing term. Later in this chapter, we will
also address the general case of c ≥ 0 under the name of stochastic
completeness at infinity. If a graph is stochastically complete, then
c = 0 and stochastic completeness and stochastic completeness at in-
finity are the same. However, when c 6= 0, it is possible for a graph
to be stochastically incomplete while being stochastically complete at
infinity. The basic idea for stochastic completeness at infinity is that
we store the heat removed by c and add it to e−tL1. In order to make
this idea precise, we have to extend the semigroup to general positive
functions.

Let us next give an interpretation of the equation e−tL1 = 1 in terms
of the preservation of heat. For this discussion, we will assume c = 0
as otherwise e−tL1 = 1 does not hold. Let f ∈ `1(X,m) with f ≥ 0
represent a distribution of heat on X at time t = 0. In other words,
f ∈ `1(X,m) is an initial condition for the heat equation. Then, the
amount of heat at time t ≥ 0 at a vertex x is given by e−tLf(x). Using
the dual pairing (·, ·) between `∞(X) and `1(X,m), the fact that the
heat semigroups on these spaces are dual to one another and e−tL1 ≤ 1,
we calculate∑
x∈X

e−tLf(x)m(x) = (1, e−tLf) = (e−tL1, f) ≤ (1, f) =
∑
x∈X

f(x)m(x).

The left-hand side of the equation is the amount of heat in X at time
t ≥ 0 and the right-hand side of the equation is the amount of heat in
X at time t = 0. Hence, whenever the inequality is strict, there is less
heat in the graph at time t > 0 than at the beginning, in other words,
the system has lost heat.

From another viewpoint, the equality e−tL1 = 1 can be understood
as a uniqueness condition on bounded solutions of the heat equation.
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Specifically, both e−tL1 and 1 are a bounded solutions of the heat equa-
tion with initial condition 1. Hence, if bounded solutions of the heat
equation are uniquely determined by initial conditions, then e−tL1 = 1
and the graph is stochastically complete. It turns out that the op-
posite implication also holds, that is, stochastic completeness implies
that bounded solutions of the heat equation are uniquely determined
by initial conditions.

Informally, the reason for the possible loss of heat is strong growth
of the geometry of (b, c) which pushes heat to infinity. In fact, if the
graph is connected and if heat is lost at some time, then it is lost at
any other time. Hence, stochastic incompleteness is an instantaneous
phenomenon. From a probabilistic perspective, this means that the
process has a finite lifetime.

Finally, we recall that u ∈ F is called α-harmonic for α ∈ R if
(L + α)u = 0 and α-subharmonic if (L + α)u ≤ 0. We will also see
that stochastic completeness is equivalent to the triviality of bounded
positive α-(sub)harmonic functions for α > 0.

After these preparations, we now state the various characterizations
of stochastic completeness.

Theorem 7.2 (Characterization of stochastic completeness). Let b
be a connected graph over (X,m). Then, the following statements are
equivalent:

(i) For some (all) t > 0 and some (all) x ∈ X,

e−tL1(x) = 1.

(i.a) For some (all) α > 0 and some (all) x ∈ X,

α(L+ α)−11(x) = 1

(ii) There exists a sequence of functions en ∈ D(Q) (equivalently, en ∈
Cc(X)) with 0 ≤ en ≤ 1 for all n ∈ N such that en → 1 pointwise
and

lim
n→∞

Q(en, v) = 0

for all v ∈ D(Q) ∩ `1(X,m).
(ii.a) There exists a sequence of functions en ∈ D(Q) (equiva-

lently, en ∈ Cc(X)) with 0 ≤ en ≤ 1 for all n ∈ N such that
en → 1 pointwise and

lim
n→∞

Q(en, (L+ α)−1v) = 0

for one v ∈ `2(X,m) ∩ `1(X,m) with v > 0 and some (all)
α > 0.

(iii) If v ∈ D ∩ `1(X,m) ∩ `2(X,m) satisfies Lv ∈ `1(X,m), then∑
x∈X

Lv(x)m(x) = 0. (“Green’s formula”)
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(iii.a) If v ∈ D ∩ `1(X,m) ∩ `2(X,m) satisfies Lv ∈ `1(X,m) ∩
`2(X,m), then∑

x∈X

Lv(x)m(x) = 0.

(iv) If u ∈ F satisfies supu ∈ (0,∞) and β ∈ (0, supu), then

sup
Xβ

Lu ≥ 0,

where Xβ = {x ∈ X | u(x) > supu− β}.
(“Omori–Yau maximum principle”)

(v) For some (all) α > 0 and every f ∈ `∞(X) there exists a unique
bounded solution u of the Poisson equation

(L+ α)u = f. (“Poisson equation”)

(v.a) For some (all) α > 0 every positive u ∈ `∞(X) which satis-
fies (L+ α)u ≤ 0 is trivial.

(v.b) For some (all) α > 0 every u ∈ `∞(X) which satisfies (L+
α)u = 0 is trivial.

(v.c) For some (all) α > 0 every positive u ∈ `∞(X) which satis-
fies (L+ α)u = 0 is trivial.

(vi) For every f ∈ `∞(X) there exists a unique bounded solution u of
the heat equation

(L+ ∂t)u = 0 with u0 = f. (“Heat equation”)

(vi.a) Every bounded solution u of the heat equation (L + ∂t)u = 0
with u0 = 0 is trivial.

Remark. The characterizations given in (v) and (vi) above should
be understood as uniqueness statements since the existence of bounded
solutions is always guaranteed by means of the extended semigroups
and resolvents.

The proof of Theorem 7.2 is divided into several theorems which we
prove in the upcoming sections. Indeed, we prove the equivalence of
these statements for the more general notion of stochastic completeness
at infinity, which allows for a non-vanishing killing term c. Below we
give a summary of how the results proven in the upcoming sections
come together.

Proof of Theorem 7.2. The equivalences (i)⇐⇒ (i.a)⇐⇒ (vi)
⇐⇒ (vi.a) which connect stochastic completeness and uniqueness of
bounded solutions of the heat equation are proven in Theorem 7.16 in
Section 3.

The equivalences (i) ⇐⇒ (v) ⇐⇒ (v.a) ⇐⇒ (v.b) ⇐⇒ (v.c) which
relate stochastic completeness to the Poisson equation as well as α-
(sub)harmonic functions are proven in Theorem 7.18 in Section 4.
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The equivalences (i.a) ⇐⇒ (ii) ⇐⇒ (ii.a) which characterize sto-
chastic completeness in terms of the constant function 1 being suitably
approximated are proven in Theorem 7.23 in Section 5.

The equivalence (ii) ⇐⇒ (ii.a) ⇐⇒ (iii) ⇐⇒ (iii.a) connecting
Green’s formula and the ability to approximate 1 is proven in The-
orem 7.26 in Section 6. Combined with the results above, this gives
the Green’s formula perspective on stochastic completeness.

The equivalence (iv) ⇐⇒ (v.a)/(v.c) connecting the Omori–Yau
maximum principle and triviality of bounded positive α-(sub)harmonic
functions for α > 0 is proven in Theorem 7.28 in Section 7. Combined
with the results above, this gives the Omori–Yau maximum perspective
on stochastic completeness. �

The proofs of the theorems which combine to prove Theorem 7.2
are given in the subsequent sections. More specifically, we start by
discussing properties of bounded solutions to the heat equation in Sec-
tion 1. In Section 2 we introduce the concept of stochastic completeness
at infinity. This requires a bit of work as we have to extend the semi-
group and resolvent on bounded functions to general positive functions
by monotone approximation and the use of nets. The reader who is
only interested in stochastic completeness may skip Section 2 as we
point out how to substitute the results needed from this section in sub-
sequent proofs. Sections 3, 4, 5, 6 and 7 are dedicated to the proof
of the results mentioned above. Section 8 gives an additional criterion
for stochastic completeness at infinity which is useful in certain situa-
tions such as comparison results. Finally, in Section 9 we discuss the
probabilistic point of view on stochastic completeness and stochastic
completeness at infinity.

Remark (Stochastic completeness implies c = 0). We have already
discussed stochastic completeness for finite graphs in Section 8. In the
case of finite graphs, a graph is stochastically complete if and only if
c = 0, see Theorem 0.65. In particular, whenever we take the Dirichlet

restriction of the form Q = Q
(D)
b,c,m to a finite subset of an infinite

connected graph, the resulting graph is stochastically incomplete as
c 6= 0 in this case. However, for infinite graphs, we will see that a
graph can be stochastically incomplete even if c = 0. On the other
hand, stochastic completeness always implies c = 0 (Exercise 7.5).

1. The heat equation on `∞

In this section we study the heat equation on the space of bounded
functions. In particular, we show that there always exists a bounded
solution of the heat equation for a given bounded initial condition. We
also show how bounded solutions of the heat equation with zero initial
conditions generate bounded α-harmonic functions for α > 0.
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Excavation Exercise 7.1 recalls Dini’s theorem while Excavation
Exercise 7.2 discusses the convergence of continuously differentiable
functions. These are used in the proof of Theorem 7.3.

To show the existence of bounded solutions of the heat equation for
any bounded initial condition, we apply the semigroup e−tL originally
defined on `2(X,m) and then extended to `∞(X) to a given bounded
function. We will show that such a solution is positive whenever the
initial condition is positive and that the heat semigroup generates the
minimal solution of the heat equation whenever the initial condition
is positive. This extends the corresponding statement for `2(X,m) in
Lemma 1.24 and for `p(X,m) for p ∈ [1,∞) in Theorem 2.14.

We note that for the existence part of the proof in the `2(X,m)
case we used the spectral theorem found in Appendix A and in the
`p(X,m) case for p ∈ [1,∞) and initial conditions in D(L(p)) we used
the general theory of strongly continuous semigroups found in Appen-
dix D. However, the semigroup on `∞(X) is only weak∗ continuous and
as such, we cannot use the general theory. Furthermore, we are inter-
ested in solutions to general bounded initial conditions. Thus, we give
full details for the existence proof in this case below.

Theorem 7.3 (Existence of bounded solutions of the heat equa-
tion). Let (b, c) be a graph over (X,m) and let f ∈ `∞(X). If

ut(x) = e−tLf(x)

for t ≥ 0 and x ∈ X, then u is a bounded solution of the heat equation
with initial condition f .

Furthermore, if additionally f ≥ 0, then u is the smallest positive
supersolution of the heat equation with initial condition greater than or
equal to f .

Proof. We start by showing the continuity and boundedness of u.
We denote the dual pairing between `1(X,m) and `∞(X) by (·, ·) and
let ηx ∈ `1(X,m) for x ∈ X be given by ηx = 1x/m(x). Since

ut(x) = (ηx, e
−tLf)

for x ∈ X and t ≥ 0, continuity of the function t 7→ ut(x) for t ≥ 0
and x ∈ X follows from the weak∗ continuity of the semigroup on
`∞(X) established in Theorem 2.9. Furthermore, as the semigroup on
`1(X,m) is strongly continuous, we have u0 = f . Finally, as e−tL is
a contraction semigroup on `∞(X) by Theorem 2.9, it follows that ut
is bounded by ‖f‖∞ for every t ≥ 0. In particular, ut ∈ F for every
t ≥ 0.

As an intermediate step, we next show the continuity of

t 7→ Lut(x) =
1

m(x)

(∑
y∈X

b(x, y)(ut(x)− ut(y)) + c(x)ut(x)

)
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on [0,∞) for every x ∈ X. Indeed, this is immediate from the continu-
ity of t 7→ ut(y) for each y ∈ X, the uniform boundedness of u in both
variables, and the summability of b(x, ·) for every x ∈ X.

We will now show differentiability and the fact that u satisfies the
heat equation. We will do so by approximating f by functions with
finite support and using that the heat equation holds for functions in
`2(X,m) and, hence, for functions with finite support.

We note that the preceding considerations hold for any bounded
function f and, in particular, for the elements of the approximating

sequence fn and u
(n)
t = e−tLfn which we introduce below. Hence, the

functions t 7→ ut(x), t 7→ u
(n)
t (x), t 7→ Lut(x) and t 7→ Lu(n)

t (x) will be
continuous for all x ∈ X and all n ∈ N.

Let t > 0. By decomposing f into positive and negative parts, we
can assume without loss of generality that f is positive. Let (Kn) be
a sequence of finite increasing subsets of X such that X =

⋃
nKn.

Furthermore, let fn = f1Kn and let

u
(n)
t = e−tLfn.

Since e−tL on `∞(X) is a bounded Markov semigroup by Theorem 2.9,
e−tL admits a positive kernel p. That is,

e−tLf(x) =
∑
y∈X

pt(x, y)f(y)m(y),

where pt(x, y) ≥ 0 for all x, y ∈ X and t > 0. Thus, u
(n)
t (x)↗ ut(x) as

n→∞ for all x ∈ X and t > 0. Moreover, the convergence is uniform

on compact subintervals of (0,∞) by Dini’s theorem as both u
(n)
t (x)

and ut(x) are continuous functions.
Since fn ∈ Cc(X) ⊆ `2(X,m)∩`∞(X) and the semigroup on `∞(X)

agrees with the semigroup on `2(X,m) for all functions in `2(X,m) ∩
`∞(X) by Theorem 2.9, it follows that u

(n)
t ∈ `2(X,m). Therefore, for

all x ∈ X, t ≥ 0 and n ∈ N, we infer by Lemma 1.24 that

∂tu
(n)
t (x) = −Lu(n)

t (x)

= −Lu(n)
t (x)

= − 1

m(x)

(∑
y∈X

b(x, y)(u
(n)
t (x)− u(n)

t (y)) + c(x)u
(n)
t (x)

)
.

Monotone convergence of u
(n)
t (y) to ut(y) for all y ∈ X, and the fact

that ut ∈ `∞(X) ⊆ F , yields the convergence of the right-hand side to
−Lut(x) as n→∞ for each x ∈ X and t ≥ 0. Therefore, we obtain the

convergence of ∂tu
(n)
t (x) to Lut(x) as n→∞ for each x ∈ X and t > 0.

In fact, this convergence is uniform in t on compact subintervals of

(0,∞) as the convergence of the u
(n)
t (y) to ut(y) is uniform on compact
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subintervals of (0,∞) for each y ∈ X and b(x, ·) is summable for each
x ∈ X.

Altogether we have established that the u
(n)
t (x) converge uniformly

on compact subintervals of (0,∞) to ut(x) and the ∂tu
(n)
t (x) converge

uniformly on compact subintervals of (0,∞) to −Lut(x) as n→∞ for
each x ∈ X. As discussed above, all involved functions are continu-
ous. Thus, this gives that t 7→ ut(x) is differentiable with the desired
derivative.

It remains to show the last statement of the theorem. That u
is positive whenever f is positive follows immediately from the fact
that the semigroup on `∞(X) is Markov and, in particular, positivity
preserving by Theorem 2.9. We now show the minimality statement.
Let w be a supersolution of the heat equation with initial condition
greater than or equal to f . From what we have shown above, u(n)

satisfies

(L+ ∂t)u
(n)
t = 0

for t > 0 and u
(n)
0 = fn for n ∈ N. Furthermore, the u(n) agree with

the solution generated by the semigroup of `2(X,m) as the semigroups
agree on their common domain by Theorem 2.9. As w is a positive su-
persolution with initial condition greater than or equal to fn we obtain
u(n) ≤ w for all n by Lemma 1.24. Letting n→∞ gives u ≤ w which
completes the proof. �

The argument in the preceding proof deals with compact subinter-
vals of (0,∞). We could equally well work with compact subintervals
of [0,∞), as can be seen by carefully going through the argument. This
would yield that the function ut satisfies the heat equation at t = 0
as well, i.e., on the entire interval [0,∞). In the next proposition we
provide a more general argument showing this for all bounded solutions
of the heat equation irrespective of whether they have the form e−tLf
or not.

Proposition 7.4 (Heat equation at t = 0). Let (b, c) be a graph
over (X,m) and let u be a bounded solution of the heat equation. Then,
the function [0,∞) −→ R,

t 7→ Lut(x),

is continuous for all x ∈ X, the limit

∂tut(x)|t=0 = lim
h→0+

uh(x)− u0(x)

h

exists for all x ∈ X and

(L+ ∂t)ut(x) = 0

for all x ∈ X and t ≥ 0.
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Proof. We first show the continuity of t 7→ Lut(x) on [0,∞): As
u is a solution of the heat equation the map t 7→ ut(y) is continuous for
each y ∈ X. As b(x, ·) is summable for each x ∈ X and u is bounded,
we then obtain that

Lut(x) =
1

m(x)

(∑
y∈X

b(x, y)(ut(x)− ut(y)) + c(x)ut(x)

)
is continuous at every t ∈ [0,∞). Moreover, as u is a solution of the
heat equation, we have

∂tut(x) = −Lut(x)

for all t > 0.
Altogether, for each x ∈ X, the function t 7→ ut(x) is a continuous

function on [0,∞) which is differentiable on (0,∞) and t 7→ −Lut(x)
is a continuous function on [0,∞) which agrees with the derivative of
t 7→ ut(x) on (0,∞). This implies that ut(x) is differentiable at t = 0
with derivative given by −Lu0(x): Indeed, by the mean value theorem,
for every x ∈ X and h > 0, there exists a ζ(h) ∈ (0, h) such that

uh(x)− u0(x)

h
= ∂tut|t=ζ(h) = −Luζ(h)(x).

This implies

lim
h→0+

uh(x)− u0(x)

h
= −Lu0(x)

by continuity. �

Remark. We observe that the proofs of Theorem 7.3 and Propo-
sition 7.4 given above extend to initial conditions f ∈ `p(X,m) for
p ∈ [1,∞] whenever the graph is locally finite. Indeed, the actual ar-
gument works as soon as continuity of the function t 7→ ut(y) for all
y ∈ X implies continuity of t 7→ Lut(x) for all x ∈ X.

Remark. In the case of a uniformly positive measure, which is
treated in the next chapter, we have `p(X,m) ⊆ `∞(X) for all p ∈
[1,∞] with continuous inclusions. In this case, the theorem above im-
plies the existence of solutions to the heat equation for initial conditions
f ∈ `p(X,m) for p ∈ [1,∞] as well.

The preceding considerations apply to the heat equation with initial
condition 1. In this case, ut = e−tL1 is the minimal positive solution
of the heat equation with u0 = 1. The constant function 1 is also such
a solution and stochastic completeness is defined as the equivalence of
these two solutions, that is, e−tL1 = 1. From this discussion, it is clear
that if bounded solutions of the heat equation are uniquely determined
by initial conditions, then a graph is stochastically complete. We will
see later that the converse is true as well.
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We now present an easy consequence of the semigroup and Markov
properties of the heat semigroup on `∞(X). This result will be useful
in showing that if the total amount of heat in the graph drops below 1
at some time, then it drops below 1 for all times.

Lemma 7.5. Let (b, c) be a graph over (X,m). If s ≥ t ≥ 0, then

e−sL1 ≤ e−tL1.

Proof. From Theorem 2.9, we get that the heat semigroup is both
positivity preserving and contracting. Let s = t + h with t, h ≥ 0. As
the semigroup is contracting we have

e−hL1 ≤ 1.

As the semigroup is positivity preserving, this gives, after we apply
e−tL to both sides,

e−sL1 = e−tLe−hL1 ≤ e−tL1.

This is the desired statement. �

The next proposition connects bounded solutions of an inhomoge-
neous heat equation with solutions of the Poisson equation.

Proposition 7.6 (Solutions of heat and Poisson equations). Let
(b, c) be a graph over (X,m). Let f, g ∈ `∞(X) and let u : [0,∞) ×
X −→ R be a bounded solution of

(L+ ∂t)ut = f

with initial condition u0 = g. Then, for α > 0 the function

v =

∫ ∞
0

αe−tαutdt

is bounded and satisfies

(L+ α)v = f + αg.

Moreover, if additionally f, g ≥ 0, then

w =

∫ ∞
0

e−tαe−tL(f + αg)dt

is the smallest positive function w ∈ F with (L + α)w ≥ f + αg. In
particular, ∫ ∞

0

e−tαe−tL(f + αg)dt ≤
∫ ∞

0

αe−tαutdt.

Proof. The boundedness of v follows since we assume that u is
bounded and since αe−tαdt has total measure 1 on [0,∞).

Furthermore, by the boundedness of u and Fubini’s theorem, we
have for all x ∈ X

Lv(x) =

∫ ∞
0

αe−tαLut(x)dt = lim
T→∞

∫ T

0

αe−tαLut(x)dt.
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Since u satisfies Lut = −∂tut + f , we infer

. . . = lim
T→∞

∫ T

0

αe−tα(−∂tut(x))dt+

∫ ∞
0

αe−tαf(x)dt

= lim
T→∞

(
−αe−tαut(x)|T0 −

∫ T

0

α2e−tαut(x)dt

)
+ f(x),

where we used integration by parts and the fact that αe−tαdt has total
measure 1 on [0,∞). Next, we conclude from the boundedness of u
and u0 = g that the first term tends to αg and, therefore,

. . . = αg(x)− α
∫ ∞

0

αe−tαut(x)dt+ f(x)

= αg(x)− αv(x) + f(x)

by the definition of v. Therefore, v is bounded and satisfies (L+α)v =
f + αg.

If f, g ∈ `∞(X), then∫ ∞
0

e−tαe−tL(f + αg)dt = (L+ α)−1 (f + αg)

by the Laplace transform formula, see Theorem 2.11. Furthermore, if
f and g are positive, Theorem 2.12 gives that (L+ α)−1 (f +αg) is the
minimal positive function w ∈ F with (L + α)w ≥ f + αg. As v is
such a function by what we have shown above, (L+ α)−1 (f +αg) ≤ v
follows. �

As a particular consequence of the proposition above, we get that
bounded solutions of the heat equation with vanishing initial condi-
tions give rise to α-harmonic functions, i.e., to solutions of the equation
(L + α)v = 0. In particular, if a bounded solution of the heat equa-
tion is positive and non-trivial, then the arising α-harmonic function
is positive and non-trivial. If a graph is stochastically incomplete, i.e.,
e−tL1 < 1, we get that ut = 1− e−tL1 is a positive non-trivial bounded
solution of the heat equation with trivial initial condition. Therefore,
there exists a positive bounded non-trivial α-harmonic function for any
α > 0 in this case. This will be used later in the proof of our charac-
terization of stochastic completeness.

Corollary 7.7 (Solutions of the heat equation and α-harmonic
functions). Let (b, c) be a graph over (X,m) and let u be a bounded
solution of the heat equation with u0 = 0. Then, for α > 0 the function

v =

∫ ∞
0

e−tαutdt

is bounded and satisfies

(L+ α)v = 0.
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In particular, if there exists a positive non-trivial bounded solution
of the heat equation with trivial initial conditions, then there exists a
positive non-trivial bounded α-harmonic function for any α > 0.

Proof. This follows immediately from Proposition 7.6 by letting
f and g be 0. �

2. Stochastic completeness at infinity

In this section we introduce the concept of stochastic completeness
at infinity. This will allow us to discuss the notion of conservation of
heat in the case of a non-vanishing killing term. In order to do so, we
extend the semigroup and the resolvent of a graph to arbitrary positive
functions by means of monotone convergence.

We have already introduced the notion of stochastic completeness
via the equality e−tL1 = 1 for all t > 0. It was discussed in the remark
following Theorem 7.2 that a non-vanishing killing term instantly re-
moves heat from a space so that e−tL1 < 1 for all t > 0 whenever the
graph is connected and c 6= 0. In particular, all connected graphs with
a non-vanishing killing term are stochastically incomplete.

Therefore, in order to deal with the case of a general killing term,
we need to introduce a new concept. We will use monotone limits to
apply the heat semigroup e−tL, originally defined on `2(X,m) and then
extended to `∞(X), to arbitrary positive functions. In particular, we
apply the heat semigroup to the function c/m and define the quantity

Mt(x) = e−tL1(x) +

∫ t

0

(
e−sL

c

m

)
(x)ds

for x ∈ X and t ≥ 0. The function Mt serves as a replacement of
e−tL1 in the case of a non-vanishing c. We note that some care has
to be taken since even the finiteness of M is not immediately clear.
However, we will show that 0 ≤ Mt ≤ 1 for all t ≥ 0 and that the
function t 7→ Mt(x) is continuous and differentiable for all x ∈ X.
Furthermore, we will see that M satisfies a modified heat equation.

Clearly, Mt = e−tL1 if c = 0. On the other hand, we will see that
Mt > e−tL1 on any connected component on which c does not vanish
identically since the extended semigroup is positivity improving. The
term e−tL1 can be interpreted as the amount of heat in the graph at
time t given a constant initial distribution of heat. The integral term
in Mt can be interpreted as the amount of heat killed by c in the graph
up to the time t. Hence, adding these two terms gives the total amount
of heat that is either in the graph at time t or has been removed from
the graph by c up to time t.

While c directly removes heat from the graph, we will see that heat
can also disappear from the graph by being transported to “infinity”
via the geometry even when no killing term is present. In the case of
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non-vanishing c, the function Mt can be interpreted as the amount of
heat not transported to “infinity” via the geometry so that 1 −Mt is
the amount of heat transported to “infinity” via geometry at time t.
In this section we study the question if

Mt = 1

for all t > 0, that is, if none of the heat has been transported to
“infinity” via the geometry.

After this discussion, we now work towards proving the statements
above. In order to define M , we have to extend the semigroup to
general positive functions to make sense of the term e−tL(c/m). To
this end, we note that for a positive function v ∈ C(X) the functions
ϕ ∈ Cc(X) with 0 ≤ ϕ ≤ v form a net with respect to the partial
ordering g ≺ h whenever g ≤ h for g, h ∈ C(X). More specifically, the
set Cv(X) = {ϕ ∈ Cc(X) | 0 ≤ ϕ ≤ v} is both a directed set with
the partial ordering ≺ as well as a topological space with respect to
pointwise convergence. We denote limits along this net by limϕ≺v.

By Theorems 2.9 and 2.11, the semigroup and the resolvent are
positivity preserving on Cc(X). Therefore, for f ∈ C(X) with f ≥
0, we can define the functions e−tLf : X −→ [0,∞] for t ≥ 0 and
(L+ α)−1f : X −→ [0,∞] for α > 0 via

e−tLf(x) = lim
ϕ≺f

e−tLϕ(x)

(L+ α)−1f(x) = lim
ϕ≺f

(L+ α)−1ϕ(x).

We refer to e−tLf and (L + α)−1f for f ∈ C(X) with f ≥ 0 as the
extended semigroup and extended resolvent , respectively. We note that
they may both take the value infinity. We will give some abstract cri-
teria for when they are finite below. Furthermore, since the semigroup
and resolvent are bounded Markov operators on `p(X,m), they admit
positive kernels. Therefore, the definitions above agree with the semi-
group and the resolvent for functions in `p(X,m) for p ∈ [1,∞]. For
this reason we do not distinguish between them in notation.

We next collect some basic properties of the extended semigroup
and resolvent. As we define the extended semigroup and resolvent
as limits over finitely supported functions, where all semigroups and
resolvent and their generators agree, we note that we can use properties
of either L = L(D) or L = L(p) before passing to the limit.

We first note that the extended semigroup e−tL satisfies the semi-
group property, that is,

e−(s+t)L = e−sLe−tL

for s, t ≥ 0. This can be seen directly by taking monotone limits.
Next, we show that the extended semigroup and resolvent can be

approximated by the restrictions of the Dirichlet Laplacian L to an
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exhaustion. To this end, we recall that for any finite K ⊆ X the

operator L
(D)
K is the restriction of L to functions in `2(K,mK) which

are considered as functions on X by extending by 0. Thus,

L
(D)
K f(x) = Lf̃(x)

for all x ∈ K and f : K −→ R, where f̃ : K −→ R satisfies f̃ = f on

K and f̃ = 0, otherwise.
In Section 3, we have shown that the resolvent and semigroup of the

Dirichlet Laplacian of an exhaustion converge in a pointwise monotoni-
cally increasing manner to the resolvent and semigroup of the Laplacian
on the entire space, see Lemma 1.21. We now show that the same is
true for the extended resolvent and semigroup.

Lemma 7.8 (Convergence of finite approximations). Let (b, c) be a
graph over (X,m). Let f ∈ C(X) with f ≥ 0, let (Kn) be an increasing
sequence of finite subsets of X such that X =

⋃
nKn and let fn = 1Knf .

Then, for all x ∈ X, t ≥ 0 and α > 0

(L
(D)
Kn

+ α)−1fn(x)↗ (L+ α)−1f(x)

e−tL
(D)
Kn fn(x)↗ e−tLf(x)

as n→∞, where the right-hand sides are allowed to take the value ∞.
Consequently, both (L + α)−1f and e−tLf are strictly positive on

any connected component of the graph on which f does not vanish. In
particular, if the graph is connected, then the extended resolvent and
semigroup are positivity improving.

Proof. We only show the statement for the resolvent as the state-

ment for the semigroup is proven analogously. Let L
(D)
Kn

be the restric-
tion of L to Kn for n ∈ N. As

(L
(D)
Kn

+ α)−1fn ≤ (L
(D)
Kn+1

+ α)−1fn

by domain monotonicity, Proposition 1.20 (c), and (L
(D)
Kk

+α)−1fn con-

verge to (L+ α)−1fn as k →∞ by Lemma 1.21, we obtain

(L
(D)
Kn

+ α)−1fn ≤ (L+ α)−1fn.

Combining this with the fact that fn ≤ f we have

(L
(D)
Kn

+ α)−1fn ≤ (L+ α)−1fn ≤ (L+ α)−1f

for all n ∈ N.
It remains to show the “reverse” inequality. We consider two cases.

Case 1. (L+ α)−1f(x) <∞: Let ε > 0. Then, by the definition of
the extended resolvent, there exists a ϕ ∈ Cc(X) such that 0 ≤ ϕ ≤ f
and

(L+ α)−1f(x)− ε ≤ (L+ α)−1ϕ(x).
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Since ϕ ∈ Cc(X), the support of ϕ is included in Kn for all n large.
Furthermore, as the resolvents (LKn + α)−1 converge to (L + α)−1 on
`2(X,m) by Lemma 1.21, we get

(L+ α)−1ϕ(x)− ε ≤ (L
(D)
Kn

+ α)−1ϕ(x)

for all n sufficiently large. Together, these two inequalities give for all
n large enough that

(L+ α)−1f(x)− 2ε ≤ (L
(D)
Kn

+ α)−1ϕ(x).

Since the support of ϕ is included in Kn, we have 0 ≤ ϕ ≤ fn
as f = fn on Kn. Thus, as (L

(D)
Kn

+ α)−1 is positivity preserving by
Proposition 1.20 (b),

(L+ α)−1f(x)− 2ε ≤ (L
(D)
Kn

+ α)−1fn(x),

which finishes the proof in this case as ε > 0 can be chosen arbitrarily
small.

Case 2. (L + α)−1f(x) = ∞: Let C > 0. By the definition of the
extended resolvent, there exists a ϕ ∈ Cc(X) such that 0 ≤ ϕ ≤ f and

C ≤ (L+ α)−1ϕ(x).

By similar considerations as in Case 1, we obtain for all ε > 0 and all
sufficiently large n

C − ε ≤ (L
(D)
Kn

+ α)−1fn(x),

which finishes the proof of the convergence statement.

The fact that (L + α)−1f(x) > 0 for all x in a connected com-
ponent of (b, c) on which f does not vanish follows from the positivity
improving property of the resolvent on connected graphs shown in The-
orem 1.26. �

In the following lemma we show how the finiteness of the extended
resolvents can be characterized via the existence of minimal superso-
lutions. We note that, in the case of bounded positive functions, the
resolvent always gives the minimal solution by Theorem 2.12. The fol-
lowing result shows that the same is true for general positive functions
whenever the extended resolvent is finite.

Lemma 7.9 (Characterizing resolvents as supersolutions). Let (b, c)
be a graph over (X,m). Let α > 0 and let f ∈ C(X) with f ≥ 0. Then,
the following statements are equivalent:

(i) (L+ α)−1f(x) <∞ for all x ∈ X.
(ii) There exists a v ∈ F with v ≥ 0 such that (L+ α)v ≥ f .

In this case, u = (L+α)−1f satisfies (L+α)u = f and is the smallest
function v ∈ F with v ≥ 0 and (L+ α)v ≥ f .
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Proof. (i) =⇒ (ii): Let ϕ ∈ Cc(X) satisfy 0 ≤ ϕ ≤ f . Since L is
a restriction of L on Cc(X) by Theorem 1.6 we have

(L+ α)(L+ α)−1ϕ = ϕ.

Taking monotone limits on both sides of the equation we obtain that
(L+ α)−1f ∈ F and

(L+ α)(L+ α)−1f = f

by Lemma 1.8. Since ϕ ≥ 0 it follows that (L + α)−1ϕ ≥ 0 as the
resolvent is positivity preserving by Corollary 1.22. Therefore, we have
(L+ α)−1f ≥ 0. This shows (ii) for v = (L+ α)−1f. Furthermore, this
also shows that u = (L+ α)−1f solves (L+ α)u = f.

(ii) =⇒ (i): Let v ∈ F with v ≥ 0 satisfy (L + α)v ≥ f . Let (Kn)
be an increasing sequence of finite sets such that X =

⋃
nKn and let

fn = f1Kn for n ∈ N. Let un = (L
(D)
Kn

+ α)−1fn and extend un by zero
outside of Kn. Then, letting wn = v − un, we get that wn satisfies:

• (L+ α)wn = (L+ α)v − (L+ α)un ≥ f − fn = 0 on Kn

• wn ∧ 0 = min{wn, 0} attains a minimum on the finite set Kn

• wn = v ≥ 0 on X \Kn.

Therefore, by the minimum principle, Theorem 1.7, we infer

wn = v − un ≥ 0.

Since un(x) converges to (L+ α)−1f(x) as n→∞ for every x ∈ X by
Lemma 7.8, we infer

v ≥ (L+ α)−1f.

Therefore, (L+ α)−1f(x) <∞ for all x ∈ X. This shows (i).

Furthermore, letting u = (L + α)−1f , we have 0 ≤ u ≤ v and thus
u ∈ F . Since v was an arbitrary solution of (L+α)v ≥ f , we infer the
minimality of u. Finally, the fact that u solves (L + α)u = f follows
from (i), as discussed at the end of the proof of (i) =⇒ (ii). �

We now apply the considerations above to the strictly positive func-
tion f = α1 + c/m for α > 0. In particular, we show that the resolvent
applied to f is bounded between 0 and 1. It will turn out that this
resolvent being equal to 1 is equivalent to stochastic completeness at
infinity.

Lemma 7.10. Let (b, c) be a graph over (X,m) and let α > 0. Then,

0 ≤ (L+ α)−1
(
α1 +

c

m

)
≤ 1.

Proof. Let f = α1 + c/m. Then, the constant function 1 solves

(L+ α)1 =
( c
m

+ α1
)

= f.

Hence, Lemma 7.9 yields that (L + α)−1f is the smallest solution v
to (L + α)v ≥ f . Therefore, (L + α)−1f ≤ 1. Since f > 0 and the
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resolvent is positivity preserving, we also get (L + α)−1f ≥ 0. This
completes the proof. �

In the lemma below we show that the connections between the
resolvent and the semigroup also hold for the extended resolvent and
semigroup. In particular, we extend the Laplace transform formula to
all positive functions.

Lemma 7.11. Let (b, c) be a graph over (X,m) and let f ∈ C(X)
with f ≥ 0.

(a) For every α > 0,

(L+ α)−1f =

∫ ∞
0

e−tαe−tLfdt.

(“Laplace transform”)

(b) For every t > 0,

e−tLf = lim
n→∞

(
n

t

(
L+

n

t

)−1
)n

f.

Proof. From the spectral theorem we have the statement for all
ϕ ∈ Cc(X), see Theorem A.35. Thus, the statements follow by taking
monotone limits. �

We recall that the goal of this section is to investigate the properties
of Mt = e−tL1 +

∫ t
0
e−sL(c/m)ds, where the integrand has now been

defined via monotone limits. In the next lemma we show that the
integral part of M is finite and even bounded by 1.

Lemma 7.12. Let (b, c) be a graph over (X,m). Then, the function
u : X −→ [0,∞] defined by

u(x) =

∫ ∞
0

(
e−tL

c

m

)
(x)dt

satisfies

0 ≤ u ≤ 1 and Lu =
c

m
.

Proof. Let ϕ ∈ Cc(X) be such that 0 ≤ ϕ ≤ c/m. For α > 0, we
define

uϕ,α =

∫ ∞
0

e−tαe−tLϕdt ≥ 0

and

uϕ = lim
α→0+

uϕ,α,

where the limit exists since uϕ,α is monotonically increasing as α→ 0+

and uϕ,α ≤ 1. Then, by the Laplace transform, we have

uϕ,α = (L+ α)−1ϕ
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so that (L+α)uϕ,α = ϕ as L is a restriction of L. Since ϕ ≤ α1+c/m for
all α > 0 and since the resolvent is positivity preserving, we conclude

uϕ,α = (L+ α)−1ϕ ≤ (L+ α)−1
(
α1 +

c

m

)
≤ 1,

where the second inequality follows from Lemma 7.10. Therefore, 0 ≤
limα→0+ uϕ,α ≤ 1 and thus 0 ≤ uϕ ≤ 1.

Using the uniform bound on uϕ,α and taking the limit α → 0+ in
the equation

(L+ α)uϕ,α = ϕ

yields

Luϕ = ϕ ≥ 0.

As u = limϕ≺c/m uϕ and uϕ ≤ 1, we obtain the statement by taking
monotone limits and using Lemma 1.8. �

The next lemma shows that the extended semigroup and resolvent
contract any positive superharmonic function.

Lemma 7.13. Let (b, c) be a graph over (X,m) and let f ∈ C(X)
with f ≥ 0. Then, the following statements are equivalent:

(i) e−tLf ≤ f for all t ≥ 0.
(ii) α(L+ α)−1f ≤ f for all α > 0.

If, additionally, f ∈ F and Lf ≥ 0, then f satisfies the above condi-
tions.

Proof. The implications (i) ⇐⇒ (ii) follow by Lemma 7.11.
Now, any f ∈ F with f ≥ 0 and Lf ≥ 0 satisfies

(L+ α) f ≥ αf

for α > 0. By Lemma 7.9 we infer α(L + α)−1f ≤ f for α > 0 since
α(L+ α)−1f is the smallest supersolution. �

The next theorem uses the properties established above to prove
all of the facts we announced in the beginning of the section about
the function M . Analogous properties have already been established
for the heat semigroup acting on bounded functions. In particular,
statement (d) below gives a minimality statement for M which gives
an analogue to Proposition 7.6 concerning the heat semigroup.

Theorem 7.14 (Properties of M). Let (b, c) be a graph over (X,m).
Then, the function M : [0,∞)×X −→ R given by

Mt(x) = e−tL1(x) +

∫ t

0

(
e−sL

c

m

)
(x)ds

has the following properties:

(a) 0 ≤Ms ≤Mt ≤ 1 for all s ≥ t ≥ 0.
(b) The function t 7→Mt(x) is differentiable for all x ∈ X.
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(c) For all x ∈ X and t > 0

(L+ ∂t)Mt(x) =
c

m
(x).

Furthermore, M is the smallest positive solution of (L+ ∂t)u =
c/m with u0 = 1.

(d) For all α > 0 and x ∈ X

(L+ α)−1
(
α1 +

c

m

)
(x) =

∫ ∞
0

αe−tαMt(x)dt.

In particular,

w =

∫ ∞
0

αe−tαMtdt

satisfies (L+ α)w = α1 + c/m and is the smallest function v ∈ F
with v ≥ 0 and

(L+ α)v ≥ α1 +
c

m
.

Proof. We recall from Lemma 7.12 that the function

u(x) =

∫ ∞
0

(
e−sL

c

m

)
(x)ds

satisfies 0 ≤ u ≤ 1 and Lu = c/m. The key observation for the proof
of the first few properties is shown in the proof of (a) below and states
that

Mt = u+ e−tL(1− u).

(a) Positivity of M follows since the extended semigroup is positiv-
ity preserving by definition.

Next, we show Mt ≤ 1 for t ≥ 0. By Lemma 7.12 the function
u =

∫∞
0

(
e−sL(c/m)

)
ds is bounded and, therefore, we can calculate∫ t

0

(
e−sL

c

m

)
(x)ds = u(x)−

∫ ∞
t

(
e−sL

c

m

)
(x)ds

= u(x)−
∫ ∞

0

(
e−(s+t)L c

m

)
(x)ds

= u(x)− e−tLu(x),

where the last equality follows by the semigroup property for the ex-
tended semigroup and the fact that u is bounded. Thus,

Mt = e−tL1 + u− e−tLu = u+ e−tL(1− u).

By Lemma 7.12, we have 1− u ≥ 0 and Lu = c/m so that

L(1− u) = L1− Lu =
c

m
− c

m
= 0.

By Lemma 7.13, we infer for all t > 0,

e−tL(1− u) ≤ 1− u.
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Therefore,

Mt = u+ e−tL(1− u) ≤ u+ 1− u = 1.

This establishes the desired inequality.
Let s ≥ t ≥ 0. Then, e−(s−t)L(1 − u) ≤ (1 − u) and, since the

semigroup is positivity preserving, we get by the semigroup property
that

e−sL(1− u) = e(−t−(s−t))L(1− u) = e−tLe−(s−t)L(1− u) ≤ e−tL(1− u).

Hence, as Mt = u + e−tL(1− u), it follows that Ms ≤ Mt. Putting all
of these properties together, we get

0 ≤Ms ≤Mt ≤ 1

whenever s ≥ t ≥ 0.

(b) As the constant function 1 and u are both bounded, we can
apply Theorem 7.3 with f = 1− u to conclude that

t 7→Mt(x) = e−tL(1− u)(x) + u(x)

is differentiable for t > 0 as e−tL(1 − u) is a bounded solution of the
heat equation. Furthermore, Mt(x) is differentiable for t ≥ 0 by Propo-
sition 7.4.

(c) Using Mt = u+e−tL(1−u), the fact that e−tL(1−u) is a bounded
solution of the heat equation and Lu = c/m allows us to calculate, for
all x ∈ X and t > 0,

∂tMt(x) = ∂te
−tL(1− u)(x)

= −Le−tL(1− u)(x)

= −LMt(x) + Lu(x)

= −LMt(x) +
c(x)

m(x)
.

This proves the first statement.
The minimality statement follows by approximating M and using

the minimum principle for the heat equation, Theorem 1.10, as follows:
Let (Kn) be an increasing sequence of finite sets whose union equals

X. For the Dirichlet Laplacian Ln = L
(D)
Kn

with respect to the finite set
Kn, we let

M
(n)
t = e−tLn1Kn +

∫ t

0

e−sLn
( c
m

1Kn

)
ds

on Kn for n ≥ 0 and extend it by 0 to X. Then, M (n) satisfies

(L+ ∂t)M
(n) =

c

m
on [0,∞)×Kn

M
(n)
0 = 1Kn on X

M (n) = 0 on [0,∞)×X \Kn.
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For any other positive solution w of (L+ ∂t)w = c/m with w0 = 1, let

v(n) = w −M (n).

Then, for any T ≥ 0,

• (L+ ∂t)v
(n) = 0 on (0, T )×Kn

• v(n) ∧ 0 attains a minimum on the compact set [0, T ]×Kn since v(n)

is continuous
• v(n) ≥ 0 on ([0, T )× (X \Kn)) ∪ ({0} ×Kn).

Thus, w − M (n) = v(n) ≥ 0 by the minimum principle for the heat
equation, Theorem 1.10. By monotone convergence, Lemma 7.8, we
get w ≥M . This proves the minimality.

(d) By the Laplace transform, Lemma 7.11, applied to f = α1+c/m
for α > 0,

(L+ α)−1
(
α1 +

c

m

)
(x) =

∫ ∞
0

e−tαe−tL
(
α1 +

c

m

)
(x)dt.

The function t 7→
∫ t

0
e−sL(c/m)ds = Mt − e−tL1 is continuously differ-

entiable, so by integration by parts, we have∫ ∞
0

e−tα
(
e−tL

c

m

)
(x)dt

= e−tα
∫ t

0

(
e−sL

c

m

)
(x)ds

∣∣∣∣∞
0

+

∫ ∞
0

αe−tα
(∫ t

0

e−sL
c

m
(x)ds

)
dt

=

∫ ∞
0

αe−tα
(
Mt(x)− e−tL1(x)

)
dt,

where the first term vanishes due to the boundedness of u. Putting
these two calculations together yields

(L+ α)−1
(
α1 +

c

m

)
(x) =

∫ ∞
0

αe−tαMt(x)dt

for all x ∈ X, which gives the first statement.
The fact that

w =

∫ ∞
0

αe−tαMtdt

satisfies (L + α)w = α1 + c/m and is the smallest positive v ∈ F
with (L+ α)v ≥ α1 + c/m follows immediately from Lemma 7.9 since
w = (L+ α)−1(α1 + c/m) and since 0 ≤ w ≤ 1 as 0 ≤Mt ≤ 1 by part
(a). �

Definition 7.15 (Stochastic completeness at infinity). A graph
(b, c) over (X,m) is called stochastically complete at infinity if

Mt(x) = 1

for all x ∈ X and all t > 0. Otherwise, (b, c) over (X,m) is called
stochastically incomplete at infinity.
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Remark (A word of caution). We note that by Theorem 7.14 (d)
we have by integrating Mt with respect to the probability measure
αe−tαdt that stochastic completeness at infinity is equivalent to

(L+ α)−1
(
α1 +

c

m

)
= 1.

Let us now stress that the care taken with the monotone convergence
arguments in the proof of the theorem above is quite necessary. For
example, one might think that since (L + α)(L + α)−11 = 1, one also
has (L+α)−1(L+α)1 = 1. However, by a direct calculation, this would
yield

(L+ α)−1
(
α1 +

c

m

)
= (L+ α)−1(L+ α)1 = 1,

which would imply that all graphs are stochastically complete at infin-
ity. We will have ample opportunity to see that this is not the case.

Furthermore, in Section 6 we show that stochastic completeness at
infinity is equivalent to the function 1 being in the domain of the adjoint
of L on D(Q(N)) ∩ `1(X,m). It turns out that this is equivalent to 1
being in the domain of the generator L∞ of the semigroup on `∞(X),
in which case

(L+ α)−1(L+ α)1 = (L+ α)−1(L∞ + α)1 = 1

holds (Exercise 7.6).

3. The heat equation perspective

In this section we present the heat equation viewpoint on stochastic
completeness at infinity. This states that stochastic completeness at
infinity is equivalent to the uniqueness of bounded solutions of the
heat equation.

In the previous section we introduced stochastic completeness at
infinity of a graph (b, c) over (X,m). Specifically, we first defined the
function

Mt = e−tL1 +

∫ t

0

(
e−sL

c

m

)
ds

by using monotone limits to apply the heat semigroup to general pos-
itive functions in order to define the integrand. The function Mt is a
replacement for e−tL1 in the case of a general killing term. The ques-
tion of stochastic completeness at infinity is the question if Mt = 1
for all t ≥ 0. By contrast, the question of stochastic completeness is
if e−tL1 = 1 for all t ≥ 0. As the extended semigroup is positivity
preserving, it is clear that stochastic completeness always implies sto-
chastic completeness at infinity but the converse is not always true. In
fact, stochastic completeness implies c = 0 while graphs with c 6= 0
may or may not be stochastically complete at infinity.
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In this section, we start to prove our main characterization of sto-
chastic completeness and stochastic completeness at infinity by con-
necting these notions to the uniqueness of bounded solutions of the
heat equation. That is, given a bounded function f we consider the
heat equation with initial condition f , i.e.,

(L+ ∂t)u = 0

with u0 = f . As we have seen, the semigroup e−tL on `∞(X) applied
to f generates a bounded solution of the heat equation. It is clear
in the case of c = 0 that if bounded solutions of the heat equation
are uniquely determined by initial data, then e−tL1 = 1 since both
e−tL1 and 1 satisfy the heat equation with initial condition 1. A si-
milar reasoning shows that Mt = 1 if bounded solutions are uniquely
determined. In this section, we will show that the converse is also true.
That is, we show that stochastic completeness at infinity is equivalent
to the uniqueness of this solution in the class of bounded solutions.

We note that stochastic completeness at infinity reduces to sto-
chastic completeness whenever c = 0. Hence, the reader who is only
interested in stochastic completeness can substitute e−tL1 for Mt and
let c = 0 in the statements and proofs below. We give a more detailed
discussion of how the proof of stochastic completeness can be simplified
in a remark before we commence the proof below.

Theorem 7.16 (Stochastic completeness at infinity and the heat
equation). Let (b, c) be a connected graph over (X,m). Then, the fol-
lowing statements are equivalent:

(i′) For some (all) t > 0 and some (all) x ∈ X,

Mt(x) = 1.

(“Stochastic completeness at infinity”)

(i.a′) For some (all) α > 0 and some (all) x ∈ X,

(L+ α)−1
(
α1 +

c

m

)
(x) = 1.

(vi′) For every f ∈ `∞(X) there exists a unique bounded solution u of
the heat equation

(L+ ∂t)u = 0 with u0 = f. (“Heat equation”)

(vi.a′) Every bounded solution u of the heat equation (L+∂t)u = 0
with u0 = 0 is trivial.

Remark (What is needed for stochastic completeness). Before start-
ing the proof of Theorem 7.16 we give a roadmap on what is required
for the reader who is only interested in stochastic completeness, i.e., in
the case c = 0, in the proofs below.
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• The formula for Ms+t found in the proof of Lemma 7.17 can be
replaced by the semigroup property e−(s+t)L1 = e−sLe−tL1 of the
semigroup on `∞(X).
• The positivity improving property of the semigroup on `∞(X) for

connected graphs is used in the proof of Lemma 7.17. This follows by
extending the corresponding property for the semigroup on `2(X,m)
from Theorem 1.26.
• The fact that Mt ≤ 1, used in the proof of Lemma 7.17, can be

replaced by e−tL1 ≤ 1, which follows from the Markov property of
the semigroup on `∞(X) found in Theorem 2.9.
• The fact that Ms ≤ Mt for all s ≥ t, which is used in the proof of

Lemma 7.17, can be replaced by e−sL1 ≤ e−tL1, which is shown in
Lemma 7.5.
• The proof of the equivalence of (i′) and (i.a′) relies on the Laplace

transform formula, i.e., (L + α)−1f =
∫∞

0
e−tαe−tLfdt for all α > 0

and f ∈ `∞(X). This is shown in Theorem 2.11.
• The fact that e−tL1 is a bounded solution of the heat equation with

initial condition 1 was shown in Theorem 7.3. This is used in the
proof of (vi.a′) =⇒ (i′).
• The proof of (i′) =⇒ (vi.a′) uses the fact that M is the smallest

positive solution to (L+ ∂t)v = c/m with v0 = 1, which is shown in
Theorem 7.14 (c). The analogous fact that ut = e−tL1 is the smallest
positive solution of (L+∂t)v = 0 with v0 = 1 is found in Theorem 7.3.

We start the proof of Theorem 7.16 by showing the equivalence of
the “for some” and “for all” statements in (i′). For this, the connect-
edness of the graph is essential.

Lemma 7.17. Let (b, c) be a connected graph over (X,m). If Mt(x) <
1 for some t > 0 and some x ∈ X, then Mt(x) < 1 for all t > 0 and
all x ∈ X.

Proof. Recall that the extended semigroup satisfies the semigroup
property, i.e., e−(s+t)Lf = e−sLe−tLf for all s, t ≥ 0 and all f ∈ C(X)
with f ≥ 0. While M does not satisfy such a property, it satisfies a
similar property which will imply the statement of the lemma. More
specifically, a direct calculation using the semigroup property for the
extended semigroup yields, for s, t ≥ 0,

Ms+t = e−(s+t)L1 +

∫ s+t

s

e−rL
c

m
dr +

∫ s

0

e−rL
c

m
dr

= e−sLe−tL1 +

∫ t

0

e−sLe−rL
c

m
dr +

∫ s

0

e−rL
c

m
dr

= e−sL
(
e−tL1 +

∫ t

0

e−rL
c

m
dr

)
+

∫ s

0

e−rL
c

m
dr

= e−sLMt +

∫ s

0

e−rL
c

m
dr,
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where interchanging the integration
∫ t

0
. . . dr and e−sL is justified by

Fubini’s theorem.
We obtain the following two facts from this equality:

Fact 1. If Mt = 1 for some t > 0, then Mnt = Mt = 1 for all n ∈ N.
Proof. This follows easily by induction.

Fact 2. If Mt(x) < 1 for some t > 0 and some x ∈ X, then
Mt+s < 1 for all s > 0.

Proof. Since Mt ≤ 1 by Theorem 7.14 (a), we get that 1−Mt ≥ 0.
This function is non-trivial by assumption. As the graph is connected,
the extended semigroup is positivity improving by Lemma 7.8 and,
therefore, e−sL(1−Mt) > 0, i.e.

e−sLMt < e−sL1.

Combined with the equality above we infer

Ms+t < e−sL1 +

∫ s

0

e−rL
c

m
dr = Ms ≤ 1,

where the last inequality follows from Theorem 7.14 (a).

We now complete the proof. Assume that Mt(x) < 1 for some t > 0
and some x ∈ X. We note that it follows from Fact 2 that Ms < 1 for
all s > t. Therefore, let s ≤ t. We aim to show that Ms < 1. Suppose
not. Then, there exists a y ∈ X such that Ms(y) = 1. By what we
have already shown, it follows that Mr = 1 for all r with 0 ≤ r < s.
Fix any such r > 0. Let n ∈ N be such that nr > t. By Fact 1, we get
Mnr = 1. Thus, Mt = 1 as nr > t, which yields a contradiction to the
assumption that Mt(x) < 1. This completes the proof. �

Proof of Theorem 7.16. The equivalence of the “for some” and
“for all” statements found in (i′) has already been shown in Lemma 7.17.

(i′) ⇐⇒ (i.a′): This follows readily from Theorem 7.14 (d) and
Lemma 7.17. This also shows the equivalence of the “for some” and
“for all” statements found in (i.a′).

(vi′) =⇒ (vi.a′): This is clear since if we let f = 0, then u = 0 is the
unique bounded solution of the heat equation with initial condition 0.

(vi.a′) =⇒ (vi′): Given f ∈ `∞(X), the existence of a bounded
solution of the heat equation with initial condition f has been shown in
Theorem 7.3. Hence, we only need to establish uniqueness. Therefore,
let u and v be two bounded solutions of the heat equation with initial
condition f . Then, w = u−v is a bounded solution of the heat equation
with initial condition w0 = 0. By (vi.a′) we get that w = 0, so that
u = v.

(vi.a′) =⇒ (i′): We show this by contraposition. If Mt(x) < 1 for
some x ∈ X and some t > 0, then Mt < 1 for all t > 0 by Lemma 7.17.
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Hence, suppose that Mt < 1. By Theorem 7.14 (a) M is bounded,
M0 = 1 by the definition of M and Mt satisfies

(L+ ∂t)Mt =
c

m

by Theorem 7.14 (c). Furthermore, it is clear that (L + ∂t)1 = c/m.
Therefore, it follows that

ut = 1−Mt

is a bounded solution of the heat equation with initial condition 0,
which is non-trivial since Mt < 1.

(i′) =⇒ (vi.a′): We show this by contraposition as well. Let u be a
non-zero bounded solution of the heat equation with u0 = 0. Without
loss of generality, we may assume that ut0(x0) > 0 for some t0 > 0
and some x0 ∈ X as otherwise we work with −u. Furthermore, by
rescaling, we may assume |u| ≤ 1.

Let w = 1 − u. Then, w is positive bounded and wt0(x0) < 1.
Furthermore, since u0 = 0, we get w0 = 1 and since u solves the heat
equation, we get

(L+ ∂t)w =
c

m
for all t > 0. Since M is the smallest positive function with these prop-
erties by Theorem 7.14 (c), we infer Mt0(x0) ≤ wt0(x0) < 1. Therefore,
Mt(x) < 1 for all t > 0 and all x ∈ X by Lemma 7.17. This completes
the proof. �

4. The Poisson equation perspective

In this section we connect the notion of stochastic completeness at
infinity to the uniqueness of bounded solutions of the Poisson equation.
As a consequence we show that stochastic completeness at infinity im-
plies uniqueness of associated forms.

In this section we investigate the Poisson equation perspective on
stochastic completeness at infinity. In particular, we characterize sto-
chastic completeness at infinity via the uniqueness of bounded solutions
of the Poisson equation

(L+ α)u = f

for f ∈ `∞(X) and α > 0. We recall that applying the resolvent
(L + α)−1 on `∞(X) to f gives a bounded solution of the Poisson
equation. Hence, the issue here is the uniqueness of this solution.

We will also connect stochastic completeness at infinity to the non-
existence of non-trivial bounded α-harmonic and non-trivial positive
bounded α-subharmonic functions, i.e., functions u ∈ `∞(X) satisfying
(L+α)u = 0 and (L+α)u ≤ 0 for α > 0. These criteria for stochastic
completeness at infinity are quite useful in practice.
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As previously noted, the reader only interested in stochastic com-
pleteness can substitute e−tL1 for Mt and let c = 0 in the state-
ments and proofs found below. The additional ingredients which are
needed to carry out the proof are listed in a remark before the proof
of Lemma 7.19.

Theorem 7.18 (Stochastic completeness at infinity and the Pois-
son equation). Let (b, c) be a connected graph over (X,m). Then, the
following statements are equivalent:

(i′) For some (all) t > 0 and some (all) x ∈ X,

Mt(x) = 1.

(“Stochastic completeness at infinity”)

(v′) For some (all) α > 0 and every f ∈ `∞(X) there exists a unique
u ∈ `∞(X) satisfying

(L+ α)u = f. (“Poisson equation”)

(v.a′) For some (all) α > 0 every positive u ∈ `∞(X) which satis-
fies (L+ α)u ≤ 0 is trivial.

(v.b′) For some (all) α > 0 every u ∈ `∞(X) which satisfies (L +
α)u = 0 is trivial.

(v.c′) For some (all) α > 0 every positive u ∈ `∞(X) which satis-
fies (L+ α)u = 0 is trivial.

Remark. We first discuss some of the informal intuition behind the
equivalences. As we have seen, stochastic completeness and stochastic
completeness at infinity concern the preservation of heat. Now, a non-
vanishing killing term instantly removes heat from the graph. This is
the reason why we add the integral terms to e−tL1 in the definition of
Mt. However, even with the addition of this term, heat can still vanish
for geometric reasons. Geometrically, the way that heat can escape is
due to an intense growth of the geometry which forces heat to infinity
in a finite time. The notion of the growth of geometry will be made
precise in Chapter 14.

A positive α-harmonic function for α > 0 whose value is strictly
positive at some vertex has to have a strictly bigger value at some
neighbor of that vertex, as can be seen from the equation (L+α)u = 0.
Therefore, such functions must increase and the only way that they can
remain bounded, if the graph does not grow strongly, is that they are
trivial. This gives an informal intuition for the equivalence of stochastic
completeness at infinity and the non-existence of non-trivial positive α-
harmonic functions for α > 0.

Remark (What is needed for stochastic completeness). Before start-
ing the proof of Theorem 7.18, we give a roadmap of what is required
for the reader who is only interested in stochastic completeness, i.e., in
the case c = 0 in the proof of the lemmas below.
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• The fact that (L+ α)−1 (α1 + c/m) =
∫∞

0
αe−tαMtdt is the minimal

positive solution of (L+α)v ≥ α1+c/m, proven in Theorem 7.14 (d),
can be replaced as follows: The Laplace transform formula proven in
Theorem 2.11 gives α(L + α)−11 =

∫∞
0
αe−tαe−tL1dt. Furthermore,

that α(L+α)−11 generates the minimal positive function v ∈ F with
(L+α)v ≥ α1 was shown in Theorem 2.12. This is used in the proof
of Lemma 7.19.
• The fact that 0 ≤Mt ≤ 1 shown in Theorem 7.14 (a) can be replaced

by 0 ≤ e−tL1 ≤ 1, which is the Markov property of the semigroup on
`∞(X) found in Theorem 2.9. This fact is also used in the proof of
Lemma 7.19.
• The fact that Mt < 1 for some t implies that Ms < 1 for all s ≥ t can

be replaced by the fact that if e−tL1 < 1 for some t, then e−sL1 ≤
e−tL1 < 1 for all s ≥ t, which is shown in Lemma 7.5. This is used
in the proof of Lemma 7.20.

The following lemma is the key to proving Theorem 7.18. It con-
nects Mt with bounded α-harmonic functions for α > 0.

Lemma 7.19 (Largest α-subharmonic function). Let (b, c) be a graph
over (X,m). For α > 0, the function

wα =

∫ ∞
0

αe−tα(1−Mt)dt = 1− (L+ α)−1
(
α1 +

c

m

)
satisfies 0 ≤ wα ≤ 1, solves (L + α)wα = 0 and is the largest function
u ∈ F with 0 ≤ u ≤ 1 such that (L+ α)u ≤ 0.

Proof. We note that by Theorem 7.14 (d), for every α > 0 the
function

vα =

∫ ∞
0

αe−tαMtdt = (L+ α)−1
(
α1 +

c

m

)
satisfies (L + α)vα = α1 + c/m and is the minimal positive v ∈ F
such that (L + α)v ≥ α1 + c/m. Furthermore, as 0 ≤ Mt ≤ 1 by
Theorem 7.14 (a), we get 0 ≤ vα ≤ 1. Therefore,

wα = 1− vα = 1− (L+ α)−1
(
α1 +

c

m

)
= 1−

∫ ∞
0

αe−tαMtdt

=

∫ ∞
0

αe−tαdt−
∫ ∞

0

αe−tαMtdt

=

∫ ∞
0

αe−tα(1−Mt)dt,

and 0 ≤ wα ≤ 1. Furthermore, as vα satisfies (L + α)vα = α1 + c/m
and since (L+ α)1 = α1 + c/m by a direct calculation, we get

(L+ α)wα = 0.
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We now show the maximality of wα. Hence, let u satisfy (L+α)u ≤
0 with 0 ≤ u ≤ 1. Then, 1−u ≥ 0 satisfies (L+α)(1−u) ≥ α1 + c/m.
As vα is the minimal such positive function by Theorem 7.14 (d), we
get vα ≤ 1 − u. As wα = 1 − vα, wα ≥ u follows. This completes the
proof. �

The equivalence of the “for some” and “for all” statements in (iv.a′),
(iv.b′) and (iv.c′) is shown in the next lemma.

Lemma 7.20. Let (b, c) be a graph over (X,m). If there exists a
bounded non-trivial v ≥ 0 such that (L + α)v ≤ 0 for some α > 0,
then for every α > 0 there exists a bounded non-trivial v ≥ 0 such that
(L+ α)v = 0.

Proof. Let α > 0 and let v be a bounded non-trivial positive
function on X satisfying (L + α)v ≤ 0. By rescaling, we may assume
that 0 ≤ v ≤ 1. By Lemma 7.19, wα =

∫∞
0
αe−tα(1 − Mt)dt is the

maximal function u ∈ F with 0 ≤ u ≤ 1 such that (L + α)u ≤
0. Therefore, v ≤ wα. As v is non-trivial, wα is non-trivial and we
conclude that Mt < 1 for some t. Therefore, Mt < 1 for all t > 0 by
Theorem 7.17. Hence, for all β > 0, the function wβ =

∫∞
0
βe−tβ(1 −

Mt)dt is non-trivial. Furthermore, by Lemma 7.19 we have 0 ≤ wβ ≤ 1
and (L+ β)wβ = 0 for β > 0. This completes the proof. �

Proof of Theorem 7.18. The equivalence of the “for some” and
“for all” statements in (v.a′), (v.b′) and (v.c′) follows from Lemma 7.20.
The equivalence of the “for some” and “for all” statements in (v′) will
follow from the arguments given below.

For the rest of the proof recall that wα =
∫∞

0
αe−tα(1 − Mt)dt

solves (L+ α)wα = 0 and is the largest function u with 0 ≤ u ≤ 1 and
(L+ α)u ≤ 0 by Lemma 7.19. Obviously, wα = 0 for some (all) α > 0
if and only if Mt = 1 for some (all) t > 0, i.e., if and only if the graph
is stochastically complete at infinity.

We first show (i′) =⇒ (v.a′) =⇒ (v.b′) =⇒ (v.c′) =⇒ (i′). To this
end let α > 0 be fixed.

(i′) =⇒ (v.a′): Let u ≥ 0 be a bounded solution of (L + α)u ≤ 0.
By rescaling, we may assume that u ≤ 1. Then, 0 ≤ u ≤ wα since wα
is the largest such solution. If Mt = 1, then wα = 0 and, therefore,
u = 0.

(v.a′) =⇒ (v.b′): This follows immediately from Lemma 1.9, which
states that if u ∈ F is α-harmonic, then |u| is α-subharmonic.

(v.b′) =⇒ (v.c′): This is clear.

(v.c′) =⇒ (i′): If there do not exist non-trivial positive functions
u ≤ 1 such that (L+α)u = 0, then the largest such function wα satisfies
wα = 0. Therefore, Mt = 1 for all t > 0.
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Next, we show the implications (v′) =⇒ (i′) =⇒ (v.b′) =⇒ (v′)
which will complete the proof. In particular, we show the equivalence
of the “for some” and “for all” statements in (v′).

(v′) =⇒ (i′): We show this by contraposition. So, suppose that
Mt < 1. Let α > 0 and let f ∈ `∞(X). Then, u = (L+α)−1f ∈ `∞(X)
solves (L + α)u = f by Theorem 2.12. As we assume that Mt < 1,
wα > 0 and, therefore, v = u + wα > u also solves (L + α)v = f since
(L + α)wα = 0. Therefore, there is no uniqueness of solutions to the
Poisson equation for any α > 0.

(i′) =⇒ (v.b′): We have already shown this in the first round of
equivalences above.

(v.b′) =⇒ (v′): Let f ∈ `∞(X) and let α > 0. The existence of
solutions to the Poisson equation for α > 0 is given by u = (L+α)−1f .
So, we have to show uniqueness. Therefore, assume that there exists
f ∈ `∞(X) and two bounded solutions u1, u2 such that (L + α)u1 =
f = (L+α)u2. Then, u = u1−u2 is bounded and satisfies (L+α)u = 0.
From (v.b′) we infer u = 0 and, therefore, u1 = u2. �

We end this section with a corollary which connects stochastic com-
pleteness at infinity and the property of form uniqueness found in Chap-
ter 3. In particular, if Q(D) = Q(N), then there is only one form asso-
ciated to a graph (b, c) over (X,m). We next show that this is always
the case when a graph is stochastically complete at infinity.

Corollary 7.21 (Stochastic completeness implies Q(D) = Q(N)).
If (b, c) is a connected graph over (X,m) which is stochastically com-
plete at infinity, then Q(D) = Q(N).

Proof. If Q(D) 6= Q(N), then there is a non-trivial bounded solu-
tion to (L+α)u = 0 for α > 0 by Theorem 3.2. By Theorem 7.18, this
implies the graph is stochastically incomplete at infinity. �

5. The form perspective

In this section we show that a graph is stochastically complete at
infinity if and only if the constant function 1 can be approximated by
functions in the form domain or, equivalently, by compactly supported
functions, in a weak sense. As a consequence we show that recurrence
implies stochastic completeness.

For a connected graph b over (X,m) in Chapter 6 we proved that
recurrence is equivalent to the fact that the constant function 1 can
be approximated by compactly supported functions with respect to
pointwise convergence and convergence in the form sense, see Theo-
rem 6.1 (i.d). Here, we give an analogous criterion for stochastic com-
pleteness. More specifically, we show that stochastic completeness at
infinity is equivalent to the ability to approximate 1 in a weak sense.
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As a consequence we get that recurrence always implies stochastic com-
pleteness.

As usual, the reader who is only interested in stochastic complete-
ness and not stochastic completeness at infinity can let c = 0 in all of
the statements below. In particular, Lemma 7.22 will not be needed
for the discussion of stochastic completeness.

We denote by `1(X, c) the vector space of all functions f ∈ C(X)
such that

∑
x∈X c(x)|f(x)| < ∞. We note that this is not necessar-

ily a normed space since c is not assumed to be strictly positive. In
the following lemma we show that

∑
x∈X c(x)(L+ α)−1f(x) converges

absolutely for all f ∈ `1(X,m) and α > 0.

Lemma 7.22. Let (b, c) be a graph over (X,m) and let α > 0. Then,

(L+ α)−1`1(X,m) ⊆ `1(X, c)

and for all v ∈ `1(X,m),∑
x∈X

(
(L+ α)−1 c

m

)
(x)v(x)m(x) =

∑
x∈X

c(x)(L+ α)−1v(x),

where all sums converge absolutely.

Proof. By Lemma 7.10 we have 0 ≤ (L + α)−1(α1 + c/m) ≤ 1.
In particular, (L + α)−1(c/m) ∈ `∞(X). Thus, the sum on the left-
hand side of the asserted equality is equal to ((L + α)−1(c/m), v) for
v ∈ `1(X,m), where (·, ·) denotes the dual pairing between `∞(X) and
`1(X,m). Therefore, the sum on the left-hand side converges abso-
lutely.

Let (cn) be a sequence of finitely supported functions such that
cn ↗ c pointwise as n → ∞. Then, by the definition of the extended
resolvent, (L + α)−1(cn/m) ↗ (L + α)−1(c/m) as n → ∞. Let ϕn =
cn/m. By using the symmetry of the resolvents shown in Theorem 2.11
and by decomposing v into positive and negative parts we conclude by
the monotone convergence theorem∑
x∈X

(
(L+ α)−1 c

m

)
(x)v(x)m(x) =

(
(L+ α)−1 c

m
, v
)

= lim
n→∞

(
(L+ α)−1ϕn, v

)
= lim

n→∞

(
ϕn, (L+ α)−1v

)
= lim

n→∞

∑
x∈X

ϕn(x)(L+ α)−1v(x)m(x)

=
∑
x∈X

c(x)(L+ α)−1v(x).

In particular, this shows (L+α)−1v ∈ `1(X, c) for all v ∈ `1(X,m),
which shows the inclusion asserted in the statement of the lemma. This
completes the proof. �
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We now state the characterization of stochastic completeness at
infinity via two approximation schemes for the constant function 1.
We note that this proves the equivalence of (i.a), (ii) and (ii.a) in
Theorem 7.2 for the characterization of stochastic completeness.

Theorem 7.23 (Stochastic completeness at infinity and approxi-
mating 1). Let (b, c) be a connected graph over (X,m). The following
statements are equivalent:

(i.a′) For some (all) α > 0 and some (all) x ∈ X,

(L+ α)−1
(
α1 +

c

m

)
(x) = 1.

(ii′) There exists a sequence of functions en ∈ D(Q) (equivalently,
en ∈ Cc(X)) with 0 ≤ en ≤ 1 for all n ∈ N such that en → 1
pointwise and

lim
n→∞

Q(en, v) =
∑
x∈X

c(x)v(x)

for all v ∈ D(Q) ∩ `1(X,m) ∩ `1(X, c).
(ii.a′) There exists a sequence of functions en ∈ D(Q) (equivalently,

en ∈ Cc(X)) with 0 ≤ en ≤ 1 for all n ∈ N such that en → 1
pointwise and

lim
n→∞

Q(en, (L+ α)−1v) =
∑
x∈X

c(x)(L+ α)−1v(x)

for one v ∈ `2(X,m)∩`1(X,m) with v > 0 and some (all) α > 0.

We start by showing that we can always pass from a sequence in
D(Q) to a sequence in Cc(X) in the approximation schemes in (ii′)
and (ii.a′) above. For this, recall that for a vertex o ∈ X and f ∈ D
we define the norm ‖f‖o = (Q(f) + f 2(o))

1/2
. If a graph is connected,

then the norms for different o ∈ X are equivalent and convergence with
respect to any of these norms is equivalent to convergence pointwise
and in Q. See Lemma 6.3 for further basic facts about this norm.

Lemma 7.24. Let (b, c) be a connected graph over (X,m). Let en ∈
D(Q) be a sequence with 0 ≤ en ≤ 1, en → 1 pointwise and Q(en, v)→
C as n→∞ for some v ∈ D and some constant C. Then, there exist
ϕn ∈ Cc(X) with 0 ≤ ϕn ≤ 1, ϕn → 1 pointwise and

lim
n→∞

Q(ϕn, v) = C.

Proof. As D(Q) = Cc(X)
‖·‖Q

, where ‖f‖Q = (Q(f) + ‖f‖2)
1/2

,
and convergence in `2(X,m) implies pointwise convergence, it follows

that for every en, there exists a sequence (ϕ
(n)
k ) in Cc(X) such that

ϕ
(n)
k → en
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pointwise and with respect to Q as k → ∞. In particular, ‖en −
ϕ

(n)
k ‖o → 0 as k → ∞ for all o ∈ X. We note that since 0 ≤ en ≤ 1,

the negative part of en is 0 while the positive part of en is en. Hence,
by Lemma 6.6, for every n ∈ N, the sequence

ψ
(n)
k = 0 ∨ ϕ(n)

k ∧ en
also converges to en in ‖ · ‖o as k → ∞. In particular, ψ

(n)
k ∈ Cc(X)

with 0 ≤ ψ
(n)
k ≤ 1, ψ

(n)
k (x)→ en(x) for all x ∈ X as k →∞ and

lim
k→∞

Q(en − ψ(n)
k ) = 0.

By applying a diagonalization procedure to the family of functions

{ψ(n)
k }∞k,n=1 we obtain a subsequence (ϕn) in Cc(X) with 0 ≤ ϕn ≤ 1

and which converges pointwise at all x ∈ X. In particular, from the
properties above, ϕn → 1 pointwise and limn→∞Q(ϕn, v) = C. This
completes the proof. �

Proof of Theorem 7.23. In the proof we will make repeated
use of the formula

Q((L+ α)−1f, g) = 〈f − α(L+ α)−1f, g〉
for f, g ∈ D(Q) and α > 0, which follows by a simple calculation.

(i.a′) =⇒ (ii′): Let (ϕn) be a sequence in Cc(X) such that 0 ≤ ϕn ≤
1 and ϕn ↗ 1 pointwise as n → ∞. Let ψn = ϕn(1 + c/m) so that
ψn ↗ 1 + c/m pointwise and define

en = (L+ 1)−1ψn

for n ∈ N. Then, as ψn ≥ 0 and (L + 1)−1 is positivity preserving, we
infer en ≥ 0. Furthermore, since 0 ≤ ϕn ≤ 1 we get ψn = ϕn(1+c/m) ≤
1 + c/m. As the resolvent is positivity preserving we get

en ≤ (L+ 1)−1
(

1 +
c

m

)
≤ 1,

where the last inequality follows from Lemma 7.10. Thus, 0 ≤ en ≤ 1.
Furthermore, en ∈ D(L) ⊆ D(Q) for all n ∈ N and

en ↗ (L+ 1)−1
(

1 +
c

m

)
= 1

as n → ∞ where the equality follows by (i.a′). By using the formula
at the start of the proof and the fact that ψn = ϕn + ϕnc/m, we infer
for v ∈ D(Q) ∩ `1(X,m) ∩ `1(X, c) with v ≥ 0

Q(en, v) = Q
(
(L+ 1)−1ψn, v

)
= 〈ψn − (L+ 1)−1ψn, v〉

= 〈ϕn, v〉 − 〈(L+ 1)−1ψn, v〉+ 〈ϕn
c

m
, v〉

= 〈ϕn, v〉 − 〈en, v〉+ 〈ϕn
c

m
, v〉
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→
∑
x∈X

c(x)v(x)

as n→∞, where the convergence follows by the monotone convergence
theorem. We note that the first two terms converge to ‖v‖1 as we
assume that v ∈ `1(X,m) and the third term converges to the sum as
we assume that v ∈ `1(X, c).

For a general v ∈ D(Q) ∩ `1(X,m) ∩ `1(X, c), we obtain the con-
vergence by decomposing v into positive and negative parts.

(ii′) =⇒ (ii.a′): This is clear as (L + α)−1v ∈ D(L) ∩ `1(X,m) ∩
`1(X, c) for v ∈ `2(X,m) ∩ `1(X,m) by Lemma 7.22.

(ii.a′) =⇒ (i.a′): Let (en) and v be as assumed in (ii.a′) and let
α > 0. By Lemma 7.22 and the formula at the start of the proof,∑
x∈X

(
(L+ α)−1 c

m

)
(x)v(x)m(x) =

∑
x∈X

c(x)(L+ α)−1v(x)

= lim
n→∞

Q(en, (L+ α)−1v)

= lim
n→∞
〈en, v − α(L+ α)−1v〉

= lim
n→∞
〈en − α(L+ α)−1en, v〉

=
∑
x∈X

(
1− α(L+ α)−11

)
(x)v(x)m(x),

where the convergence follows by the Lebesgue dominated convergence
theorem as we assume that v ∈ `1(X,m). Hence,∑

x∈X

(
1− α(L+ α)−11− (L+ α)−1 c

m

)
(x)v(x)m(x) = 0.

Since v > 0, we infer

(L+ α)−1
(
α1 +

c

m

)
= 1,

which is (i.a′). This finishes the proof. �

We recall that a connected graph b over (X,m) is called recurrent

if 1 ∈ D0, where D0 = Cc(X)
‖·‖o

and ‖ϕ‖o = (Q(ϕ) + ϕ2(o))1/2 for
ϕ ∈ Cc(X) and an arbitrary vertex o ∈ X. This means that 1 can be
approximated by finitely supported functions via pointwise convergence
and convergence in the form sense, see Theorem 6.1. Comparing with
the result above, we obtain the following immediate corollary.

Corollary 7.25 (Recurrence implies stochastic completeness).
Let b be a connected graph over (X,m). If b is recurrent, then b is
stochastically complete.

Proof. By Theorem 6.1 (i.d), if b is recurrent, then there exists a
sequence of functions en ∈ Cc(X) with 0 ≤ en ≤ 1, en → 1 pointwise
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and Q(en)→ 0 as n→∞. Hence, for all v ∈ D(Q) ∩ `1(X,m) we get

Q(en, v) ≤ Q1/2(en)Q1/2(v)→ 0

as n → ∞. Therefore, the graph is stochastically complete by Theo-
rem 7.23 as c = 0. �

Remark. We have seen in Corollaries 7.21 and 7.25 that recurrence
implies stochastic completeness, which implies form uniqueness. As we
will see via examples, the reverse implications do not hold. On the other
hand, if the measure satisfies m(X) <∞, then all three properties are
equivalent (Exercise 7.7).

6. The Green’s formula perspective

In this section we discuss stochastic completeness from the perspec-
tive of Green’s formula. This formula allows us to move the Laplacian
between functions when summing over the set of vertices. We will show
that stochastic completeness at infinity is equivalent to the validity of
such a formula for a class of functions satisfying several summability
conditions.

As we have seen, Green’s formulas assert the validity of summation
formulas such as∑

x∈X

Lf(x)g(x)m(x) =
∑
x∈X

f(x)Lg(x)m(x)

for functions f and g. For example, if f ∈ F ∩`2(X,m) and ϕ ∈ Cc(X)
with Lf,Lϕ ∈ `2(X,m), then this can be written more simply via the
inner product as

〈Lf, ϕ〉 = 〈f,Lϕ〉,
see Proposition 1.5. In this section we characterize stochastic com-
pleteness at infinity via the validity of the formula∑

x∈X

Lv(x)1(x)m(x) =
∑
x∈X

v(x)L1(x)m(x)

for suitable functions v and the constant function 1. We note that
L1 = c/m so that the right-hand side in the equality above vanishes in
the case c = 0. In particular, this is the case when studying stochastic
completeness as opposed to stochastic completeness at infinity.

We will connect a Green’s formula with the possibility to approxi-
mate the constant function 1 as discussed in the previous section. As a
consequence, we get that the validity of a Green’s formula is equivalent
to stochastic completeness at infinity. We recall that

`1(X, c) = {f ∈ C(X) |
∑
x∈X

c(x)|f(x)| <∞}

and that (L + α)−1v ∈ `1(X, c) for all v ∈ `1(X,m) and all α > 0 by
Lemma 7.22.
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Theorem 7.26 (Approximating 1 and Green’s formula). Let (b, c)
be a connected graph over (X,m). Then, the following statements are
equivalent:

(ii′) There exists a sequence of functions en ∈ D(Q) (equivalently,
en ∈ Cc(X)) with 0 ≤ en ≤ 1 for all n ∈ N such that en → 1
pointwise and

lim
n→∞

Q(en, v) =
∑
x∈X

c(x)v(x)

for all v ∈ D(Q) ∩ `1(X,m) ∩ `1(X, c).
(ii.a′) There exists a sequence of functions en ∈ D(Q) (equivalently,

en ∈ Cc(X)) with 0 ≤ en ≤ 1 for all n ∈ N such that en → 1
pointwise and

lim
n→∞

Q(en, (L+ α)−1v) =
∑
x∈X

c(x)(L+ α)−1v(x)

for one v ∈ `2(X,m)∩ `1(X,m) with v > 0 and some (all) α > 0.
(iii′) If v ∈ D∩ `1(X,m)∩ `2(X,m)∩ `1(X, c) satisfies Lv ∈ `1(X,m),

then ∑
x∈X

Lv(x)m(x) =
∑
x∈X

c(x)v(x).

(“Green’s formula”)

(iii.a′) If v ∈ D∩`1(X,m)∩`2(X,m)∩`1(X, c) satisfies Lv ∈ `1(X,m)∩
`2(X,m), then∑

x∈X

Lv(x)m(x) =
∑
x∈X

c(x)v(x).

Proof. (ii′)⇐⇒ (ii.a′): This was already shown in Theorem 7.23.

(ii′) =⇒ (iii′): At first let v ∈ D(Q) ∩ `1(X,m) ∩ `1(X, c) be such
that Lv ∈ `1(X,m). As given in (ii′), there exist en ∈ Cc(X) such that
0 ≤ en ≤ 1, en → 1 pointwise and

lim
n→∞

Q(en, v) =
∑
x∈X

c(x)v(x).

As v ∈ D(Q) ⊆ D ⊆ F by Green’s formula, Proposition 1.5, we
compute that

Q(en, v) =
∑
x∈X

en(x)Lv(x)m(x)→
∑
x∈X

Lv(x)m(x)

as n→∞, where the convergence follows from Lebesgue’s’s dominated
convergence theorem using the assumptions that en → 1 pointwise and
Lv ∈ `1(X,m). Hence,∑

x∈X

Lv(x)m(x) =
∑
x∈X

c(x)v(x)

for all v ∈ D(Q) ∩ `1(X,m) ∩ `1(X, c).



348 7. STOCHASTIC COMPLETENESS

It remains to extend the equality to all v ∈ D∩`1(X,m)∩`2(X,m)∩
`1(X, c) with Lv ∈ `1(X,m). First, by definition, D ∩ `2(X,m) =
D(Q(N)). Moreover, by Corollary 7.21 stochastic completeness at in-
finity implies D(Q(D)) = D(Q(N)), where D(Q) = D(Q(D)). As we
have shown that stochastic completeness at infinity is equivalent to
(ii′) in Theorem 7.23 it follows that

D(Q) = D(Q(N)) = D ∩ `2(X,m).

This finishes the proof.

(iii′) =⇒ (iii.a′): This is obvious.

(iii.a′) =⇒ (ii.a′): Let v ∈ `1(X,m)∩ `2(X,m) satisfy v > 0 and let
w = (L+ α)−1v. Then, as v ∈ `1(X,m), w ∈ `1(X, c) by Lemma 7.22.
Furthermore, as resolvents preserve `p spaces and map into the operator
domain, which is included in D, we get that w ∈ D ∩ `1(X,m) ∩
`2(X,m) ∩ `1(X, c). As L is a restriction of L by Theorem 1.6 we get

Lw = L(L+ α)−1v = v − α(L+ α)−1v ∈ `1(X,m) ∩ `2(X,m).

Hence, by (iii.a′) applied to w, we obtain∑
x∈X

Lw(x)m(x) =
∑
x∈X

c(x)w(x).

Now, let en ∈ Cc(X) satisfy 0 ≤ en ≤ 1 and en → 1 pointwise.
Then, by Green’s formula, Proposition 1.5, we get

Q(en, (L+ α)−1v) = Q(en, w)

=
∑
x∈X

en(x)Lw(x)m(x)

→
∑
x∈X

Lw(x)m(x)

=
∑
x∈X

c(x)w(x)

=
∑
x∈X

c(x)(L+ α)−1v(x)

as n → ∞, where the convergence follows by Lebesgue’s dominated
convergence theorem since Lw ∈ `1(X,m). This shows (ii.a′) and com-
pletes the proof. �

As we have shown previously, the possibility to approximate 1 as in
(ii′) is equivalent to stochastic completeness at infinity. Hence, we get
an immediate characterization of stochastic completeness at infinity via
the Green’s formula.

Corollary 7.27 (Stochastic completeness at infinity and Green’s
formula). Let (b, c) be a connected graph over (X,m). Then, the fol-
lowing statements are equivalent:



6. THE GREEN’S FORMULA PERSPECTIVE 349

(i′) For some (all) t > 0 and some (all) x ∈ X,

Mt(x) = 1.

(“Stochastic completeness at infinity”)

(iii′) If v ∈ D∩ `1(X,m)∩ `2(X,m)∩ `1(X, c) satisfies Lv ∈ `1(X,m),
then ∑

x∈X

Lv(x)m(x) =
∑
x∈X

c(x)v(x).

(“Green’s formula”)

(iii.a′) If v ∈ D∩`1(X,m)∩`2(X,m)∩`1(X, c) satisfies Lv ∈ `1(X,m)∩
`2(X,m), then∑

x∈X

Lv(x)m(x) =
∑
x∈X

c(x)v(x).

Proof. That (i′) is equivalent to (L+α)−1(α1+c/m) = 1 for some
(all) α > 0 was shown in Theorem 7.16. Hence, the conclusion follows
by combining Theorems 7.23 and 7.26. �

Remark (Relation to recurrence). By Theorem 6.1 (iii.a), for a
graph b over (X,m) recurrence is equivalent to the fact that for every
v ∈ D with Lv ∈ `1(X,m), we have

∑
x∈X Lv(x)m(x) = 0. Compar-

ing with (iii′) above, this gives another proof that recurrence implies
stochastic completeness when c = 0.

Remark (Abstract version of Green’s formula). The condition (iii′)
can be understood on a more abstract level. For the sake of clarity, we
discuss this here for c = 0. When c = 0, the corresponding statement
in Corollary 7.27 is

(iii) If v ∈ D ∩ `1(X,m) ∩ `2(X,m) satisfies Lv ∈ `1(X,m), then∑
x∈X

Lv(x)m(x) = 0.

To discuss an abstract version of this, recall that the generator of the
semigroup on `1(X,m) is denoted by L(1) and that the dual of L(1) on
`∞(X) is denoted by L(∞). In Theorem 2.13 from Section 1 we have
shown that these generators are restrictions of L. Then, (iii) can be
shown to be equivalent to either of the following statements:

(iii.a) For all u ∈ D(L(1))∑
x∈X

L(1)u(x)m(x) = 0.

(iii.b) The constant function 1 is in D(L(∞)) and L(∞)1 = 0.

We leave the proof of the equivalence as an exercise (Exercise 7.6).
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7. The Omori–Yau maximum principle

In this section we prove the Omori–Yau maximum principle charac-
terization of stochastic completeness at infinity. This maximum princi-
ple that every function bounded above must be close to superharmonic
on the set where the function takes values near its supremum. For
some considerations, this is a more flexible criterion than analyzing
the behavior of α-subharmonic functions on the entire vertex set.

In Theorem 7.18 we have already shown that stochastic incomplete-
ness at infinity is equivalent to the existence of a non-trivial positive
bounded α-(sub)harmonic function defined on the entire vertex set.
Specifically, there exists a non-trivial u ∈ `∞(X) with u ≥ 0 and

(L+ α)u ≤ 0

for α > 0 if and only if the graph is stochastically incomplete at infinity.
In this section we prove the Omori–Yau maximum principle crite-

rion for stochastic incompleteness at infinity. In particular, the exis-
tence of a bounded function u whose supremum is strictly positive and
which satisfies

Lu ≤ −C
for some constant C > 0 and some set of vertices where u is near
its supremum is equivalent to stochastic incompleteness at infinity. A
basic intuition behind the Omori–Yau maximum principle is that the
equation Lu ≤ −C implies that u is strictly increasing in some direc-
tion. Hence, if u still has some direction to increase even as we get
near the supremum of u and the graph can accommodate this increase
to allow u to be bounded, then the graph must have large growth and,
hence, be stochastically incomplete at infinity.

We first connect the Omori–Yau maximum principle with the non-
existence of α-(sub)harmonic functions. As usual, the reader who is
only interested in stochastic completeness and not stochastic complete-
ness at infinity can let c = 0 and substitute e−tL1 for Mt in the state-
ments below.

Theorem 7.28 (Omori–Yau maximum principle and α-harmonic
functions). Let (b, c) be a connected graph over (X,m). Then, the fol-
lowing statements are equivalent:

(iv′) If u ∈ F satisfies supu ∈ (0,∞) and β ∈ (0, supu), then

sup
Xβ

Lu ≥ 0,

where Xβ = {x ∈ X | u(x) > supu− β}.
(“Omori–Yau maximum principle”)

(v.a′) For some (all) α > 0 every positive u ∈ `∞(X) which satisfies
(L+ α)u ≤ 0 is trivial.
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(v.c′) For some (all) α > 0 every positive u ∈ `∞(X) which satisfies
(L+ α)u = 0 is trivial.

Proof. (v.a′) ⇐⇒ (v.c′): This was shown in Theorem 7.18.

(iv′) =⇒ (v.c′): We show this by contraposition. Let u be a non-
trivial positive bounded function which satisfies (L+α)u = 0 for α > 0.
Let β = supu/2 > 0, which is strictly positive since u is non-trivial.
Then, for all x ∈ Xβ = {y ∈ X | u(y) > supu/2} we get

Lu(x) = −αu(x) < −αsupu

2
< 0.

Hence, (iv′) fails for this u and for this choice of β.

(v.a′) =⇒ (iv′): We also show this by contraposition. Assume that
(iv′) fails. Then, there exists a constant C > 0, a function u ∈ F with
supu ∈ (0,∞) and a β ∈ (0, supu) such that

Lu ≤ −C
on Xβ = {x ∈ X | u(x) > supu− β}. Define

uβ = (u+ β − supu)+,

where f+ = f ∨ 0 is the positive part of a function f . We will show
that uβ is positive bounded non-trivial and α-subharmonic for α > 0,
which will show that (v.a′) fails.

Since u is bounded, it is clear from the definition that uβ is positive
and bounded. If uβ were trivial, then u(x) ≤ supu − β for all x ∈ X,
where β > 0, which contradicts the definition of the supremum. Hence,
uβ is non-trivial.

Let α = C/β > 0, where Lu ≤ −C on Xβ. We will now show that
uβ is α-subharmonic, that is,

(L+ α)uβ ≤ 0.

If x 6∈ Xβ, then uβ(x) = 0. Therefore,

(L+ α)uβ(x) = − 1

m(x)

∑
y∈X

b(x, y)uβ(y) ≤ 0.

For x ∈ Xβ, we first note that

αuβ(x) = α(u(x) + β − supu)+ ≤ αβ = C

by the choice of α. Moreover, since β < supu by assumption, we have

uβ(x) = u(x) + β − supu < u(x).

For y ∈ X we obtain

uβ(x)− uβ(y) = u(x) + β − supu− uβ(y)

=

{
u(x)− u(y) : y ∈ Xβ

u(x) + β − supu− 0 : y 6∈ Xβ

≤ u(x)− u(y)
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as u(y) ≤ supu−β for y 6∈ Xβ. Thus, combining the three inequalities
above with Lu ≤ −C on Xβ yields that, for x ∈ Xβ,

(L+ α)uβ(x) =
1

m(x)

∑
y∈X

b(x, y)(uβ(x)− uβ(y)) +

(
c(x)

m(x)
+ α

)
uβ(x)

≤ 1

m(x)

∑
y∈X

b(x, y)(u(x)− u(y)) +
c(x)

m(x)
u(x) + C

= Lu+ C

≤ 0.

Therefore, uβ is a positive bounded non-trivial function satisfying
(L + α)uβ ≤ 0 for α > 0, which shows that (v.a′) does not hold. This
completes the proof. �

As we have already shown that the statements above concerning
α-(sub)harmonic functions are equivalent to stochastic completeness
at infinity, we get the following immediate corollary which links the
Omori–Yau maximum principle with stochastic completeness at infin-
ity.

Corollary 7.29 (Stochastic completeness at infinity and Omo-
ri–Yau maximum principle). Let (b, c) be a connected graph over (X,m).
Then, the following statements are equivalent:

(i′) For some (all) t > 0 and some (all) x ∈ X,

Mt(x) = 1.

(“Stochastic completeness at infinity”)

(iv′) If u ∈ F satisfies supu ∈ (0,∞) and β ∈ (0, supu), then

sup
Xβ

Lu ≥ 0,

where Xβ = {x ∈ X | u(x) > supu− β}.
(“Omori–Yau maximum principle”)

Proof. The result follows immediately by combining the previ-
ously proven Theorems 7.18 and 7.28. �

8. A stability criterion and Khasminskii’s criterion

In this section we use the Omori–Yau maximum principle to prove
a stability result for stochastic completeness at infinity. This result
gives that stochastic incompleteness at infinity of a subgraph implies
stochastic incompleteness at infinity of the entire graph under some
additional conditions. Furthermore, we state and prove a Khasminskii
criterion which states that the existence of a positive α-superharmonic
function which goes to infinity implies stochastic completeness at in-
finity.
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We start with some general remarks regarding subgraphs and the
stability question. Whenever Y is a subset of X, the graph (bY , cY )
over (Y,mY ) with bY : Y × Y −→ [0,∞) satisfying bY (x, y) = b(x, y),
cY : Y −→ [0,∞) satisfying cY (x) = c(x) and mY : Y −→ (0,∞) satis-
fying mY (x) = m(x) is called a subgraph of (b, c). In other words, we
restrict the functions b, c and m to the subset Y of X.

We note that any graph that has a transient subgraph is also
transient, cf. Exercise 6.15 in the previous chapter. In contrast, a
graph which has a stochastically incomplete subgraph is not, in gen-
eral, stochastically incomplete. In fact, every stochastically incomplete
graph is a subgraph of a graph which is stochastically complete (Ex-
ercise 7.8). Intuitively, this can be achieved by diverting heat from
regions of large growth by creating regions with slow growth via addi-
tional edges. Alternatively, by adding a killing term c, any stochasti-
cally incomplete graph is a subgraph of a graph which is stochastically
complete at infinity (Exercise 7.9). The reason why this works is that
heat is removed via c so that it is not lost at infinity.

However, there are several conditions yielding that stochastic in-
completeness at infinity of a subgraph does imply stochastic incom-
pleteness at infinity of the entire graph. We now present one such
criterion and leave other criteria as exercises. Specifically, we will use
the Omori–Yau maximum principle to show that if the stochastically
incomplete subgraph is not too connected to vertices outside of the
subgraph, then the entire graph is stochastically incomplete.

Theorem 7.30 (Stability of stochastic incompleteness). Let (b, c)
be a connected graph over (X,m). Let Y ⊆ X and let (bY , cY ) over
(Y,mY ) be a connected subgraph of (b, c). If (bY , cY ) is stochastically
incomplete at infinity and there exists a constant C such that

1

m(x)

∑
y∈X\Y

b(x, y) ≤ C

for all x ∈ Y , then (b, c) is stochastically incomplete at infinity.

Proof. As (bY , cY ) is stochastically incomplete at infinity, it fol-
lows from Corollary 7.29 that there exists a function u ∈ C(Y ) with
supY u ∈ (0,∞) and β1 ∈ (0, supY u) such that

LY u ≤ −C1

on Yβ1 = {x ∈ Y | u(x) > supY u − β1} for some constant C1 > 0.
Here,

LY u(x) =
1

m(x)

∑
y∈Y

b(x, y)(u(x)− u(y)) +
c(x)

m(x)
u(x),

for x ∈ Y , denotes the Laplacian on Y .
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We first note that by letting β = β1 ∧ C1, we get Yβ ⊆ Yβ1 and so

sup
Yβ

LY u ≤ sup
Yβ1

LY u ≤ −C1 ≤ −β,

yielding that supYβ LY u ≤ −β. We will work with this β in what
follows.

We wish to extend u to the entire space X in such a way that the
resulting function violates the Omori–Yau maximum principle. We let

v(x) =

{(
u(x)− supY u+ β

2C

)
+

if x ∈ Y
0 otherwise,

where we choose C ≥ 1 such that (1/m(x))
∑

y∈X\Y b(x, y) ≤ C as
given by assumption. We note that

sup v =
β

2C
,

so that

Xβ/2C = {x ∈ X | v(x) > sup v − β/2C}
= {x ∈ X | v(x) > 0}
= {x ∈ Y | u(x) > supu− β/2C} .

In particular, as C ≥ 1 so that β/2C < β, we get Xβ/2C ⊆ Yβ, where
Yβ = {x ∈ Y | u(x) > supY u− β} is the set where LY u ≤ −β.

Let x ∈ Xβ/2C . Then,

v(x) = u(x)− sup
Y
u+

β

2C
< u(x)

since β ∈ (0, supY u) and C ≥ 1. If y ∈ Xβ/2C , then

v(x)− v(y) = u(x)− u(y).

If y 6∈ Xβ/2C and y ∈ Y , then

v(x)− v(y) = u(x)− sup
Y
u+

β

2C

≤ u(x)− u(y)

since u(y) ≤ supY u − β/2C in this case. Finally, if y 6∈ Xβ/2C and
y 6∈ Y , then

v(x)− v(y) = v(x)

= u(x)− sup
Y
u+

β

2C

≤ β

2C
.
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Putting these inequalities together and using the fact that Xβ/2C ⊆
Yβ mentioned above, we get for x ∈ Xβ/2C ,

Lv(x) =
1

m(x)

∑
y∈Y

b(x, y)(v(x)− v(y)) +
c(x)

m(x)
v(x)

+
1

m(x)

∑
y 6∈Y

b(x, y)(v(x)− v(y))

≤ LY u(x) +
1

m(x)

∑
y 6∈Y

b(x, y)
β

2C

≤ −β +
β

2
= −β

2
< 0.

Therefore,

sup
Xβ/2C

Lv ≤ −β
2
,

so that the graph is stochastically incomplete at infinity by Corol-
lary 7.29. �

Remark. A similar argument gives that if the degree within Y
is bounded on the set of vertices in Y which have a neighbor outside
of Y , then (b, c) over (X,m) is stochastically incomplete at infinity
(Exercise 7.10).

Remark. If the graph associated to a Dirichlet restriction Q
(D)
Y for

some subset Y ⊂ X is stochastically incomplete at infinity, then the
entire graph (b, c) over (X,m) is stochastically incomplete at infinity
(Exercise 7.11).

We next present the Khasminskii criterion, which is a useful test
for stochastic completeness. It states that the existence of a positive α-
superharmonic function for α > 0 which grows at infinity implies that
the graph is stochastically complete at infinity. The idea of the proof
is that a growing α-superharmonic function will dominate any positive
bounded α-harmonic function up to an arbitrary scale, which forces
the bounded α-harmonic function to be zero. This result will be used
in our comparison results for weakly spherically symmetric graphs.

We start by making precise the notion of growing at infinity. We
say that f ∈ C(X) satisfies f(x) → ∞ as x → ∞ if for every C ∈ R,
there exists a finite set K ⊆ X such that f |X\K ≥ C. Similarly, we
define f(x)→ −∞ by replacing ≥ with ≤. In particular, for a function
f ∈ C(X) and a ∈ R ∪ {±∞} we have

f(x)→ a as x→∞
if for every sequence of (xn) of distinct elements in X we have

f(xn)→ a as n→∞.
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We note that this can be understood in terms of the one-point com-

pactification X̂ = X ∪ {∞} of X, where ∞ is an additional point.

Theorem 7.31 (Khasminskii criterion for stochastic completeness).
Let (b, c) be a connected graph over (X,m). If there exists a positive
function v ∈ F such that v(x)→∞ as x→∞ and

(L+ α)v ≥ 0

for α > 0, then (b, c) is stochastically complete at infinity.

Proof. Let α > 0 and let v be a function as assumed in the
statement of the theorem. Let u ∈ `∞(X) be a positive solution of (L+
α)u = 0. We can, by rescaling, assume that u ≤ 1. By Theorem 7.18
in order to prove stochastic completeness at infinity, it suffices to show
that u = 0.

For a given C > 0 letK ⊆ X be a finite subset such that v|X\K ≥ C.
The function w = v − Cu then satisfies

• (L+ α)w ≥ 0 on K
• w ∧ 0 assumes a minimum on K as K is finite
• w ≥ 0 on X \K.

By the minimum principle, Theorem 1.7, we infer w ≥ 0. Therefore,
v ≥ Cu. As C > 0 was chosen arbitrarily, we infer u = 0. Hence, every
bounded positive solution u of (L+α)u = 0 is trivial, which completes
the proof. �

9. A probabilistic interpretation*

In this section we give a probabilistic interpretation of stochastic
completeness at infinity. This relies heavily on the Feynman–Kac for-
mula. As such, this section is marked as optional.

Let (b, c) be a graph over (X,m). Let (Xt) = (Xb
t) denote the

Markov process with respect to the graph b over (X,m) which was
introduced in Section 5. In this context, ζ denotes the lifetime of the
process (Xt) and Px denotes the probability measure conditioned on
X0 = x for x ∈ X.

Let f ∈ `2(X,m), x ∈ X and t ≥ 0. The Feynman–Kac formula,
Theorem 2.31, gives

e−tLf(x) = Ex
(

1{t<ζ}e
−

∫ t
0 (c/m)(Xs)dsf(Xt)

)
,

where Ex is the expected value of the process conditioned on X0 =
x. This formula obviously extends to all positive functions f ≥ 0 by
monotone convergence. We make this explicit for the constant function
1 below.
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We start with a discussion concerning stochastic completeness, i.e.,
the equality e−tL1 = 1. The result below shows that stochastic com-
pleteness is equivalent to the process having infinite lifetime and the
fact that the killing term vanishes.

Theorem 7.32 (Probabilistic characterization of stochastic com-
pleteness). Let (b, c) be a graph over (X,m). Let (Xt) be the process
associated to b with lifetime ζ. Then,

e−tL1(x) = Ex
(

1{t<ζ}e
−

∫ t
0 (c/m)(Xs)ds

)
.

Furthermore, the following statements are equivalent:

(i) e−tL1 = 1 for all t > 0.
(ii) Px(ζ =∞) = 1 for x ∈ X and c = 0.

Proof. We first show the stated equality. Let 0 ≤ ηk ≤ 1 for
k ∈ N be a sequence of compactly supported functions such that ηk ↗ 1
pointwise. Then, the Feynman–Kac formula, Theorem 2.31, combined
with monotone convergence yields

e−tL1(x) = lim
k→∞

e−tLηk(x)

= lim
k→∞

Ex
(

1{t<ζ}e
−

∫ t
0 (c/m)(Xs)dsηk(Xt)

)
= Ex

(
1{t<ζ}e

−
∫ t
0 (c/m)(Xs)ds

)
.

This proves the stated equality. We now show the equivalence.

(i) =⇒ (ii): We show this by contraposition. First, by the formula
above and the Cauchy–Schwarz inequality we get

e−tL1(x) = Ex
(

1{t<ζ}e
−

∫ t
0 (c/m)(Xs)ds

)
≤ Ex

(
1{t<ζ}

)1/2 Ex
(
e−

∫ t
0 (c/m)(Xs)ds

)1/2

= Px(t < ζ)1/2Ex
(
e−

∫ t
0 (c/m)(Xs)ds

)1/2

.

If Px(ζ = ∞) < 1, then Px(t < ζ) < 1 for t large enough. If c(x) > 0
for some x ∈ X and we let J1 be the first jumping time of the process
which is strictly positive almost surely, then

Ex
(
e−

∫ t
0 (c/m)(Xs)ds

)
≤ Ex

(
e−J1(c/m)(x)

)
< 1

by the Taylor expansion of the exponential function. Therefore, if either
Px(ζ = ∞) < 1 or c(x) > 0 for some x ∈ X, then e−tL1(x) < 1 and,
consequently, e−tL1 < 1 for all t > 0 by Lemma 7.17.

(ii) =⇒ (i): This is immediate from the equality as e−tL1(x) =
Ex(1) = 1. �
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Next, we turn to a probabilistic characterization of stochastic com-
pleteness at infinity, i.e., the equality Mt = 1. For two events A and
B, we denote the probability of A conditioned on B by P(A | B).

Theorem 7.33 (Probabilistic characterization of stochastic com-
pleteness at infinity). Let (b, c) be a graph over (X,m). Let (Xt) be the
process associated to b with lifetime ζ. Then,

Mt(x) = 1− Ex
(

1{t≥ζ}e
−

∫ ζ
0 (c/m)(Xs)ds

)
.

Furthermore, the following statements are equivalent:

(i) Mt = 1 for all t > 0.

(ii) Px (ζ =∞) = 1 or Px
(∫ ζ

0
c
m

(Xt)dt =∞ | ζ <∞
)

= 1 for all x ∈
X.

Proof. For ease of notation, we denote c/m by q. By the Feynman–
Kac formula, Theorem 2.31, which extends to arbitrary positive func-
tions by monotone convergence, we compute Mt = e−tL1 +

∫ t
0
e−sLqds

in probabilistic terms. We start with the second term using Fubini’s
theorem in the second step∫ t

0

e−sLq(x)ds =

∫ t

0

Ex
(

1{s<ζ}e
−

∫ s
0 q(Xr)drq(Xs)

)
ds

= Ex
(∫ t

0

1{s<ζ}e
−

∫ s
0 q(Xr)drq(Xs)ds

)
= Ex

(∫ t∧ζ

0

e−
∫ s
0 q(Xr)drq(Xs)ds

)
.

We can now apply the fundamental theorem of calculus to the function
F (s) = −e−

∫ s
0 q(Xr)dr, whose derivative is

F ′(s) = e−
∫ s
0 q(Xr)drq(Xs).

Note that for t < ζ the fundamental theorem of calculus applies as the
function to be integrated has only finitely many points of discontinu-
ity. By a limiting procedure the fundamental theorem of calculus then
applies for t = ζ as well. Thus, we obtain

. . . = 1− Ex
(
e−

∫ t∧ζ
0 q(Xr)dr

)
= 1− Ex

(
1{t≥ζ}e

−
∫ ζ
0 q(Xr)dr

)
− Ex

(
1{t<ζ}e

−
∫ t
0 q(Xr)dr

)
= 1− Ex

(
1{t≥ζ}e

−
∫ ζ
0 q(Xr)dr

)
− e−tL1(x),

where the last equality follows by Theorem 7.32. This proves the as-
serted formula. The equivalence (i) ⇐⇒ (ii) is immediate from this
formula. �
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Remark. We now present an interpretation of the formula and
equivalence above. Theorem 7.32 gives

e−tL1(x) = Ex
(

1{t<ζ}e
−

∫ t
0 (c/m)(Xs)ds

)
,

which can be interpreted as the heat present in the graph at time t.

We can interpret e−
∫ t
0 (c/m)(Xs)ds as the heat staying in the graph along

the path taken by Xs up to time t if t < ζ, i.e., heat which is not
transferred to the cemetery via c. Earlier we interpreted 1−Mt as the
heat transferred to infinity via the geometry. So, by Theorem 7.33,

1−Mt(x) = Ex
(

1{t≥ζ}e
−

∫ ζ
0 (c/m)(Xs)ds

)
,

which gives a probabilistic version of this interpretation. By the dis-

cussion above, we think of the term e−
∫ ζ
0 (c/m)(Xs)ds as the heat not

transferred to the cemetery via c, i.e., the heat remaining in the graph
along the path taken by Xs and the function 1{t≥ζ} indicates that this
heat is lost via the geometry.

Moreover, the proof above shows that∫ t

0

e−sL
c

m
(x)ds = Ex

(
1− e−

∫ t∧ζ
0 (c/m)(Xr)dr

)
.

Hence, this term can be understood as the expected heat transferred to

the cemetery via c up to time t and one can think of 1−e−
∫ t∧ζ
0 (c/m)(Xr)dr

as the heat transferred to the cemetary along the path taken by Xr up
to t ∧ ζ.

We finish the section with another probabilistic formula, this time
for the resolvent.

Theorem 7.34. Let (b, c) be a graph over (X,m). Let (Xt) be the
process associated to b with lifetime ζ. Then,

(L+ α)−1
(
α1 +

c

m

)
(x) = 1− Ex

(
e−αζ−

∫ ζ
0 (c/m)(Xs)ds

)
.

Proof. Let q = c/m. We recall the Laplace transform, Lemma 7.11,
which states

(L+ α)−1f =

∫ ∞
0

e−tαe−tLfdt

for all f ∈ C(X) with f ≥ 0. We use this to apply the Feynman–Kac
formula to the right-hand side for the functions 1 and q. To this end
we approximate the constant function 1 and q by compactly supported
functions from below. Let (ηn) in Cc(X) such that ηn ↗ 1 as n→∞.
Then, we obtain by the Feynman–Kac formula, Theorem 2.31, and
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Fubini’s theorem∫ ∞
0

e−αte−tLηn(x)dt =

∫ ∞
0

e−αt
(
Ex
(

1{t<ζ}e
−

∫ t
0 q(Xs)dsηn(Xt)

))
dt

= Ex
(∫ ζ

0

e−αt−
∫ t
0 q(Xs)dsηn(Xt)dt

)
.

Hence, by the Laplace transform and by taking monotone limits, we
obtain

(L+ α)−11(x) = Ex
(∫ ζ

0

e−αt−
∫ t
0 q(Xs)dsdt

)
.

Similarly, by the Feynman–Kac formula, Theorem 2.31 and monotone
convergence

(L+ α)−1q(x) = Ex
(∫ ζ

0

e−αte−
∫ t
0 q(Xs)dsq(Xt)dt

)
=1− Ex

(
e−αζ−

∫ ζ
0 q(Xs)ds

)
− αEx

(∫ ζ

0

e−αte−
∫ t
0 q(Xs)dsdt

)
,

where we applied partial integration. Together with the calculation
above this yields

(L+ α)−1 (α1 + q) (x) = 1− Ex
(
e−αζ−

∫ ζ
0 q(Xs)ds

)
.

This completes the proof. �

Remark (Boundedness and stochastic completeness). We finish
this chapter by noting that stochastic incompleteness and stochastic
incompleteness at infinity are only possible for unbounded operators.
In particular, if the formal Laplacian gives a bounded operator on any
`p(X,m) space, then the graph is stochastically complete at infinity.
We challenge the reader to give as many proofs as possible for this
result (Exercise 7.12).



EXERCISES 361

Exercises

Excavation exercises.

Exercise 7.1 (Dini’s theorem). Let (fn) be a sequence of functions
fn : R −→ R such that fn is continuous for every n ∈ N and such that
fn ↗ f pointwise to a continuous function f : R −→ R. Show that
(fn) converges uniformly to f on every compact subset of R.

Exercise 7.2 (Uniform convergence of continuously differentiable
functions). Let (fn) be a sequence of continuously differentiable func-
tions fn : R −→ R such that the sequence (fn) as well as the sequence
of derivatives (f ′n) converge uniformly on compact subintervals to con-
tinuous functions f, g : R −→ R, respectively. Then, g is continuously
differentiable with g′ = f .

(Hint: Use the fundamental theorem of calculus.)

Example exercises.

Exercise 7.3 (Stochastically complete but not recurrent). Give an
example of a graph b over (X,m) which is stochastically complete but
not recurrent.

Exercise 7.4 (Form unique but not stochastically complete at in-
finity). Give an example of a graph (b, c) over (X,m) which satisfies
Q(D) = Q(N) but is not stochastically complete at infinity.

Extension exercises.

Exercise 7.5 (Stochastic completeness implies c = 0). Let (b, c)
be a connected graph over (X,m). Show that if (b, c) is stochastically
complete, then c = 0.

Exercise 7.6 (Stochastic completeness and abstract Green’s for-
mula). Let b be a graph over (X,m). Let L(1) be the generator of the
semigroup e−tL on `1(X,m) and denote the dual of L(1) on `∞(X) by
L(∞). Show that the following statements are equivalent:

(iii) For every v ∈ D∩`1(X,m)∩`2(X,m) such that Lv ∈ `1(X,m)∩
`2(X,m) we have ∑

x∈X

Lv(x)m(x) = 0.

(iii.a) For all u ∈ D(L(1)),∑
x∈X

(L(1)u)(x)m(x) = 0.

(iii.b) The constant function 1 belongs to D(L(∞)) and L(∞)1 = 0.
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Exercise 7.7 (Graphs of finite measure and stochastic complete-
ness). Let b be a connected graph over (X,m). Suppose that m satisfies
m(X) <∞. Show that the following statements are equivalent:

(i) b is recurrent.
(ii) b is stochastically complete.

(iii) Q(D) = Q(N).

Exercise 7.8 (Every stochastically incomplete graph is a subgraph
of a stochastically complete graph). Let b be a stochastically incomplete
graph over (X,m). Show that there exist X ′ with X ⊆ X ′, b′ and m′

which extend b and m to X ′ such that b′ over (X ′,m′) is stochastically
complete.

Exercise 7.9 (Every stochastically incomplete graph is a subgraph
of a stochastically complete at infinity graph). Let b be a stochastically
incomplete graph over (X,m). Show that there exists a c : X −→
[0,∞) such that (b, c) over (X,m) is stochastically complete at infinity.

Exercise 7.10 (Stochastic incompleteness of a subgraph and the
weighted degree). Let (b, c) be a graph over (X,m). Let Y ⊆ X and
suppose that the associated subgraph (bY , cY ) over (Y,mY ) is stochas-
tically incomplete at infinity. Let

DegY (x) =
1

m(x)

∑
y∈Y

b(x, y)

for x ∈ Y . Suppose that DegY is bounded on the set

{x ∈ Y | there exists a y ∼ x, y 6∈ Y }.
Show that (b, c) over (X,m) is stochastically incomplete at infinity.

Exercise 7.11 (Stochastic incompleteness of a Dirichlet restriction
implies
stochastic incompleteness of the entire graph). Let (b, c) be a graph
over (X,m) with associated form Q = Q(D) and let Y ⊂ X. Let

(b
(D)
Y , c

(D)
Y ) be the graph associated to the Dirichlet restriction of Q to

Y , i.e., to Q
(D)
Y . Show that if (b

(D)
Y , c

(D)
Y ) is stochastically incomplete at

infinity, then (b, c) is stochastically incomplete at infinity.
Show that an analogous statement is true for c = 0 by replacing

stochastically complete at infinity by stochastically complete.

Exercise 7.12 (Boundedness and stochastic completeness). Let b
be a graph over (X,m) with associated regular Dirichlet form Q = Q(D)

and Laplacian L = L(D). Assume that L is a bounded operator. How
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many proofs can you give that the graph is stochastically complete in
this case?

If (b, c) is a graph over (X,m), how many of the proofs carry over to
show that (b, c) is stochastically complete at infinity if L is bounded?
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Notes

The study of stochastic completeness has a long history in both the
continuous setting, see, e.g., the survey of Grigor′yan [Gri99], and the
discrete setting, see, e.g., the early work of Feller [Fel57] and Reuter
[Reu57], often going by the name of conservativeness. In the specific
case of graphs with standard weights and counting measure, parts of
Theorem 7.2 are worked out in [Woj08]. Stochastic completeness at
infinity for arbitrary regular Dirichlet forms on discrete spaces is then
introduced in [KL12]. The corresponding extensions of some of the
characterizations found in Theorem 7.2 are then also established in
[KL12]. The concept of stochastic completeness at infinity was ex-
tended to the weighted manifold case in [MS20].

We now mention some of the history of specific equivalences found
in Theorem 7.2 in both the continuous and discrete settings. As men-
tioned above, the extension to stochastic completeness at infinity is,
for the most part, carried out in [KL12] or presented here for the first
time.

The equivalence between stochastic completeness, uniqueness of
bounded solutions of the heat equation and the triviality of positive
bounded α-harmonic functions goes back to [Fel54] in the case of one-
dimensional diffusions, [Fel57, Reu57] for discrete Markov chains and
to [Has60] in the case of Euclidean space. For graphs with standard
weights and counting measure it can be found in [Woj08].

The equivalence between stochastic completeness and the ability to
approximate the function 1 seems to be a part of the standard theory of
stochastic completeness. It can be found, for example, in the textbook
[FŌT11].

The Green’s formula characterization of stochastic completeness at
infinity was first shown for weighted manifolds in [GM13] and then
extended to general Dirichlet forms in [HKL+17]. In particular, the
general Dirichlet form setting covers both Riemannian manifolds as
well as graphs.

The Omori–Yau maximum principle for Riemannian manifolds was
introduced in [Omo67, Yau75]. The equivalence of a weak form of
the Omori–Yau principle and stochastic completeness was first shown
in [PRS03] for manifolds and [Hua11b] for graphs. Furthermore,
[Hua11b] contains several stability results as a consequence of the
Omori–Yau maximum principle, see also [Woj08, Woj09, Woj11,
KL12] for further investigations into this question.

The Khasminskii criterion for stochastic completeness can be found
for the Euclidean case in [Has60]. For graphs, it can be found in
[Hua11b] as well as [KLW13]. The idea that a stochastically incom-
plete graph can be a subgraph of a stochastically complete graph either
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via the geometry or via the killing term is found in [KL12, Woj11].
For manifolds, this can be found in [MS20].

The probabilistic viewpoint on stochastic completeness is classical.
It can, for instance, be found in [FŌT11].





Part 2

Classes of Graphs



Synopsis

In this part we look at three classes of graphs by imposing addi-
tional restrictions on the graph structure. For the first class, found in
Chapter 8, we impose lower bounds on the measure. For the second
class, found in Chapter 9, we impose a very mild spherical symme-
try assumption. For the third class, found in Chapter 10, we impose
sparseness assumptions and relate them to isoperimetric inequalities.
For all three classes, there is a surprising number of consequences of
these assumptions for both the spectral theory and stochastic proper-
ties.



CHAMBER 8

Uniformly Positive Measure

Here I go, deep type flow Jacques Cousteau could never get this low.
ODB.

In this chapter we look at consequences of lower bounds on the mea-
sure m for a graph (b, c) over a discrete measure space (X,m). We
formulate the lower bound assumptions in two ways. One way does
not take the graph structure into account and one does. We will look
at consequences of these lower bounds for the uniqueness of forms and
operators as well as for spectral properties.

We first present a Liouville theorem in Section 1. This theorem
states that any positive α-subharmonic function for α ≥ 0 which is ad-
ditionally in `p(X,m) for p ∈ [1,∞) must be zero whenever all infinite
paths have infinite measure. In particular, this shows that there are no
non-trivial harmonic functions in `p(X,m) in this case.

This Liouville theorem has strong consequences for both unique-
ness of the forms and of the operators and allows us to determine the
domains of generators for semigroups and resolvents on `p(X,m) for
p ∈ [1,∞). These consequences are discussed in Section 2. Further-
more, our assumptions also naturally lead to spectral inclusions be-
tween the generators on `p(X,m) and solvability of the heat equation
for initial conditions in `p(X,m). This is discussed in Sections 3 and 4.
Finally, we discuss applications to graphs with standard weights in
Section 5.

As should be clear from the discussion above, `p spaces play a sig-
nificant role in this chapter. These spaces were introduced in Section 1.
However, let us mention that we mostly require only the basics of this
theory in this chapter and will introduce these basics as we go along.
The only real place where the material of Section 1 is required is when
we discuss the domains of the generators on `p(X,m) and their spectral
properties in Sections 2 and 3.

We first introduce the assumptions on the measure which will play
a role throughout this chapter. The first type of assumption that we
consider consists of a uniform lower bound on m and does not involve
a graph structure. We denote this assumption by (M). Specifically, we
call a measure m over X uniformly positive if

(M) infx∈X m(x) > 0.

369
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We now recall two prominent examples of measures found in the
literature. These examples were first introduced in Section 1 and also
played a prominent role in Section 6.

Example 8.1 (Counting measure). The counting measure m = 1
clearly satisfies (M).

Example 8.2 (Normalizing measure). Suppose that b is a graph
over X. Then, the the normalizing measure n is given by

n(x) =
∑
y∈X

b(x, y).

In particular, if every vertex has at least one neighbor and b is uniformly
bounded below on neighbors, then n satisfies (M).

The second type of assumption that we consider requires a graph
structure. Given a graph b over X, we recall that a path is a sequence of
pairwise distinct vertices (xn) such that b(xn, xn+1) > 0 for all n ∈ N0.
We call a graph connected if for every pair of vertices there exists a
path which includes both vertices. We call a path infinite if the path
consists of infinitely many vertices. With these definitions, we now
introduce condition (M∗) as follows:

(M∗) Every infinite path has infinite measure, i.e., for every infinite
path (xn) we have

∑
nm(xn) =∞.

Let us emphasize that, unlike (M), (M∗) is a condition on both the
graph b and the measure m. Clearly, (M) implies (M∗) whenever we
have a graph b over (X,m). In particular, Examples 8.1 and 8.2 discuss
some measures satisfying (M∗).

Although less frequently arising in the literature, we will see that
(M∗) is the condition that we need to prove our Liouville theorem
in the next section. From this theorem, we can derive quite strong
consequences for both uniqueness of associated forms and essential self-
adjointness. Furthermore, we will be able to explicitly determine the
domains of the generators on all `p(X,m) spaces for measures satisfying
(M∗). On the other hand, we will see that (M) plays a role in the
spectral inclusion results.

1. A Liouville theorem

In this section we prove a Liouville theorem for functions in `p(X,m).
It states that every positive α-subharmonic function in `p(X,m) for
p ∈ [1,∞) and α ≥ 0 is identically zero whenever the measure of any
infinite path is infinite.

Let (b, c) be a graph over (X,m) and let L = Lb,c,m be the for-
mal Laplacian with domain F . We recall that u ∈ F is called α-
subharmonic for α ∈ R if

(L+ α)u ≤ 0
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and is called α-harmonic if

(L+ α)u = 0.

We also recall that Lemma 1.9 allows us to reduce the study of α-
harmonic functions to that of positive α-subharmonic functions. More
precisely, Lemma 1.9 shows that if u is α-harmonic, then u+, u− and
|u| are all α-subharmonic, where u+ = u ∨ 0 and u− = −u ∨ 0 denote
the positive and negative parts of u. Consequently, if all positive α-
subharmonic functions are trivial, then all α-harmonic functions are
trivial as well. This will be used below.

We recall that, for p ∈ [1,∞),

`p(X,m) = {f ∈ C(X) |
∑
x∈X

|f(x)|pm(x) <∞}.

These are Banach spaces with norm

‖f‖pp =
∑
x∈X

|f(x)|pm(x).

In particular, when p = 2, we get our usual Hilbert space `2(X,m).
We now show that positive α-subharmonic functions in `p(X,m)

for any p ∈ [1,∞) are zero whenever α ≥ 0 and infinite paths have
infinite measure. We refer to statements concerning the constancy or
triviality of α-harmonic functions as Liouville theorems. The crucial
observation for the proof is that a positive α-subharmonic function for
α ≥ 0 must be strictly increasing in some direction if the function is
not constant. Hence, as we assume that the measure is not summable
along any infinite path, we obtain that such functions cannot be in
`p(X,m) for any p ∈ [1,∞).

Theorem 8.3 (lp-Liouville theorem). Let (b, c) be a connected graph
over an infinite measure space (X,m) which satisfies (M∗). Let α ≥ 0
and u ∈ F with u ≥ 0 satisfy

(L+ α)u ≤ 0.

If u ∈ `p(X,m) for any p ∈ [1,∞), then u = 0.
In particular, if u ∈ `p(X,m) for any p ∈ [1,∞) is α-harmonic for

α ≥ 0, then u = 0.

Proof. If u is constant, then u ∈ `p(X,m) for any p ∈ [1,∞)
if and only if u = 0 by (M∗) and the assumption that the graph is
infinite and connected. So, we assume that u ≥ 0 is a non-constant
α-subharmonic function for α ≥ 0. Then, there exist x0, x1 ∈ X with
x0 ∼ x1 such that u(x1) > u(x0) ≥ 0. Now, if u(x1) ≥ u(y) for all
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y ∼ x1, then

(L+ α)u(x1) =
1

m(x1)

∑
y∈X

b(x1, y)(u(x1)− u(y)) +

(
c(x1)

m(x1)
+ α

)
u(x1)

> 0,

which gives a contradiction to (L+α)u(x1) ≤ 0. Therefore, there exists
x2 ∼ x1 such that u(x1) < u(x2).

Iterating this argument and using induction, we find an infinite
path (xn) such that 0 < u(xn) < u(xn+1) for all n ∈ N. We estimate,
for any p ∈ [1,∞),∑

x∈X

|u(x)|pm(x) ≥
∞∑
n=1

|u(xn)|pm(xn) > |u(x1)|p
∞∑
n=1

m(xn) =∞

by (M∗). Therefore, u 6∈ `p(X,m) for any p ∈ [1,∞).
Combing the arguments above, we conclude that if (b, c) over (X,m)

satisfies (M∗) and u is a positive α-subharmonic function for α ≥ 0 and
u ∈ `p(X,m), then u must be constant and, hence, zero. This proves
the first statement. The second statement for α-harmonic functions
follows directly from the first statement and Lemma 1.9. �

Remark. We note that the result above does not hold for finite
graphs for all α ≥ 0 (Exercise 8.5). Furthermore, the statement is not
true for infinite graphs if we remove the assumption (M∗). On the other
hand, the statement is true for all graphs satisfying (M∗) when c 6= 0
or α > 0 (Exercise 8.6).

Remark. We note that the proof above works even when the graph
is not connected but has at least one infinite connected component on
which u is non-zero.

Remark. We have seen the case p =∞ and α > 0, i.e., the case of
positive bounded α-subharmonic functions for α > 0 in Chapter 7. In
particular, Theorem 7.18 shows that such functions are trivial if and
only if (b, c) over (X,m) is stochastically complete at infinity.

2. Uniqueness of the form and essential self-adjointness

In this section we discuss consequences of the `p-Liouville theorem
for uniqueness of forms and operators. In particular, if a graph is con-
nected over a measure space for which the measure of infinite paths is
infinite, then we obtain uniqueness of associated forms as well as essen-
tial self-adjointness. Furthermore, we explicitly determine the domain
of generators on `p.

We recall that a form Q with domain D(Q) is said to be associ-
ated to a graph (b, c) over (X,m) if Q is a closed restriction of Q and
Cc(X) ⊆ D(Q), where Q = Qb,c is the energy form. Equivalently, we
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can think of Q as being between Q(D) and Q(N), that is, Q is closed
with

D(Q(D)) ⊆ D(Q) ⊆ D(Q(N))

and Q is a restriction of Q(N) to D(Q). Here, Q(D) is the form with
Dirichlet boundary conditions with domain

D(Q(D)) = Cc(X)
‖·‖Q

and Q(N) is the form with Neumann boundary conditions with domain

D(Q(N)) = D ∩ `2(X,m),

where D denotes the space of functions of finite energy.
If D(Q(D)) = D(Q(N)), then there is a unique such form associated

to a graph. We presented some equivalent formulations of this property
in Section 1. As a consequence of these equivalences and our Liouville
theorem in the previous section, we get that (M∗) implies that there
is a unique associated form. Moreover, we recall that a positive self-
adjoint restriction of L is called a Markov realization of L if the form
associated to the restriction is a Dirichlet form and the domain of the
form contains the finitely supported functions. When there is a unique
such realization, then we say that L satisfies Markov uniqueness. This
property was introduced and discussed in Section 3.

Theorem 8.4 ((M∗) implies form uniqueness). If (b, c) is a con-
nected graph over (X,m) which satisfies (M∗), then

Q(D) = Q(N).

In particular, there exists a unique operator L associated to (b, c) which
is the unique Markov realization of L and has domain

D(L) = {f ∈ D ∩ `2(X,m) | Lf ∈ `2(X,m)}.

Proof. By Theorem 3.2, Q(D) = Q(N) if and only if every α-
harmonic function for α > 0 which is additionally in D(Q(N)) is trivial.
Therefore, the first part of the result follows directly from Theorem 8.3.
Moreover, in Theorem 3.12 we have shown that Markov uniqueness is
equivalent to form uniqueness and the domain of L is given in Corol-
lary 3.3. This, gives the “in particular” statement. �

We now discuss the essential self-adjointness of the restriction of L
to Cc(X). That is, assuming that LCc(X) ⊆ `2(X,m), by restricting
L to Cc(X) we get a symmetric operator and we can ask when this op-
erator has a unique self-adjoint extension. This property was discussed
in Section 2.

We note that the assumption LCc(X) ⊆ `2(X,m) is characterized
in Theorem 1.29. In particular, LCc(X) ⊆ `2(X,m) holds if we assume
that the measure m satisfies infy∼xm(y) > 0 for all x ∈ X. This clearly
holds if m satisfies (M). On the other hand, it is not always satisfied
by graphs and measure spaces which satisfy (M∗).
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Theorem 8.5 ((M∗) implies essential self-adjointness). Let (b, c)
be a connected graph over (X,m) which satisfies (M∗). Let LCc(X) ⊆
`2(X,m). Then, the restriction of L to Cc(X) is essentially self-adjoint
and the unique self-adjoint extension L has domain

D(L) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}.
Proof. By Theorem 3.6 the essential self-adjointness of the restric-

tion of L to Cc(X) is equivalent to the triviality of α-harmonic functions
in `2(X,m) for α > 0. Hence, the conclusion follows by Theorem 8.3.
The statement about the domain of L follows from Theorem 3.6. �

The associated operator L is the generator of the heat semigroup
and resolvent on `2(X,m). We extended this semigroup and resolvent
to all `p(X,m) spaces in Section 1. We denote the generators of these
semigroups and resolvents by L(p). The domain of L(p) is defined via
abstract theory which connects semigroups, resolvents and generators,
as discussed in Section 1, see also Appendix D.

By Theorem 2.13, the action of L(p) coincides with the action of
L on the domain of L(p). Below we also specify the domain of L(p)

assuming condition (M∗).

Theorem 8.6 (Domain of L(p) given (M∗)). Let (b, c) be a connected
graph over (X,m) which satisfies (M∗). Let L(p) with domain D(L(p))
be the generator of the semigroup on `p(X,m) for p ∈ [1,∞). Then,

D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)}.
Proof. We have D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)} if

and only if α-harmonic functions for α > 0 in `p(X,m) are trivial by
Theorem 3.8. Therefore, the conclusion follows by Theorem 8.3. �

Remark. We note that the results above hold for a slightly more
general condition than (M∗) which incorporates both the measure and
the degree function (Exercise 8.7).

3. A spectral inclusion

We now turn to spectral consequences of lower bounds on the mea-
sure. We will see that the assumption that m is uniformly bounded
from below implies that the spectrum of the Laplacian on `2(X,m) is in-
cluded in the spectrum of the generators on `p(X,m) for all p ∈ (1,∞).

Excavation Exercise 8.1, which recalls some inclusions between `p(X,m)
spaces under assumption (M), and Excavation Exercise 8.2, which re-
calls some facts about the spectrum of an operator and the adjoint of
the operator in the case of Banach spaces, will be used in this section.

As a direct consequence of assumption (M) we get inclusions be-
tween `p(X,m) spaces. More specifically, (M) implies

`p(X,m) ⊆ `q(X,m)
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for 1 ≤ p ≤ q <∞.
Furthermore, assumption (M) clearly implies (M∗) when we have a

graph (b, c) over (X,m). Thus, all of our previous results for (M∗) also
hold when assuming (M). In particular, by Theorem 8.6 it follows that
(M) and connectedness of the graph imply

D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)},
where L(p) is the generator of the semigroup on `p(X,m) for p ∈ [1,∞).
Combined with the inclusions among the `p(X,m) spaces mentioned
above, we obtain the following statement.

Lemma 8.7 (Domain inclusions under (M)). Let (b, c) be a con-
nected graph over (X,m) which satisfies (M). Let L(p) with domain
D(L(p)) be the generator of the semigroup on `p(X,m) for p ∈ [1,∞).
Then,

D(L(p)) ⊆ D(L(q))

for all 1 ≤ p ≤ q <∞. In particular, L(q) is an extension of L(p).

Proof. The inclusion of domains is immediate from Theorem 8.6,
which gives D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)} and the fact
that `p(X,m) ⊆ `q(X,m) for 1 ≤ p ≤ q < ∞ whenever (M) holds.
That L(q) is an extension of L(p) then follows from the fact that both
operators act as L on their respective domains, see Theorem 2.13. �

We let L = L(D) denote the Laplacian on `2(X,m) and let σ(L)
denote the spectrum of L. We let σ(L(p)) denote the spectrum of
L(p). Let us emphasize that here we only deal with the real Banach
spaces `p(X,m) and note that the spectra of the generators L(p) on the
corresponding complex Banach spaces are not necessarily subsets of
the real numbers. However, we are only concerned with the inclusion
σ(L) ⊆ σ(L(p)) in what follows and we have σ(L) ⊆ [0,∞).

We recall that if p, q ∈ [1,∞] are such that 1/p+ 1/q = 1, then the
operators L(p) and L(q) are dual to each other. This is shown for the
semigroup and resolvent in Theorems 2.9 and 2.11. The statement for
the generators follows directly. In particular, this implies

σ(L(p)) = σ(L(q))

whenever 1/p+ 1/q = 1.

In order to prove our spectral inclusion, we will look at the resolvent
(L(p)−λ)−1 for λ 6∈ σ(L(p)). We start by showing that resolvents agree
on the common part of their domains under assumption (M).

Lemma 8.8 (Consistency of the resolvents). Let (b, c) be a connected
graph over (X,m) which satisfies (M). Let 1 < p ≤ q < ∞. If λ 6∈
σ(L(p)) ∪ σ(L(q)), then

(L(p) − λ)−1f = (L(q) − λ)−1f
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for all f ∈ `p(X,m) = `p(X,m) ∩ `q(X,m).

Proof. As we assume (M) and connectedness of the graph, we
get D(L(p)) ⊆ D(L(q)) from Lemma 8.7. Furthermore, (M) implies
`p(X,m) ⊆ `q(X,m) so that `p(X,m) = `p(X,m) ∩ `q(X,m).

Let f ∈ `p(X,m) and λ 6∈ σ(L(p)) ∪ σ(L(q)). Then, (L(p) − λ)−1f ∈
D(L(p)) ⊆ D(L(q)). Furthermore, as L(q) is an extension of L(p) by
Lemma 8.7, we obtain

(L(q) − λ)(L(p) − λ)−1f = (L(p) − λ)(L(p) − λ)−1f = f.

Hence, (L(p) − λ)−1 is a right inverse for (L(q) − λ) on `p(X,m). Since
right inverses are unique for invertible operators, (L(p)−λ)−1 = (L(q)−
λ)−1 on `p(X,m). �

We will now combine the considerations above to prove the following
spectral inclusion.

Theorem 8.9 (Spectral inclusion). Let (b, c) be a connected graph
over (X,m) which satisfies (M). Then,

σ(L) ⊆ σ(L(p))

for all p ∈ (1,∞).

Proof. Let λ ∈ R be such that λ 6∈ σ(L(p)) for p ∈ (1,∞). We
have to show that λ 6∈ σ(L). As λ 6∈ σ(L(p)), by duality it follows that
λ 6∈ σ(L(q)), where q ∈ (1,∞) satisfies 1/p + 1/q = 1. Without loss of
generality, we may assume that 1 < p ≤ 2 ≤ q < ∞ as, otherwise, we
merely interchange p and q. In particular, Lemma 8.7 implies

D(L(p)) ⊆ D(L) ⊆ D(L(q))

and that all operators agree on D(L(p)).
By Lemma 8.8, as λ 6∈ σ(L(p)) ∪ σ(L(q)) and p ≤ q, (L(p) − λ)−1

and (L(q)−λ)−1 agree on `p(X,m). By the Riesz–Thorin interpolation
theorem, Theorem E.21, boundedness of (L(q)−λ)−1 on both `p(X,m)
and `q(X,m) and 1/p + 1/q = 1, implies that (L(q) − λ)−1 is bounded
on `2(X,m). We will show that (L(q) − λ)−1 is an inverse for (L − λ)
on D(L) from which it follows that λ 6∈ σ(L).

As L(q) is an extension of L, for f ∈ D(L) ⊆ D(L(q)) we have

(L(q) − λ)−1(L− λ)f = (L(q) − λ)−1(L(q) − λ)f = f.

On the other hand, let f ∈ `2(X,m) and let (fn) be in `p(X,m) ⊆
`2(X,m) such that fn → f in `2(X,m). We note that this is possible
as Cc(X) ⊆ `p(X,m) is dense in `2(X,m). As (L(q) − λ)−1 is bounded
on `2(X,m) we have

(L(q) − λ)−1fn → (L(q) − λ)−1f
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in `2(X,m) as n→∞. By Lemma 8.8, we also have (L(q) − λ)−1fn =
(L(p)−λ)−1fn ∈ D(L(p)) ⊆ D(L) for all n ∈ N as λ 6∈ σ(L(p))∪σ(L(q)).
Therefore,

(L− λ)(L(q) − λ)−1fn = (L(q) − λ)(L(q) − λ)−1fn = fn → f

as n→∞ in `2(X,m).
Since L is a closed operator, we infer (L(q) − λ)−1f ∈ D(L) and

(L− λ)(L(q) − λ)−1f = f.

Hence, (L(q) − λ)−1 is a bounded inverse for (L − λ) and, therefore,
λ 6∈ σ(L). This completes the proof. �

Remark. The reverse inclusion is true when the measure of the
graph is finite and the weighted degree is bounded (Exercise 8.8).

4. The heat equation on `p

In this section we discuss the heat equation on `p(X,m). The gen-
eral theory of strongly continuous semigroups found in Appendix D
only gives existence of solutions for initial conditions in the domain of
the generator. However, in the case of uniformly positive measure, we
also have solutions for initial conditions in `p(X,m) for all p ∈ [1,∞].

We recall that a function u : [0,∞)×X −→ R is said to be a solution
of the heat equation if u(x, ·) is continuous on [0,∞), continuously
differentiable on (0,∞) for every x ∈ X and u(·, t) ∈ F for all t > 0
and

(L+ ∂t)ut(x) = 0

for all x ∈ X and t > 0. The function u0 is called the initial condition
for the solution. We say that u is a solution in `p(X,m) for p ∈ [1,∞]
if

sup
t≥0
‖ut‖p <∞.

To generate such solutions, we recall that the semigroup e−tL of L
originally defined on `2(X,m) extends to a contraction Markov semi-
group on `p(X,m) for p ∈ [1,∞] by Theorem 2.9. This extended
semigroup is again denoted by e−tL.

The following theorem is a direct consequence of Theorem 7.3 and
the fact that every function in `p(X,m) is bounded in the case of uni-
formly positive measure.

Theorem 8.10 (Existence of solutions of the heat equation on `p).
Let (b, c) be a graph over (X,m) which satisfies (M). For f ∈ `p(X,m)
with p ∈ [1,∞] let

ut(x) = e−tLf(x)
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for t ≥ 0 and x ∈ X. Then, u is a solution of the heat equation in
`p(X,m) with initial condition f . Furthermore, if additionally f ≥ 0,
then u is the smallest positive supersolution of the heat equation with
initial condition greater than or equal to f .

Proof. Whenever the graph satisfies (M), we have f ∈ `∞(X) for
any f ∈ `p(X,m) with p ∈ [1,∞]. Thus, ut is a solution of the heat
equation by Theorem 7.3. Furthermore, since e−tL extends to a con-
traction Markov semigroup on `p(X,m) for p ∈ [1,∞] by Theorem 2.9,
we have ‖ut‖p ≤ ‖f‖p for all f ∈ `p(X,m), which gives that u is a so-
lution on `p(X,m). Finally, the minimality statement is also included
in Theorem 7.3. �

5. Graphs with standard weights

In this section we illustrate our results for graphs with standard
weights. These are the examples most commonly appearing in the
literature on graphs.

We recall that a graph (b, c) has standard weights if b takes values
in {0, 1} and c = 0. In this case, we denote the set of edges by E, i.e.,

E = {(x, y) ∈ X ×X | x ∼ y}.

Furthermore, the energy form Q acts as

Q(f) =
1

2

∑
(x,y)∈E

(f(x)− f(y))2

with the space of functions of finite energy D given by

D = {f ∈ C(X) |
∑

(x,y)∈E

(f(x)− f(y))2 <∞}.

We note that b(x, y) ∈ {0, 1} for all x, y ∈ X implies that b is locally
finite so that F = C(X). The formal Laplacian in this case is denoted

by ∆̃ and acts as

∆̃f(x) =
∑

y∈X,y∼x

(f(x)− f(y))

for f ∈ C(X). The choice of measure will then determine the specific
Hilbert space and Laplacian. The two most prominent examples of
measures in this setting are the counting measure and the normalizing
measure.

Specifically, the counting measure m = 1 gives the number of ver-
tices in a subset of X. In particular, the weighted degree function
becomes deg(x) = #{y | y ∼ x}, which is called the combinatorial
vertex degree. We denote the Banach spaces `p(X, 1) for p ∈ [1,∞] by
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`p(X) and denote the Laplacian L
(D)
b,0,1 by ∆. By Theorem 1.6, ∆ acts

on D(∆) ⊆ `2(X) by

∆f(x) =
∑

y∈X,y∼x

(f(x)− f(y)).

By Corollary 1.31, ∆ is a bounded operator if and only if deg is a
bounded function on X.

It is clear that m = 1 satisfies (M) and, therefore, (M∗). Further-

more, as b is locally finite, we have ∆̃(Cc(X)) ⊆ `2(X) by Theorem 1.29.
Hence, as a direct consequence of our results we obtain the following
statement.

Corollary 8.11 (Essential self-adjointness of ∆). Let b be a con-
nected graph with standard weights over (X,m) with m = 1. Then,
there exists a unique form Q associated to b, the associated operator

∆ is the unique self-adjoint extension of the restriction of ∆̃ to Cc(X)
and

D(∆) = {f ∈ `2(X) | ∆̃f ∈ `2(X)}.

Proof. The uniqueness of the form associated to b follows from

Theorem 8.4. Since ∆̃(Cc(X)) ⊆ `2(X) in the locally finite case by
Theorem 1.29, the uniqueness of the self-adjoint extension of the re-

striction of ∆̃ to Cc(X) and the statement about the domain D(∆)
follows from Theorem 8.5. �

We denote the generators of the semigroup of ∆ on `p(X) by ∆(p).

By Theorem 2.13, the operators ∆(p) are restrictions of ∆̃. We then
obtain the following consequence concerning the domain of ∆(p).

Corollary 8.12 (Domains of ∆(p)). Let b be a connected graph
with standard weights over (X,m) with m = 1. Then,

D(∆(p)) = {f ∈ `p(X) | ∆̃f ∈ `p(X)}
for all p ∈ [1,∞).

Proof. The statement follows immediately from Theorem 8.6. �

Furthermore, our spectral inclusion result reads as follows.

Corollary 8.13 (Spectral inclusion for ∆). Let b be a connected
graph with standard weights over (X,m) with m = 1. Then,

σ(∆) ⊆ σ(∆(p))

for all p ∈ (1,∞).

Proof. The statement follows from Theorem 8.9. �

Finally we get the existence of solutions of the heat equation in this
case.
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Corollary 8.14 (Existence of solutions of the heat equation on
`p). Let b be a connected graph with standard weights over (X,m) with
m = 1. For f ∈ `p(X) with p ∈ [1,∞] let

ut(x) = e−t∆f(x)

for t ≥ 0 and x ∈ X. Then, u is a solution of the heat equation in
`p(X) with initial condition f . Furthermore, if additionally f ≥ 0, then
u is the smallest positive supersolution of the heat equation with initial
condition greater than or equal to f .

Proof. The result follows immediately from Theorem 8.10. �

Remark (Normalizing measure). We note that the other usual
measure in the case of standard weights is the normalizing measure
n(x) = deg(x) = #{y | y ∼ x} for x ∈ X. In this case, we denote

the Laplacian L
(D)
b,0,n associated to Q

(D)
b,0,n by ∆n and refer to it as the

normalized Laplacian. As ∆n is a bounded operator by Corollary 1.33,
in this case the results above are trivially true.
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Exercises

Excavation exercises.

Exercise 8.1 (`p inclusions under (M)). Let (X,m) be a measure
space satisfying (M). Show that

`p(X,m) ⊆ `q(X,m)

for all 1 ≤ p ≤ q ≤ ∞.

Exercise 8.2 (Adjoint operators and their spectrum). Let E be a
Banach space and let E∗ be the dual space of E. For a densely defined
operator A : D(A) −→ E with D(A) ⊆ E, we define the adjoint A∗

operator of A with domain D(A∗) by

D(A∗) = {φ ∈ E∗ | there exists a ψ ∈ E∗ extending φ ◦ A}

and

A∗φ = ψ

for φ ∈ D(A∗).

(a) Let σ(A) and σ(A∗) denote the spectrum of A and A∗, respectively.
Show that

σ(A) = σ(A∗).

(b) Let L(p) and L(q) be the generators of the semigroups on `p(X,m)
and `q(X,m), respectively, where 1/p+ 1/q = 1. Show that

(L(p))∗ = L(q).

Note, in particular, that this shows σ(L(p)) = σ(L(q)).

(Hint: The material at the end of Appendix D might be useful for
this exercise.)

Example exercises.

Exercise 8.3 (Non-trivial positive α-subharmonic functions). Give
an example of a connected graph (b, c) over an infinite measure space
(X,m) with a non-trivial positive α-subharmonic function in `p(X,m)
for p ∈ [1,∞) and α > 0.

Exercise 8.4 ((M∗) but not LCc(X) ⊆ `2(X,m)). Give an exam-
ple of a graph which satisfies (M∗) but not LCc(X) ⊆ `2(X,m).
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Extension exercises.

Exercise 8.5 (Finite graphs and subharmonic functions). Show
that there exist a non-trivial function u ≥ 0 in `p(X,m) satisfying
Lu ≤ 0 when (b, c) is a graph over a finite set X with measure m.
Classify all such functions.

Exercise 8.6 (Killing or strict positivity of α). Let (b, c) be a
connected graph over (X,m) satisfying (M∗). Let u ∈ F satisfy u ≥ 0
and (L + α)u ≤ 0 for α ≥ 0. Show that if u ∈ `p(X,m) for p ∈ [1,∞)
and either c 6= 0 or α > 0, then u = 0.

Exercise 8.7 (More general summability criteria). Let (b, c) be
a connected graph over (X,m). Recall the definition of the weighted
degree as Deg(x) = (1/m(x))(

∑
y∈X b(x, y) + c(x)).

(a) Show that if for every infinite path (xn) the graph satisfies

∞∑
n=0

m(xn)
n−1∏
k=0

(
1 +

1

Deg(xk)

)2

=∞,

then Q(D) = Q(N).
Show that if, additionally, LCc(X) ⊆ `2(X,m), then the re-

striction of L to Cc(X) is essentially self-adjoint.
(b) Let p ∈ [1,∞) and let L(p) denote the generator of the semigroup

on `p(X,m). Show that if for every infinite path (xn) the graph
satisfies

∞∑
n=0

m(xn)
n−1∏
k=0

(
1 +

1

Deg(xk)

)p
=∞,

then
D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)}.

Exercise 8.8 (σ(L(p)) ⊆ σ(L)). Let (b, c) be a graph over (X,m)
such that m(X) < ∞ and Deg(x) = (1/m(x))(

∑
y∈X b(x, y) + c(x)) is

bounded. Let p ∈ (1,∞). Show that

σ(L(p)) ⊆ σ(L).
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Notes

The main observation for the proof of the Liouville result, The-
orem 8.3, i.e., that positive non-constant α-harmonic functions for
α > 0 must strictly increase in some direction, goes back to the thesis
[Woj08]. In [Woj08], this is used to show the essential self-adjointness
of the Laplacian on graphs with standard weights and counting mea-
sure, which is presented here as Corollary 8.11. This result can also be
found in [Web10].

For the general result on essential self-adjointness under the con-
dition that infinite paths have infinite measure, Theorem 8.5, the first
proof is found in [KL12]. Earlier statements which assume local finite-
ness and constant measure were asserted in [Jor08] and later proven
in [JP11] and, independently, in [TH10]. A more general summa-
bility criterion for magnetic Schrödinger operators can be found in
[Gol14, GKS16] and [Sch20b]. The statement on uniqueness of as-
sociated forms, Theorem 8.4, was shown in [KL10]. For examples
where essential self-adjointness and the uniqueness of associated forms
fail, see [KL10, KL12, HKLW12].

Let us mention that the essential self-adjointness of the Lapla-
cian on graphs with standard weights and counting measure stands
in contrast to the case of the adjacency operator. There, it is known
that the adjacency operator might not be essentially self-adjoint. The
first examples of such graphs were given in [MO85, Mül87]. See
[Gol10, GS11, GS13] for further discussion of this problem and for
some criteria for the essential self-adjointness of the adjacency opera-
tor.

In the case of the generator on `p spaces, the statement charac-
terizing the domain, Theorem 8.6, appears in [KL12]. The spectral
inclusion under uniform lower measure bounds, Theorem 8.9, is shown
in [BHK13].





CHAMBER 9

Weak Spherical Symmetry

... I keep planets in orbit while I be coming with deeper and more ...
ODB.

In this chapter we discuss a class of graphs whose geometry has a
weak spherical symmetry. We first introduce the notion of spherical
symmetry that we wish to study and give several examples. We also
introduce the idea of comparing an arbitrary graph to a weakly spheri-
cally symmetric graph, which will be a recurring theme in this chapter.
We then characterize this geometric notion of symmetry in terms of the
heat kernel in Section 1. Furthermore, we give heat kernel comparisons
which immediately imply comparison results for the Green’s function.

We then turn to spectral estimates in Section 2 and give an esti-
mate for the bottom of the spectrum as well as criteria for the essential
spectrum to be empty. At this point, we use the Agmon–Allegretto–
Piepenbrink characterization of the bottom of the spectrum and essen-
tial spectrum. The final two sections, Sections 3 and 4, involve the
study of recurrence and stochastic completeness, respectively. In these
sections we first characterize recurrence and stochastic completeness for
weakly spherically symmetric graphs in terms of geometric quantities,
then give the corresponding comparison results for general graphs.

We let (b, c) be a connected graph over (X,m), L = Lb,c,m be the

formal graph Laplacian and L = L
(D)
b,c,m be the Laplacian associated to

the regular form Q
(D)
b,c,m on `2(X,m). We recall that a graph is called

locally finite if the sets {y ∈ X | y ∼ x} are finite for all x ∈ X. Many
of the results in this chapter will involve assuming that a graph is locally
finite. Furthermore, we denote by d the combinatorial graph metric,
that is, the least number of edges in a path between two vertices.

Let O be a subset of X and define the distance to O by

d(O, x) = min
o∈O

d(o, x),

where x ∈ X. For most of our results below we will assume that O is
a finite set.

We denote the distance sphere of radius r ∈ N0 about O by

Sr(O) = {x ∈ X | d(O, x) = r}.

385
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For convenience, we let S−1(O) = ∅. Moreover, we denote the distance
ball of radius r ∈ N0 about O by

Br(O) =
r⋃

n=0

Sn(O) = {x ∈ X | d(O, x) ≤ r}.

If O is a finite set and (b, c) is locally finite, then the sets Sr(O) and
Br(O) are finite for all r ∈ N0. Furthermore, connectedness of the
graph is equivalent to the fact that X =

⋃
r Br(O). As we will need to

exhaust the graph via balls in various places, we will assume that all
graphs in this chapter are connected.

We call a function f ∈ C(X) spherically symmetric (with respect to
O) if there exists a function g : N0 −→ R such that f(x) = g(r) for all
x ∈ Sr(O) and r ∈ N0. With a slight abuse of notation, we then write

f(r) = f(x)

for all x ∈ Sr(O) and r ∈ N0. Although all of our notions involving
symmetry depend on O, we will mostly omit this dependence in our
notation and statements.

We next define the functions for which we will assume spherical
symmetry. We let k± denote the outer and inner degrees (with respect
to O), which are functions k± : X −→ [0,∞) defined via

k±(x) =
1

m(x)

∑
y∈Sr±1(O)

b(x, y)

for x ∈ Sr(O) and r ∈ N0. Furthermore, we define the potential
q : X −→ [0,∞) by

q(x) =
c(x)

m(x)

for x ∈ X.
With these preparations we can now define the class of graphs which

will be studied in this chapter.

Definition 9.1 (Weakly spherically symmetric graphs). We call a
connected graph (b, c) over (X,m) weakly spherically symmetric with
respect to a set O ⊆ X if the outer and inner degrees k± and potential
q are spherically symmetric with respect to O.

Remark. We call these graphs “weakly” spherically symmetric be-
cause we do not require any symmetry on the graph structure within
the spheres. Stronger notions of spherical symmetry require that there
exists a graph automorphism mapping one vertex to the other (or even
interchanging the vertices) for any two vertices on the same sphere
(Exercise 9.7).
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Remark. Whenever O is finite, m is bounded below on Sr(O) for
all r ∈ N0 and the graph is weakly spherically symmetric, then all
Sr(O) are finite and the graph is locally finite (Exercise 9.8).

We now introduce two main classes of examples of weakly spheri-
cally symmetric graphs. The first class consists of trees and, in contrast,
the second class of graphs we call anti-trees.

We call a sequence of vertices (xj)
n
j=0 with n ∈ N a cycle if xj ∼ xj+1

for all j = 0, 1, . . . , n − 1, xj 6= xk for j 6= k with 1 ≤ j, k ≤ n and
x0 = xn. A connected graph with no cycles is called a tree.

Example 9.2 (Spherically symmetric trees). Let (b, c) be a con-
nected graph over (X,m) with standard weights and counting measure,
i.e., b : X × X −→ {0, 1}, c = 0 and m = 1. Let O = {o} for o ∈ X
and let Sr(o) = Sr(O). We say that b is a spherically symmetric tree
with branching numbers k if there exists a sequence k : N0 −→ N such
that, for every vertex x ∈ Sr(o) and every r ∈ N0,

k+(x) = k(r), k−(x) = 1

and b|Sr(o)×Sr(o) = 0.

We note that these graphs are indeed trees. Furthermore, we note
that removing a single edge between spheres will disconnect any tree.
This contrasts with anti-trees, which we now define.

Example 9.3 (Anti-trees). Let (b, c) be a connected graph over
(X,m) with standard weights and counting measure, i.e., b : X×X −→
{0, 1}, c = 0 and m = 1. Let O = {o} for o ∈ X and let Sr(o) = Sr(O).
Let s : N0 −→ N be given by s(r) = #Sr(o) for all r ∈ N0. We then
say that b is an anti-tree with sphere size s if

k±(x) = s(r) for all x ∈ Sr∓1(o) and r ∈ N0.

See Figure 1 below for an example.

Figure 1. An anti-tree with s(r) = 2r.

We note that the definition of an anti-tree implies

b|Sr(o)×Sr±1(o) = 1.
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In other words, every vertex in Sr(o) is connected to all vertices in
Sr+1(o) for all r ∈ N0. Hence, to disconnect such a graph, we must
remove all vertices between spheres. Furthermore, we note that we
impose no restrictions on b|Sr(o)×Sr(o).

To construct an anti-tree for a given sequence s : N0 −→ N of nat-
ural numbers with s(0) = 1, we partition the vertex set X into disjoint
subsets Ur with #Ur = s(r) and let b|Ur×Ur±1 = 1 for r ∈ N0 with b = 0
otherwise, m = 1 and c = 0.

We will revisit spherically symmetric trees and anti-trees to illus-
trate our results in this chapter.

The following formulas will play a crucial role in the proofs of several
results below. Hence we gather them together into one statement.

Lemma 9.4. Let (b, c) be a weakly spherically symmetric graph over
(X,m) with respect to O ⊆ X. Then,

k+(r)m(Sr(O)) = k−(r + 1)m(Sr+1(O))

for all r ∈ N0, where both sides can be infinite. In particular, m(Sr(O)) <
∞ for all r ∈ N0 if and only if m(O) <∞.

If f is a spherically symmetric function, then f ∈ F and Lf is
spherically symmetric with

Lf(x) = k+(r)
(
f(r)− f(r + 1)

)
+ k−(r)

(
f(r)− f(r − 1)

)
+ q(r)f(r)

for all x ∈ Sr(O) and r ∈ N0.

Proof. The first formula follows by a simple computation using
k+(r) = k+(x) for all x ∈ Sr(O), Fubini’s theorem and the symmetry
of b. Specifically, we have

k+(r)m(Sr(O)) =
∑

x∈Sr(O)

k+(x)m(x)

=
∑

x∈Sr(O)

∑
y∈Sr+1(O)

b(x, y)

=
∑

y∈Sr+1(O)

∑
x∈Sr(O)

b(y, x)

=
∑

y∈Sr+1(O)

k−(y)m(y)

= k−(r + 1)m(Sr+1(O)).

The “in particular” statement now follows by the formula and induc-
tion.

A spherically symmetric function f on a weakly spherically sym-
metric graph is clearly a bounded function on the neighbors of any
vertex and, therefore, f ∈ F . The second formula follows immedi-
ately from the definition of L and the assumption that f is spherically
symmetric. �
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We now present a way to compare a weakly spherically symmetric
graph and a general graph. Whenever we do so, we will use the super-
script sym over the terms involving the spherically symmetric graph.

Definition 9.5 (Stronger and weaker degree and potential growth).
Let (b, c) be a connected graph over (X,m) and let O ⊆ X. Let k±
denote the outer and inner degrees with respect to O and let q denote
the potential of (b, c).

We say that (b, c) has stronger (respectively, weaker) degree growth
than a weakly spherical symmetric graph (bsym, csym) over (Xsym,msym)
with respect to Osym ⊆ Xsym if m(O) = msym(Osym) and, for all x ∈
Sr(O) and r ∈ N0,

k+(x) ≥ ksym
+ (r) and k−(x) ≤ ksym

− (r)(
respectively, k+(x) ≤ ksym

+ (r) and k−(x) ≥ ksym
− (r)

)
,

where ksym
± are the outer and inner degrees of (bsym, csym) over (Xsym,msym)

with respect to Osym.
We say that (b, c) has stronger (respectively, weaker) potential growth

than (bsym, csym) over (Xsym,msym) if m(O) = msym(Osym) and, for all
x ∈ Sr(O) and r ∈ N0,

q(x) ≥ qsym(r) (respectively, q(x) ≤ qsym(r)) ,

where qsym is the potential of (bsym, csym) over (X,msym).

In what follows, we will prove a series of results for weakly spher-
ically symmetric graphs and then show the corresponding comparison
results for graphs with a stronger or weaker degree/potential growth
than a weakly spherically symmetric graph.

1. Symmetry of the heat kernel

In this section we are concerned with the symmetry of the heat
kernel. In particular, we will show that the heat kernel yields a spheri-
cally symmetric function for locally finite weakly spherically symmetric
graphs. We then turn to comparison theorems involving the heat ker-
nel.

1.1. Symmetry of the kernel and Green’s function. In this
subsection we establish the symmetry of the heat kernel and Green’s
function on a weakly spherically symmetric graph.

We first recall the definition of the heat kernel. The semigroup e−tL

on `2(X,m) for t ≥ 0 gives rise to a kernel p : [0,∞) × X × X −→ R
via

e−tLf(x) =
∑
y∈X

pt(x, y)f(y)m(y)
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for all f ∈ `2(X,m), x ∈ X and t ≥ 0. By the fact that the semigroup is
positivity preserving, established in Corollary 1.22, we have pt(x, y) ≥ 0
for all x, y ∈ X and t ≥ 0 as pt(x, y) = e−tL1y(x)/m(y).

For a finite set O ⊆ X, we now define

pt(x,O) =
1

m(x)m(O)
〈1x, e−tL1O〉

=
1

m(O)
e−tL1O(x)

=
1

m(O)

∑
o∈O

pt(x, o)m(o)

for x ∈ X and t ≥ 0. Thus, whenever O consists of a single vertex o,
we recover the heat kernel

pt(x, o) = pt(x, {o})

for x ∈ X.
The first theorem of this subsection states that the function pt(·, O)

is spherically symmetric whenever the graph is weakly spherically sym-
metric with respect to the subset O.

Theorem 9.6 (Spherical symmetry of the heat kernel). Let (b, c)
over (X,m) be a locally finite graph. If (b, c) is weakly spherically with
respect to a finite set O ⊆ X, then pt(·, O) is a spherically symmetric
function.

We prove this theorem by capturing the geometric notion of weak
spherical symmetry analytically. In fact, we will show that weak spher-
ical symmetry of a locally finite graph is equivalent to an even stronger
condition on the heat kernel, specifically, that the semigroup and an
averaging operator introduced below commute. The fact that pt(·, O)
is spherically symmetric is then an immediate consequence.

To start the proof we introduce the averaging operator A : C(X) −→
C(X) on a locally finite graph with respect to a finite set O ⊆ X by

Af(x) =
1

m(Sr(O))

∑
y∈Sr(O)

f(y)m(y)

for x ∈ Sr(O). With some additional care we could define A on non-
locally finite graphs by making sure that the sums above converge
absolutely.

We note that a function f ∈ C(X) is spherically symmetric if and
only if Af = f . This will be used repeatedly below. We will denote
the restriction of A to `2(X,m) by A, i.e.,

A = A|`2(X,m).

We now collect some basic facts about A.
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Lemma 9.7 (Basic facts about A). Let (b, c) be a locally finite con-
nected graph over (X,m) and let O ⊆ X be a finite set. Let A be the
averaging operator with respect to O and let A be the restriction of A
to `2(X,m). Then, A is a bounded self-adjoint operator on `2(X,m).
More specifically, A is an orthogonal projection of `2(X,m) onto the
subspace of spherically symmetric functions in `2(X,m).

Proof. Let f ∈ `2(X,m). We note that X =
⋃
r Sr(O) from the

assumption that (b, c) is connected. To show the boundedness of A, we
use the Cauchy–Schwarz inequality as follows,

‖Af‖2 =
∑
x∈X

(Af)2(x)m(x)

=
∞∑
r=0

∑
x∈Sr(O)

 1

m(Sr(O))

∑
y∈Sr(O)

f(y)m(y)

2

m(x)

=
∞∑
r=0

1

m(Sr(O))

 ∑
y∈Sr(O)

f(y)m(y)

2

≤
∞∑
r=0

1

m(Sr(O))

 ∑
y∈Sr(O)

m(y)

 ∑
y∈Sr(O)

f 2(y)m(y)


= ‖f‖2.

Hence, A is a bounded operator of norm 1 since Af = f for any
spherically symmetric function in `2(X,m).

Moreover, A is symmetric, and thus self-adjoint, by a direct cal-
culation. As the range of A is included in the spherically symmetric
functions and A2 = A, the operator A is an orthogonal projection onto
the spherically symmetric functions in `2(X,m). �

The next lemma shows that weak spherical symmetry is equivalent
to A and A commuting with the Laplacians L and L on suitable spaces.
We recall that L is a restriction of L by Theorem 1.6 and the domain
of L on a locally finite graph includes Cc(X) by Theorem 1.29. Fur-
thermore, since O ⊆ X is assumed to be finite and (b, c) locally finite
below, Sr(O) is finite for all r ∈ N0 and A and L both map Cc(X) to
Cc(X), i.e., Cc(X) is invariant under both A and L.

Lemma 9.8 (Characterization of weak spherical symmetry). Let
(b, c) be a connected locally finite graph over (X,m) and let O ⊆ X be
finite. Then, the following statements are equivalent:

(i) The graph (b, c) is weakly spherically symmetric.
(ii) The operator A commutes with L on C(X), i.e.,

AL = LA on C(X).
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(iii) The operator A commutes with L on Cc(X), i.e.,

AL = LA on Cc(X).

Proof. We denote Sr(O) by Sr for r ∈ N0.

(i) =⇒ (ii): Obviously, multiplication by the spherically symmetric
function q commutes with A. Hence, we may assume that q = 0.

Since Af is spherically symmetric for f ∈ C(X), by Lemma 9.4 we
get, for x ∈ Sr,

LAf(x) = k+(r)(Af(r)−Af(r + 1)) + k−(r)(Af(r)−Af(r − 1)).

On the other hand, by using Lemma 9.4 again, we get, for x ∈ Sr,

ALf(x) =
1

m(Sr)

∑
y∈Sr

Lf(y)m(y)

=
1

m(Sr)

∑
y∈Sr

∑
z∈Sr−1∪Sr+1

b(y, z)(f(y)− f(z))

=
1

m(Sr)

∑
y∈Sr

f(y)
∑

z∈Sr−1∪Sr+1

b(y, z)− 1

m(Sr)

∑
z∈Sr−1∪Sr+1

f(z)
∑
y∈Sr

b(y, z)

= (k+(r) + k−(r))Af(r)

− k+(r − 1)

m(Sr)

∑
z∈Sr−1

f(z)m(z)− k−(r + 1)

m(Sr)

∑
z∈Sr+1

f(z)m(z)

= (k+(r) + k−(r))Af(r)

− k−(r)

m(Sr−1)

∑
z∈Sr−1

f(z)m(z)− k+(r)

m(Sr+1)

∑
z∈Sr+1

f(z)m(z)

= k+(r)(Af(r)−Af(r + 1)) + k−(r)(Af(r)−Af(r − 1)).

Thus we see LAf = ALf .

(ii) =⇒ (iii): This is clear as A and L are restrictions of A and L.

(iii) =⇒ (i): Obviously, A1Sr = 1Sr as 1Sr is a spherically symmetric
function. Furthermore, for x ∈ Sr±1, we have

L1Sr(x) = −k∓(x)

by direct calculations. Thus, for x ∈ Sr±1, we have

−k∓(x) = LA1Sr(x)

= AL1Sr(x)

= − 1

m(Sr±1)

∑
y∈Sr±1

k∓(y)m(y).

= −Ak∓(r ± 1).

Therefore, k± are spherically symmetric.
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Similarly, for x ∈ Sr, we calculate L1Sr(x) = k+(x) + k−(x) + q(x).
Therefore, for x ∈ Sr, we have

k+(x) + k−(x) + q(x) = L1Sr(x)

= LA1Sr(x)

= AL1Sr(x)

=
1

m(Sr)

∑
y∈Sr

(k+(y) + k−(y) + q(y))m(y)

= A(k+ + k− + q)(r).

As we have already shown that k± are spherically symmetric, this shows
that the potential q and, thus, the graph is weakly spherically symmet-
ric. �

We next apply the general theory of reducing subspaces and com-
muting operators developed in Appendix 3. This result allows us to
pass from the commutativity of the restriction of the Laplacian and
the averaging operators to the finitely supported functions to commu-
tativity on the entire domain of the Laplacian. Furthermore, it shows
that this commutativity is equivalent to the averaging operator com-
muting with the semigroup. Specifically, we apply Corollary E.20 with
H = `2(X,m) and D0 = Cc(X) to obtain the following lemma.

Lemma 9.9. Let (b, c) be a connected locally finite graph over (X,m)
and let O ⊆ X be finite. Then, the following statements are equivalent:

(i) AL = LA on Cc(X).
(ii) A maps D(L) into D(L) and AL = LA on D(L).
(iii) Ae−tL = e−tLA on `2(X,m) for all t ≥ 0.

With these two lemmas, we can now show the desired symmetry of
the heat kernel.

Proof of Theorem 9.6. From Lemmas 9.8 and 9.9 we see that if
(b, c) is a locally finite and weakly spherically symmetric graph with re-
spect to a finite set O, then A and e−tL commute. Hence, as pt(x,O) =
e−tL1O(x)/m(O) for x ∈ X, we get

Apt(x,O) =
1

m(O)
Ae−tL1O(x) =

1

m(O)
e−tLA1O(x) = pt(x,O)

for x ∈ X and t ≥ 0. Hence, pt(·, O) is spherically symmetric. �

Remark. If we denote the distance to O for a vertex z ∈ X by
rz = d(z,O), then combining Lemmas 9.8 and 9.9 we obtain that a
locally finite graph is weakly spherically symmetric if and only if

1

m(Srx(O))

∑
z∈Srx (O)

pt(y, z)m(z) =
1

m(Sry(O))

∑
z∈Sry (O)

pt(x, z)m(z)
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for all x, y ∈ X and t ≥ 0. This implies pt(·, O) is spherically symmetric
(Exercise 9.9).

From the spherical symmetry of the heat kernel, we derive an im-
mediate statement concerning the Green’s function. We recall that in
Chapter 6 we introduced the Green’s function of a graph b as

Gm(x, y) =

∫ ∞
0

e−tL1y(x)dt =

∫ ∞
0

pt(x, y)m(y)dt.

Furthermore, we call a connected graph b transient if and only if
Gm(x, y) < ∞ for some (all) x, y ∈ X and some (all) measure m.
See Theorem 6.1 for various equivalent formulations of transience.

We now extend the definition of the Green’s function by letting

Gm(x,O) =
1

m(O)

∑
o∈O

Gm(x, o)

whenever O ⊆ X is finite and x ∈ X.

Corollary 9.10 (Spherical symmetry of the Green’s function).
Let b be a locally finite weakly spherically symmetric graph over (X,m)
with respect to a finite set O ⊆ X. Assume that b is transient. Then,
the Green’s function Gm(·, O) is spherically symmetric.

Proof. We calculate by the definitions above and Fubini’s theorem

Gm(x,O) =
1

m(O)

∑
o∈O

Gm(x, o)

=
1

m(O)

∑
o∈O

∫ ∞
0

pt(x, o)m(o)dt

=

∫ ∞
0

1

m(O)

∑
o∈O

pt(x, o)m(o)dt

=

∫ ∞
0

pt(x,O)dt

for x ∈ X. By Theorem 9.6, pt(·, O) is spherically symmetric. This
completes the proof. �

1.2. Comparison theorems. We next turn to comparison re-
sults. That is, we will compare the heat kernel on a general graph
to the heat kernel on a weakly spherically symmetric graph. As a
consequence, we get comparisons for the Green’s function.

By Theorem 9.6 we know the heat kernel psym(·, Osym) of a locally
finite weakly spherically symmetric graph (bsym, csym) over (Xsym,msym)
with respect to a finite set Osym ⊆ Xsym is a spherically symmetric
function. Hence, we may write

psym
t (r) = psym

t (x,Osym)
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for all x ∈ Sr(Osym), r ∈ N0 and t ≥ 0.
We will now compare the heat kernel on a weakly spherically sym-

metric graph and the heat kernel on a general graph. For this, we
ultimately restrict to the case c = 0.

Theorem 9.11 (Heat kernel comparison with weakly spherically
symmetric graphs). Let b be a connected locally finite graph over (X,m)
with heat kernel p and let O ⊆ X be a finite set. If b over (X,m) has
stronger (respectively, weaker) degree growth than a locally finite weakly
spherically symmetric graph bsym over (Xsym,msym) with respect to a
finite set Osym ⊆ Xsym and heat kernel psym, then

pt(x,O) ≤ psym
t (r) (respectively, pt(x,O) ≥ psym

t (r))

for all x ∈ Sr(O), r ∈ N0 and t ≥ 0.

The proof will require several ingredients. One ingredient is the
minimum principle for the heat equation, which we now recall. Specif-
ically, if U ⊂ X is a connected subset containing a vertex which is
connected to a vertex outside of U , T ≥ 0 and u : [0, T ] ×X −→ R is
such that t 7→ ut(x) is continuously differentiable on (0, T ) for every
x ∈ U , ut ∈ F for all t ∈ (0, T ] and

• (L+ ∂t)u ≥ 0 on (0, T )× U
• u ∧ 0 attains a minimum on [0, T ]× U
• u ≥ 0 on ((0, T ]×X \ U) ∪ ({0} × U),

then

u ≥ 0 on [0, T ]× U.

See Theorem 1.10 for a proof. We also recall that if f ∈ `2(X,m), then
ut = e−tLf is a solution of the heat equation with u0 = f . If addition-
ally f ∈ D(L), then the solution extends to t = 0, see Theorem A.33
in Appendix A for a proof of the solution statements for t > 0 and
Theorem D.6 in Appendix D for t = 0 in the case of f ∈ D(L).

In order to utilize the minimum principle, we will exhaust the graph
by finite subsets. To utilize the symmetry of the graph, we will exhaust
by balls around O. As we will assume that O is finite and b is locally
finite, it follows that Br(O) are finite sets for all r ∈ N0. The minimum
principle will allow us to compare heat kernels locally. We will then
pass from properties on subsets to properties on the entire graph. In
order to do so, we now build upon some ideas from the exhaustion
techniques found in Section 3.

We let (b, c) be a locally finite graph over (X,m) and let O ⊆ X
be finite. We denote BR(O) by BR and the Dirichlet Laplacian on
`2(BR,mR) by

L
(D)
R = L

(D)
BR
,
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where mR = m|BR for R ∈ N0. We recall that

L
(D)
R f(x) =

1

m(x)

(∑
y∈BR

b(x, y)(f(x)− f(y)) +
(
dR(x) + c(x)

)
f(x)

)
for all f ∈ `2(BR,mR) and x ∈ BR, where dR(x) =

∑
y 6∈BR b(x, y). We

let Q
(D)
R denote the associated form, so that

Q
(D)
R (f) = 〈L(D)

R f, f〉
for all f ∈ `2(BR,mR).

We denote the heat kernel of L
(D)
R on BR by p(R) and refer to p(R)

as the Dirichlet restriction of the heat kernel . We can then extend p(R)

by zero to all of X. Then, we have

p
(R)
t (x,O) =

1

m(O)
e−tL

(D)
R 1O(x)

for x ∈ BR(O) and p
(R)
t (x,O) = 0 for x ∈ X \BR(O) and all t ≥ 0.

We now collect some basic properties of the Dirichlet restrictions of
the heat kernel.

Lemma 9.12 (Dirichlet restrictions of the heat kernel). Let (b, c)
be a locally finite weakly spherically symmetric graph with respect to
a finite set O ⊆ X. Let p be the heat kernel and let p(R) denote the
Dirichlet restrictions of the heat kernel to BR(O) for R ∈ N0. Then,

p
(R)
t (·, O) is spherically symmetric for every R ∈ N0 and t ≥ 0 and

lim
R→∞

p
(R)
t (x,O) = pt(x,O)

for all x ∈ X and t ≥ 0.

Proof. As BR(O) is finite for all R ∈ N0, we obtain

lim
R→∞

p
(R)
t (x,O) = pt(x,O)

for all t ≥ 0 and x ∈ X by Lemma 1.21.

To show that p
(R)
t (·, O) is spherically symmetric for every R ∈ N0

and t ≥ 0 we will show that p(R) is the heat kernel of a locally finite
weakly spherically symmetric graph. Specifically, we denote SR(O) by
SR, BR(O) by BR and the restrictions of b and m to BR ×BR and BR

by bR and mR, respectively. Then, p(R) is the heat kernel of the graph
(bR, cR) over (BR,mR), where

cR(x) =

{
c(x) if x ∈ BR−1

c(x) +
∑

y∈SR+1
b(x, y) if x ∈ SR.

Therefore, as q = c/m,

qR(x) =

{
q(x) if x ∈ BR−1(O)

q(x) + k+(R) if x ∈ SR(O),
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so that both the outer and inner degrees and the potential of (bR, cR)
over (BR,mR) are spherically symmetric. Hence, by Theorem 9.6,

p
(R)
t (·, O) is a spherically symmetric function for every t ≥ 0 and
R ∈ N0. This completes the proof. �

Having established basic properties of p(R) we now turn to another

intuitively clear property, namely, the decay in space of p
(R)
t (·, O) for

every t ≥ 0. For the proof we assume additionally that c = 0.
As we have established that p(R)(·, O) is spherically symmetric, we

write p
(R)
t (r) for p

(R)
t (x,O) for all x ∈ Sr(O) and t ≥ 0.

Lemma 9.13 (Heat kernel decay). Let b be a locally finite weakly
spherically symmetric graph over (X,m) with respect to a finite set
O ⊆ X. Let p be the heat kernel and let p(R) be the Dirichlet restriction
of p to BR(O) for R ∈ N0. Then, for all t ≥ 0 and r, R ∈ N0,

p
(R)
t (r) ≥ p

(R)
t (r + 1)

and thus

pt(r) ≥ pt(r + 1)

for t ≥ 0 and r ∈ N0.

Proof. It is clear that pt(r) ≥ pt(r + 1) for all t ≥ 0 and r ∈ N0

follows from p
(R)
t (r) ≥ p

(R)
t (r+1) and the convergence of the heat kernel

shown in Lemma 9.12. Thus, we focus on proving p
(R)
t (r) ≥ p

(R)
t (r+ 1)

for all t ≥ 0 and r, R ∈ N0. We note that p
(R)
t (r) ≥ 0 by positivity of

the heat kernel while p
(R)
t (r) = 0 for r > R by definition. Hence, we

may focus on the case 0 ≤ r ≤ R.
We fix R ∈ N0 and introduce the function ϕ : [0,∞) −→ R via

ϕ(t) = max
0≤j<k≤R

(
p

(R)
t (k)− p(R)

t (j)
)
.

We note that it suffices to show ϕ ≤ 0. As

p
(R)
0 (r) =

{
1/m(O) if r = 0

0 if r ∈ N,

we directly obtain ϕ(0) ≤ 0.
We now argue by contradiction. Specifically, we show the following

claim:

Claim. If there exists a t0 > 0 such that ϕ(t0) > 0, then there is a
neighborhood around t0 such that ϕ is strictly monotone decreasing in
this neighborhood.

Proof of the claim. Suppose there exists a t0 > 0 such that ϕ(t0) >

0. We can then choose an r0 < R0 such that p
(R)
t0 (r0) is a strict lo-

cal minimum for p
(R)
t0 (·) and p

(R)
t0 (R0) is a strict local maximum for
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p
(R)
t0 (·), i.e., one of the neighbors is strictly larger/smaller than the

minimum/maximum, and

ϕ(t0) = p
(R)
t0 (R0)− p(R)

t0 (r0).

By the strict local maximality and minimality, we have

L
(D)
R p

(R)
t0 (R0) > 0 and L

(D)
R p

(R)
t0 (r0) < 0.

By the heat equation we conclude

∂tp
(R)
t (R0)|t=t0 < 0 and ∂tp

(R)
t (r0)|t=t0 > 0

and, by the continuity of ∂tp
(R)
t , we obtain that ϕ is strictly monoton-

ically decreasing in a neighborhood of t0. This proves the claim.

So, assume that there exists a t0 > 0 such that ϕ(t0) > 0 and let
t1 ∈ [0, t0] be such that ϕ(t1) = max[0,t0] ϕ. Then, ϕ(t1) > 0 and,
therefore, ϕ must be strictly monotone decreasing in a neighborhood
of t1 by the claim above. This is a contradiction to ϕ taking a strictly
positive maximum at t1 and ϕ(0) ≤ 0. This completes the proof. �

Remark. It is not hard to see that the inequalities for p(R) above
are strict for t > 0 (Exercise 9.10).

Having assembled all of the necessary pieces for the proof, we now
establish our heat kernel comparison.

Proof of Theorem 9.11. Let psym denote the heat kernel of the
weakly spherically symmetric graph and let psym,(R) be the Dirichlet
restriction of psym to BR(Osym) ⊆ Xsym for R ∈ N0. We define a
spherically symmetric function %(R) : [0,∞)×X −→ R via

%
(R)
t (x) = p

sym,(R)
t (r)

for x ∈ Sr(O) ⊆ X and t ≥ 0.
We assume that b has stronger degree growth than bsym. By the heat

kernel decay of weakly spherically symmetric graphs, Lemma 9.13, and
the assumption of stronger degree growth, we get, for x ∈ Sr(O) with
r ∈ N0,

L%(R)
t (x) = k+(x)(p

sym,(R)
t (r)− psym,(R)

t (r + 1))

+ k−(x)(p
sym,(R)
t (r)− psym,(R)

t (r − 1))

≥ ksym
+ (x)(p

sym,(R)
t (r)− psym,(R)

t (r + 1))

+ ksym
− (x)(p

sym,(R)
t (r)− psym,(R)

t (r − 1))

= Lsymp
sym,(R)
t (r).

Hence,

(L+ ∂t)%
(R)
t (x) ≥ (Lsym + ∂t)p

sym,(R)
t (r) = 0

for x ∈ X and t ≥ 0.
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We now let p denote the heat kernel of b and let p(R) denote the
Dirichlet restriction of p to BR(O) ⊆ X. We let

ut(x) = %
(R)
t (x)− p(R)

t (x,O)

for x ∈ X and t ≥ 0. From the above, we obtain

(L+ ∂t)ut(x) ≥ 0

on [0, T ]×BR(O) for arbitrary T > 0. By compactness and continuity,

u∧ 0 attains a minimum on [0, T ]×BR(O). Furthermore, as %
(R)
t (x) =

p
(R)
t (x,O) = 0 for x ∈ X \BR(O), we have u = 0 on [0, T ]×X \BR(O).

Finally, as we assume msym(Osym) = m(O), we obtain, for x ∈ O,

%
(R)
0 (x) = p

sym,(R)
0 (0) =

1

msym(Osym)
=

1

m(O)
= p

(R)
0 (x,O)

and %
(R)
0 (x) = p

(R)
0 (x,O) = 0 for x ∈ X \ O. Therefore, u0(x) = 0 for

all x ∈ X.
Thus, by the minimum principle for the heat equation, Theorem 1.10,

ut(x) ≥ 0 on [0, T ]×BR(O). Therefore, for x ∈ Sr(O) with r ≤ R and
t ∈ [0, T ] we have

p
sym,(R)
t (r) = %

(R)
t (x) ≥ p

(R)
t (x,O).

The statement psym
t (r) ≥ pt(x,O) for x ∈ Sr(O), r ∈ N0 and t ≥ 0

then follows from the convergence of the Dirichlet restrictions given in
Lemma 9.12. This completes the proof in the case of stronger degree
growth. The proof for weaker degree growth follows in an analogous
manner. �

We conclude this subsection with the corresponding comparison
result for the Green’s function. Recall that

Gm(x,O) =
1

m(O)

∑
o∈X

Gm(x, o)

for x ∈ X. Furthermore, by Corollary 9.10, Gm(·, O) is spherically
symmetric for weakly spherically symmetric graphs so that we may
write Gsym

m (r) = Gsym
m (x,O) for x ∈ Sr(Osym) and r ∈ N0.

Theorem 9.14 (Green’s function comparison with weakly spheri-
cally symmetric graphs). Let b be a connected locally finite graph over
(X,m) with Green’s function Gm and let O ⊆ X be finite. If b over
(X,m) has stronger (respectively, weaker) degree growth than a locally
finite weakly spherically symmetric graph bsym over (Xsym,msym) with
respect to a finite set Osym ⊆ Xsym and Green’s function Gsym, then

Gm(x,O) ≤ Gsym(r) (respectively, Gm(O, x) ≥ Gsym(r))

for all x ∈ Sr(O) and r ∈ N0.
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Proof. The statement follows immediately from Theorem 9.11,
the definition of the Green’s function, which gives

Gm(x,O) =
1

m(O)

∑
o∈X

Gm(x, o) =
1

m(O)

∑
o∈X

∫ ∞
0

e−tL1o(x)dt

=

∫ ∞
0

pt(x,O)dt,

and the corresponding formula for Gsym(x). �

2. The spectral gap

In this section we study the bottom of the spectrum of the Lapla-
cian. More specifically, we first give a criterion for the bottom of the
spectrum to be strictly positive when the graph is weakly spherically
symmetric. We then give comparison theorems for the bottom of the
spectrum of the Laplacian on general graphs. We also prove a criterion
for the spectrum of the Laplacian to be discrete.

We will use some basic facts about the essential spectrum from
Appendix 2. Moreover, Excavation Exercise 9.1 recalls a basic trick
involving logarithms and exponentials which will be used in the proof
of Theorem 9.20.

We let L = L
(D)
b,c,m denote the Laplacian associated to a graph (b, c)

over (X,m), σ(L) denote the spectrum of L and

λ0(L) = inf σ(L)

denote the bottom of the spectrum of L. As L arises from a positive
form, by the variational characterization of the bottom of the spectrum
we obtain λ0(L) ≥ 0, see Theorem E.8 in Appendix E.

In this section we will give criteria for the bottom of the spectrum
to be strictly positive. In this context, the value λ0(L) is sometimes
referred to as the spectral gap. The discrete spectrum σdisc(L) of L
consists of the isolated eigenvalues of finite multiplicity and the essen-
tial spectrum σess(L) is the complement of σdisc(L) in the spectrum,
i.e., σess(L) = σ(L) \ σdisc(L). Furthermore, we say that L has purely
discrete spectrum or the spectrum of L is discrete if σ(L) = σdisc(L),
i.e., σess(L) = ∅, see Appendix 2 for more details.

We introduce the boundary ∂W of a set W ⊆ X as

∂W = (W × (X \W )) ∪ ((X \W )×W ).

We remark that there are many notions of boundaries when considering
subsets of a graph. Here, we take a notion that is symmetric.

We will be particularly interested in the boundary of balls around a
set and the total edge weight of this boundary. We therefore introduce
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the area of the boundary of a ball Br(O) for a set O ⊆ X as

b(∂Br(O)) =
∑

(x,y)∈∂Br(O)

b(x, y)

for r ∈ N0. We note that

b(∂Br(O)) = 2
∑

x∈Sr(O)

k+(x)m(x)

so if the graph is weakly spherically symmetric, we obtain

b(∂Br(O)) = 2k+(r)m(Sr(O))

for r ∈ N0.
With these notions, we will prove the following summability crite-

rion for discreteness of the spectrum and positivity of the bottom of
the spectrum for weakly spherically symmetric graphs.

Theorem 9.15 (Area-volume ratio and spectrum). Let b be a lo-
cally finite weakly spherically symmetric graph over (X,m) with respect
to a finite set O ⊆ X. If

a =
∞∑
r=0

m(Br(O))

b(∂Br(O))
<∞,

then

λ0(L) ≥ 1

2a

and the spectrum of L is discrete.

The proof uses the Agmon–Allegretto–Piepenbrink theorem for the
spectrum from Chapter 4, which we now recall. If u ∈ F and α ∈ R,
then we say that u is α-harmonic if

(L+ α)u = 0.

In the case of locally finite graphs, Theorem 4.14 states that there
exists a strictly positive α-harmonic function if and only if

α ≥ −λ0(L).

Hence, to show the strict positivity of the bottom of the spectrum, it
suffices to show the existence of a strictly positive α-harmonic function
for α < 0.

To show this existence, we will use the following recursion formula
for spherically symmetric solutions. This formula will also be used
to prove criteria for recurrence and stochastic completeness presented
later in this chapter, so we state it in a rather general form which
involves a function instead of a constant α. We also recall that the
potential q = c/m is a spherically symmetric function when the graph
is spherically symmetric.
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Lemma 9.16 (Recursion formula for spherically symmetric solu-
tions). Let (b, c) be a locally finite weakly spherically symmetric graph
over (X,m) with respect to a finite set O ⊆ X and let f ∈ C(X) be
spherically symmetric. Then, a spherically symmetric function u ∈
C(X) satisfies (L+ f)u = 0 if and only if

u(r + 1)− u(r) =
2

b(∂Br(O))

r∑
n=0

(q(n) + f(n))m(Sn(O))u(n)

for all r ∈ N0. In particular, u is uniquely determined by the choice of
u(0). Furthermore, if u(0) > 0 and f > 0, then u(r + 1) > u(r) for all
r ∈ N0.

Proof. We will prove the recursion formula by induction. The
uniqueness and monotonicity statements are then obvious from the
recursion formula.

We will omit O from our notation below, writing Br for Br(O) and
Sr for Sr(O). We recall that b(∂Br) = 2k+(r)m(Sr) for r ∈ N0. For
r = 0, from (L+ f)u(0) = 0 we obtain

0 = k+(0)(u(0)− u(1)) + (q(0) + f(0))u(0)

=
b(∂B0)

2m(S0)
(u(0)− u(1)) + (q(0) + f(0))u(0),

which yields the formula after rearranging the terms.
Now, we assume that the recursion formula holds for r − 1, where

r ∈ N. From (L+ f)u(r) = 0 we obtain

k+(r)(u(r)− u(r + 1)) + k−(r)(u(r)− u(r − 1)) + (q(r) + f(r))u(r) = 0.

Therefore, by the induction hypothesis, b(∂Br) = 2k+(r)m(Sr) and
k+(r − 1)m(Sr−1) = k−(r)m(Sr) proven in Lemma 9.4, we obtain

u(r + 1)− u(r) =
k−(r)

k+(r)
(u(r)− u(r − 1)) +

1

k+(r)
(q(r) + f(r))u(r)

=
k−(r)

k+(r)

(
2

b(∂Br−1)

r−1∑
n=0

(q(n) + f(n))m(Sn)u(n)

)
+

2

b(∂Br)
(q(r) + f(r))m(Sr)u(r)

=
k−(r)

k+(r)

(
1

k−(r)m(Sr)

r−1∑
n=0

(q(n) + f(n))m(Sn)u(n)

)
+

2

b(∂Br)
(q(r) + f(r))m(Sr)u(r)

=
2

b(∂Br)

r∑
n=0

(q(n) + f(n))m(Sn)u(n).

This proves the recursion formula and thus completes the proof. �
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We now use the recursion formula above to show that under the
summability assumption found in Theorem 9.15, there exists a strictly
positive α-harmonic function for α < 0. This will prove the spectral
gap via the Agmon–Allegretto–Piepenbrink theorem.

Lemma 9.17. Let b be a locally finite weakly spherically symmetric
graph over (X,m) with respect to a finite set O ⊆ X. If

a =
∞∑
r=0

m(Br(O))

b(∂Br(O))
<∞,

then there exists a strictly positive monotonically decreasing spherically
symmetric function u which satisfies u(0) = 1 and(

L − 1

2a

)
u = 0.

Proof. We will define a spherically symmetric function u with
the required properties. We start by letting u(0) = 1. Then, by
Lemma 9.16, u will satisfy

(
L − 1

2a

)
u = 0 if and only if u satisfies

the recursion formula

u(r + 1)− u(r) = − 1

a · b(∂Br(O))

r∑
n=0

m(Sn(O))u(n)

as we assume c = 0 and, thus, q = 0.
We will show that u is strictly monotonically decreasing and re-

mains positive by using strong induction. More specifically, we will
show that

0 < 1− 1

a

r∑
n=0

m(Bn(O))

b(∂Bn(O))
≤ u(r + 1) < u(r)

for all r ∈ N0. The first inequality above is clear from the definition
of a. For r = 0, the remaining inequalities follow directly from the
recursion formula and u(0) = 1 as

u(1)− u(0) = − 1

a · b(∂B0(O))
m(S0(O)) = − m(O)

a · b(∂O)
< 0

gives

1− m(O)

a · b(∂O)
= u(1) < 1 = u(0).

Now, assume that the inequalities hold up to r − 1, that is,

0 < 1− 1

a

k∑
n=0

m(Bn(O))

b(∂Bn(O))
≤ u(k + 1) < u(k)

for k = 0, 1, . . . , r−1. Therefore, u(k) > 0 for k = 0, 1, . . . , r and the re-
cursion formula gives u(r+1)−u(r) < 0. Moreover, as u is then strictly
decreasing up to r, we get u(n) < u(0) = 1 for all n = 1, 2, . . . , r.
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Hence, from the recursion formula and the inductive hypotheses we
obtain

u(r + 1) = u(r)− 1

a · b(∂Br(O))

r∑
n=0

m(Sn(O))u(n)

> u(r)− m(Br(O))

a · b(∂Br(O))

≥ 1− 1

a

r−1∑
n=0

m(Bn(O))

b(∂Bn(O))
− m(Br(O))

a · b(∂Br(O))

= 1− 1

a

r∑
n=0

m(Bn(O))

b(∂Bn(O))
.

This completes the proof. �

Proof of Theorem 9.15. By Lemma 9.17 for

a =
∞∑
r=0

m(Br(O))

b(∂Br(O))
<∞

there exists a strictly positive function u which satisfies(
L − 1

2a

)
u = 0.

Thus, λ0(L) ≥ 1/2a follows from the Agmon–Allegretto–Piepenbrink
theorem for the spectrum, Theorem 4.14.

For the statement concerning the essential spectrum consider the
graph bR = b|X\BR(O)×X\BR(O) over (X \ BR(O),mR), where mR =

m|X\BR(O) for R ∈ N. Let LR = L
(D)
X\BR(O) be the Dirichlet Laplacian

associated to bR over (X \ BR(O),mR). Since the graph is assumed
to be locally finite and O is a finite subset, all balls BR(O) are finite
and thus the operator LR is a finite-dimensional, and thus compact,
perturbation of the operator L for every R ∈ N. Therefore, if we let
λess

0 (L) denote the bottom of the essential spectrum

λess
0 (L) = inf σess(L) = inf σess(LR) ≥ inf σ(LR) = λ0(LR)

for R ∈ N, as follows by either Theorem 4.20 or Theorem E.7.
In order to estimate λ0(LR), we let

aR =
∞∑

r=R+1

m(Br(O))

b(∂Br(O))
< a

and let LR be the formal Laplacian of the graph bR. Since bR is a
weakly spherically symmetric graph over (X \Br(O),mR) with respect
to O, there exists a strictly positive function uR which satisfies(

LR −
1

2aR

)
uR = 0
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for every R ∈ N by Lemma 9.17. Hence, by the Agmon–Allegretto–
Piepenbrink theorem for the spectrum, Theorem 4.14, and the inequal-
ities above we get

λess
0 (L) ≥ λ0(LR) ≥ 1

2aR
→∞

as R →∞, cf. also Theorem 4.20. This shows σess(L) = ∅ and, there-
fore, L has purely discrete spectrum. �

We next illustrate Theorem 9.15 for spherically symmetric trees and
anti-trees, i.e., for Examples 9.2 and 9.3. For trees, we get the following
criterion for the spectral gap and discreteness of the spectrum.

Example 9.18 (Spherically symmetric trees and spectrum). Let b
be a spherically symmetric tree with branching number k. If

a =
∞∑
r=0

1 +
∑r

n=1

∏n−1
j=0 k(j)

2
∏r

j=0 k(j)
<∞,

then λ0(L) ≥ 1/2a and the spectrum of L is discrete (Exercise 9.3).

For anti-trees we obtain the following criterion. We note, in partic-
ular, that this can be used to construct examples of graphs with strictly
positive bottom of the spectrum and whose distance balls grow poly-
nomially. We will have more to say about the bottom of the spectrum
and volume growth in Chapter 13.

Example 9.19 (Anti-trees and spectrum). Let b be an anti-tree
with sphere size s. If

a =
∞∑
r=0

∑r
n=0 s(n)

2s(r)s(r + 1)
<∞,

then λ0(L) ≥ 1/2a and the spectrum of L is discrete (Exercise 9.4).

We will next prove a comparison result for spectral properties. For
this, we recall that we compare the outer and inner degrees of a general
graph to those of a weakly spherically symmetric graph. We also recall
that we denote the corresponding quantities in the weakly spherically
symmetric graph with a superscript sym.

Theorem 9.20 (Spectral comparison). Let b be a connected locally
finite graph over (X,m) and let O ⊆ X. If b has stronger (respectively,
weaker) degree growth with respect to O than a locally finite weakly
spherically symmetric graph bsym over (Xsym,msym) with respect to a
finite set Osym ⊆ Xsym, then

λ0(L) ≥ λ0(Lsym) (respectively, λ0(L) ≤ λ0(Lsym)).
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Furthermore, if bsym over (Xsym,msym) satisfies

a =
∞∑
r=0

msym(Br(O
sym))

bsym(∂Br(Osym))
<∞

and b over (X,m) has stronger degree growth than bsym over (Xsym,msym),
then

λ0(L) ≥ 1

2a
and the spectrum of L is discrete.

Proof. Assume that b has stronger degree growth than bsym. By
the heat kernel comparison, Theorem 9.11, we have

pt(x,O) ≤ psym
t (r)

for all x ∈ Sr(O) ⊆ X, r ∈ N0 and t ≥ 0. By definition

pt(x,O) =
1

m(O)

∑
o∈O

pt(x, o)m(o).

Therefore, we obtain

1

m(O)

∑
o∈O

pt(x, o)m(o) = pt(x,O) ≤ psym
t (r) = psym

t (x′, o′)

for all x ∈ Sr(O), o′ ∈ Osym, x′ ∈ Sr(O
sym) and r ∈ N0, where the

last equality follows by the symmetry of the heat kernel of weakly
spherically symmetric graphs established in Theorem 9.6.

Now, by the Theorem of Li, Theorem 5.6, we have

lim
t→∞

1

t
log pt(x, y) = −λ0(L)

for all x, y ∈ X as the graph is connected. Hence, for x, y ∈ O and
x′, o′ ∈ Osym, we obtain

−λ0(L) = lim
t→∞

1

t
log pt(x, y)

= lim
t→∞

1

t
log

1

m(O)

∑
o∈O

pt(x, o)m(o)

≤ lim
t→∞

1

t
log psym

t (x′, o′)

= −λ0(Lsym).

Therefore, λ0(L) ≥ λ0(Lsym) in the case of stronger degree growth. The
proof of the statement for weaker degree growth follows analogously.

When b has stronger degree growth than bsym, the estimate λ0(L) ≥
1/2a follows from the first statement and Theorem 9.15. For the state-
ment about the discreteness of the spectrum, consider the Laplacians
LR and Lsym

R associated to the graphs

bR = b|X\BR(O)×X\BR(O)
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over (X \BR(O),mR), where mR = m|X\BR(O) and

bsym
R = bsym|Xsym\BR(Osym)×Xsym\BR(Osym)

over (Xsym\BR(Osym),msym
R ) where msym

R = msym|Xsym\BR(Osym) for R ∈
N. Clearly, bR also has stronger degree growth than bsym

R . Therefore,
by what we have proven above and the proof of Theorem 9.15, we have

λ0(LR) ≥ λ0(Lsym
R ) ≥ 1

2aR

for

aR =
∞∑

r=R+1

msym(Br(O
sym))

bsym(∂Br(Osym))

for all R ∈ N.
Now, since LR is a finite-dimensional and thus compact perturba-

tion of L, we infer that the essential spectra and, in particular, the
bottoms of the essential spectra λess

0 (L) and λess
0 (LR) agree, see Corol-

lary 4.19 or Theorem E.7. Hence,

λess
0 (L) = λess

0 (LR) ≥ λ0(LR) ≥ 1

2aR
→∞

as R → ∞. Thus, the essential spectrum of L is empty and so L has
purely discrete spectrum. This completes the proof. �

3. Recurrence

In this section we present a characterization of recurrence for weakly
spherically symmetric graphs. We then give a comparison result for
general graphs.

We recall that for a graph b over (X,m) with associated Laplacian
L, the Green’s function G : X ×X −→ [0,∞] is defined as

G(x, y) =

∫ ∞
0

e−tL1y(x)dt =

∫ ∞
0

pt(x, y)m(y)dt.

A connected graph b is called recurrent if G(x, y) < ∞ for some (all)
x, y ∈ X and transient otherwise, see Theorem 6.1 in Chapter 6 for
various other characterizations of this property. We also note that
whenever b is connected, we have G(x, y) > 0 for all x, y ∈ X as the
heat semigroup is positivity improving by Theorem 1.26.

We note that recurrence is a measure-independent phenomenon in
the sense that if b is recurrent for one measure m, then b is recurrent
for all measures m. Hence, we either do not mention the measure or
assume that m = 1 in the statements below. Furthermore, we recall
that for a finite set O ⊆ X, we have defined

G(·, O) =
1

m(O)

∑
o∈O

G(·, o)
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and have shown in Theorem 9.14 that G(·, O) is a spherically symmetric
function in the case that the graph is weakly spherically symmetric with
respect to O.

We will first give a characterization of recurrence for weakly spher-
ically symmetric graphs. For this, we will use a characterization of
recurrence in terms of superharmonic functions. We recall that a func-
tion u ∈ F is called superharmonic if Lu ≥ 0. Theorem 6.1 (iv) states
that a connected graph is transient if and only if there exists a positive
non-constant superharmonic function. This will be used to prove the
characterization below.

Finally, we recall that ∂Br(O) denotes the boundary of the ball of
radius r ∈ N0 around O and b(∂Br(O)) denotes the total edge weight of
the boundary of the ball, which we refer to as the area of the boundary
of the ball. The following theorem gives a characterization of recurrence
in terms of this quantity.

Theorem 9.21 (Area ratio and recurrence). Let b be a locally finite
weakly spherically symmetric graph over X with respect to a finite set
O ⊆ X. Then, b is recurrent if and only if

∞∑
r=0

1

b(∂Br(O))
=∞.

Proof. As noted above, the measure plays no role in recurrence.
Hence, we let m = 1 be the counting measure on X. We also let
a > 0 be a constant. By Lemma 9.16, the unique spherically symmetric
function u with u(0) = 1 and(

L − 1

2a ·m(O)
1O

)
u = 0

satisfies

u(r + 1)− u(r) =
2

b(∂Br(O))

r∑
n=0

−1

2a ·m(O)
1O(n)m(Sn(O))u(n)

=
−1

a · b(∂Br(O))

for all r ∈ N0. Iterating this and using u(0) = 1, we obtain

u(r + 1) = 1− 1

a

r∑
k=0

1

b(∂Bk(O))

for r ∈ N0. We will use this equality with different constants a for both
implications in the proof.

First, if we assume that

a =
∞∑
r=0

1

b(∂Br(O))
<∞,
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then u is a non-constant strictly positive superharmonic function. Thus,
b is transient by Theorem 6.1 (iv).

Conversely, assume that b is transient. Then, by Theorem 6.1 (xi),
the Green’s function is finite, i.e., G(x, y) < ∞ for all x, y ∈ X. Fur-
thermore, by Theorem 6.26 (d), G(·, o) for o ∈ O satisfies

LG(·, o) = 1o.

Furthermore, G(·, o) is strictly positive as the graph is connected. By
Corollary 9.10, the function

gO(x) =
1

m(O)

∑
o∈O

G(x, o)

is spherically symmetric and from the above satisfies

LgO =
1

m(O)

∑
o∈O

LG(·, o) =
1

m(O)
1O =

1

gO(o′)m(O)
1OgO,

where the last equality holds for all o′ ∈ O since gO is spherically
symmetric. Hence, if we let u = gO/gO(o′) for o′ ∈ O, then u is strictly
positive spherically symmetric and satisfies u(0) = 1 with(

L − 1

2a ·m(O)
1O

)
u = 0

for a = gO(o′)/2. Now, by the consideration in the beginning of the
proof, u must also satisfy

u(r + 1) = 1− 1

a

r∑
k=0

1

b(∂Bk(O))

and hence, then u is positive if
∞∑
r=0

1

b(∂Br(O))
<∞.

This completes the proof. �

Remark. Another viewpoint on Theorem 9.21 is that the Green’s
function for weakly spherically symmetric graphs can be calculated
explicitly as

G(x, o) = m(o)
∞∑
n=r

1
1
2
b(∂Bn(O))

for x ∈ Sr(O), r ∈ N and o ∈ O. In particular,

G(x,O) =
∞∑
n=r

1
1
2
b(∂Bn(O))

for all x ∈ Sr(O), n ∈ N, from which Theorem 9.21 follows (Exer-
cise 9.11).
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We now illustrate the theorem above for our two main classes of
examples, namely spherically symmetric trees and anti-trees from Ex-
amples 9.2 and 9.3. For trees the characterization of recurrence reads
as follows.

Example 9.22 (Spherically symmetric trees and recurrence). Let
b be a spherically symmetric tree with branching number k. Then b is
recurrent if and only if

∞∑
r=0

1∏r
n=0 k(n)

=∞

(Exercise 9.3).

For anti-trees, rephrasing everything in terms of the sphere growth
gives the following characterization.

Example 9.23 (Anti-trees and recurrence). Let b be an anti-tree
with sphere size s. Then, b is recurrent if and only if

∞∑
r=0

1

s(r)s(r + 1)
=∞

(Exercise 9.4).

Next, we give a comparison result for recurrence. We note that,
intuitively speaking, stronger degree growth gives a larger push to in-
finity, which is needed for transience. This is made precise in the
following result.

In order to evoke the definition of stronger and weaker degree
growth, we need the presence of a measure. Hence, we will assume
that the measure is the counting measure for both graphs. As part of
the definition of stronger and weaker degree growth, this gives that the
cardinalities of O and Osym are the same.

Theorem 9.24 (Recurrence comparison). Let b be a locally finite
graph over (X,m) with m = 1 and let O ⊆ X be a finite set. If b
has stronger (respectively, weaker) degree growth than a locally finite
weakly spherically symmetric graph bsym over (Xsym,msym) with respect
to a finite set Osym ⊆ Xsym, where msym = 1 and bsym is transient
(respectively, recurrent), then b is transient (respectively, recurrent).

Proof. The statement follows immediately by Theorem 9.14 and
the characterization of recurrence in terms of the finiteness of the
Green’s function, Theorem 6.1 (xi). �

4. Stochastic completeness at infinity

In this section we investigate stochastic completeness at infinity.
We first characterize this property for weakly spherically symmetric
graphs and then give corresponding comparison results.
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For the proof of the characterization we will need an elementary
statement about the equivalence of the convergence of sums and prod-
ucts, which is recalled in Excavation Exercise 9.2.

We recall that a graph (b, c) over (X,m) with associated Laplacian

L = L
(D)
b,c,m is called stochastically complete at infinity if

e−tL1 +

∫ t

0

e−sL
c

m
ds = 1

for all t ≥ 0. Here, e−tL denotes the heat semigroup originally defined
via the spectral theorem on `2(X,m) and then extended to `∞(X) so
that we may apply it to the constant function 1 and the integral term
involves the semigroup extend to positive functions via the use of nets,
see Sections 1 and 2 for details concerning these extensions.

Stochastic completeness at infinity has a number of equivalent for-
mulations. We recall that a function u ∈ F is called α-harmonic for
α ∈ R if

(L+ α)u = 0.

By Theorem 7.18, stochastic completeness at infinity is equivalent to
the fact that every bounded α-harmonic function for α > 0 is trivial.
Furthermore, if u ∈ F satisfies (L + α)u ≥ 0, then u is called α-
superharmonic. The Khasminskii criterion for stochastic completeness
states that if there exists a positive α-superharmonic function for α > 0
which grows to infinity at infinity, then (b, c) is stochastically complete
at infinity, see Theorem 7.31.

We first state a characterization of stochastic completeness at infin-
ity for weakly spherically symmetric graphs. In particular, the criterion
below compares the growth of the total measure and killing term of the
ball to the area of the boundary.

Theorem 9.25 (Volume-area ratio and stochastic completeness).
Let (b, c) be a locally finite weakly spherically symmetric graph over
(X,m) with respect to a finite set O ⊆ X. Then, (b, c) is stochastically
complete at infinity if and only if

∞∑
r=0

c(Br(O)) +m(Br(O))

b(∂Br(O))
=∞.

In order to prove the theorem above, we first investigate the bound-
edness of α-harmonic functions for α > 0 by using the recursion formula
for solutions found in Lemma 9.16.

Lemma 9.26. Let (b, c) be a locally finite weakly spherically sym-
metric graph over (X,m) with respect to a finite set O ⊆ X. Then, the
following statements are equivalent:

(i) There exists α > 0 and a non-trivial spherically symmetric α-
harmonic function that is bounded.
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(ii) For all α > 0, all spherically symmetric α-harmonic functions are
bounded.

(iii) We have

∞∑
r=0

c(Br(O)) +m(Br(O))

b(∂Br(O))
<∞.

Proof. First of all, the recursion formula for spherically symmetric
solutions, Lemma 9.16, gives that a spherically symmetric α-harmonic
function u is uniquely determined by its value at 0. Thus, for a given
α > 0, all spherically symmetric α-harmonic functions are bounded if
there exists a non-trivial α-harmonic function that is bounded.

Furthermore, for α > 0, we let

a(α) =
∞∑
r=0

c(Br(O)) + αm(Br(O))

b(∂Br(O))
.

Obviously, the finiteness of a(α) for some α > 0 is equivalent to the
finiteness of a(α) for all α > 0.

Thus, it remains to show that a(α) < ∞ is equivalent to the exis-
tence of a non-trivial bounded spherically symmetric α-harmonic func-
tion.

By applying the recursion formula, Lemma 9.16, any spherically
symmetric u with (L+ α)u = 0 satisfies

u(r + 1)− u(r) =
2

b(∂Br(O))

r∑
n=0

(
c(Sn(O)) + αm(Sn(O))

)
u(n)

for all r ∈ N0, where we used q(n)m(Sn(O)) = c(Sn(O)), which follows
from the spherical symmetry of q. Now, if u(0) = 0, then u is trivial,
hence, we may assume that u(0) 6= 0 as we are interested in non-trivial
solutions.

If we assume that u(0) > 0, then the recursion formula implies that
u is monotonically increasing. In particular, u(r) ≥ u(0) for all r ∈ N0

and, thus,

u(r + 1)− u(r) ≥ 2 (c(Br(O)) + αm(Br(O)))

b(∂Br(O))
u(0)

for r ∈ N0. Therefore, if a(α) =∞, then

u(r) =
r−1∑
n=0

(u(n+ 1)− u(n))

≥
r−1∑
n=0

2 (c(Bn(O)) + αm(Bn(O)))

b(∂Bn(O))
u(0)

→∞
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as r → ∞. So, u is unbounded in this case. An analogous argument
shows that u(r)→ −∞ as r →∞ if u(0) < 0 and a(α) =∞.

On the other hand, if u(0) > 0, then u is strictly positive and
monotonicity and iteration yield

u(r + 1) ≤
(

1 +
2(c(Br(O)) + αm(Br(O)))

b(∂Br(O))

)
u(r)

≤
r∏

n=0

(
1 +

2(c(Bn(O)) + αm(Bn(O)))

b(∂Bn(O))

)
.

Now, if a(α) <∞, then
∞∏
n=0

(
1 +

c(Bn(O)) + αm(Bn(O))

b(∂Bn(O))

)
<∞

and the estimate above shows that u is bounded. A similar argument
shows that u is strictly negative and bounded below if u(0) < 0 and
a(α) <∞. This shows the equality between (i) and (iii).

Furthermore, since finiteness of a(α) for one α > 0 is equivalent to
finiteness of a(α) for all α > 0, we get that (i) and (ii) are equivalent.
This completes the proof. �

Proof of Theorem 9.25. If
∞∑
r=0

c(Br(O)) +m(Br(O))

b(∂Br(O))
<∞,

then there exists a non-trivial bounded α-harmonic function for α > 0
by Lemma 9.26. Thus, the graph is stochastically incomplete at infinity
by Theorem 7.18.

On the other hand, if the graph is stochastically incomplete at
infinity, then there exists a positive non-trivial bounded function v
which satisfies (L+α)v = 0 for α > 0 by Theorem 7.18. We recall that
A denotes the averaging operator defined by

Af(x) =
1

m(Sr(O))

∑
y∈Sr(O)

f(y)m(y)

for x ∈ Sr(O) and r ∈ N0. Applying this to v gives that u = Av is a
spherically symmetric function with

(L+ α)u = LAv + αAv = A(L+ α)v = 0

since L and A commute by Lemma 9.8. Therefore, there exists a
non-trivial bounded spherically symmetric function u which satisfies
(L+ α)u = 0 for α > 0 and, thus,

∞∑
r=0

c(Br(O)) +m(Br(O))

b(∂Br(O))
<∞

by Lemma 9.26. This completes the proof. �
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We again illustrate the characterization of stochastic completeness
at infinity for our two main classes of examples, namely, spherically
symmetric trees and anti-trees from Example 9.2 and 9.3.

Example 9.27 (Spherically symmetric trees and stochastic com-
pleteness). Let b be a spherically symmetric tree with branching num-
ber k. Then b is stochastically complete at infinity if and only if

∞∑
r=0

1 +
∑r

n=1

∏n−1
j=0 k(j)∏r

j=0 k(j)
=∞

(Exercise 9.3).

For anti-trees we obtain the following characterization. We note,
in particular, that we can use this to construct examples of stochasti-
cally incomplete graphs whose balls grow polynomially. We will discuss
stochastic completeness and volume growth further in Chapter 14.

Example 9.28 (Anti-trees and stochastic completeness). Let b be
an anti-tree with sphere size s. Then, b is stochastically complete at
infinity if and only if

∞∑
r=0

∑r
n=0 s(n)

s(r)s(r + 1)
=∞

(Exercise 9.4).

Remark. We note that the volume growth criterion above does not
hold for general graphs, as can be seen from examples (Exercise 9.5).

We can also link stochastic completeness and spectral properties for
weakly spherically symmetric graphs. In order to apply our spectral
results, we assume that c = 0. In this case, we speak of a graph as
being stochastically complete if e−tL1 = 1 for all t ≥ 0. Given this,
combining Theorem 9.25 with our previous spectral results we obtain
the following connection.

Corollary 9.29. Let b be a weakly spherically symmetric locally
finite graph over (X,m) with respect to a finite set O ⊆ X. If b is
stochastically incomplete, then

λ0(L) ≥ 1

2a
,

where

a =
∞∑
r=0

m(Br(O))

b(∂Br(O))
<∞

and the spectrum of L is discrete.

Proof. The corollary follows directly from Theorem 9.25 com-
bined with Theorem 9.15. �
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Remark. We note that the conclusion of Corollary 9.29 does not
hold for general graphs, as can be seen from examples (Exercise 9.6).

Finally, we present a comparison result for stochastic completeness
at infinity. Here we note that while a larger degree growth gives a
larger push to infinity, which is required for stochastic incompleteness
at infinity, the potential can remove heat from the graph before it can
be lost at infinity. Hence, in particular, we see that for stochastic
incompleteness at infinity we need both a stronger degree growth and
a weaker potential growth.

Theorem 9.30 (Stochastic completeness comparison). Let (b, c)
be a locally finite graph over (X,m) and let O ⊆ X be a finite set.
Let (bsym, csym) over (Xsym,msym) be a locally finite weakly spherically
symmetric graph with respect to a finite set Osym ⊆ Xsym.

(a) Let (b, c) have stronger degree and weaker potential growth with
respect to O than (bsym, csym) with respect to Osym. If (bsym, csym)
is stochastically incomplete at infinity, then (b, c) is stochastically
incomplete at infinity.

(b) Let (b, c) have weaker degree and stronger potential growth with
respect to O than (bsym, csym) with respect to Osym ⊆ Xsym. If
(bsym, csym) is stochastically complete at infinity, then (b, c) is stochas-
tically complete at infinity.

Proof. Let α > 0 be fixed and let u be the spherically symmetric
function on Xsym which satisfies (Lsym +α)u = 0 with u(0) = 1, which
is given by the recursion formula, Lemma 9.16. Note that u is strictly
increasing since α > 0. In particular, u is strictly positive. Given this
u, we define a spherically symmetric function v ∈ C(X) for x ∈ Sr(O)
and r ∈ N0 by

v(x) = u(r).

We now prove (a). Thus, assume that (b, c) has stronger degree and
weaker potential growth than (bsym, csym) and (bsym, csym) is stochasti-
cally incomplete at infinity. Then, Theorem 9.25 and Lemma 9.26
imply that u, and therefore v, is bounded. Furthermore, since u is
monotonically increasing, by using the assumptions of stronger degree
growth and weaker potential growth, we infer, for x ∈ Sr(O) ⊆ X and
r ∈ N0,

(L+ α)v(x)

= k+(x)(u(r)− u(r + 1)) + k−(x)(u(r)− u(r − 1)) + q(x)u(r)

≤ ksym
+ (r)(u(r)− u(r + 1)) + ksym

− (r)(u(r)− u(r − 1)) + qsym(r)u(r)

= (Lsym + α)u(r)

= 0.
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Hence, there exists a strictly positive bounded α-superharmonic func-
tion v defined on X. Therefore, (b, c) is stochastically incomplete at
infinity by Theorem 7.18.

To show (b), we assume that (b, c) has weaker degree and stronger
potential growth than (bsym, csym) and (bsym, csym) is stochastically com-
plete at infinity. By a similar argument to the above, we infer

(L+ α)v(x) ≥ (L+ α)u(r) = 0

for all x ∈ Sr(O) and all r ∈ N0. Furthermore, by Theorem 9.25
and Lemma 9.26, the function u must be unbounded. Hence, v(x) →
∞ as x → ∞, where x → ∞ means that x tends to the point ∞
in the one point compactification X̂ = X ∪ {∞} of X. Hence, the
graph (b, c) is stochastically complete by the Khasminskii criterion,
Theorem 7.31. �
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Exercises

Excavation exercises.

Exercise 9.1 (Log-Sum-Exp formula).

(a) Let sj ∈ R for j = 1, 2, . . . , n and let a = max{sj}nj=1. Show that

log
n∑
j=1

esj = a+ log
n∑
j=1

esj−a.

(b) Show that if fj : R −→ (0,∞) are functions with

lim
t→∞

log fj(t)

t
= C

for all j = 1, 2, . . . , n and some constant C, then

lim
t→∞

1

t
log

n∑
j=1

fj(t) = C.

Exercise 9.2 (Series and product convergence). Let (an) be a se-
quence of positive numbers. Show that the series

∑
n≥0 an converges if

and only if the product
∏

n≥0(1 + an) converges.

Example exercises.

Exercise 9.3 (Spherically symmetric trees). Let b be a spherically
symmetric tree with branching numbers k. Show that

m(Sr(o)) =
r−1∏
j=0

k(j) and b(∂Br(o)) = 2m(Sr+1(o))

for all r ∈ N.

(a) Show that if

a =
∞∑
r=0

1 +
∑r

n=1

∏n−1
j=0 k(j)

2
∏r

j=0 k(j)
<∞,

then λ0(L) ≥ 1/(2a) and the spectrum of L is discrete.
(b) Show that b is recurrent if and only if

∞∑
r=0

1∏r
j=0 k(j)

=∞.

(c) Show that b is stochastically complete at infinity if and only if

∞∑
r=0

1 +
∑r

n=1

∏n−1
j=0 k(j)∏r

i=0 k(j)
=∞.
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Assume now that

k(j) = jβ

for j ≥ 0 and β > 0. Determine the threshold for β in (a), (b), (c).
What happens at the threshold?

Exercise 9.4 (Anti-trees). Let b be an anti-tree with sphere size
s. Show that

m(Sr(o)) = s(r) and b(∂Br(o)) = 2s(r)s(r + 1)

for r ≥ 0.

(a) Show that if

a =
∞∑
r=0

∑r
n=0 s(n)

2s(r)s(r + 1)
<∞,

then λ0(L) ≥ 1/(2a) and the spectrum of L is discrete.
(b) Show that b is recurrent if and only if

∞∑
r=0

1

s(r)s(r + 1)
=∞.

(c) Show that b is stochastically complete at infinity if and only if
∞∑
r=0

∑r
n=0 s(n)

s(r)s(r + 1)
=∞.

Assume now that
s(r) = (r + 1)β

for r ≥ 0 and β > 0. Determine the threshold for β in (a), (b), (c).
What happens at the threshold?

In particular, show that there exists an anti-tree such that m(Br(o))
grows polynomially and the anti-tree is stochastically incomplete and
has a spectral gap with purely discrete spectrum.

Exercise 9.5 (Counterexample for general graphs). Give an exam-
ple of a stochastically incomplete graph b with standard weights and
counting measure such that

∞∑
r=0

#Br(o)

b(∂Br(o))
=∞.

Exercise 9.6 (Stochastic incompleteness and spectrum for general
graphs). Give an example of a stochastically incomplete graph such
that the bottom of both the spectrum and the essential spectrum is
zero.

(Hint: The stability results for stochastic completeness found in
Subsection 8 may be useful for this.)



EXERCISES 419

Extension exercises.

Exercise 9.7 (Spherically symmetric and strongly spherically sym-
metric graphs). Let (b, c) be a graph over (X,m). A graph automor-
phism is a bijective map π : X −→ X such that

b ◦ (π × π) = b, c ◦ π = c and m ◦ π = m.

We say that a graph is spherically symmetric with respect to a set O ⊆
X if for all r ∈ N0 and x, y ∈ Sr(O) there exists a graph automorphism
π such that π(x) = y and strongly spherically symmetric if there exists
a graph automorphism π such that π(x) = y and π(y) = x.

(a) Show that every strongly spherically symmetric graph is spheri-
cally symmetric and every spherically symmetric graph is weakly
spherically symmetric.

(b) Show that every spherically symmetric tree, Example 9.2, is strongly
spherically symmetric.

(c) Show that every anti-tree, Example 9.3, is weakly spherically sym-
metric. Show, furthermore, that an anti-tree is spherically sym-
metric if and only if b|Sr(o)×Sr(o) is a vertex transitive graph (i.e.,
for every two vertices x, y ∈ Sr(o) there is a graph automorphism
of b|Sr(o)×Sr(o) mapping x to y). Give an example of a strongly
spherically anti-tree and an anti-tree that is spherically symmetric
but not strongly spherically symmetric.

Exercise 9.8 (Local finiteness and symmetry). Let (b, c) be a con-
nected weakly spherically symmetric graph over (X,m) with respect
to a set O ⊆ X. Suppose that m(x) ≥ Cr > 0 for all x ∈ Sr(O) and
r ∈ N0. Show that the following statements are equivalent:

(i) O is finite.
(ii) Sr(O) is finite for some r ∈ N0.

(iii) Sr(O) is finite for all r ∈ N0.

In particular, show that any of the conditions above imply that the
graph is locally finite.

Exercise 9.9 (Weak spherical symmetry and the heat kernel). Let
(b, c) be a connected locally finite graph over (X,m) and let O ⊆ X be
finite. Let rz = d(z,O) denote the distance to O for z ∈ X. Show that
(b, c) is weakly spherically symmetric with respect to O if and only if

1

m(Srx(O))

∑
z∈Srx (O)

pt(y, z)m(z) =
1

m(Sry(O))

∑
z∈Sry (O)

pt(x, z)m(z)

for all x, y ∈ X and t ≥ 0. Show that this implies that

pt(·, O) =
1

m(O)

∑
o∈O

pt(·, o)m(o)

is a spherically symmetric function for all t ≥ 0.
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Exercise 9.10 (Strict decay of the Dirichlet kernel). Let b be a
locally finite weakly spherically symmetric graph over (X,m) with re-
spect to a finite set O ⊆ X. Let p be the heat kernel and let p(R) be
the Dirichlet restriction to BR(O) for R ∈ N0. Show that, for all t > 0
and R ≥ r ∈ N0,

p
(R)
t (r) > p

(R)
t (r + 1).

Exercise 9.11 (Green’s function and symmetry). Let b be a locally
finite weakly spherically symmetric graph over (X,m) with respect to
a finite set O ⊆ X. Show that

G(x, o) = m(o)
∞∑
n=r

2

b(∂Bn(O))

for x ∈ Sr(O) and o ∈ O is the Green’s function, so that

G(x,O) =
∞∑
n=r

2

b(∂Bn(O))

for x ∈ Sr(O). Give an alternate proof of Theorem 9.21 using this.
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Notes

In large part, the material presented in this chapter is based on
[KLW13], where the bulk of the results are presented for the case of
O = {o}. The idea to extend these results to more general O can be
found in [BG15].

Of course, there is a tremendous amount of work for regular trees or,
more generally, spherically symmetric trees with standard weights, see,
e.g., [Bro91, Car72, CKW94, CY99, FTN91, Fuj96b, MS99,
MS00, PP95, PW89, Ura97, Ura99], among many other works.

The first appearance of anti-trees seems to be in the case of lin-
ear sphere growth, i.e., s(r) = r + 1 in the paper of Dodziuk/Karp
[DK88]. In particular, as established there, this anti-tree is transient
and the bottom of the spectrum of the Laplacian is 0. This same anti-
tree appears in [Web10] as an example of a stochastically complete
graph whose vertex degree is unbounded. The study of general anti-
trees is then taken up in [Woj11], where stochastic completeness is
characterized for spherically symmetric graphs with standard weights
and counting measure. In particular, it is first shown there that anti-
trees give examples of stochastically incomplete graphs of polynomial
volume growth with respect to the combinatorial graph metric. This
result is then used to establish the sharpness of volume growth criteria
for stochastic completeness found in [GHM12].

The spectral theory of anti-trees is analyzed in [BK13], where it is
shown that the spectrum consists mainly of eigenvalues with compactly
supported eigenfunctions and a further spectral component which can
be singular continuous. Anti-trees are also used as a counterexample
to a conjecture of Golénia/Schumacher from [GS11] concerning the
deficiency indices of the adjacency matrix, see [GS13].

The fact that weak spherical symmetry is equivalent to the semi-
group and averaging operator commuting is Theorem 1 in [KLW13].
The heat kernel comparison, Theorem 9.11, is Theorem 2 in [KLW13].
For the case of standard edge weights and counting measure, this result
appears for spherically symmetric trees in [Woj08, Woj09]. These re-
sults were inspired by corresponding result for Riemannian manifolds
in [CY81]. The Green’s function comparison, Theorem 9.14, is then
an immediate consequence, see [Ura97] for comparisons of the discrete
time Green’s function of a graph with standard weights to a regular
tree. The heat kernel decay, Lemma 9.13, which is a key step in the
proof, goes back to Lemma 3.10 in [Woj09].

The estimate for the bottom of the spectrum and criterion for dis-
creteness of the spectrum, Theorem 9.15, are Theorem 3 in [KLW13].
In the case of spherically symmetric manifolds, similar estimates for
the bottom of the spectrum can be found in [BPB06].
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The spectral comparison theorem, Theorem 9.20, is Theorem 4
in [KLW13]. Earlier work on graphs includes comparisons on the
bottom of the spectrum with regular trees in the case of standard
graph weights found in [Bro91, Ura99, Ż99]. For Riemannian man-
ifolds, similar comparison theorems involve curvature quantities, see
[Che75, McK70].

The characterization of recurrence for weakly spherically symmetric
graphs, Theorem 9.21, can be found as Proposition 5.3 in [Hua14a]
for the continuous time Green’s function. For a discrete time Green’s
function, the result can already be found as Theorem 5.9 in the text-
book [Woe09]. The fact that recurrence is independent of the choice
of discrete or continuous time can be found in [Sch17b]. Comparison
results for recurrence in the case of spherically symmetric Riemannian
manifolds can be found in [Ich82a].

The characterization of stochastic completeness at infinity for weakly
spherically symmetric graphs, Theorem 9.25, can be found as Theo-
rem 5 in [KLW13]. For graphs with standard weights and counting
measure, the result goes back to [Woj11] which, in turn, was inspired
by the corresponding criterion for stochastic completeness of spheri-
cally symmetric Riemannian manifolds, see [Gri99]. Counterexamples
for this criterion on general graphs are found in [Hua11b] and for
manifolds in [BB10]. The counterpart to Corollary 9.29 linking sto-
chastic incompleteness and discreteness of the spectrum, for spherically
symmetric Riemannian manifolds, can be found in [Har09]. Finally,
the comparison theorems for stochastic completeness, Theorem 9.30,
can be found as Theorem 6 in [KLW13] and their counterparts in the
manifold case in [Ich82b].



CHAMBER 10

Sparseness and Isoperimetric Inequalities

Couldn’t peep it with a pair of bifocals I’m no joker, play me as a
joker. Be on you like a house on fire, smoke ya.

ODB.

In this chapter we investigate what it means for a graph to have
relatively few edges. This leads to the notions of weakly sparse, ap-
proximately sparse and sparse graphs, as well as graphs which satisfy
a strong isoperimetric inequality. These notions are all introduced in
Section 1. In Section 2 we prove the area and co-area formulas which
will be a key tool in this chapter and will also play a role in the inves-
tigation of Cheeger inequalities later. We use these formulas to give
connections between the notion of sparseness and form estimates for
weakly sparse graphs in Section 3, for approximately sparse graphs in
Section 4, for sparse graphs in Section 5 and for graphs satisfying a
strong isoperimetric inequality in Section 6. This leads to characteri-
zations of the discreteness of the spectrum of the Dirichlet Laplacian in
terms of a weighted degree at infinity via the use of the min-max prin-
ciple. In the case of purely discrete spectrum, we can also investigate
eigenvalue asymptotics. This is done for the various notions of sparse-
ness in the corresponding sections. Finally, we also give a criterion
for a strong isoperimetric inequality in terms of a mean curvature-type
quantity in Section 6.

1. Notions of sparseness

Loosely speaking, sparse graphs can be understood as graphs with
relatively few edges. We discuss a hierarchy of notions of sparseness,
namely, weakly sparse, approximately sparse and sparse graphs as well
as graphs which satisfy a strong isoperimetric inequality. This hierar-
chy is illustrated in Figure 1 below.

Let us be more precise. For a subset W ⊆ X, we introduce the
boundary of W as

∂W = (W ×X \W ) ∪ (X \W ×W ).

In the literature, the boundary of a set is often introduced with respect
to a graph and consists of all of the edges emanating from the set. Here,
we let the boundary be all pairs of vertices with one vertex insideW and
the other outside of W . In this sense, ∂W consists of all possible edges
emanating from W . Now, given a graph b, summing over ∂W with

423
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sparse

strong
isoperimetric

inequality

weakly sparse

approximately
sparse

Figure 1. The hierarchy of sparse graphs.

respect to b singles out the edges of the graph b as b(x, y) = 0 if there
is no edge between x and y. To this end, we let b(A) =

∑
(x,y)∈A b(x, y)

for A ⊆ X ×X.

Definition 10.1 (Hierarchy of sparseness). Let (b, c) be a graph
over (X,m).

(a) The graph is called sparse or, more specifically, k-sparse for k ≥ 0
if

b(W ×W ) ≤ km(W )

for all finite sets W ⊆ X.
(b) The graph is called approximately sparse if for all ε > 0 there exists

a kε ≥ 0 such that

b(W ×W ) ≤ ε

(
1

2
b(∂W ) + c(W )

)
+ kεm(W )

for all finite sets W ⊆ X.
(c) The graph is called weakly sparse or, more specifically, (a, k)-weakly

sparse for a, k ≥ 0 if

b(W ×W ) ≤ a

(
1

2
b(∂W ) + c(W )

)
+ km(W )

for all finite sets W ⊆ X.

Remark. Note that (b, c) is k-sparse if and only if (b, c) is (0, k)-
weakly sparse. Furthermore, (b, c) is approximately sparse if for all
ε > 0 there exists a kε ≥ 0 such that (b, c) is (ε, kε)-weakly sparse.

The interpretation of sparseness as stating that the graph has only
few edges becomes clear for graphs with standard weights and counting
measure.

Example 10.2 (Standard weights and sparseness). Let b be a graph
with standard weights onX with counting measure, i.e., b(x, y) ∈ {0, 1}
for all x, y ∈ X, c = 0 and m = 1. The set of edges of the graph is
given by E = {(x, y) ∈ X × X | b(x, y) = 1}. For a set W ⊆ X, the
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set of edges in W is denoted by EW = E ∩ (W × W ) and the edge
boundary of W by ∂EW = ∂W ∩ E. Then for all finite W ⊆ X, a
k-sparse graph satisfies

#EW ≤ k ·#W
while an (a, k)-weakly sparse graph satisfies

#EW ≤
a

2
·#∂EW + k ·#W.

This shows that sparse graphs have few edges within a set when com-
pared to the cardinality of the set.

We now discuss some specific examples which are left as an exercise.

Example 10.3 (Sparse graphs, Exercise 10.2). Let b be a graph
with standard weights on X with the counting measure.

(a) If b is a tree, then b is 2-sparse.
(b) Using Euler’s polyhedron formula one sees that if b is a planar

graph, then b is 6-sparse.
(c) There exist graphs that are weakly sparse but not approximately

sparse and graphs that are approximately sparse but not sparse.

We recall the definition of the normalizing measure n for a graph
(b, c) over X given by n(x) =

∑
y∈X b(x, y) + c(x) for x ∈ X. We note

that for the choice of m as the normalizing measure n, the definition
of sparseness becomes trivial for k ≥ 1.

Example 10.4 (Normalizing measure). Let (b, c) be a graph over
(X,n), where n is the normalizing measure. Then (b, c) is k-sparse for
all k ≥ 1.

Hence, the normalizing measure is not a suitable choice for the
concept of sparseness for k ≥ 1. However, for values of k between 0
and 1, this leads to another notion for graphs over X. This notion is
referred to in the literature as a strong isoperimetric inequality. We first
define this concept and show afterwards how it is related to sparseness
and weak sparseness.

Definition 10.5 (Strong isoperimetric inequality). A graph (b, c)
over X is said to satisfy a strong isoperimetric inequality with isoperi-
metric constant α > 0 if

αn(W ) ≤ 1

2
b(∂W ) + c(W )

for all finite sets W ⊆ X.

Remark. Note that 0 < α ≤ 1 since otherwise the definition can-
not be satisfied. Furthermore, if α = 1, then b = 0.

In contrast to the notions of sparseness above, the concept of a
strong isoperimetric inequality is independent of a measure. Let us
revisit the example of graphs with standard weights.
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Example 10.6 (Standard weights and isoperimetric inequality).
Let b be a graph with standard weights over X. If b satisfies a strong
isoperimetric inequality with isoperimetric constant α, then

α deg(W ) ≤ 1

2
#∂EW.

Remark. There are examples of graphs that are sparse and ei-
ther satisfy or do not satisfy a strong isoperimetric inequality (Exer-
cise 10.3).

Remark. The maximal isoperimetric constant α is sometimes re-
ferred to as a Cheeger constant. Another version of Cheeger’s constant
is discussed in Chapter 13.

The lemma below clarifies the relation between weak sparseness and
strong isoperimetric inequalities. For this equivalence the choice of the
measure m is irrelevant. On the other hand, we relate k-sparseness
with respect to the normalizing measure with k ∈ (0, 1) and strong
isoperimetric inequalities.

Lemma 10.7 (Strong isoperimetric inequality and sparseness). The
following statements hold:

(a) A graph (b, c) over (X,m) satisfies a strong isoperimetric inequality
with isoperimetric constant α > 0 if and only if the graph is ((1−
α)/α, 0)-weakly sparse.

(b) A graph (b, c) over (X,n) satisfies a strong isoperimetric inequality
with isoperimetric constant α > 0 if and only if the graph is (1−α)-
sparse.

Proof. For both (a) and (b) we use the identity

n(W ) = b(W ×W ) +
1

2
b(∂W ) + c(W )

for a finite set W ⊆ X.

For (a) we note that the identity implies that the inequality

αn(W ) ≤ 1

2
b(∂W ) + c(W )

is equivalent to

αb(W ×W ) ≤ (1− α)

(
1

2
b(∂W ) + c(W )

)
,

which proves the statement.

For (b) we use the identity to get the equivalence of the inequalities

αn(W ) ≤ 1

2
b(∂W ) + c(W ) = n(W )− b(W ×W )

and

b(W ×W ) ≤ (1− α)n(W ),
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which completes the proof. �

Remark. It is also possible to give a relation between (a, k)-weakly
sparse graphs for an arbitrary k and isoperimetric constants under
further restrictions (Exercise 10.5).

2. Co-area formulae

In this section we present an area and a co-area formula in a general
setting. These formulas will be used to derive spectral consequences.

We will present two formulas which involve the level sets of func-
tions. For a function f ∈ C(X) and t ∈ R, we define the level sets

Ωt(f) = {x ∈ X | f(x) > t}.

For w : X ×X −→ [0,∞) and U ⊆ X ×X, we let

w(U) =
∑

(x,y)∈U

w(x, y),

which may take the value ∞. We may think of w as a graph b, but we
neither need the symmetry nor the summability assumptions.

The first formula relates the differences of a function to an integral
over the boundary of the level sets. We refer to this as a co-area
formula.

Lemma 10.8 (Co-area formula). Let w : X × X −→ [0,∞) and
f ∈ C(X). Then,∑

x,y∈X

w(x, y)|f(x)− f(y)| =
∫ ∞
−∞

w(∂Ωt(f))dt,

where both sides may take the value ∞.

Proof. For vertices x, y ∈ X with x 6= y we define the interval
Ix,y,

Ix,y = [f(x) ∧ f(y), f(x) ∨ f(y)),

and let |Ix,y| = |f(x) − f(y)| be the length of Ix,y. Denote by 1x,y
the characteristic function of Ix,y. Then, for t ∈ R the inclusion
{(x, y), (y, x)} ⊆ ∂Ωt(f) holds if and only if t ∈ Ix,y. Therefore,

w(∂Ωt(f)) =
∑
x,y∈X

w(x, y)1x,y(t).
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Combining the considerations above, we calculate, using Tonelli’s the-
orem, ∫ ∞

−∞
w(∂Ωt(f))dt =

∫ ∞
−∞

∑
x,y∈X

w(x, y)1x,y(t)dt

=
∑
x,y∈X

w(x, y)

∫ ∞
−∞

1x,y(t)dt

=
∑
x,y∈X

w(x, y)|f(x)− f(y)|.

This proves the statement. �

For the next formula, we assume that the function is positive and
that there exists a measure on the space. The formula then relates the
values of the function to the measure of the level sets associated to the
function.

Lemma 10.9 (Area formula). Let m : X −→ [0,∞) and f : X −→
[0,∞). Then, ∑

x∈X

f(x)m(x) =

∫ ∞
0

m(Ωt(f))dt,

where both sides may take the value ∞.

Proof. We have x ∈ Ωt(f) if and only if 1(t,∞)(f(x)) = 1. We
calculate, using Tonelli’s theorem,∫ ∞

0

m(Ωt(f))dt =

∫ ∞
0

∑
x∈Ωt(f)

m(x)dt

=

∫ ∞
0

∑
x∈X

m(x)1(t,∞)(f(x))dt

=
∑
x∈X

m(x)

∫ ∞
0

1(t,∞)(f(x))dt

=
∑
x∈X

m(x)f(x).

This finishes the proof. �

3. Weak sparseness and the form domain

In this section we show that weak sparseness can be characterized
by a functional inequality. In turn, this functional inequality allows
us to explicitly determine the form domain D(Q) for Q = Q(D) as an
intersection of `2 spaces. A further consequence is a characterization
of purely discrete spectrum for the Laplacian L = L(D) in terms of the
weighted vertex degree.
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For background material on the spectrum of multiplication opera-
tors, see Appendix A, for the essential spectrum and min-max principle,
see Section 2 in Appendix E. Furthermore, Excavation Exercise 10.1,
which characterizes discreteness of the spectrum of multiplication op-
erators, will be used in this section.

We now explain some of the notation used below. Let (X,m) be a
discrete measure space. Any function f : X −→ [0,∞) induces a sym-
metric form qf : `2(X,m) −→ [0,∞] defined by qf (g) = 〈g, fg〉. With
a slight abuse of notation, we will also write f for qf . Furthermore,
for two forms q, q′ on a Hilbert space that both include a subspace D0

in their domain, we write q ≤ q′ on D0 whenever q(ϕ) ≤ q′(ϕ) for all
ϕ ∈ D0.

We recall the notion of the weighted vertex degree for a graph (b, c)
over (X,m) given as Deg = n/m. When we speak about Deg as a form
on Cc(X) we always consider Cc(X) as a subspace of `2(X,m), i.e., if
ϕ ∈ Cc(X), then

qDeg(ϕ) = 〈ϕ,Degϕ〉m =
∑
x∈X

ϕ2(x)Deg(x)m(x)

=
∑
x∈X

ϕ2(x)n(x) = 〈ϕ, ϕ〉n.

As qDeg is the quadratic form of the multiplication operator with respect
to Deg on `2(X,m), this directly implies that the maximal form domain

D(qDeg) = {f ∈ `2(X,m) | Deg1/2f ∈ `2(X,m)}
of qDeg satisfies

D(qDeg) = `2(X,n) ∩ `2(X,m) = Cc(X)
‖·‖qDeg

since the compactly supported functions are dense in every `2 space.
The theorem below provides a characterization of weakly sparse

graphs in functional analytic terms. In particular, we see that the
domain of the form qDeg being equivalent to the domain of the Dirichlet
form D(Q) characterizes weak sparseness.

Theorem 10.10 (Characterization of weak sparseness). Let (b, c)
be a graph over (X,m). Then, the following statements are equivalent:

(i) The graph is weakly sparse.

(ii) There exist ã ∈ (0, 1) and k̃ ≥ 0 such that on Cc(X) we have

(1− ã)Deg − k̃ ≤ Q.

(iii) There exist ã ∈ (0, 1) and k̃ ≥ 0 such that on Cc(X) we have

(1− ã)Deg − k̃ ≤ Q ≤ (1 + ã)Deg + k̃.

(iv) D(Q) = `2(X,n) ∩ `2(X,m).
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The proof will be given below. The direction (iii) =⇒ (ii) is of
course trivial. The direction (ii) =⇒ (i) follows directly by applying
the inequality in (ii) to characteristic functions. To carry out a similar
reasoning for the implication (i) =⇒ (iii) we have to reduce arbitrary
functions to characteristic functions. This is done by virtue of the area
and co-area formula above.

Before we come to details of the proof, we provide a corollary. This
corollary gives a characterization of discreteness of the spectrum of L
in terms of the weighted vertex degree tending to infinity.

Recall that an operator T on a Hilbert space is said to have purely
discrete spectrum if the spectrum of T consists only of discrete eigen-
values of finite multiplicity. We define the weighted vertex degree at
infinity by

Deg∞ = sup
K⊆X finite

inf
x∈X\K

Deg(x).

This quantity can be understood as minimizing the vertex degree out-
side of larger and larger finite sets and taking the limit.

Corollary 10.11 (Discrete spectrum). Let (b, c) be a weakly sparse
graph over (X,m). Then, the spectrum of L is purely discrete if and
only if Deg∞ =∞.

Proof. Let f± = (1 ± ã)Deg ± k̃, where ã and k̃ are as in (ii)
and (iii) of Theorem 10.10. By Theorem 10.10, weak sparseness is
equivalent to f− ≤ Q ≤ f+ on Cc(X). By a consequence of the min-
max principle, see Theorem E.11 in Appendix 2.3, discreteness of the
spectrum of L is now equivalent to discreteness of the spectrum of
multiplication by Deg, which is equivalent to Deg∞ =∞. �

The proof of Theorem 10.10 is divided into three lemmas and an ar-
gument which is essentially the closed graph theorem. The first lemma
is the part where the area and co-area formula enter. It will also be
used later in the case of sparse graphs to get sharper estimates.

Lemma 10.12. Let (b, c) be an (a, k)-weakly sparse graph over (X,m)
for a, k ≥ 0. Then, for all ϕ ∈ Cc(X),

〈ϕ, (Deg − k)ϕ〉 ≤ (1 + a)Q1/2(ϕ)(2〈ϕ,Degϕ〉 −Q(ϕ))1/2.

Proof. Let ϕ ∈ Cc(X) and denote the level sets of ϕ2 by Ωt =
{x ∈ X | ϕ2(x) > t} for t ≥ 0. Then, Deg = n/m yields

〈ϕ, (Deg − k)ϕ〉 =
∑
x∈X

ϕ2(x)n(x)− k
∑
x∈X

ϕ2(x)m(x).

The area formula, Lemma 10.9, gives

. . . =

∫ ∞
0

(n(Ωt)− km(Ωt)) dt.
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Applying the identity n(W ) = b(W ×W ) + 1
2
b(∂W ) + c(W ) for finite

sets W ⊆ X and the (a, k)-weak sparseness, we get

. . . =

∫ ∞
0

(
b(Ωt × Ωt) +

1

2
b(∂(Ωt)) + c(Ωt)− km(Ωt)

)
dt

≤ (1 + a)

∫ ∞
0

(
1

2
b(∂(Ωt)) + c(Ωt)

)
dt.

Now, employing the co-area formula, Lemma 10.8 for the first term
and the area formula, Lemma 10.9 for the second term, we arrive at

. . . =
1 + a

2

∑
x,y∈X

b(x, y)|ϕ2(x)− ϕ2(y)|+ (1 + a)
∑
x∈X

c(x)ϕ2(x)

=
1 + a

2

(∑
x,y∈X

b(x, y)|ϕ(x)− ϕ(y)||ϕ(x) + ϕ(y)|+ 2
∑
x∈X

c(x)ϕ2(x)

)
.

For the next step we add a point x∞ to X, i.e., let X̃ = X ∪{x∞} and

define b̃ as b̃ = b on X ×X and b̃(x, x∞) = b̃(x∞, x) = c(x). Further-

more, we extend ϕ to X̃ by letting ϕ(x∞) = 0. Then we continue using
the Cauchy–Schwarz inequality, which yields

. . . =
1 + a

2

∑
x,y∈X̃

b̃(x, y)|ϕ(x)− ϕ(y)||ϕ(x) + ϕ(y)|

≤ 1 + a√
2
Q1/2(ϕ)

(∑
x,y∈X

b(x, y)(ϕ(x) + ϕ(y))2 + 2
∑
x∈X

c(x)ϕ2(x)

)1/2

= (1 + a)Q1/2(ϕ) (2〈ϕ,Degϕ〉 −Q(ϕ))1/2 ,

where we use (ϕ(x) + ϕ(y))2 = 2(ϕ2(x) + ϕ2(y)) − (ϕ(x) − ϕ(y))2 in
the last equality. This finishes the proof. �

We use the lemma above to show that weak sparseness implies the
form inequality.

Lemma 10.13 (Weak sparseness implies form inequality). Let (b, c)
be a weakly sparse graph over (X,m). Then, there exist ã ∈ [0, 1) and

k̃ ≥ 0 such that on Cc(X) we have

(1− ã)Deg − k̃ ≤ Q ≤ (1 + ã)Deg + k̃.

If the graph is (a, k)-weakly sparse for a, k ≥ 0, then ã, k̃ can be chosen
as

ã =

√
a2 + 2a+ (a2 ∧ 1

4
)

1 + a
and k̃ = (2k(1− ã)) ∨

(
k
((

1
a
− a
)
∨ 3

2

)
2(1 + a)

)
.

If the graph satisfies a strong isoperimetric inequality with isoperimetric
constant α > 0, then we can choose ã =

√
1− α2 and k̃ = 0.
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Proof. Let ϕ ∈ Cc(X). Assume first that 〈ϕ, (Deg − k)ϕ〉 ≥ 0.
Then, the estimate in Lemma 10.12 can be squared and we obtain

(1 + a)2Q2(ϕ)− 2(1 + a)2〈ϕ,Degϕ〉Q(ϕ) + 〈ϕ, (Deg − k)ϕ〉2 ≤ 0.

Letting
r = 〈ϕ,Degϕ〉2 − (1 + a)−2〈ϕ, (Deg − k)ϕ〉2

and resolving the quadratic inequality above for Q(ϕ), we arrive at

〈ϕ,Degϕ〉 − r1/2 ≤ Q(ϕ) ≤ 〈ϕ,Degϕ〉+ r1/2.

In the case of a strong isoperimetric inequality, we have that (b, c)
is (a, k)-weakly sparse with a = (1− α)/α and k = 0 by Lemma 10.7.
In particular, we have r = (1−α2)〈ϕ,Degϕ〉2 and, therefore, we obtain

the statement with ã =
√

1− α2 and k̃ = 0.
We proceed to estimate r for the weakly sparse case in general.

We let 0 < λ < 1 and use the inequality ξζ ≤ (1
2
ξ + 1

2
ζ)2 with ξ =

λ〈ϕ, (2Deg − k)ϕ〉 and ζ = 1
λ
k〈ϕ, ϕ〉 to get

(1 + a)2r =(a2 + 2a)〈ϕ,Degϕ〉2 + k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉

≤(a2 + 2a)〈ϕ,Degϕ〉2 +

(
λ〈ϕ,Degϕ〉+

k

2

(
1

λ
− λ
)
〈ϕ, ϕ〉

)2

≤
((
a2 + 2a+ λ2

)1/2 〈ϕ,Degϕ〉+
k

2

(
1

λ
− λ
)
〈ϕ, ϕ〉

)2

.

Setting λ = a ∧ 1/2,

ã =

(
a2 + 2a+

(
a2 ∧ 1

4

)) 1
2

1 + a
and k̃ =

k
((

1
a
− a
)
∨ 3

2

)
2(1 + a)

we obtain r1/2 ≤ ã〈ϕ,Degϕ〉 + k̃〈ϕ, ϕ〉 with ã < 1. This yields the
desired inequality for ϕ ∈ Cc(X) with 〈ϕ, (Deg − k)ϕ〉 ≥ 0.

For the case of ϕ with 〈ϕ, (Deg − k)ϕ〉 < 0, we choose ã as above

and let k̃ = 2k(1− ã). The lower bound follows immediately since

〈ϕ, ((1− ã)Deg − k̃)ϕ〉 = (1− ã)〈ϕ, (Deg − 2k)ϕ〉 ≤ 0 ≤ Q(ϕ)

as ã < 1. For the upper bound we check

〈ϕ, ((1 + ã)Deg + k̃)ϕ〉 =〈ϕ, ((1 + ã)Deg + 2k(1− ã))ϕ〉
≥ (3− ã)〈ϕ,Degϕ〉
> 2〈ϕ,Degϕ〉
≥ Q(ϕ),

where the last inequality follows from Q ≤ 2Deg, which is proven in
Theorem 1.27. This finishes the proof. �

We next show the opposite direction, i.e., that the form inequality
implies weak sparseness.
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Lemma 10.14 (Lower form inequality implies weak sparseness). Let

(b, c) be a graph over (X,m) and let ã ∈ (0, 1) and k̃ ≥ 0 be such that
on Cc(X) we have

(1− ã)Deg − k̃ ≤ Q.

Then, (b, c) over (X,m) is (a, k)-weakly sparse with

a =
ã

1− ã
and k =

k̃

1− ã
.

Proof. Let W ⊆ X be finite and let 1W be the characteristic func-
tion of W . We will use the equalities n(W ) = b(W ×W ) + b(∂W )/2 +
c(W ) and Q(1W ) = b(∂W )/2 + c(W ). The assumed inequality applied
with ϕ = 1W yields

(1− ã)

(
b(W ×W ) +

1

2
b(∂W ) + c(W )

)
− k̃m(W ) ≤ 1

2
b(∂W ) + c(W ).

Rearranging the terms, we infer

b(W ×W ) ≤ ã

1− ã

(
1

2
b(∂W ) + c(W )

)
+

k̃

(1− ã)
m(W ),

which completes the proof. �

We now have all the ingredients to prove Theorem 10.10.

Proof of Theorem 10.10. The implication (i) =⇒ (iii) follows
from Lemma 10.13. The implication (iii) =⇒ (iv) follows from the ab-
stract definition of the form domain. Assume (iv), which is D(Q) =
`2(X,n) ∩ `2(X,m) = D(qDeg). By the closed graph theorem, the
canonical embedding of D(Q) into `2(X,n+m) = `2(X,n) ∩ `2(X,m)
is bounded. This gives the implication (iv) =⇒ (ii). Finally, the impli-
cation (ii) =⇒ (i) follows from Lemma 10.14. �

Remark. It is also possible to prove the implication (ii) =⇒ (iii)
of Theorem 10.10 directly (Exercise 10.6).

4. Approximate sparseness and first order eigenvalue
asymptotics

In this section we study approximately sparse graphs. Analogous to
the case of weakly sparse graphs in the previous section, we characterize
approximate sparseness via inequalities on the form. We also show
discreteness of the spectrum for the Laplacian L = L(D) associated to
the form Q = Q(D) when the degree function goes to infinity uniformly.

We recall that approximate sparseness means that for every ε > 0
there exists a kε ≥ 0 such that the graph is (ε, kε)-weakly sparse. Hence,
the constant ε controlling the weight on the edges on the boundary can
be made small at the expense of a larger kε, which is the constant con-
trolling the measure of the set. When ε tends to zero it is possible that



434 10. SPARSENESS AND ISOPERIMETRIC INEQUALITIES

kε does not give an upper bound. In this case, the graph is approxi-
mately sparse but not sparse.

For approximately sparse graphs we get analogous inequalities to
Theorem 10.10 but now for an arbitrary small ã at the expense of a
larger k̃. The proof is a rather immediate consequence of the explicit
estimates on the mutual dependence of a, k and ã, k̃ proven in the
lemmas of the previous section.

Theorem 10.15 (Characterization of approximate sparseness). Let
(b, c) be a graph over (X,m). Then, the following statements are equiv-
alent:

(i) The graph is approximately sparse.

(ii) For every ε̃ > 0, there exists a k̃ε ≥ 0 such that on Cc(X) we have

(1− ε̃)Deg − k̃ε ≤ Q.

(iii) For every ε̃ > 0, there exists a k̃ε ≥ 0 such that on Cc(X) we have

(1− ε̃)Deg − k̃ε ≤ Q ≤ (1 + ε̃)Deg + k̃ε.

Proof. (i) =⇒ (iii): Assume that the graph is (ε, kε)-weakly sparse
with ε arbitrarily small. By Lemma 10.13 we see that the graph then
satisfies

(1− ε̃)Deg − k̃ε ≤ Q ≤ (1 + ε̃)Deg + k̃ε

on Cc(X), where

ε̃ =

√
2ε

1 + ε
and k̃ε =

kε(1− ε)
2ε

for ε small enough. This gives the statement.

(iii) =⇒ (ii): This is trivial.

(ii) =⇒ (i): Given ε > 0, there exists 0 < ε̃ < 1 such that ε =

ε̃/(1− ε̃). If k̃ε is as given by (ii), then the graph is (ε, kε)-weakly

sparse with kε = k̃ε/(1− ε̃) by Lemma 10.14. �

Remark. The proof above actually shows that ε̃ can be bounded
by
√

2ε and k̃ε can be bounded by kε/(2ε).

We now give some spectral consequences. As for the case of weak
sparseness, we show that the spectrum of approximately sparse graphs
is discrete if and only if the degree function goes to infinity uniformly.
Furthermore, in the case of discrete spectrum, we provide asymptotics
of the eigenvalues λn(L) of L which are counted in increasing order
with multiplicity. To this end, when Deg∞ = ∞, we enumerate the
vertices (xn) of X so that Deg(xn) ≤ Deg(xn+1) for n ∈ N0. We let

dn = Deg(xn)

for n ∈ N0 and observe that dn are the eigenvalues of the multiplication
operator by Deg on `2(X,m).
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Corollary 10.16 (Eigenvalue asymptotics). Let (b, c) be an ap-
proximately sparse graph over (X,m). Then the spectrum of L is dis-
crete if and only if Deg∞ =∞. In this case,

lim
n→∞

λn(L)

dn
= 1.

Proof. By Theorem 10.15 we have, for all ϕ ∈ Cc(X) with ‖ϕ‖ =
1 and ε > 0,

f−(Deg(ϕ)) ≤ Q(ϕ) ≤ f+(Deg(ϕ)),

with continuous and monotonically increasing functions f± : [0,∞) −→
R given by

f±(t) = (1± ε)t± kε,
where kε is chosen according to Theorem 10.15. Thus, the characteri-
zation of discrete spectrum via Deg∞ =∞ follows immediately from a
consequence of the min-max principle, Theorem E.11.

Furthermore, for Deg∞ =∞, Theorem E.11 also readily gives

(1− ε)dn − kε ≤ λn(L) ≤ (1 + ε)dn + kε.

As ε > 0 can be chosen arbitrarily small, the statement follows. �

5. Sparseness and second order eigenvalue asymptotics

In this section we derive spectral consequence for sparse graphs.
First, we show an even stronger non-linear form estimate. This esti-
mate allows us to estimate the spectrum and to prove bounds on the
second order of the eigenvalue asymptotics.

We start with an estimate for the form of a sparse graph. As usual,
we let Q = Q(D).

Theorem 10.17 (Sparseness implies form inequality). Let (b, c) be
a k-sparse graph over (X,m) for some k ≥ 0. Then, for all ϕ ∈ Cc(X),
we have

〈ϕ, (Deg − k)ϕ〉− |k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉|1/2 ≤ Q(ϕ)

≤〈ϕ, (Deg + k)ϕ〉+ |k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉|1/2 .

If, additionally, Deg ≥ k, then, for all ϕ ∈ Cc(X),

〈ϕ,Degϕ〉− (k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉)1/2 ≤ Q(ϕ)

≤〈ϕ,Degϕ〉+ (k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉)1/2 .

Proof. Let ϕ ∈ Cc(X). We apply the estimate of Lemma 10.12
for k-sparse graphs which are (0, k)-weak sparse. This gives

〈ϕ, (Deg − k)ϕ〉 ≤ Q1/2(ϕ)(2〈ϕ,Degϕ〉 −Q(ϕ))1/2.
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If 〈ϕ, (Deg − k)ϕ〉 ≥ 0, then we obtain

Q2(ϕ)− 2〈ϕ,Degϕ〉Q(ϕ) + 〈ϕ, (Deg − k)ϕ〉2 ≤ 0,

which, after resolving the quadratic inequality for Q(ϕ), results in

〈ϕ, (Deg − k)ϕ〉− (k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉)1/2

≤ 〈ϕ,Degϕ〉− (k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉)1/2 ≤ Q(ϕ)

≤ 〈ϕ,Degϕ〉+ (k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉)1/2

≤ 〈ϕ, (Deg + k)ϕ〉+ (k〈ϕ, ϕ〉〈ϕ, (2Deg − k)ϕ〉)1/2 .

This implies the inequality for all ϕ ∈ Cc(X) with 〈ϕ, (Deg − k)ϕ〉 ≥ 0.
In particular, this shows the second set of inequalities.

For 〈ϕ, (Deg − k)ϕ〉 < 0, the lower bound follows immediately from
Q(ϕ) ≥ 0 and the upper bound is implied by the fact that Q ≤ 2Deg
from Theorem 1.27 in Section 5. �

Remark. Notably, the theorem above is not stated as an equiva-
lence. However, the inequality in case Deg ≥ k in the theorem above
implies that the graph is approximately sparse (Exercise 10.4).

We get an immediate spectral estimate for L = L(D) from the second
set of inequalities in the theorem above. Let d = infx∈X Deg(x) and
assume that D = supx∈X Deg(x) is finite.

Corollary 10.18 (Sparseness and spectral estimates). Let (b, c)
be a k-sparse graph over (X,m) for some k ≥ 0 such that d ≥ k and
D <∞. Then,

σ(L) ⊆ [d−
√
k(2D − k), D +

√
k(2D − k)].

Proof. The conclusion follows from the additional statement in
Theorem 10.17 as Deg ≥ d and σ(L) ⊆ [inf‖ϕ‖=1Q(ϕ), sup‖ϕ‖=1 Q(ϕ)],
see Theorem E.8, Theorem 1.27 and the fact that supσ(L) = ‖L‖. �

Since a d-regular tree with standard weights and counting measure
is 2-sparse by Exercise 10.2, we obtain that σ(∆) ⊆ [d− 2

√
d− 1, d +

2
√
d− 1] from the corollary above. It is well known, in fact, that

equality holds and, therefore, the estimate of the corollary is sharp.
Next, we come to the second order asymptotics of eigenvalues λn(L)

of L in the case where the weighted vertex degree grows to infinity.
Recall that in this case we denote by dn the eigenvalues of the multi-
plication operator by Deg. The theorem below gives a rigorous form of
the inequality

dn −
√

2kdn . λn(L) . dn +
√

2kdn

for large n.
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Corollary 10.19 (Second order eigenvalue asymptotics). Let (b, c)
be a k-sparse graph over (X,m). Then the spectrum of L is discrete if
and only if Deg∞ =∞. In this case,

lim
n→∞

λn(L)

dn
= 1

and

−
√

2k ≤ lim inf
n→∞

λn(L)− dn√
dn

≤ lim sup
n→∞

λn(L)− dn√
dn

≤
√

2k.

Proof. First of all we notice that if a graph is sparse, then it
is weakly sparse. Hence, the characterization of discreteness of the
spectrum follows from Corollary 10.11. Moreover, by Theorem 10.17
we have, for ϕ ∈ Cc(X) with ‖ϕ‖ = 1,

g−(Deg(ϕ)) ≤ Q(ϕ) ≤ g+(Deg(ϕ)),

with continuous functions g± : [0,∞) −→ R given by

g±(t) = t± k ± |k(2t− k)|1/2.
To apply the consequence of the min-max principle, Theorem E.11,
we additionally require monotonicity of g− and g+, which does not
necessarily hold for small t. However, there are clearly monotonically
increasing functions f− ≤ g− and f+ ≥ g+ which agree with g− and
g+, respectively, for large enough values.

Thus, we obtain from Theorem E.11

f−(dn) ≤ λn(L) ≤ f+(dn).

Assuming Deg∞ =∞, we can enumerate the eigenvalues of Deg by dn,
which tend to infinity. As f± = g± for large arguments, we therefore
obtain for large n

dn − k − |k(2dn − k)|1/2 ≤ λn(L) ≤ dn + k + |k(2dn − k)|1/2.
Hence, the statements follow. �

6. Isoperimetric inequalities and Weyl asymptotics

In this section we characterize graphs with a strong isoperimetric
inequality in terms of form estimates. In turn, this allows for estimates
on the Weyl asymptotics as a corollary. Afterwards we present a suf-
ficient criteria for a strong isoperimetric inequality in terms of a mean
curvature.

6.1. Main theorem and corollaries. In this subsection we show
that for graphs that satisfy a strong isoperimetric inequality we get a
similar characterization as in the case of weakly sparse graphs and
approximately sparse graphs. This is immediate from previous consid-
erations. We then discuss spectral asymptotics in this case.
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Theorem 10.20 (Characterization of strong isoperimetric inequal-
ity). Let (b, c) be a graph over (X,m). Then, the following statements
are equivalent:

(i) The graph satisfies a strong isoperimetric inequality with isoperi-
metric constant α > 0.

(ii) There exists an a ∈ (0, 1) such that on Cc(X) we have

(1− a)Deg ≤ Q.

(iii) There exists an a ∈ (0, 1) such that on Cc(X) we have

(1− a)Deg ≤ Q ≤ (1 + a)Deg.

Furthermore, the constant a in (ii) and (iii) can be chosen to be a =√
1− α2.

Proof. The implication (i) =⇒ (iii) follows from Lemma 10.13
with a =

√
1− α2. The implication (iii) =⇒ (ii) is trivial. Finally,

the implication (ii) =⇒ (i) follows by combining Lemma 10.14 and
Lemma 10.7 with α = 1− a. �

Similarly to the case of sparse graphs, we get an immediate spectral
estimate from the theorem above. Let

d = inf
x∈X

Deg(x) and D = sup
x∈X

Deg(x).

Corollary 10.21 (Fujiwara’s theorem). Let (b, c) be a graph over
X satisfying a strong isoperimetric inequality with isoperimetric con-
stant α > 0. Then,

σ(L) ⊆ [d(1−
√

1− α2), D(1 +
√

1− α2)],

where the upper bound of the interval is ∞ if D =∞.

Proof. The statement follows from the theorem above and the
spectral inclusion σ(L) ⊆ [inf‖ϕ‖=1Q(ϕ), sup‖ϕ‖=1 Q(ϕ)], see Theorem E.8,
Theorem 1.27 and the fact that supσ(L) = ‖L‖. �

Again, it is well known that the estimate is sharp for regular trees
with standard weights.

Remark. In the case of bounded degree one can even characterize
α = 0 by inf σ(L) = 0 (Exercise 10.7).

Next, we come to Weyl asymptotics. For a positive self-adjoint
operator A on a Hilbert space and λ < λess

0 (A), we let Nλ(A) be the
number of eigenvalues less than λ counted with multiplicity. The next
corollary states that we can characterize purely discrete spectrum for
graphs that satisfy a strong isoperimetric inequality. Furthermore, we
can determine the first order of the Weyl asymptotics, which is the
asymptotics of Nλ(L) as λ tends to infinity in the case of discrete
spectrum.
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Corollary 10.22 (Weyl asymptotics). Let (b, c) be a graph over
X that satisfies a strong isoperimetric inequality with isoperimetric
constant α > 0. Then, the spectrum of L is discrete if and only if
Deg∞ =∞. In this case,

Nλ/(1+a)(Deg) ≤ Nλ(L) ≤ Nλ/(1−a)(Deg),

where a =
√

1− α2.

Proof. As graphs which satisfy a strong isoperimetric inequality
are weakly sparse by Lemma 10.7, the characterization of discreteness
of the spectrum follows by the corresponding statement for weakly
sparse graphs, Corollary 10.11. Then, Theorem 10.20 above and the
consequence of the min-max principle, Theorem E.11, give

(1− a)dn ≤ λn(L) ≤ (1 + a)dn,

where dn denote the eigenvalues of Deg in increasing order whenever
Deg∞ =∞. Hence, we have, for all λ ≥ 0,

{n | (1 + a)dn ≤ λ} ⊆ {n | λn(L) ≤ λ} ⊆ {n | (1− a)dn ≤ λ}.
Since the cardinalities of these sets coincide withNλ((1 + a)Deg), Nλ(L)
and Nλ((1− a)Deg), we have

Nλ/(1+a)(Deg) = Nλ((1 + a)Deg) ≤ Nλ(L) ≤ Nλ((1− a)Deg) = Nλ/(1−a)(Deg).

This finishes the proof. �

Remark. One can also give criteria for the discreteness of the spec-
trum using a so-called isoperimetric constant at infinity (Exercise 10.8).

6.2. A mean curvature criterion. In this subsection we present
a sufficient criterion for a strong isoperimetric inequality. This criterion
is given in terms of a mean curvature.

Let (b, c) be a graph over (X,m). For a fixed vertex o ∈ X, let
Sr be the sphere of radius r about o with respect to the combinatorial
graph distance d. Define the quantities b± : X −→ [0,∞) by

b±(x) =
∑

y∈Sr±1

b(x, y)

for x ∈ Sr. These quantities are a measure-independent version of
the quantities k± from Chapter 9. Furthermore, we define a function
K : X −→ R, which can be seen as a mean curvature, by

K =
b− − b+

n
,

where n is the normalizing measure. Here, we suppress the dependence
of K on o in the notation.

With the normalizing measure, the curvature K arises by taking the
Laplacian of the combinatorial distance function d(o, ·) from o, which,
by analogy to the Riemannian setting, gives a notion of curvature.
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Lemma 10.23. Let b be a graph over (X,n) and o ∈ X. The func-
tion d(o, ·) is in F and

Ld(o, ·) = K.

Proof. The function d(o, ·) is bounded on the combinatorial neigh-
borhood of every vertex. Hence, d(o, ·) ∈ F . We calculate for x ∈ Sr
Ld(o, x)n(x)

=
∑

y∈Sr−1

b(x, y)(d(o, x)− d(o, y)) +
∑

y∈Sr+1

b(x, y)(d(o, x)− d(o, y))

= b−(x)− b+(x).

This finishes the proof. �

We now relate lower bounds on the mean curvature to an isoperi-
metric inequality for a graph over a space with the normalizing mea-
sure.

Theorem 10.24 (Mean curvature and isoperimetric inequality).
Let (b, c) be graph over (X,n). If there exists a C > 0 such that −K +
c/n ≥ C, then the graph satisfies a strong isoperimetric inequality with
isoperimetric constant at least C.

Proof. Denote by L0 the formal Laplacian for the graph (b, 0) over
(X,n). Given a finite set W ⊆ X, we estimate, using the assumption
−K + c/n ≥ C and employing Lemma 10.23,

Cn(W )− c(W ) ≤−
∑
x∈W

K(x)n(x)

=−
∑
x∈W

L0d(o, x)n(x)

=−
∑
x∈X

1W (x)L0d(o, x)n(x).

Since W is finite, 1W ∈ Cc(X) and d(o, ·) ∈ F , we proceed using
Green’s formula, Proposition 1.5,

. . . = −1

2

∑
x,y∈X

b(x, y)(d(o, x)− d(o, y))(1W (x)− 1W (y))

≤ 1

2

∑
x,y∈X

b(x, y)|d(o, x)− d(o, y)||1W (x)− 1W (y)|

≤ 1

2

∑
x,y∈X

b(x, y)|1W (x)− 1W (y)|

=
1

2
b(∂W ).

This yields the statement. �
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Exercises

Excavation exercises.

Exercise 10.1 (Multiplication operators and spectrum). Let (b, c)
be a graph over (X,m). Show that the multiplication operator defined
by multiplying by Deg on `2(X,m) has purely discrete spectrum if and
only if Deg∞ =∞, where

Deg∞ = sup
K⊆X finite

inf
x∈X\K

Deg(x),

by determining all eigenvalues and eigenfunctions of the multiplication
operator.

Example exercises.

Exercise 10.2 (Trees and planar graphs are sparse). Consider
graphs with standard weights and counting measure.

(a) Show that trees are 2-sparse.
(b) Show that planar graphs are 6-sparse.

(Hint: Use Euler’s polyhedron formula.)
(c*) Show that there exist graphs that are weakly sparse but not ap-

proximately sparse and graphs that are approximately sparse but
not sparse.
(Hint: Let (βn) be a sequence of natural numbers. Denote by b0

a spherically symmetric tree (for the definition, see Chapter 9)
with standard weights, root called o and vertex degree βn in the
n-th sphere. Denote by Sn the vertices of the distance sphere of
radius n with respect to the combinatorial graph distance (and
observe that #Sn = β0

∏n−1
j=1 (βj − 1)). Now choose a sequence

of natural numbers (γn) such that there exists a γn-regular graph
over Sn with standard weights, i.e., every vertex in Sn has exactly
γn neighbors, n ∈ N. We denote these graphs by bn. (Show that
such graphs exist for every n ∈ N whenever γnβ0

∏n−1
j=1 (βj − 1) is

even and γn < β0

∏n−1
j=1 (βj − 1), n ≥ 1.) Let

b =
∞∑
n=0

bn

and

a = lim sup
n→∞

γn
βn
,

which may take the value ∞. If a′ > a, then there exists a k ≥ 0
such that the graph b is (a′, k)-weakly sparse. On the other hand,
if the graph b is (a′, k)-weakly sparse for some k ≥ 0, then a′ ≥ a.
Hence, b is approximately sparse if and only if a = 0. In this case,
the graph b is sparse if and only if lim supn→∞ γn <∞.)
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Exercise 10.3 (Sparseness and strong isoperimetric inequality).

(a) Present an example of a graph that is sparse and satisfies a strong
isoperimetric inequality.

(b) Present an example of a graph that is sparse but does not satisfy
a strong isoperimetric inequality.

(c) Present an example of a graph that is not sparse but satisfies a
strong isoperimetric inequality.
(Hint: Use Theorem 10.24.)

Exercise 10.4 (Approximate sparseness and Q). Let (b, c) be a
graph over (X,m). If

Q2(ϕ)− 2〈ϕ,Degϕ〉Q(ϕ) + 〈ϕ, (Deg − k)ϕ〉2 ≤ 0

for all ϕ ∈ Cc(X), show that (b, c) is approximately sparse.

Extension exercises.

Exercise 10.5 (Weak sparseness and isoperimetric inequality).
Show that an (a, k)-weakly sparse graph (b, c) over (X,m) satisfies an
isoperimetric inequality with isoperimetric constant

α =
d0 − k
d0(1 + a)

with d0 = infx∈X(n/m)(x) whenever d0 > k.

Exercise 10.6 (Form inequalities). Show the implication (ii) =⇒
(iii) of Theorem 10.10 directly.

Exercise 10.7 (α = 0). Let (b, c) be a graph over (X,m) with
associated Laplacian L = L(D). Let D = supx∈X Deg(x). Show that if
D <∞, then

inf
W⊆X,Wfinite

1
2
b(∂W ) + c(W )

n(W )
= 0

if and only if λ0(L) = 0.

Exercise 10.8 (Isoperimetric constant and spectrum). For a con-
nected graph (b, c) over X consider the isoperimetric constant defined
via

α = inf
W⊆X

1
2
b(∂W ) + c(W )

n(W )

and the isoperimetric constant at infinity defined via

α∞ = sup
K⊆X finite

inf
W⊆X\K

1
2
b(∂W ) + c(W )

n(W )
.
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Let m be a uniformly positive measure, i.e., infx∈X m(x) > 0 and

Deg∞ = sup
K⊆X finite

inf
x∈X\K

Deg(x).

(a) Assume that α∞ > 0. Show that the operator L has purely discrete
spectrum if and only if Deg∞ =∞.
(Hint: Show that for all ε > 0 there exists a Cε ≥ 0 such that the
inequalities

(1− ε)(1−
√

1− α∞)Deg − Cε ≤ Q

≤ (1 + ε)(1−
√

1− α∞)Deg + Cε

hold.)
(b) Assume that D∞ =∞. Show that α > 0 if and only if α∞ > 0.

(Hint: Consider the operator Ln with respect to the graph (b, c)
over (X,n) and show that λess

0 (Ln) > 0 if and only if α∞ > 0 and
λ0(Ln) = 0 if and only if α = 0.)
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Notes

Historically, sparseness and isoperimetric estimates are well-known
concepts that have appeared in rather disjoint contexts. The unified
treatment of the two topics and their connection to spectral estimates
that is presented here goes back to material in [BGK15] for graphs
with standard weights.

In numerics, sparseness of a matrix classically means that it has
relatively few non-zero entries. This notion found its way into graph
theory in works such as [EGS76, Lor79], where it translates into
having relatively few edges compared to the number of vertices. We
note that there exists a multitude of different definitions for sparseness,
too many to cover completely here, so we only cite [Bre07, LS08,
AABL12] to give an idea of the range of notions. The first connection
to spectral graph theory is due to Mohar [Moh13, Moh15], where the
number of large eigenvalues of the adjacency matrix of a finite graph
is related to the sparseness of the graph.

The first explicit relation between isoperimetric inequalities and an
estimate on the bottom of the spectrum of the Laplacian on mani-
folds is found in the work of Cheeger [Che70]. However, the gen-
eral idea of relating isoperimetric estimates and Sobolev inequalities
can be traced back to Federer/Fleming [FF60] and Maz′ja [Maz60].
These results are proven in the continuum setting. The first results for
Laplacians on graphs were independently shown by Dodziuk [Dod84]
and Alon/Milman [AM85]. These results were preceded by works
of Fiedler, which include similar ideas for the adjacency matrix of a
finite graph [Fie73]. The specific setting of [Dod84, AM85] are
graphs with standard weights and counting measure. Later, a cor-
responding result was proven for the normalizing measure by Dodz-
iuk/Kendall [DK86]. Since then various versions have been proven,
see e.g. [Ger88, Moh88, Moh91, Fuj96b, CGY00, Dod06]. For
finite graphs such results are found in the textbooks [Big93, Chu97].

The first use of isoperimetric inequalities to show discreteness of the
spectrum can be traced back to the work of Donnelly/Li [DL79] in the
case of manifolds. For graphs with standard weights and normalizing
measure, a result of Fujiwara [Fuj96b] gives conditions under which
the essential spectrum consists of one point. For the counting measure,
discreteness of the spectrum was shown in [Kel10, Woj08, Woj09].
This was generalized for weighted graphs in [KL10] and the estimates
proven there were used by Golénia [Gol14] to derive eigenvalue asymp-
totics in terms of the degree.

The results as they are presented in this chapter are an exten-
sion of [BGK15] from the setting of standard weights with counting
measure to general graphs. Furthermore, the second term in the eigen-
value asymptotics for sparse graphs in Theorem 10.17 is an extension



Notes 445

of [BGK21]. The mean curvature criterion in Subsection 6.2 appeared
in [DK88] for graphs with standard weights and is used in [Woj09] to
show discreteness of the spectrum.

Finally, let us mention that isoperimetric inequalities play an es-
sential role in applications such as parallel computing. Here one is
interested in dividing a large data set into subsets such that the con-
nection between these subsets is minimal. While finding these sets
is computationally hard, spectral computations are easier in numer-
ics. Thus, the applications perspective is somewhat reverse to ours,
see[BH09, ST96] and references therein for a first look into these
considerations.





Part 3

Geometry and Intrinsic Metrics



Synopsis

The concept of a metric is a most fundamental one in geometry.
In this part of the book we introduce the notion of intrinsic metrics
for a graph in Chapter 11. We then use intrinsic metrics to give a
series of Caccioppoli inequalities which are useful for studying harmonic
functions, form uniqueness, recurrence and the spectrum in Chapter 12.
Next, we use intrinsic metrics to study the bottom of the spectrum in
Chapter 13. More specifically, we give both a lower bound via a Cheeger
inequality involving an isoperimetric constant and an upper bound via
a Brooks estimate involving volume growth. Finally, we use intrinsic
metrics to establish a uniqueness class result for the heat equation
and to give a volume growth criterion for stochastic completeness in
Chapter 14.



CHAMBER 11

Intrinsic Metrics: Definition and Basic Facts

Off on a natural charge, bon-voyage.
ODB.

In this chapter we introduce the notion of an intrinsic metric. Sec-
tion 1 is devoted to definitions and motivations. An important class of
examples are so-called path metrics, which we discuss in Section 2. In
this section we prove a Hopf–Rinow theorem, which characterizes met-
ric completeness. This theory is interesting for its own sake but can be
skipped by the reader who is only interested in specific applications.
Section 3 discusses relevant examples and relates intrinsic metrics to
other metrics on graphs that appear in the literature. Finally, in Sec-
tion 4 we discuss several assumptions on the metric and introduce some
cutoff functions which we will use in the forthcoming chapters.

1. Definition and motivation

In this section we introduce intrinsic metrics and motivate the def-
inition via several facts from the setting of Riemannian manifolds. We
also give a characterization of intrinsic metrics in terms of a Lipschitz
property.

For the theory developed in this chapter we do not need distances
to be non-degenerate. That is, we allow for different vertices to be
distance zero apart. This yields a so-called pseudo metric. Specifically,
a pseudo metric is a symmetric map % : X × X −→ [0,∞) with zero
diagonal that satisfies the triangle inequality.

Definition 11.1 (Intrinsic metric). A pseudo metric % is called an
intrinsic metric for a graph b over (X,m) if∑

y∈X

b(x, y)%2(x, y) ≤ m(x)

for all x ∈ X. We call a pseudo metric % an intrinsic metric for a graph
(b, c) over (X,m) if % is intrinsic for b over (X,m).

We stress that we speak of intrinsic metrics although we only as-
sume that the corresponding objects are pseudo metrics. This is com-
mon in the literature and we follow this convention for the sake of
brevity.

Let us discuss the motivation of this definition from the perspec-
tive of Riemannian geometry. The reader familiar with Riemannian

449
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manifolds can fill in the details. Otherwise, the statements below can
be taken as facts to motivate our approach. Let M be a connected
Riemannian manifold and let

A1(M) = {f ∈ L1
loc(M) | f is weakly differentiable and |∇Mf |2 ≤ 1},

where ∇M is the Riemannian gradient. Then, the Riemannian distance
dM can be recovered via

dM(x, y) = sup{f(x)− f(y) | f ∈ A1(M)}
= sup{δ(x, y) | δ is a metric with δ(o, ·) ∈ A1(M) for all o ∈M}

for x, y ∈M.
From these equalities, one can deduce dM(o, ·) ∈ A1(M), which is

equivalent to

Lip1(M) = A1(M),

where Lip1(M) is the set of Lipschitz continuous functions with respect
to dM with Lipschitz constant 1.

To discuss how our definition of intrinsic metrics is related to these
facts for manifolds, we have to introduce the concept of the norm of a
gradient first. Let b be a graph over (X,m) and let f ∈ C(X). Then,
we define the norm of the gradient |∇f | = |∇f |b,m of f as

|∇f |(x) =

(
1

m(x)

∑
y∈X

b(x, y)(f(x)− f(y))2

)1/2

for x ∈ X.
In order to motivate this definition, we observe that the directional

difference of a function f ∈ C(X) gives rise to a function ∇f : X ×
X −→ R via

∇f(x, y) = f(x)− f(y).

We then take the scalar product of ∇f times ∇f over the fiber {x}×X
with respect to b considered as a measure, i.e.,

〈∇f,∇f〉b(x) =
∑
y∈X

b(x, y)(f(x)− f(y))2,

which takes values in [0,∞]. This gives rise to a function and, by
extending to subsets, a measure 〈∇f,∇f〉b on X.

Now, we consider the Radon–Nikodym derivative of the measure
〈∇f,∇f〉b with respect to the measure m. Taking the square root of
this Radon–Nikodym derivative yields the notion of the norm of the
gradient, as introduced above. That is, |∇f | = |∇f |b,m is given by

|∇f |(x) =

(
1

m(x)

∑
y∈X

b(x, y)(f(x)− f(y))2

)1/2
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for x ∈ X. Then, as c = 0, we have, for all f ∈ C(X),

Q(f) =
1

2

∑
x∈X

〈∇f,∇f〉b(x) =
1

2

∑
x∈X

|∇f |2(x)m(x).

With these notions we define

A1(X) = {f ∈ C(X) | |∇f |2 ≤ 1}.

Given A1(X), we can define a metric σ on X in analogy to the manifold
case as

σ(x, y) = sup{f(x)− f(y) | f ∈ A1(X)}.

It is immediate that

A1(X) ⊆ Lip1,σ(X),

where LipC,δ(X) is the set of Lipschitz continuous functions on X with
respect to a pseudo metric δ having Lipschitz constant C. We will refer
to such functions as C-Lipschitz for short.

However, in general, we do not have an equality even for finite
graphs. In fact, in general, the space A1(X) will not be the space of
Lipschitz functions for any metric. This is due to the fact that, while
the space of Lipschitz functions is closed under taking suprema, the
space A1(X) may not be. This is illustrated in the following example.

Example 11.2 (A1(X) 6= Lip1,δ(X)). Let X = {0, 1, 2} and let b
be symmetrically given by b(0, 1) = b(1, 2) = 1, b(0, 2) = 0 and m = 1.
Then, the functions f and g with f(0) = g(2) = 1 and 0 otherwise are
both in A1(X). However, the function f ∨ g is not in A1(X) since

|∇(f ∨ g)|2(1) = (f(1)− f(0))2 + (g(1)− g(2))2 = 2 > 1 = m(1).

On the other hand for any metric δ, it is always the case that f ∨ g ∈
Lip1,δ(X) if f, g ∈ Lip1,δ(X). So, we conclude that A1(X) cannot be
equal to Lip1,δ for any metric δ.

The example shows that, in general, the function σ(o, ·) is not in
A1(M). Thus, σ is not an intrinsic metric in this case, as we will see
below. Indeed, we see that our definition of intrinsic metrics coincides
with the fact that the 1-Lipschitz functions are included in A1(X) or,
equivalently, that the gradient of the pseudo metric with one variable
fixed has norm less than one.

Lemma 11.3 (Characterization intrinsic metrics). Let b be a graph
over (X,m) and let % be a metric. Then, the following statements are
equivalent:

(i) % is an intrinsic metric.
(ii) Lip1,%(X) ⊆ A1(X).
(iii) |∇%(o, ·)|2 ≤ 1, i.e., %(o, ·) ∈ A1(X) for all o ∈ X.
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In particular, if η ∈ C(X) is C-Lipschitz with respect to an intrinsic
metric % and C ≥ 0, then

|∇η|2 ≤ C2.

Proof. (i) =⇒ (ii): Let f ∈ Lip1,%(X), where % is an intrinsic
metric. Then,

1

m(x)

∑
y∈X

b(x, y)(f(x)− f(y))2 ≤ 1

m(x)

∑
y∈X

b(x, y)%2(x, y) ≤ 1

so that f ∈ A1(X).

(ii) =⇒ (iii): Note that %(o, ·) ∈ Lip1,%(X) for every o ∈ X since
|%(o, x) − %(o, y)| ≤ %(x, y). As Lip1,%(X) ⊆ A1(X), we conclude
%(o, ·) ∈ A1(X).

(iii) =⇒ (i): Note that since |∇%(o, ·)|2 ≤ 1 for all o ∈ X, we get

|∇%(o, o)|2 =
1

m(o)

∑
y∈X

b(o, y)(%(o, o)− %(o, y))2

=
1

m(o)

∑
y∈X

b(o, y)%2(o, y) ≤ 1.

Hence, ∑
y∈X

b(o, y)%2(o, y) ≤ m(o)

for all o ∈ X, so that % is intrinsic.
The “in particular” statement follows immediately as C-Lipschitz

means that

|η(x)− η(y)| ≤ C%(x, y)

for x, y ∈ X. �

Remark. The definition of |∇f | also appears in the setting of the

so-called Bakry–Émery calculus. The Bakry–Émery calculus starts
with a Laplace operator, which in our case is L, in order to define
the norm of a gradient square via

Γ(f) = −1

2
(Lf 2 − 2fLf).

A direct calculation shows

Γ(f) =
1

2
|∇f |2.
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2. Path metrics and a Hopf–Rinow theorem

In this section we define path metrics on discrete spaces. The main
goal is a Hopf–Rinow theorem, which states that metric completeness,
geodesic completeness and finiteness of balls are all equivalent for path
metrics on locally finite graphs. Along the way, we show that the
assumptions of discreteness and metric completeness already yield that
any two vertices can be connected by a geodesic.

Let X be a discrete space. We call a symmetric map w : X×X −→
[0,∞] with

w(x, y) = 0 if and only if x = y

a weight over X. Weights are a slightly different notion than graphs
as we allow for the value infinity, ask for a non-vanishing off-diagonal
and do not assume a summability condition about the vertices. Never-
theless, we use the same terminology as in the case of graphs to speak
about vertices, neighbors, paths and connectedness.

More specifically, we call the elements of X vertices and say that
x and y are neighbors if w(x, y) < ∞, in which case we write x ∼ y.
Thus, in contrast to graphs, the lack of a connection between vertices
is indicated by w being infinite. Furthermore, we call a sequence (xn)
of pairwise different elements of X a path if all subsequent elements are
neighbors. We say that w is connected if every two elements of X can
be connected by a path. We note that every vertex can be connected
to itself by a path which consists of that vertex alone.

We let Πx,y denote the set of all paths from x to y and call the
sum of the weights along a path the length of a path. That is, if
(xk)

n
k=0 ∈ Πx,y, then the length lw((xk)) of (xk) is

lw((xk)) =
n−1∑
k=0

w(xk, xk+1).

Definition 11.4 (Path metric). Let w be a weight over X. We
define the path (pseudo) metric δw with respect to w by

δw(x, y) = inf
(xk)∈Πx,y

lw((xk)),

where we let inf ∅ = ∞. Moreover, if a metric δ can be realized by
a path metric δw with respect to a weight w, then we say that δ is
induced by w. We call any such δ a path metric and call (X, δ) a path
metric space.

Remark. A path metric also often gives a weight on the graph.
Furthermore, the path metric induced by this weight is equal to the
original path metric (Exercise 11.4).
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Similar to the definition of intrinsic metrics, we only assume that δ
is a pseudo metric; however, we suppress the term “pseudo” unless it
is relevant for our discussion.

An important example is the combinatorial graph distance. Here,
we start with a graph b over X.

Example 11.5 (Combinatorial graph distance). Let b be a graph
over X. Let wb(x, y) = 1 if b(x, y) > 0 and ∞ otherwise. Then, the
path metric with respect to wb is the combinatorial graph distance
δwb = d.

Obviously, the combinatorial graph distance is actually a metric
and not only a pseudo metric. The next example shows that a path
metric is not necessarily non-degenerate and that the topology induced
by a path metric is not necessarily Hausdorff.

Example 11.6 (A non-Hausdorff space). Let X = N0 ∪ {∞} and
define w by w(0, n) = w(n, 0) = w(n,∞) = w(∞, n) = 1/n for n ∈ N
and ∞ otherwise. Let δw be the path pseudo metric induced by w.
Then, δw(0,∞) = 2 infn∈N(1/n) = 0.

Analogous to graphs, we now define the notion of local finiteness.

Definition 11.7 (Locally finite weight). We call a weight w over
X locally finite if

#{y ∈ X | w(x, y) <∞} <∞
for all x ∈ X. If the weight that induces a path metric δ is locally finite,
then we call (X, δ) a locally finite path metric space.

It turns out that path pseudo metrics for locally finite weights are,
in fact, metrics. Indeed, the statement is even stronger in that such a
metric induces the discrete topology on X.

Lemma 11.8 (Locally finite implies discrete). Let (X, δ) be a locally
finite path metric space. Then, (X, δ) is a discrete metric space. In
particular, δ is a metric and compact sets are finite.

Proof. Let w be the weight that induces δ and let x, y ∈ X with
x 6= y. Then, any path from x to y must pass through one of the finitely
many neighbors y1, . . . , yN of y. Let mini=1,...,N w(y, yi) = w0 > 0.
Then,

δw(x, y) = inf
(xk)∈Πx,y

lw((xk)) ≥ w0.

This implies the statements. �

Next, we turn to the study of paths and geodesics for a connected
weight w over X. We first introduce the set Πo of one-sided paths
starting at a vertex o ∈ X, that is,

Πo = {(xn) | (xn) is a path with x0 = o}.
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We equip Πo with the metric

γo((xn), (yn)) = min{1/(r + 1) | x0 = y0, x1 = y1, . . . , xr = yr}
if (xn) 6= (yn) and 0 otherwise.

Observe that, for a finite path (x0, . . . , xk), the equalities for terms
of index strictly larger than k are not defined and, therefore, not sat-
isfied. Hence, the distance between (x0, . . . , xk) and any different path
is at least 1/(k + 1). It can be directly seen that γo is even an ultra
metric, i.e.,

γo((xn), (yn)) ≤ γo((xn), (zn)) ∨ γo((zn), (yn))

for all (xn), (yn), (zn) ∈ Πo.
The following observation is crucial for the considerations below

and, in particular, for the proof of the Hopf–Rinow theorem.

Proposition 11.9 (Compactness of Πo). Let (X, δ) be a locally
finite path metric space. Then, for all o ∈ X, the metric space (Πo, γo)
of all paths starting at o is compact.

Proof. We will show that (Πo, γo) is totally bounded and com-
plete, which is equivalent to (Πo, γo) being compact.

We first show total boundedness. For n ∈ N, let Πn
o be the paths

in Πo with n vertices. Furthermore, for p ∈ Πo, denote by Πp the set
of all paths that start with the path p. Let Br(p) be the ball of radius
r about p ∈ Πo with respect to γo. By the definition of the metric γo,
we see that, for all p ∈ Πn

o ,

Πp ⊆ B1/n(p).

Therefore, for ε > 0 and n ≥ 1/ε, we have

Πo =
n⋃
k=0

⋃
p∈Πko

Bε(p)

since every path q ∈ Πo which has n or fewer vertices is obviously
included in Bε(q) and every path q ∈ Πo with more than n vertices is
1/n close to a path with n vertices. Now, by local finiteness, the sets
Πk
o are finite for all k ∈ N. This shows that (Πo, γo) is totally bounded.

To show completeness, consider a Cauchy sequence x(k) = (x
(k)
n ) of

paths in Πo. By the definition of γo, elements in the sequence for large
k have to coincide in their first vertices. Thus, we can define a path

(xn) ∈ Πo such that xn = x
(k)
n for all k large enough. This finishes the

proof. �

Next, we turn to a study of geodesics for a weight w over X.

Definition 11.10 (Geodesic). Let w be a weight over X. We call
a path (xn) a geodesic with respect to w if δw(x0, xk) = w(x0, x1) +
. . .+w(xk−1, wk) for all k. If, for every two vertices x and y, there is a
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geodesic connecting x and y, then we call a path metric space (X, δ) a
geodesic space with respect to w.

Note that, if (xn) is a geodesic, then δw(xj, xk) = w(xj, xj+1)+ . . .+
w(xk−1, xk) for all j and k.

Example 11.6 shows that geodesics may not exist if the space is
not locally finite. The example below shows that even for locally finite
spaces geodesics need not exist.

Example 11.11 (A non-geodesic space). Let X = N0 and let w be
such that

w(2(n− 1), 2n) = w(2n, 2(n− 1)) = 2−n

w(2n− 1, 2n+ 1) = w(2n+ 1, 2n− 1) = 2−n

w(2n, 2n+ 1) = w(2n+ 1, 2n) = 22−n

for all n ∈ N and ∞ otherwise. This space can be visualized as an
infinite ladder where there are two infinite paths along 2N0 and 2N0 +1
that are connected at each level by a single edge of decreasing length.
Obviously, the space is locally finite.

The vertices 0 and 1 are connected by infinitely many paths

pk = (0, 2, . . . , 2k, 2k + 1, 2k − 1, . . . , 1)

for k ∈ N which have length

k∑
j=1

w(2(j − 1), 2j) + w(2k, 2k + 1) +
k∑
j=1

w(2j − 1, 2j + 1)

= 2(1− 2−k) + 22−k

= 2− 2−k+1 + 22−k.

Hence, δw(0, 1) = 2 but none of the paths pk realize this length.

One aspect of the example above is that it has infinite paths of finite
length. These paths form Cauchy sequences that do not converge. We
recall that a metric space is called complete if every Cauchy sequence
converges. Below we show that discreteness of the space along with
completeness implies that infinite paths must have infinite length.

Lemma 11.12 (Discrete and complete implies infinite length). Let
(X, δ) be a path metric space with weight w. If δ = δw is discrete and
complete, then for any infinite path (xn) we have

∞∑
k=0

w(xk, xk+1) =∞.

Proof. If
∑∞

k=0w(xk, xk+1) <∞, then (xn) is a Cauchy sequence
which has a limit in X by the assumption of completeness. This, how-
ever, is a contradiction to the discreteness of the space. �
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With the help of this lemma and the proposition above we can show
the following criterion for a path metric space to be a geodesic space.

Proposition 11.13 (Discrete and complete imply geodesic). Let
(X, δ) be a connected path metric space with weight w. If δ = δw is
discrete and complete, then (X, δ) is a geodesic space with respect to w.

Proof. Let w be the weight inducing δ and let o, o′ ∈ X. By
connectedness, there is a path o = x0 ∼ . . . ∼ xn = o′. Let r be the
length of the path, that is,

r =
n−1∑
k=0

w(xk, xk+1).

Consider the subset Πr
o,o′ ⊆ Πo of all paths starting at o, ending at o′

and having length less than or equal to r. If the set Πr
o,o′ is infinite, then

Πr
o,o′ contains a sequence of pairwise distinct paths (x

(k)
n ) that converges

to a path (xn) ∈ Πo with respect to γo due to the compactness of
(Πo, γo) shown in Proposition 11.9. By convergence, we deduce that

for an arbitrary ε > 0 there exists a kε ∈ N such that x
(kε)
j = xj for all

j ≤ 1/ε. Hence, as the (x
(k)
n ) are pairwise distinct, (xn) is an infinite

sequence which satisfies, for all n and ε = 1/n,

n−1∑
j=0

w(xj, xj+1) =
n−1∑
j=0

w(x
(kε)
j , x

(kε)
j+1) ≤ r.

Hence, (xn) is an infinite sequence of finite length. This, however, is im-
possible in a discrete and complete path metric space by Lemma 11.12.
Thus, the set Πr

o,o′ is finite and, therefore, contains a path from o to o′

of minimal length. Hence, there exists a geodesic from o to o′. �

We need one final ingredient to present a Hopf–Rinow theorem.
This is the notion of geodesic completeness.

Definition 11.14 (Geodesic completeness). A path metric space
(X, δ) with weight w is called geodesically complete if every infinite geo-
desic (xn) with respect to w has infinite length, i.e.,

∑∞
n=0w(xn, xn+1) =

∞.

The following proposition gives a criterion for a path metric space
to be geodesic in terms of local finiteness and geodesic completeness.

Proposition 11.15 (Locally finite and geodesically complete imply
geodesic). Let (X, δ) be a connected path metric space with weight w.
If δ = δw is locally finite and geodesically complete, then (X, δ) is a
geodesic space with respect to w.

Proof. Let x, y ∈ X such that x 6= y. Our aim is to find a geodesic
from x to y. To this end, let (pn) be a sequence of paths in Πx,y such
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that

lim
n→∞

lw(pn) = δ(x, y).

Since (Πx,y, γx) is compact due to local finiteness by Proposition 11.9,
the sequence (pn) has a convergent subsequence. Without loss of gen-
erality we assume that (pn) converges to a path p. We distinguish two
cases.

Case 1. The path p is finite. Since all finite paths are discrete
points in Πx, so p = pn for n large enough. Thus, p ∈ Πx,y and p is a
geodesic.

Case 2. The path p is infinite. We show that p = (xk) is a geodesic
of finite length in this case, which contradicts the assumption of geo-
desic completeness. We fix k ∈ N. Since lw(pn) → δ(x, y) as n → ∞
there exists, for all ε > 0, an N ∈ N such that for all n ≥ N the paths
pn ∈ Πx,y start with (x0, . . . , xk) and lw(pn) ≤ δ(x, y) + ε. We estimate

δ(x, y) ≤ δ(x0, xk) + δ(xk, y)

≤ lw((x0, . . . , xk)) + δ(xk, y)

≤ lw(pn)

≤ δ(x, y) + ε.

Letting ε → 0, we see that all inequalities turn into equalities and,
therefore,

δ(x0, xk) + δ(xk, y) = lw((x0, . . . , xk)) + δ(xk, y),

which implies

δ(x0, xk) = lw((x0, . . . , xk)).

Hence, p is a geodesic which has finite length. This contradicts the
assumption of geodesic completeness. �

We are now in position to state and prove a Hopf–Rinow theorem.

Theorem 11.16 (Hopf–Rinow theorem). Let (X, δ) be a locally fi-
nite connected path metric space. Then, the following statements are
equivalent:

(i) The distance balls in (X, δ) are compact (i.e., finite).
(ii) (X, δ) is complete as a metric space.
(iii) (X, δ) is geodesically complete.

Furthermore, under any of the equivalent conditions (X, δ) is a geodesic
space.

Proof. First, we observe that local finiteness implies the discrete-
ness of the space (X, δ) by Lemma 11.8.

(i) =⇒ (ii): This follows directly from the discreteness of (X, δ).

(ii) =⇒ (iii): If (X, δ) is discrete and complete, then (X, δ) does
not contain any infinite paths of finite length by Lemma 11.12.
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(iii) =⇒ (i): We will show this by contradiction. Assume that (X, δ)
is geodesically complete and that there exists a distance ball of radius
r about a vertex o ∈ X that has infinite cardinality. We will show that
there then exists an infinite geodesic of finite length. Observe that
by Proposition 11.15, the path metric space (X, δ) is geodesic and,
therefore, geodesics exist.

Let Γo,r be the set of geodesics (xn) starting at o that have length
less than or equal to r, i.e., x0 = o and δ(x0, xn) ≤ r for all n ∈ N0.
We first observe that Γo,r is a closed subset of Πo with respect to the

metric γo. This follows since if (x
(k)
n ) is a sequence of elements in Γo,r

converging to (xn) with respect to γo, then for every N there exists an

M such that x
(k)
0 = x0, . . . , x

(k)
N = xN for all k ≥ M . Hence, (xn) is a

geodesic of length less than or equal to r. Thus, Γo,r is closed and since
Πo is compact by Proposition 11.9, Γo,r is compact.

Moreover, by local finiteness, for every k ∈ N there is at least one

element in Γo,r that has at least k vertices, say (x
(k)
n ). This follows since,

if not, then there exists a k ∈ N such that all geodesics in Γo,r have
fewer than k vertices. Hence, if δ(x, o) ≤ r, then d(x, o) ≤ k, where d is
the combinatorial graph distance. By local finiteness, the set of vertices
which are within distance k of o with respect to the combinatorial graph
distance is finite. But this contradicts the assumption that the ball of
radius r about o with respect to the metric δ is infinite.

By the compactness of Γo,r, the sequence of geodesics (x
(k)
n ) has a

convergent subsequence in Γo,r. Hence, there exists an infinite geodesic
of finite length, which completes the proof of the implication and the
equivalences.

For the “furthermore” statement, we note that under condition (ii)
(X, δ) is discrete and complete and therefore a geodesic space by Propo-
sition 11.13. This completes the proof. �

In the remark below we discuss the relevance of the assumption of
local finiteness in the theorem above.

Remark. It is well known that for general metric spaces we always
have the implication (i) =⇒ (ii). Furthermore, for any discrete path
metric space which is a geodesic space, we have the implications (i)
=⇒ (ii) =⇒ (iii). The other implications do not hold in general, as
discussed in the exercises found at the end of the chapter. In particular,
Exercise 11.1 shows that (ii) does not always imply (i) and Exercise 11.2
shows that (iii) does not always imply (ii).

To end this section we show how finiteness of balls implies that we
have a geodesic space even if we are not in a locally finite situation.

Proposition 11.17 (Compact balls imply geodesic space). Let
(X, δ) be a path metric space such that all distance balls are finite.
Then, (X, δ) is a geodesic space.
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Proof. Let x, y ∈ X with x 6= y. Then, the distance r = δ(x, y)
can be calculated by taking the infimum over all paths from x to y
that do not leave the ball B2r(x). By assumption, the ball B2r(x) is
finite and, therefore, there are only finitely many such paths. Hence,
the infimum is assumed along one such path, which must therefore be
a geodesic. �

3. Examples and relations to other metrics

In this section we present examples of intrinsic metrics and relate
them to other metrics that appear in the literature. In particular, we
discuss relations to the combinatorial graph distance and the resistance
metric.

3.1. The degree path metric. In this subsection we show that
for every graph b over (X,m) there exists a non-trivial intrinsic metric.

Let b be a graph over (X,m). We first recall the definition of the
weighted degree Deg as

Deg(x) =
1

m(x)

∑
y∈X

b(x, y)

for x ∈ X. Furthermore, for any pseudo metric % on X we call the value

s = sup
x∼y

%(x, y)

the jump size of %. If s < ∞, then we say that the metric has finite
jump size.

We now use the weighted degree to construct an intrinsic metric
for a given graph. Furthermore, we introduce the notion of cutting a
weight from above by a strictly positive number. This can be used to
give metrics with finite jump size.

Definition 11.18 (Degree path metrics %s). For a graph b over
(X,m) we call the path metric % = δw with weight

w(x, y) =

(
1

Deg(x)
∧ 1

Deg(y)

)1/2

for x ∼ y ∈ X and ∞ otherwise the degree path metric.
If s ∈ (0,∞] and we let

ws(x, y) =

(
1

Deg(x)
∧ 1

Deg(y)

)1/2

∧ s

for x ∼ y ∈ X and∞ otherwise, then we call the resulting path metric
%s = δws the degree path metric with jump size bounded by s.

We note that %∞ = % for degree path metrics. We now show that
the pseudo metrics %s are intrinsic for all s ∈ (0,∞].
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Lemma 11.19 (%s is intrinsic). For a graph b over (X,m) and s ∈
(0,∞] the degree path metric %s is an intrinsic metric.

Proof. Let x ∈ X. Then,∑
y∈X

b(x, y)%2
s(x, y) ≤

∑
y∈X

b(x, y)

Deg(x) ∨Deg(y)
≤
∑
y∈X

b(x, y)

Deg(x)
= m(x).

This proves the statement �

We now illustrate degree path metrics on graphs with standard
weights and on graphs with normalizing measure.

Example 11.20 (Standard weights). Let b be a graph over X with
standard weights, i.e., b(x, y) ∈ {0, 1} for x, y ∈ X. In this case, the
graph is locally finite and, therefore, by Lemma 11.8, the pseudo metric
%s is a discrete metric for any measure m. In the case of the counting
measure m = 1, the metric %s is given via the weight

ws(x, y) =

(
1

deg(x)
∧ 1

deg(y)

)1/2

∧ s,

where deg is the combinatorial degree.

Example 11.21 (Normalizing measure). For a graph b over X,
recall that the normalizing measure n is given by n(x) =

∑
y∈X b(x, y).

In this case, the weighted vertex degree becomes Deg = 1. Therefore,
%s = %1 for s ≥ 1 and %1 = d is the combinatorial graph distance. The
case when the combinatorial graph metric is intrinsic is characterized
in the next subsection.

Next, we present an intuition for the definition of %s in the case that
s =∞. It can be seen that % = %∞ measures distances by the traveling
time of the heat along edges. This is discussed in detail below.

Remark (Probabilistic interpretation). In Section 5 we discussed
that heat can be modeled by the Markov process (Xt)t≥0 associated to
the semigroup e−tL via

e−tLf(x) = Ex(1{t<ζ}f(Xt))

for x ∈ X whenever c = 0, where Ex is the expected value conditioned
on the process starting at x and ζ is the explosion time. The “heat
particle” modeled by this process jumps from a vertex x to a neighbor
y with probability b(x, y)/

∑
z∈X b(x, z). Moreover, the probability of

not having left x at time t is given by

Px(Xs = x, 0 ≤ s ≤ t) = e−Deg(x)t.

Qualitatively, this indicates that the larger the value of Deg(x) is, the
faster the “heat particle” leaves x.

Looking at the definition of %(x, y), the larger the weighted degree
of either x or y is, the closer the two vertices are with respect to this
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distance. Combining these two observations, we see that the faster
the random walker jumps along an edge, the shorter the edge is with
respect to %. Of course, the jumping time along an edge connecting x
to y is not symmetric and depends on whether one jumps from x to y
or from y to x as the weighted degrees of x and y can be very different.
In order to get a symmetric function, % favors the vertex with the larger
degree and the faster jumping time.

There is a direct analogy to the Riemannian setting in terms of
mean exit times of small balls. Consider a d-dimensional Riemannian
manifold. The first order term of the mean exit time of a small ball of
radius r is r2/2d.

On a locally finite graph, for a vertex x a “small open” ball with
respect to % can be thought to have radius

r = inf
y∼x

%∞(x, y) =

(
1

Deg(x)
∧ 1

maxy∼x Deg(y)

)1/2

namely, this ball contains only the vertex itself. Computing the mean
exit time of this ball, i.e., Xt leaving x, gives∫ ∞

0

e−sDeg(x)ds =
1

Deg(x)
≥ r2

and equality holds whenever Deg(x) = maxy∼x Deg(y).

3.2. The combinatorial graph distance. In this subsection we
consider the combinatorial graph metric and characterize when it is
equivalent to an intrinsic metric.

We recall that given a graph b over (X,m) the combinatorial metric
d is the path metric induced by the weight w given by w(x, y) = 1 if
b(x, y) > 0 and w(x, y) = ∞ if b(x, y) = 0 for x, y ∈ X. In the lemma
below we show that d is equivalent to an intrinsic metric if and only if
Deg or, equivalently, L is bounded. Furthermore, this is equivalent to
having a uniform lower bound on the distance between neighbors with
respect to any intrinsic metric.

Lemma 11.22 (When is the combinatorial graph distance intrin-
sic). Let b be a graph over (X,m). Then, the following statements are
equivalent:

(i) The combinatorial graph distance d is equivalent to the degree path
metric %s for some s ∈ (0,∞].

(ii) The combinatorial graph distance d is equivalent to an intrinsic
metric.

(iii) There exists an intrinsic metric % such that %(x, y) ≥ C > 0 for
all x ∼ y.

(iv) Deg is a bounded function.
(v) L is a bounded operator.
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In particular, all of the conditions hold if m ≥ n, where n is the nor-
malizing measure.

Proof. (i) =⇒ (ii): This is clear as %s is intrinsic for all s.

(ii) =⇒ (iii): This is also clear as d(x, y) = 1 if x ∼ y.

(iii) =⇒ (iv): Let % be an intrinsic metric such that 0 < C ≤ %(x, y)
for x ∼ y. Then,

C2
∑
y∈X

b(x, y) ≤
∑
y∈X

b(x, y)%2(x, y) ≤ m(x)

for all x ∈ X. Hence, Deg ≤ 1/C2.

(iv) ⇐⇒ (v): This follows from Theorem 1.27.

(iv) =⇒ (i): Assume that Deg ≤ C and consider the degree path
metric %1 from Definition 11.18. Clearly, %1 ≤ d. On the other hand,
by Deg ≤ C, we immediately obtain %1 ≥ (C−1/2∧ 1)d. This completes
the proof. �

Remark. In the case of trees, the combinatorial graph distance
can be related to the metric σ defined in Section 1 (Exercise 11.5).

In the next example we discuss another class of metrics which are
a generalization of the combinatorial graph distance.

Example 11.23. For a graph b over X and q ∈ (0,∞] we consider
the path metric induced by the weight

wb,q(x, y) =
1

b(x, y)1/q

for x ∼ y and ∞ otherwise. We denote this metric by dq. For q =∞,
1/q = 0, so the metric d∞ is the combinatorial graph distance and
d∞ is intrinsic whenever m ≥ n. For q = 2, the metric d2 is intrinsic
whenever m(x) ≥ #{y | y ∼ x} (Exercise 11.3).

3.3. The resistance metric. In this subsection we relate intrinsic
metrics to the free effective resistance metric which first appeared in
Section 4 and then in Section 1 and plays a prominent role in the theory
of electric networks.

We start with a pseudo metric that is the square root of the free
effective resistance metric and which is related to σ introduced via the
space A1(X) in Section 1. We let

r(x, y) = sup{f(x)− f(y) | f ∈ D,Q(f) ≤ 1}
for x, y ∈ X. Obviously, if m ≥ 1, then the supremum is taken over a
smaller set than A1(X) and, hence, r ≤ σ.

Remark. We note that it can be shown that the supremum in the
definition is actually a maximum (Exercise 11.6). Additionally, it can
be seen that the quantity referred to as the free effective resistance r2
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is also a pseudo metric, which is referred to as the resistance metric
(Exercise 6.9).

The theorem below shows how to recover r from intrinsic metrics.

Theorem 11.24 (Resistance and intrinsic metrics). Let b be a graph
over X. Then,

r = sup{% | % is intrinsic for b over (X,m) with m(X) ≤ 2}.

Remark. The obscure number 2 in the statement of theorem above
arises since we do not include a factor of 1/2 in the definition of |∇f |2.

Proof. Denote the function on the right-hand side of the claimed
equality by r∗.

We start by showing that r ≤ r∗. Let f ∈ D. Then, %f defined by

%f (x, y) = |f(x)− f(y)|

for x, y ∈ X is an intrinsic pseudo metric with respect to the measure
mf given by

mf (x) =
∑
y∈X

b(x, y)(f(x)− f(y))2.

Obviously, mf (X) = 2Q(f). Hence, %f (x, y) ≤ r∗(x, y) for all f ∈ D
with Q(f) ≤ 1. Since

r = sup{%f | f ∈ D,Q(f) ≤ 1}

this implies r ≤ r∗.
We now show that r ≥ r∗. Let % be an intrinsic metric with respect

to a measure m with m(X) ≤ 2. For o ∈ X, we define f(x) = %(o, x).
Then, by the triangle inequality and Fubini’s theorem, we get

Q(f) =
1

2

∑
x,y∈X

b(x, y)(%(o, x)− %(o, y))2

≤ 1

2

∑
x∈X

∑
y∈X

b(x, y)%2(x, y)

≤ 1

2

∑
x∈X

m(x)

≤ 1.

Therefore, r(x, y) ≥ |f(x) − f(y)| = |%(o, x) − %(o, y)| for all o ∈ X.
Letting o = y, we get r(x, y) ≥ %(x, y) so that r ≥ % for all intrinsic
metrics % with m(X) ≤ 2. Therefore, r ≥ r∗. �

Example 11.25 (Trees). If b is a tree, then the metric d1 intro-
duced in Example 11.23 above is equal to the free effective resistance
r2 (Exercise 11.3).



4. GEOMETRIC ASSUMPTIONS AND CUTOFF FUNCTIONS 465

4. Geometric assumptions and cutoff functions

In this section we discuss some important geometric assumptions
that we will use in the rest of the book. These geometric assumptions
guarantee the existence of cutoff functions with certain properties. We
also show that the existence of certain cutoff functions is equivalent to
completeness properties of the graph.

We start with a property of pseudo metrics concerning distance
balls. This assumption is inspired by property (i) of the Hopf–Rinow
theorem, Theorem 11.16. For a given pseudo metric % we define the
distance ball Br = Br(o) about o ∈ X with radius r ≥ 0 by

Br = {y ∈ X | %(o, y) ≤ r}.
We say that a pseudo metric % admits finite balls if the following holds:

(B) The distance balls Br(o) are finite for all o ∈ X and r ≥ 0.

Remark. This property can be characterized for trees with stan-
dard weights and bounded combinatorial degree (Exercise 11.7).

Next, we come to a somewhat weaker assumption. We say that
the weighted vertex degree is bounded on balls whenever the following
holds:

(B∗) The restriction of Deg to Br(o) is bounded for all o ∈ X and
r ≥ 0.

Remark. Clearly, (B) implies (B∗). However, the reverse implica-
tion does not necessarily hold (Exercise 11.8).

We can characterize the condition (B∗) as follows:

Lemma 11.26 (Characterization of (B∗)). Let b be a graph over
(X,m). Then, the following statements are equivalent:

(i) The weighted vertex degree is bounded on balls (B∗).
(ii) The restriction of L to functions in F supported on any ball is a

bounded operator.
(iii) The Radon–Nikodym derivative of the normalizing measure n with

respect to the measure m is bounded on balls.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Theorem 1.27.
For the equivalence (i) ⇐⇒ (iii) notice that the Radon–Nikodym de-
rivative of the normalizing measure n with respect to the measure m
is given by the weighted vertex degree Deg. �

Philosophically, the assumptions (B) and (B∗) can be understood
as a condition bounding a pseudo metric from below in a certain sense.
Next, we introduce an assumption which may be understood as an
upper bound. We have already seen the concept of the jump size in
connection with the degree path metric.

We say a pseudo metric % has finite jump size if the following holds:
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(J) The jump size s = sup{%(x, y) | x, y ∈ X, x ∼ y} is finite.

Example 11.27. The metrics %s defined in Subsection 3.1 have
jump size at most s. Hence, they satisfy (J) whenever s <∞.

Combining the assumptions (B) and (J) forces the graph to be
locally finite.

Lemma 11.28 ((B) and (J) imply local finiteness). Let b be a graph
over (X,m) and let % be a pseudo metric. If % satisfies (B) and (J),
then the graph is locally finite.

Proof. If there is a vertex with infinitely many neighbors, then
there exists a distance ball containing all of them by the finite jump
size (J). However, this is impossible by (B). �

We now come to the construction of basic cutoff functions. We have
already seen in Lemma 11.3 that we can estimate the gradient squared
of Lipschitz functions with respect to an intrinsic metric. This will now
be explored in more detail.

Given a pseudo metric % on X, a subset A ⊆ X and R > 0, we
define η = ηA,R : X −→ [0,∞) by

η(x) =

(
1− %(x,A)

R

)
+

,

where

%(x,A) = inf
y∈A

%(x, y)

for x ∈ X and s+ = s ∨ 0 for all s ∈ R.
We recall the definition of the gradient squared of a function f ∈

C(X) as

|∇f(x)|2 =
1

m(x)

∑
y∈X

b(x, y)(f(x)− f(y))2

for x ∈ X. The lemma below collects basic properties of η.

Proposition 11.29 (Basic properties of cutoff functions). Let b be
a graph over (X,m) and let % be a metric. Let A ⊆ X, R > 0 and
η = ηA,R be the cutoff function defined above. Then,

(a) 1A ≤ η ≤ 1BR(A) and η ↗ 1 as R→∞.
(b) If % is an intrinsic metric with jump size s ∈ [0,∞], then

|∇η|2(x) ≤ 1

R2
1BR+s(A)∩Bs(X\A)(x)

for all x ∈ X, where the characteristic function on the right-hand
side is equal to 1 if s =∞.
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Proof. Statement (a) is obvious from the definition of η.

To see (b), we first observe from (a) that the function

(x, y) 7→ η(x)− η(y)

is zero on A × A and (X ×X) \ (BR(A) × BR(A)). Moreover, by the
assumption that the jump size is s, the map b is zero on pairs of vertices
of distance larger than s. Hence, the map

(x, y) 7→ b(x, y)(η(x)− η(y))2

and thus |∇η|2 is supported on U = (BR+s(A) ∩Bs(X \ A))2.
As η is 1/R-Lipschitz with respect to the intrinsic metric % we

obtain

|∇η|2 ≤ 1

R2

by the “in particular” statement in Lemma 11.3. This completes the
proof of (b). �

We now discuss some consequences of the assumptions of finite balls
(B) and finite jump size (J) for the cutoff function η. We use the
convention Br(o) = ∅ for r < 0 and o ∈ X.

Corollary 11.30. Let b be a graph over (X,m) and let % be a
metric. Let o ∈ X, r, R > 0 and η = ηBr(o),R be the cutoff function
defined above with A = Br(o).

(a) If % admits finite balls (B), then η ∈ Cc(X).
(b) If % is an intrinsic metric with jump size s ∈ [0,∞], then f |∇η|2 ∈

`1(X,m) for all f such that f1BR+r+s(o)\Br−s(o) ∈ `1(X,m), where
the characteristic function is equal to 1 if s =∞. In particular,∑
x∈X

|f(x)||∇η|2(x)m(x) ≤ 1

R2

∑
x∈BR+r+s(o)\Br−s(o)

|f(x)|m(x),

where the sum on the right-hand side is over X if s =∞.

Proof. Statement (a) follows from part (a) of Proposition 11.29.
Statement (b) follows by part (b) of Proposition 11.29. �

Finally, we show that the existence of certain cutoff functions is
equivalent to completeness properties of the graph. Recall that by the
Hopf–Rinow theorem, Theorem 11.16, finiteness of distance balls for an
intrinsic path metric is equivalent to metric and geodesic completeness
whenever the graph is locally finite.

Theorem 11.31 (Characterization of intrinsic metric with (B)).
Let b be a graph over (X,m). Then, the following statements are equiv-
alent:

(i) There exists an intrinsic metric with finite distance balls (B).
(ii) There exists a sequence (χk) in Cc(X) such that χk ↗ 1 pointwise

and ‖|∇χk|‖∞ → 0 as k →∞.
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Proof. (i) =⇒ (ii): Let o ∈ X and let χk = ηBk(o),k for k ∈ N,
where η is as defined above. Then, χk ↗ 1 pointwise as k → ∞.
Moreover, by Corollary 11.30 (b) applied with f = 1x for x ∈ X we
obtain

|∇χk|(x) ≤ 1

k
→ 0

as k → ∞. As the estimate does not depend on x, this completes the
proof.

(ii) =⇒ (i): Let (χk) be a sequence as assumed in (ii). By passing
to a subsequence we can assume without loss of generality that (χk)
satisfies for all x ∈ X

∞∑
k=1

(1− χk(x))2 <∞ and
∞∑
k=1

‖|∇χk|2‖∞ ≤ 1.

We define %(x, y), for x, y ∈ X, by

%(x, y) =

(
∞∑
k=1

(χk(x)− χk(y))2

)1/2

≤

(
∞∑
k=1

(1− χk(x))2

)1/2

+

(
∞∑
k=1

(1− χk(y))2

)1/2

<∞.

Clearly, % is also non-negative, vanishes at x = y and satisfies the
triangle inequality. Therefore, % is a pseudo metric. Furthermore, % is
intrinsic since, for all x ∈ X,∑

y∈X

b(x, y)%2(x, y) =
∑
y∈X

b(x, y)
∞∑
k=1

(χk(x)− χk(y))2

= m(x)
∞∑
k=1

|∇χk|2(x)

≤ m(x).

To show the finiteness of distance balls (B), let R ≥ 0 and o ∈ X.
Let i ∈ N0 be such that χi(o) ≥ 1/2. We show that BR(o) ⊆ suppχj−1

whenever j > 4R2 + i. Fix such a j and assume x is not in the support
of χj−1. Since, χk ↗ 1 as k →∞ we have χk(o) ≥ 1/2 for i ≤ k ≤ j−1
and χk(x) = 0 for k ≤ j − 1. Thus,

%2(x, o) ≥
j−1∑
k=i

(χk(x)− χk(o))2 ≥ j − i
4

> R2.

Thus, we infer x ∈ X \ BR(o) and, therefore, BR(o) ⊆ suppχj−1 for
j > 4R2 + i. Hence, (B) follows from χj ∈ Cc(X). �
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Remark. In certain situations a much weaker condition on the
functions (χk) suffices to guarantee the existence of an intrinsic metric
satisfying (B). Specifically, we recall the functions ϕx : X −→ [0,∞)
defined by ϕx(y) = b(x, y)/m(y) for x ∈ X, which we used to char-
acterize Cc(X) ⊆ D(L) and `2(X,m) ⊆ F in Theorem 1.29. If these
functions can be uniformly approximated by compactly supported func-
tions, then (i) and (ii) above are equivalent to

(iii) There exists a sequence (χk) in Cc(X) such that χk ↗ 1 as k →∞
pointwise and (‖|∇χk|‖∞) is bounded.

This follows by applying general theory (Exercise 11.9).
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Exercises

Example exercises.

Exercise 11.1 (Metric completeness does not imply finiteness of
balls). Give an example of a metrically complete path metric space
which has an infinite distance ball.

Exercise 11.2 (Metric incompleteness with geodesic complete-
ness). Give an example of a metrically incomplete path metric space
which has no infinite geodesics and which is, therefore, geodesically
complete.

Exercise 11.3 (Examples of path metrics). For a connected graph
b over X and q ∈ (0,∞) we consider the path pseudo metric dq given
by the weights w = wb,q with

wb,q(x, y) =
1

b(x, y)1/q

for x ∼ y and ∞ otherwise.

(a) Show that dq is a metric for all q ∈ (0,∞).
(b) Show that if the graph is locally finite, then

dq(x, y)→ d(x, y)

as q → ∞ for all x, y ∈ X, where d is the combinatorial graph
distance.

(b*) Is the convergence of (b) still valid if one drops the local finiteness
assumption?

(c) Show that, for q = 1, we have

r2 ≤ d1,

where r2 is the free effective resistance metric introduced in Sub-
section 3.3.

(c*) Show that, if b is a tree, then r2 = d1.
(d) Show that, for q = 2, the metric d2 is intrinsic whenever m is

bounded below by the combinatorial degree, that is,

m(x) ≥ #{y ∈ X | y ∼ x}
for all x ∈ X.

Extension exercises.

Exercise 11.4 (Stability of path metrics). Let δ = δw be the path
metric induced by a weight w. When is δ a weight? Show that in case
δ is a weight, for the path metric δδ induced by δ we have

δ = δδ.



EXERCISES 471

Exercise 11.5 (The combinatorial graph metric for trees). Let b
be a tree with standard weights over (X,m) and let m be the counting
measure. Let

σ(x, y) = sup{f(x)− f(y) | f ∈ A1(X)},
where A1(X) = {f ∈ C(X) | |∇f |2 ≤ 1} and let d denote the combi-
natorial graph distance. Show that σ = d/2.

Exercise 11.6 (Free effective resistance). Let b be a graph over X.
Recall that

r(x, y) = sup{f(x)− f(y) | f ∈ D,Q(f) ≤ 1}
for x, y ∈ X. Show that the supremum is actually a maximum, i.e.,

r(x, y) = max{f(x)− f(y) | f ∈ D,Q(f) ≤ 1}
for x, y ∈ X.

Exercise 11.7 (Trees and intrinsic metrics with finite distance
balls). Let b be a tree with standard weights over X with bounded
combinatorial degree. Characterize the set of measures such that there
exists an intrinsic metric satisfying (B).

Exercise 11.8 ((B∗) and not (B)). Recall that (B) means that
all distance balls are finite while (B∗) means that the weighted vertex
degree is bounded on balls. Give an example of a graph that allows for
an intrinsic metric that satisfies (B∗) but does not satisfy (B) for all
intrinsic metrics.

Exercise 11.9 (Characterization of finite distance balls). Let b be
a graph over (X,m) and define ϕx : X −→ [0,∞) by

ϕx(y) =
1

m(y)
b(x, y)

for x ∈ X. Assume, for every x ∈ X, there exists a sequence (ψn) in
Cc(X) such that ‖ϕx − ψn‖∞ → 0 as n→∞. Show that the following
statements are equivalent:

(i) There exists an intrinsic metric with finite distance balls (B).
(ii) There exists a sequence (χk) in Cc(X) such that χk ↗ 1 as k →∞

pointwise and (‖|∇χk|‖∞) is bounded.

(Hint 1: What is the dual space of the uniform closure of Cc(X)?
Use this to show that the boundedness and pointwise convergence yield
weak convergence of |∇χk| → 0 as k →∞.)

(Hint 2: Mazur’s lemma says that for every weakly convergent se-
quence in a Banach space there is a sequence of convex combinations
of its members that converges strongly to the same limit. Use this
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to show that 0 belongs to the uniform closure of the convex hull of
{|∇χk| | k ≥ n} for every n ∈ N. From this show that there is
a sequence (χ′k) of convex combinations of members of χk such that
‖|∇χ′k|‖∞ → 0 as k →∞.)
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Notes

The use of intrinsic metrics in the context of Dirichlet forms goes
back to Sturm’s fundamental work [Stu94]. In this paper, Sturm in-
troduces the concept of an intrinsic metric for a strongly local Dirichlet
form. Furthermore, in this and subsequent works an impressive amount
of spectral geometry is generalized from manifolds to all spaces with
a strongly local Dirichlet form with the help of intrinsic metrics. This
includes various volume growth criteria for global properties on mani-
folds which were discussed in the influential survey article of Grigor′yan
[Gri99].

The extension of this concept to Dirichlet forms which are not
strongly local seems to not have been pursued for some time until it ap-
peared independently and rather simultaneously in various works: This
includes papers of Folz [Fol11, Fol14b] centered around heat kernel
bounds and stochastic completeness for graphs, where the correspond-
ing metrics appear under the name of adapted metrics; investigations of
Masamune/Uemura [MU11] as well as Grigor′yan/Huang/Masamune
[GHM12] dealing with stochastic completeness featuring a slightly
more general class of metrics for jump processes; and the work Frank/Lenz/Wingert
[FLW14].

Here, we follow the article [FLW14]. Indeed, the framework devel-
oped there has served as a basis for applications in various works. We
will have more to say about applications to graphs in later chapters.
Here, we already mention the Habilitationsschrift [Kel14] and survey
[Kel15] of Keller, as these works expand on the specialization of the
framework of [FLW14] to graphs. The article [FLW14] itself presents
a theory of intrinsic metrics for general regular Dirichlet forms includ-
ing a Rademacher theorem which was new even in the strongly local
case. The article also presents both sufficient and necessary criteria
for a metric to be an intrinsic metric for a purely non-local Dirich-
let form. When restricted to graphs, these criteria give the concept
of intrinsic metric discussed in Section 1. The (counter)example, Ex-
ample 11.2, is a reformulation of Example 6.2 from [FLW14] which
proves a slightly different point, namely, that the supremum of intrin-
sic metrics is in general not an intrinsic metric. The implication from
(i) to (ii) in Lemma 11.3 is a direct application of the Rademacher the-
orem of [FLW14] to the case of graphs and the equivalence between
(i) and (iii) follows from the necessary and sufficient criteria given in
[FLW14]. For graphs, this part of the material is also discussed explic-
itly in [Kel14, Kel15] and Keller/Lenz/Schmidt/Wirth [KLSW15].

The original Hopf–Rinow theorem is found in [HR31]. The dis-
crete version in Section 2 can be seen as an elaboration on correspond-
ing parts of Huang/Keller/Masamune/Wojciechowski [HKMW13]. In
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particular, Theorem 11.16 can already be found in [HKMW13]; how-
ever, the approach given above is different. In particular, the essential
Proposition 11.9 and its consequence Proposition 11.13 seem not to
have appeared in print before. Note that a part of Theorem 11.16 also
appears in the proof of Theorem 1.5 in a paper of Milatovic [Mil11].
The argument given there is based on length spaces in the sense of
Burago/Burago/Ivanov [BBI01] and, while not mentioned explicitly,
it seems that the length spaces in question are metric graphs associ-
ated to discrete graphs. A systematic treatment of the Hopf–Rinow
theorem on discrete path spaces even beyond the locally finite case can
be found in [KM19].

The material of Section 3 goes back to various sources. The metric
%s for s = 1 was introduced in the thesis of Huang [Hua11a] as an
example for the general class of metrics discussed in [FLW14]. For the
first order term of the mean exit time of a small ball as discussed in
Subsection 3.1 in the context of Riemannian manifolds, see [Pin85].
A discussion of the relationship between intrinsic metrics and com-
binatorial metrics can be found in various places. In particular, the
equivalence between (ii) and (iv) in Lemma 11.22 is a special case of
the inequalities derived in Section 14.2 of [FLW14] and is stated ex-
plicitly in [HKMW13, KLSW15]. Parts of Lemma 11.22 have also
appeared in [Kel15]. The case q = 2 for the family of metrics discussed
in Example 11.23 was used in [CdVTHT11]. The relationship to the
free resistance metric presented in Theorem 11.24 was established in
[GHK+15].

An early manifestation of the fact that the combinatorial graph
metric is not the non plus ultra can be found in an article by Davies
[Dav93]. In this article, a variety of metrics are introduced incorpo-
rating ideas from non-commutative geometry. Although none of the
metrics proposed there are intrinsic for graphs with unbounded degree,
there are parallels in the underlying ideas.

Finally, the properties discussed in Section 4 have been used in
some form in any article using intrinsic metrics for graphs as a tool.
The particular discussion as it is presented here is found in [Kel15],
with the exception of Theorem 11.31, which is taken from Appendix A
in [LSW21]. This theorem is important since some of the literature
suggests that the existence of certain cutoff functions, sometimes re-
ferred to as χ-completeness, is a less restrictive condition than the
existence of an intrinsic metric with finite distance balls. This is not
the case, as Theorem 11.31 shows and is consistent with the situation
for Riemannian manifolds [BGL14].



CHAMBER 12

Harmonic Functions and Caccioppoli Theory

I’m just swingin swords strictly based on keyboards,
unbalanced like elephants and ants on see-saws.

GZA.

In this chapter we develop techniques to analyze solutions of the
equation

Lu = λu

for λ ∈ R and u in a suitable function space which is included in F .
Here, the operator L = Lb,c,m is the formal Laplacian of a graph (b, c)
over (X,m) and F is the formal domain of L. We have encountered
such functions before. They are called α-harmonic functions, i.e., func-
tions which satisfy (L + α)u = 0, where α = −λ. The reason why we
write the equation differently in this chapter is that we ultimately want
to think of such functions as generalized eigenfunctions in the context
of the Shnol′ theorems.

For λ ≤ 0, we establish Liouville theorems. Such results give crite-
ria for the absence of non-constant solutions to Lu = λu and include
the case λ = 0, when such functions are called harmonic. In Sec-
tion 2 we establish criteria for the constancy of harmonic functions in
`p(X,m) for p ∈ (1,∞). Furthermore, as an application of the Liou-
ville theorems, we give criteria for uniqueness of the form, essential
self-adjointness and recurrence in Section 3.

For λ ≥ 0, we prove two versions of a Shnol′ theorem in Section 4.
This theorem gives a criterion for λ to be in the spectrum of the Lapla-
cian associated to a graph via a growth condition on the function u.
The growth here is measured in terms of an intrinsic metric which has
finite distance balls and jump size.

The key tool for all of these results are variants of the Caccioppoli
inequality which are established in Section 1. Roughly speaking, such
inequalities allow us to estimate the energy of u times a cutoff function
by u times the energy of the cutoff function. In applications, we use
cutoff functions defined via intrinsic metrics. To guarantee that these
cutoff functions have the required properties, we assume some bound-
edness conditions on balls. Along the way, we use these assumptions
to establish a Green’s formula, which is a crucial step in the proof of
the most involved Caccioppoli inequalities.

475
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1. Caccioppoli inequalities

In this section we introduce versions of the Caccioppoli inequality
in order of increasing complexity. We also present first applications of
these inequalities via a Gaffney result which proves form uniqueness
and essential self-adjointness for metrically complete graphs. Further-
more, we establish a Green’s formula.

When dealing with operators and forms associated to graphs we
often encounter expressions of the form uLu or (∇u)2 and weighted
sums of these functions over the entire space. Here, we define

∇x,yf = f(x)− f(y)

for f ∈ C(X) and x, y ∈ X. In applications, it is very useful to lo-
calize these functions, i.e., to consider expressions of the form ϕ2uLu,
(∇x,y(ϕu))2 or ϕ2(∇u)2 for a function ϕ which is often finitely sup-
ported or linked to the metric. Such functions ϕ are then referred to as
cutoff functions. Of course, the questions arises as to how the original
terms are related to the localized terms. It turns out that we can estab-
lish inequalities between these terms when they are summed over the
entire space. In particular, under suitable assumptions, it is possible
to get rid of the differences of u altogether. Instead, only differences of
the cutoff functions appear. This is the topic of Caccioppoli theory.

In order to illustrate the discussion above, we consider the simple
case when u is harmonic and c = 0. A Caccioppoli inequality then
takes the form∑

x,y∈X

b(x, y)ϕ2(x)(∇x,yu)2 ≤ C
∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2

for some C > 0 whenever u and ϕ are in suitably chosen function
spaces. Thus we see that we trade differences of the solution u for
differences of the cutoff function ϕ.

After this general discussion, we now outline the content of the fol-
lowing subsections. As a first step, in Subsection 1.1, we prove a general
estimate and derive some easy Caccioppoli inequalities for ϕ ∈ Cc(X)
and u ∈ F satisfying Lu = λu. Although basic, these inequalities al-
ready have immediate consequences concerning the uniqueness of the
form and essential self-adjointness when balls with respect to an intrin-
sic metric are finite. These uniqueness results turn out to be special
cases of later considerations, however, we can already demonstrate the
basic idea of our approach without too many technical details.

In Subsection 1.2 we prove a Green’s formula which will be key in
establishing subsequent Caccioppoli inequalities. In Subsection 1.3 we
then show a refined Caccioppoli inequality for ϕ satisfying a bound-
edness condition and u ∈ `2(X,m) which satisfies Lu = λu. We then
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show a similar, though more complicated, inequality for u ∈ `p(X,m)
for p ∈ (1,∞) satisfying u ≥ 0 and Lu ≤ λu in Subsection 1.4.

1.1. Basic Caccioppoli inequalities and consequences. In
this subsection we prove two simple Caccioppoli-type inequalities. We
then demonstrate the use of such inequalities by deriving various con-
sequences. In particular, we prove the uniqueness of associated forms
as well as the essential self-adjointness of the Laplacian when we as-
sume that the graph is metrically complete. We refer to these results
as Gaffney theorems.

We first discuss how F is invariant under multiplication with bounded
functions and how L(uϕ) is related to ϕLu.

Lemma 12.1. Let (b, c) be a graph over (X,m). Let u ∈ F and
ϕ ∈ `∞(X). Then, uϕ ∈ F and for x ∈ X

L(uϕ)(x) = ϕ(x)Lu(x) +
1

m(x)

∑
y∈X

b(x, y)u(y)∇x,yϕ.

Proof. That uϕ ∈ F is obvious. As for the formula, we note that

∇x,y(uϕ) = ϕ(x)∇x,yu+ u(y)∇x,yϕ

holds for all x, y ∈ X by a direct calculation, see Lemma 2.25. From
this we obtain the formula after we multiply by b(x, y), summing and
dividing by m(x). �

Now, we can present our basic estimate. It deals with the energy
Q(uϕ), i.e., the energy of u which is localized by ϕ.

Lemma 12.2 (The basic cutoff inequality). Let (b, c) be a graph over
(X,m). Let ϕ ∈ Cc(X) and u ∈ F . Then,

Q(uϕ) ≤
∑
x∈X

ϕ2(x)Lu(x)u(x)m(x) +
1

2

∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

Remark. We note that the case
∑

x,y∈X b(x, y)u2(x)(∇x,yϕ)2 =∞
is possible in the situation of the lemma. In later applications, however,
this case will not occur.

Proof. As uϕ ∈ Cc(X), using Green’s formula, Proposition 1.5,
we find

Q(uϕ) =
∑
x∈X

L(uϕ)(x)(uϕ)(x)m(x).

From Lemma 12.1 we then get

Q(uϕ) =
∑
x∈X

(uϕ)(x)m(x)

(
ϕ(x)Lu(x) +

1

m(x)

∑
y∈X

b(x, y)u(y)∇x,yϕ

)
.
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Now, clearly the sums on the right-hand side are absolutely convergent
as ϕ has finite support. Thus, we obtain

Q(uϕ) =
∑
x∈X

ϕ2(x)Lu(x)u(x)m(x) +
1

2

∑
x,y∈X

b(x, y)u(x)u(y)(∇x,yϕ)2.

Note that in this formula all sums are absolutely convergent. Now,
we can use the inequality |u(x)u(y)| ≤ (u2(x) + u2(y))/2 along with
symmetry to estimate the second term on the right hand side and
obtain the statement of the lemma. �

Remark. We note that we can rephrase the statement of the
lemma as

Q(uϕ) ≤ Q(u, uϕ2) +
1

2

∑
x,y∈X

b(x, y)u(x)u(y)(∇x,yϕ)2

whenever u belongs to D.

The basic cutoff inequality given in the preceding lemma already
has some direct applications, as we discuss next. When u ∈ F satisfies
Lu = λu we can use the lemma to obtain an estimate on the energy
Q(uϕ) which does not contain any differences of the function u.

Theorem 12.3 (First Caccioppoli-type inequality). Let (b, c) be a
graph over (X,m). Let ϕ ∈ Cc(X) and u ∈ F such that Lu = λu for
λ ∈ R . Then,

Q(uϕ) ≤ λ‖uϕ‖2 +
1

2

∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

Proof. This is immediate from Lemma 12.2 and the assumption
that u satisfies Lu = λu. �

Alternatively, we can also use the basic cutoff inequality to esti-
mate sums involving uLu irrespective of whether u is a generalized
eigenfunction or not.

Theorem 12.4 (Second Caccioppoli-type inequality). Let (b, c) be
a graph over (X,m). If u ∈ F and ϕ ∈ Cc(X), then

−
∑
x∈X

Lu(x)u(x)ϕ2(x)m(x) ≤ 1

2

∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

In particular, if u additionally satisfies Lu = λu for λ ∈ R, then

−λ‖uϕ‖2 ≤ 1

2

∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

Proof. This follows directly from Q ≥ 0 and Lemma 12.2. �

Remark. The preceding result will also be used in the proof of the
volume growth criterion for stochastic completeness found in Chap-
ter 14.
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We can also use the basic cutoff inequality to deal with localized ver-
sions of the energy, i.e., to treat suitable sums of functions of the form
(ϕ∇u)2. This requires an additional step relating (ϕ∇u)2 to (∇(uϕ))2.
Details are given in the next lemma. Note that the lemma holds for all
functions u, ϕ on X.

Lemma 12.5. Let (b, c) be a graph over (X,m). Then, for all u, ϕ ∈
C(X), we have∑
x,y∈X

b(x, y)ϕ2(x)(∇x,yu)2 ≤

2
∑
x,y∈X

b(x, y)(∇x,y(uϕ))2 + 2
∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2,

where either side may take the value ∞.

Proof. By a direct calculation, see Lemma 2.25, the Leibniz rule
says

∇x,y(ϕu) = ϕ(x)∇x,yu+ u(y)∇x,yϕ.

Combining this with the inequality (s+ t)2 ≤ 2s2 + 2t2 for s, t ∈ R we
find

(ϕ(x)∇x,yu)2 = (∇x,y(uϕ)− u(y)∇x,yϕ)2

≤ 2(∇x,y(uϕ))2 + 2u2(y)(∇x,yϕ)2.

Now, the statement follows after multiplication by b and summation,
where we use additionally that u2(y) in the last term can be replaced
by u2(x) due to symmetry. �

We now derive the following result, which gives an estimate on the
energy of a function which is localized. Here we assume that the func-
tion is in the domain of the formal Laplacian and the cutoff function
is finitely supported.

Theorem 12.6 (Caccioppoli inequality – F version). Let (b, c) be
a graph over (X,m). Let ϕ ∈ Cc(X) and u ∈ F . Then,

1

4

∑
x,y∈X

b(x, y)ϕ2(y)(∇x,yu)2 +
∑
x∈X

c(x)(uϕ)2(x)

≤
∑
x∈X

ϕ2(x)Lu(x)u(x)m(x) +
∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

If u additionally satisfies Lu = λu for λ ∈ R, then the first term on
the right-hand side simplifies to λ‖uϕ‖2.

Remark. The theorem does not claim that the right-hand side
is necessarily finite, neither does it claim that the left-hand side is
necessarily finite.
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Proof. This is a direct consequence of Lemma 12.5 and Lemma 12.2.
Specifically, using Lemma 12.5 we can estimate the terms on the left-
hand side,

LHS =
1

4

∑
x,y

b(x, y)ϕ2(y)(∇x,yu)2 +
∑
x∈X

c(x)(uϕ)2(x)

from above by

1

2

∑
x,y

b(x, y)(∇x,y(uϕ))2+
1

2

∑
x,y

b(x, y)u2(x)(∇x,yϕ)2+
∑
x∈X

c(x)(uϕ)2(x).

From the definition of the energy form this is equivalent to

Q(uϕ) +
1

2

∑
x,y

b(x, y)u2(x)(∇x,yϕ)2.

So, an application of Lemma 12.2 gives the desired estimate, namely,

LHS ≤
∑
x∈X

ϕ2(x)Lu(x)u(x)m(x) +
∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

This finishes the proof. �

We will now apply Theorem 12.4 to the case when ϕ is a cutoff
function involving an intrinsic metric. As this case is of fundamental
importance, we first discuss some background and basic ideas before
turning to the actual statement of the theorem.

We will use a cutoff function based on an intrinsic metric. More
specifically, for an intrinsic metric %, a vertex o ∈ X and a radius r > 0,
we let Br = Br(o) denote the ball of radius r about o with respect to
% and let η be the cutoff function defined by

η(x) =

(
1− %(x,Br)

2r

)
+

.

As η is 1/2r-Lipschitz with respect to %, we obtain∑
y∈X

b(x, y)(∇x,yη)2 ≤ 1

4r2
m(x)

for all x ∈ X, compare Lemma 11.3 and Proposition 11.29. Further-
more, as η is supported on B3r, the condition of finite balls with respect
to % implies that η ∈ Cc(X).

The result below gives a condition for form and, hence, Markov
uniqueness and essential self-adjointness. This is a first version of a
Gaffney theorem.

Theorem 12.7 (Gaffney theorem – finite distance balls). Let (b, c)
be a graph over (X,m). If there exists an intrinsic metric % such that
the distance balls are finite (B), then

Q(D) = Q(N).
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Moreover, if LCc(X) ⊆ `2(X,m), then the restriction of L to Cc(X) is
essentially self-adjoint and

D(L) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}.

Proof. By Theorems 3.2 and 3.6 it suffices to show that α-harmonic
functions in `2(X,m) for α > 0 are trivial. Hence, let u ∈ `2(X,m)∩F
satisfy (L + α)u = 0 for α > 0. For r > 0, we let Br denote the ball
of radius r about a vertex o and let η(x) = (1− %(x,Br)/2r)+ be the
cutoff function discussed above. By (B), η ∈ Cc(X) and clearly η = 1
on Br. Moreover,

∑
y∈X b(x, y)(∇x,yη)2 ≤ m(x)/4r2 for all x ∈ X. In-

voking this estimate and using Theorem 12.4 with ϕ = η and λ = −α
we obtain

α‖u1Br‖2 ≤ α‖uη‖2 = −λ‖uη‖2 ≤ 1

2

∑
x,y∈X

b(x, y)u2(x)(∇x,yη)2

=
1

2

∑
x∈X

u2(x)

(∑
y∈X

b(x, y)(∇x,yη)2

)

≤ 1

8r2
‖u‖2.

Hence, letting r →∞ and using α > 0, we infer u = 0. This completes
the proof. �

As a second formulation of a Gaffney result, we state a criterion
for essential self-adjointness and form and Markov uniqueness under a
metric completeness assumption. For this, we have to restrict to locally
finite graphs and path metrics.

Theorem 12.8 (Gaffney theorem – metric completeness). Let (b, c)
be a locally finite graph over (X,m). If there exists an intrinsic path
metric % such that (X, %) is geodesically complete, then

Q(D) = Q(N)

and the restriction of L to Cc(X) is essentially self-adjoint with

D(L) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}.

Proof. The Hopf–Rinow theorem, Theorem 11.16, gives that dis-
tance balls in locally finite graphs are finite under the completeness
condition. Moreover, Theorem 1.29 implies LCc(X) ⊆ `2(X,m) for
locally finite graphs. Given these two facts, the theorem is a direct
consequence of Theorem 12.7. �

1.2. A Green’s formula. In this subsection we establish a vari-
ant of Green’s formula which uses intrinsic metrics. This will be a
fundamental tool in the proof of the Caccioppoli inequalities that fol-
low.
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In general, the proof of Green’s formulas is a direct calculation
once we know that all of the involved sums are absolutely convergent.
We will first prove an auxiliary lemma that will establish the required
convergence. To this end we define the combinatorial neighborhood
N(U) of a set U ⊆ X as the set of all vertices which are in U or are
connected by an edge to a vertex in U, i.e.,

N(U) = U ∪ {y ∈ X | y ∼ x for some x ∈ U}.
In what follows U will typically be the support of some cutoff function
ϕ ∈ C(X), so it is natural to use the notation

N(ϕ) = N(suppϕ).

Moreover, given a pseudo metric %, we recall the notation Bε(U) for
the ε-ball about U with respect to %, i.e.,

Bε(U) = {y ∈ X | there exists an x ∈ U with %(x, y) ≤ ε}.
The cutoff functions we use in the following are bounded and the
weighted vertex degree is bounded on some neighborhood of the sup-
port. Specifically, we say a function ϕ ∈ `∞(X) has property (C) with
respect to % if the following condition is satisfied:

(C) The weighted vertex degree Deg is bounded on Bε(suppϕ) for some
ε > 0.

With these notions, we can state our lemma concerning the summa-
bility of certain functions. This result will be used for the proof of
Green’s formula as well as in the proof of subsequent Caccioppoli in-
equalities.

Lemma 12.9. Let (b, c) be a graph over (X,m) and let % be an
intrinsic metric. Let ϕ ∈ `∞(X) satisfy (C) with respect to %. For all
p, q ∈ [1,∞] with 1/p + 1/q = 1 and f, g ∈ C(X) such that f1N(ϕ) ∈
`p(X,m) and g1N(ϕ) ∈ `q(X,m) each of the following sums∑

x,y∈X

b(x, y)|f(x)g(x)ϕ(x)|,
∑
x,y∈X

b(x, y)|f(x)g(x)ϕ(y)|,

∑
x,y∈X

b(x, y)|f(x)g(y)ϕ(x)|,
∑
x,y∈X

b(x, y)|f(y)g(x)ϕ(x)|

is finite. In fact, each sum is bounded by C‖f1N(ϕ)‖p‖g1N(ϕ)‖q‖ϕ‖∞
with C = ε−2 ∨ supBε(suppϕ) Deg.

Proof. Let U = suppϕ and

b′ = b− b1X\U×X\U , c′ = c1U

be the graph for which all edge weights and killing terms completely
outside of U are set to zero. We denote the corresponding weighted
degree by Deg′. We first show that Deg′ is bounded.

Claim. Deg′ ≤ (ε−2 ∨ supBε(U) Deg).
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Proof of the claim. Clearly, Deg′ ≤ Deg and, therefore, Deg′ is
bounded on Bε(U) by property (C). Furthermore, Deg′ = 0 on X \
N(U). Hence, it remains to show that Deg′ is bounded by ε−2 on
N(U) \Bε(U).

Let x ∈ N(U) \ Bε(U). We observe that c′(x) = 0, b′(x, y) = 0 for
all y 6∈ U while b′(x, y) = b(x, y) and %(x, y) > ε for all y ∈ U . Since %
is an intrinsic metric, we get

ε2Deg′(x) =
1

m(x)

∑
y∈U

b′(x, y)ε2 ≤ 1

m(x)

∑
y∈U

b(x, y)%2(x, y) ≤ 1.

Hence, Deg′ ≤ (ε−2 ∨ supBε(U) Deg), as claimed.

After these preparations we now come to the actual estimate. We
only treat the sum

∑
x,y∈X b(x, y)|f(x)g(x)ϕ(y)|. The other sums can

be estimated similarly.
By the assumption suppϕ = U we have

b(x, y)ϕ(y) 6= 0

only for y ∈ U and x ∈ N(U), in which case b(x, y) = b′(x, y). In
particular, we have∑

x,y∈X

b(x, y)|ϕ(y)|a(x, y) =
∑

x,y∈N(U)

b′(x, y)|ϕ(y)|a(x, y)

for any a : X×X −→ [0,∞). Combining this observation with Hölder’s
inequality with b′ considered as a measure and using the claim, we
estimate∑
x,y∈X

b(x, y)|f(x)||g(y)||ϕ(y)|

≤ ‖ϕ‖∞
∑

x,y∈N(U)

b′(x, y)|f(x)||g(y)|

≤ ‖ϕ‖∞

 ∑
x,y∈N(U)

b′(x, y)|f(x)|p
1/p ∑

x,y∈N(U)

b′(x, y)|g(y)|q
1/q

≤ ‖ϕ‖∞

 ∑
x∈N(U)

Deg′(x)|f(x)|pm(x)

1/p ∑
y∈N(U)

Deg′(y)|g(y)|qm(y)

1/q

≤ ‖Deg′‖∞‖f1N(U)‖p‖g1N(U)‖q‖ϕ‖∞.

Since Deg′ is bounded by ε−2∨supBε(U) Deg, the statement follows. �

We now use the lemma above along with some basic estimates to
establish the absolute convergence of sums involved in the following
variant of Green’s formula.
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Proposition 12.10 (Green’s formula). Let (b, c) be a graph over
(X,m) and let % be an intrinsic metric. Let U ⊆ X and assume that
Deg is bounded on Bε(U) for some ε > 0. Let p, q ∈ [1,∞] satisfy
1/p + 1/q = 1 and f, g ∈ C(X) be such that f1N(U) ∈ `p(X,m) ∩ F
and g ∈ `q(X,m) with supp g ⊆ U . Then, we have∑
x∈X

Lf(x)g(x)m(x) =
1

2

∑
x,y∈X

b(x, y)∇x,yf∇x,yg +
∑
x∈X

c(x)f(x)g(x),

where all sums converge absolutely.

Proof. The formula follows by a direct calculation once we estab-
lish the absolute convergence of all terms involved.

The absolute convergence of the sums on the right-hand side in-
volving b follows from the previous lemma applied with ϕ = 1U as
supp g ⊆ U . The absolute convergence of the sum involving c on the
right-hand side can be shown directly by using the assumptions and
Hölder’s inequality as follows,∑

x∈X

c(x)|f(x)||g(x)| ≤ ‖Deg1U‖∞
∑
x∈U

|f(x)||g(x)|m(x)

≤ ‖Deg1U‖∞‖f1U‖p‖g1U‖q.
Finally, we note that also the sum on the left-hand side is absolutely

convergent. Indeed, the term g(Lf)m can be written out using the
definition of L as∑

x∈X

g(x)

(∑
y∈X

b(x, y)(f(x)− f(y)) + c(x)f(x)

)
.

Now, we can argue as in the case of the treatment of the right-hand
side. This completes the proof. �

1.3. An `2-Caccioppoli inequality. In this subsection prove a
Caccioppoli inequality for functions in `2(X,m).

We consider the following situation ensuring that the Green’s for-
mula of the preceding subsection can be applied: For a graph (b, c)
over (X,m) with an intrinsic metric %, we consider a bounded function
ϕ such that Deg is bounded on an ε-neighborhood of its support for
some ε > 0. This was referred to as ϕ satisfying (C) with respect to %.
Moreover, we consider u ∈ F with u1N(ϕ) ∈ `2(X,m), where N(ϕ) is
the combinatorial neighborhood of the support of ϕ.

We note that in this situation the assumptions of Proposition 12.10
and Lemma 12.9 are satisfied for f = uϕ and g = uϕ as well as for
f = u and g = uϕ2. Moreover, it is obvious that uϕ ∈ F for u ∈ F
and ϕ ∈ `∞(X). Given this, we can prove the analogue of the basic
cutoff inequality in our situation by a straightforward adaption of the
argument used above.



1. CACCIOPPOLI INEQUALITIES 485

Lemma 12.11 (The basic cutoff inequality in `2). Let (b, c) be a
graph over (X,m) and let % be an intrinsic metric. Let ϕ ∈ `∞(X)
satisfy (C) with respect to % and let u ∈ F with u1N(ϕ) ∈ `2(X,m).
Then,

Q(uϕ) ≤
∑
x∈X

ϕ2(x)Lu(x)u(x)m(x) +
1

2

∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

Proof. This follows by virtually the same proof as Lemma 12.2
with the following two modifications: The use of the Green’s formula
from Proposition 1.5 is replaced by the use of the Green’s formula from
Proposition 12.10 applied to f = uϕ and g = uϕ and the necessary
absolute convergence of the sums is ensured by Lemma 12.9. �

Using condition (C) we can now establish every result we obtained
in Subsection 1.1 by replacing the use of Lemma 12.2 with the previous
lemma. In particular, we obtain the following version of the Caccioppoli
inequality which is a counterpart to Theorem 12.6.

Theorem 12.12 (Caccioppoli inequality – `2 version). Let (b, c) be
a graph over (X,m) and let % be an intrinsic metric. Let ϕ ∈ `∞(X)
satisfy (C) with respect to % and let u ∈ F with u1N(ϕ) ∈ `2(X,m).
Then,

1

4

∑
x,y∈X

b(x, y)ϕ2(y)(∇x,yu)2 +
∑
x∈X

c(x)(uϕ)2(x)

≤
∑
x∈X

ϕ2(x)Lu(x)u(x)m(x) +
∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

If u additionally satisfies Lu = λu on suppϕ for λ ∈ R, then

1

4

∑
x,y∈X

b(x, y)ϕ2(y)(∇x,yu)2 +
∑
x∈X

c(x)(uϕ)2(x)

≤ λ‖uϕ‖2 +
∑
x,y∈X

b(x, y)u2(x)(∇x,yϕ)2.

1.4. An `p-Caccioppoli inequality. In this subsection we will
prove a Caccioppoli inequality for functions in `p(X,m) for p ∈ (1,∞).
This inequality will be used in the proof of Yau’s Liouville theorem
concerning subharmonic functions. Along the way, we prove a lemma
which will be used in the proof of Karp’s Liouville theorem.

The version of the Caccioppoli inequality we prove in this subsection
is the most sophisticated one. This version involves positive subsolu-
tions as opposed to solutions. Therefore, the `p-Caccioppoli inequality
does not reduce to the `2-version presented in the last subsection.

We start with a key lemma which will be used in the proof of the
inequality as well as in the proof of Karp’s theorem, Theorem 12.17.
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For this reason, we state and prove it separately. For the statement,
we recall that a function is said to satisfy condition (C) if the weighted
vertex degree is bounded on some ball about the support of the func-
tion.

Lemma 12.13. Let (b, c) be a graph over (X,m) and let % be an
intrinsic metric. Let ϕ ∈ `∞(X) satisfy (C) with respect to %. Let
u ∈ F satisfy u ≥ 0, u1N(ϕ) ∈ `p(X,m) for some p ∈ (1,∞) and
Lu ≤ λu on suppϕ for λ ∈ R. Then,

C
∑
x,y∈X

b(x, y)ϕ2(y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈X

c(x)(upϕ2)(x)

≤ λ‖uϕ2/p‖pp −
∑
x,y∈X

b(x, y)ϕ(y)up−1(x)∇x,yu∇x,yϕ,

where C = (1 ∧ (p− 1))/2 and (u(x) ∨ u(y))p−2(∇x,yu)2 = 0 if u(x) =
u(y) = 0.

Proof. We note from the assumptions that ϕ2up−1 ∈ `q(X,m) for
1/p + 1/q = 1. Hence, from Lu ≤ λu with u ≥ 0 and the Green’s
formula, Proposition 12.10, applied to f = u, g = ϕ2up−1 and U =
suppϕ, we get

λ‖uϕ2/p‖pp −
∑
x∈X

c(x)(upϕ2)(x)

=
∑
x∈X

λ(upϕ2)(x)m(x)−
∑
x∈X

c(x)(upϕ2)(x)

≥
∑
x∈X

Lu(x)(up−1ϕ2)(x)m(x)−
∑
x∈X

c(x)(upϕ2)(x)

=
1

2

∑
x∈X

b(x, y)∇x,yu∇x,y(u
p−1ϕ2).

By the first Leibniz rule found in Lemma 2.25 we have

∇x,y(u
p−1ϕ2) = up−1(x)∇x,yϕ

2 + ϕ2(y)∇x,yu
p−1

and thus

. . . =
1

2

∑
x∈X

b(x, y)∇x,yu
(
up−1(x)∇x,yϕ

2 + ϕ2(y)∇x,yu
p−1
)
.

Furthermore, a direct calculation gives∇x,yϕ
2 = 2ϕ(y)∇x,yϕ+(∇x,yϕ)2

so that

. . . =
1

2

∑
x,y∈X

b(x, y)∇x,yu

·
(

2up−1(x)ϕ(y)∇x,yϕ+ up−1(x)(∇x,yϕ)2 + ϕ2(y)∇x,yu
p−1
)
.
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One can separate the sum above into three sums which are abso-
lutely convergent by applying Lemma 12.9 repeatedly with f = u and
g = up−1. For the second of these sums, we use symmetry to observe∑

x,y∈X

b(x, y)up−1(x)(∇x,yu)(∇x,yϕ)2

=
1

2

∑
x,y∈X

b(x, y)(∇x,yu
p−1)(∇x,yu)(∇x,yϕ)2 ≥ 0

as ∇x,yu
p−1∇x,yu ≥ 0 for p > 1, which holds since ∇x,yu

p−1 and ∇x,yu
have the same sign. As a result of this positivity, we may drop this
term when we estimate the sum from below. For the third term in the
sum, we apply the mean value inequality for the function up−1 found
in Lemma 2.28 (c) to obtain

∇x,yu∇x,yu
p−1 = |∇x,yu||∇x,yu

p−1| ≥ 2C(u(x) ∨ u(y))p−2(∇x,yu)2

with C = (1 ∧ (p− 1))/2. We note that for the case when u(x) = 0 or
u(y) = 0 the inequality is trivial and in the case where both are 0 we
use the convention (u(x) ∨ u(y))p−2(∇x,yu)2 = 0 as assumed. Putting
these estimates together we arrive at

λ‖uϕ2/p‖pp −
∑
x∈X

c(x)(upϕ2)(x)

≥
∑
x,y∈X

b(x, y)up−1(x)ϕ(y)(∇x,yu)(∇x,yϕ)

+ C
∑
x,y∈X

b(x, y)ϕ2(y)(u(x) ∨ u(y))p−2(∇x,yu)2.

The statement follows by rearranging the terms. �

Using the lemma above, we now state and prove a Caccioppoli
inequality for positive subsolutions in `p(X,m) for p ∈ (1,∞).

Theorem 12.14 (Caccioppoli inequality – `p version). Let (b, c) be
a graph over (X,m) and let % be an intrinsic metric. Let ϕ ∈ `∞(X)
satisfy (C) with respect to %. Let u ∈ F satisfy u ≥ 0, u1N(ϕ) ∈
`p(X,m) for some p ∈ (1,∞) and Lu ≤ λu on suppϕ for λ ∈ R.
Then,

C
∑
x,y∈X

b(x, y)ϕ2(y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈X

c(x)(upϕ2)(x)

≤ λ‖uϕ2/p‖pp +
1

4C

∑
x,y∈X

b(x, y)up(x)(∇x,yϕ)2,

where C = (1 ∧ (p− 1))/4 and (u(x) ∨ u(y))p−2(∇x,yu)2 = 0 if u(x) =
u(y) = 0.
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Proof. Let C0 = (1 ∧ (p − 1))/2. By applying Lemma 12.13 we
have the estimate

C0

∑
x,y∈X

b(x, y)ϕ2(y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈X

c(x)(upϕ2)(x)

≤ λ‖uϕ2/p‖pp −
∑
x,y∈X

b(x, y)ϕ(y)up−1(x)∇x,yu∇x,yϕ

≤ λ‖uϕ2/p‖pp +
∑
x,y∈X

b(x, y)ϕ(y)(u(x) ∨ u(y))p−1|∇x,yu||∇x,yϕ|.

We now employ the inequality |αβ| ≤ 1
2C0

α2 + C0

2
β2 for α, β ∈ R with

α = (u(x) ∨ u(y))p/2|∇x,yϕ| and β = ϕ(y)(u(x) ∨ u(y))p/2−1|∇x,yu| to
estimate

. . . ≤ λ‖uϕ2/p‖pp +
1

2C0

∑
x,y∈X

b(x, y)(u(x) ∨ u(y))p(∇x,yϕ)2

+
C0

2

∑
x,y∈X

b(x, y)ϕ2(y)(u(x) ∨ u(y))p−2(∇x,yu)2.

Subtracting the third term on the right-hand side from both sides of
the inequality yields

C0

2

∑
x,y∈X

b(x, y)ϕ2(y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈X

c(x)(upϕ2)(x)

≤ λ‖uϕ2/p‖pp +
1

2C0

∑
x,y∈X

b(x, y)(u(x) ∨ u(y))p(∇x,yϕ)2.

Finally, invoking the inequality (u(x) ∨ u(y))p ≤ up(x) + up(y), which
holds since u ≥ 0, and using symmetry, we obtain the desired state-
ment. �

2. Liouville theorems

In this section we prove two Liouville theorems. The classic Liou-
ville theorem states that every bounded harmonic function is constant.
We will present two variants of such a result, each arising by replacing
the assumption of boundedness by an `p bound.

We will now use the `p version of the Caccioppoli inequality to study
harmonic and positive subharmonic functions. Recall that u ∈ F is
called harmonic if Lu = 0 and subharmonic if Lu ≤ 0. Liouville
theorems give conditions for such functions to be constant.

We have already seen one such result, specifically, that every posi-
tive subharmonic function in `p(X,m) for p ∈ [1,∞) must be 0 when-
ever the graph is connected and the measure of every infinite path
is infinite, see Theorem 8.3 in Section 1. In this section, instead of
a condition on the measure, we assume a condition on the geometry.
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Specifically, we assume the existence of an intrinsic metric such that
the weighted degree is bounded on balls (B∗). This will allow us to con-
struct suitable cutoff functions and utilize the Caccioppoli inequalities.
Our first result concerns positive subharmonic functions.

Theorem 12.15 (Yau’s Liouville theorem). Let (b, c) be a connected
graph over (X,m). If there exists an intrinsic metric % such that Deg is
bounded on distance balls (B∗), then every positive subharmonic func-
tion u ∈ `p(X,m) for some p ∈ (1,∞) is constant.

Proof. Let r > 0, o ∈ X and Br = Br(o) be the ball of radius r
around o defined with respect to the intrinsic metric %. For R > 0, we
define the cutoff function

η(x) = ηr,R(x) =

(
1− %(x,Br)

R

)
+

,

where x ∈ X. We note that 1Br ≤ η ≤ 1BR+r
. Moreover, by definition η

is 1/R-Lipschitz, i.e., satisfies |η(x)−η(y)| ≤ 1
R
%(x, y). As % is intrinsic,

this implies ∑
y∈X

b(x, y)(∇x,yη)2 ≤ 1

R2
m(x)

for x ∈ X.
Using these properties and the `p-Caccioppoli inequality, Theo-

rem 12.14, with ϕ = η and λ = 0 we get the following inequality,
for some constant C > 0,∑

x∈X

∑
y∈Br

b(x, y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈Br

c(x)up(x)

≤
∑
x,y∈X

b(x, y)η2(y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈X

c(x)(upη2)(x)

≤ C
∑
x,y∈X

b(x, y)up(x)(∇x,yη)2

≤ C

R2
‖u‖pp.

We recall our convention that (u(x) ∨ u(y))p−2(∇x,yu)2 = 0 if u(x) =
u(y) = 0.

Since u ∈ `p(X,m), the right-hand side is finite and letting R→∞
yields∑

x∈X

∑
y∈Br

b(x, y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈Br

c(x)up(x) = 0.

Since this holds for all r > 0, Fatou’s lemma leads to∑
x,y∈X

b(x, y)(u(x) ∨ u(y))p−2(u(x)− u(y))2 +
∑
x∈X

c(x)up(x) = 0.

By connectedness, we infer that u is constant. �
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Remark. If the graph is not connected, we obtain that u is con-
stant on every connected component of the graph. Furthermore, we
note that the proof yields u = 0 whenever c 6= 0.

Since the positive and negative parts of a harmonic function are
subharmonic, we get the following immediate corollary for harmonic
functions.

Corollary 12.16 (Yau’s Liouville theorem for harmonic func-
tions). Let (b, c) be a connected graph over (X,m). If there exists an
intrinsic metric % such that Deg is bounded on balls (B∗), then every
harmonic function u ∈ `p(X,m) for some p ∈ (1,∞) is constant.

Proof. If u is harmonic, then the positive and negative parts u±
of u are positive subharmonic functions by Lemma 1.9. Moreover,
‖u±‖p ≤ ‖u‖p. Hence, the statement follows from Theorem 12.15 and
the fact that u = u+ − u−. �

Remark. We note that in the theorem and corollary the case p =
1 is excluded. Indeed, the corresponding statement for p = 1 does
not hold in general (Exercise 12.1). On the other hand, stochastic
completeness implies that there are no non-zero positive superharmonic
functions in `1(X,m) (Exercise 12.7).

Next, we present a Liouville theorem which has a weaker assump-
tion on the subharmonic function but a stronger geometric assumption.
Specifically, we require only that the `p norm of the function does not
grow too fast but we add the assumption of finite jump size. We recall
that the jump size s of an intrinsic metric % is defined as

s = sup
x∼y

%(x, y)

and we say the intrinsic metric % has finite jump size (J) if s <∞. We
denote the balls with respect to % around a vertex o ∈ X by Br = Br(o).

Theorem 12.17 (Karp’s Liouville theorem). Let (b, c) be a con-
nected graph over (X,m). Suppose that there exists an intrinsic metric
% such that Deg is bounded on distance balls (B∗) and % has finite jump
size (J). A positive subharmonic function u is constant if∫ ∞

r0

r

‖u1Br‖
p
p
dr =∞

for some p ∈ (1,∞) and some r0 ≥ 0 with u1Br0 6= 0.

Remark. If for one r0 ≥ 0 and o ∈ X with u1Br0 (o) 6= 0 the integral∫ ∞
r0

r

‖u1Br0 (o)‖pp
dr

diverges, then the integral will diverge for each r ≥ 0 and o′ ∈ X with
u1Br(o′) 6= 0. Furthermore, if u does not admit an r > 0 with u1Br 6= 0,
then u is equal to 0 and hence also constant.
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Proof. Let u ∈ F be a positive subharmonic function. We may as-
sume u1Br ∈ `p(X,m) for all r ≥ 0 since otherwise

∫∞
r1
r/‖u1Br‖ppdr = 0

for some r1 ≥ 0 and this gives the contradiction
∫∞
r0
r/‖u1Br‖ppdr <∞.

Furthermore, for R > r > s, where s denotes the jump size of %, we
let η be the cutoff function defined by

η(x) = ηr,R(x) =

(
1− %(x,Br)

R− r

)
+

.

We note that 1Br ≤ η ≤ 1BR . Additionally, by the fact that % has
finite jump size s, we get that the mapping (x, y) 7→ b(x, y)∇x,yη is
supported on (BR+s \Br−s)× (BR+s \Br−s).

Taking these properties into account and squaring both sides of
Lemma 12.13 with ϕ = η and λ = 0, yields( ∑

x,y∈X

b(x, y)η2(y)(u(x) ∨ u(y))p−2(∇x,yu)2

)2

≤

(∑
x,y∈X

b(x, y)η2(y)(u(x) ∨ u(y))p−2(∇x,yu)2 +
∑
x∈X

c(x)(upη2)(x)

)2

≤ C

 ∑
x,y∈BR+s\Br−s

b(x, y)up−1(x)η(y)∇x,yu∇x,yη

2

≤ C

 ∑
x,y∈BR+s\Br−s

b(x, y)(u(x) ∨ u(y))p−1η(y)∇x,yu∇x,yη

2

for some constant C > 0 which may change from line to line. We note
that in the last line we used p > 1 to estimate up−1(x) by (u(x) ∨
u(y))p−1. We next apply the Cauchy–Schwarz inequality and (u(x) ∨
u(y))p ≤ up(x) ∨ up(y) ≤ up(x) + up(y) to obtain

. . . ≤C

 ∑
x,y∈BR+s\Br−s

b(x, y)(u(x) ∨ u(y))p(∇x,yη)2


·

 ∑
x,y∈BR+s\Br−s

b(x, y)η2(y)(u(x) ∨ u(y))p−2(∇x,yu)2


≤C

 ∑
x,y∈BR+s\Br−s

b(x, y)up(x)(∇x,yη)2


·

 ∑
x,y∈BR+s\Br−s

b(x, y)η2(y)(u(x) ∨ u(y))p−2(∇x,yu)2

 .
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As η is a cutoff function defined with respect to an intrinsic metric %
we find

∑
y b(x, y)(∇x,yη)2 ≤ m(x)/(R − r)2 for x ∈ BR+s \ Br−s. We

use this to estimate the first sum to obtain

. . . ≤ C

(R− r)2
‖u1BR+s\Br−s‖pp

·

 ∑
x,y∈BR+s\Br−s

b(x, y)η2(y)(u(x) ∨ u(y))p−2(∇x,yu)2

 .

Letting F (x, y) = b(x, y)η2(y)(u(x)∨ u(y))p−2(∇x,yu)2 and putting ev-
erything together we have shown(∑

x,y∈X

F (x, y)

)2

≤ C

(R− r)2
‖u1BR+s\Br−s‖pp

∑
x,y∈BR+s\Br−s

F (x, y)

for some positive constant C.
We next iterate this estimate over a sequence of radii (Rj) and a

sequence of cutoff functions (ϕj) in place of ηr,R. We let R0 ≥ 3s and
let

Rj = 2jR0 for j ∈ N,
ϕj = ηRj+s,Rj+1−s for j ∈ N0.

Letting

δj+1 = (Rj+1 − s)− (Rj + s) = Rj − 2s

and using suppϕj ⊆ BRj+1−s, the estimate above yields ∑
x,y∈BRj+1

b(x, y)ϕ2
j(y)(u(x) ∨ u(y))p−2(∇x,yu)2

2

≤ C

δ2
j+1

‖u1BRj+1
\BRj ‖

p
p

 ∑
x,y∈BRj+1

\BRj

b(x, y)ϕ2
j(y)(u(x) ∨ u(y))p−2(∇x,yu)2

 .

We let

Uj = ‖u1BRj ‖
p
p

Qj+1 =
∑

x,y∈BRj+1

b(x, y)ϕ2
j(y)(u(x) ∨ u(y))p−2(∇x,yu)2

for j ∈ N0. We note that the estimate above implies

Q2
j+1 ≤ C

Uj+1

δ2
j+1

(Qj+1 −Qj),

where we use ϕj−1 ≤ ϕj and the fact that the sum in Qj is over a
smaller set than the sum which is actually subtracted from Qj+1.
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If Q1 = 0, then as R0 can be chosen arbitrarily large and ϕ0 = 1 on
BR0 , we conclude

(u(x) ∨ u(y))p−2(∇x,yu)2 = 0

for all x, y ∈ X with x ∼ y. Therefore, connectedness implies that u is
constant.

It remains to show that Q1 = 0. Assume not, that is, Q1 > 0. Since
ϕj ≤ ϕj+1 and u ≥ 0 we infer Qj ≤ Qj+1 for all j ∈ N0 and, therefore,

QjQj+1 ≤ Q2
j+1 ≤ C

Uj+1

δ2
j+1

(Qj+1 −Qj)

for j ∈ N0. As Qj 6= 0 for all j ∈ N, we may rearrange the terms above
to yield

1

C

δ2
j+1

Uj+1

+
1

Qj+1

≤ 1

Qj

.

Hence, starting at j = 1 and iterating this estimate over j, gives

1

C

∞∑
j=1

δ2
j+1

Uj+1

≤ 1

Q1

<∞.

However, as Rj = 2jR0, we note that

1

2

∫ Rj+1

Rj

r

‖u1Br‖
p
p
dr ≤ 1

2
(Rj+1 −Rj)

Rj+1

‖u1BRj ‖
p
p

=
R2
j

‖u1BRj ‖
p
p
.

Therefore, the assumption
∫∞
r0
r/‖u1Brj ‖

p
pdr =∞ yields the divergence

of∑
j≥r0 R

2
j/‖u1BRj ‖

p
p and thus of

∑
j≥r0 δ

2
j /Uj by the limit comparison

test. This contradiction completes the proof. �

Remark. The result above can be formulated in terms of the
growth of a positive subharmonic function (Exercise 12.8).

As in the case of Yau’s Liouville theorem, we immediately get the
following version of Karp’s theorem for harmonic functions.

Corollary 12.18 (Karp’s Liouville theorem for harmonic func-
tions). Let (b, c) be a connected graph over (X,m). Suppose that there
exists an intrinsic metric % such that Deg is bounded on distance balls
(B∗) and % has finite jump size (J). Let Br denote the distance ball
of radius r about a vertex with respect to %. Then, every harmonic
function u such that ∫ ∞

r0

r

‖u1Br‖
p
p
dr =∞

for some r0 ≥ 0 with u1Br0 6= 0 and some p ∈ (1,∞) is constant.
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Proof. If u is harmonic, then the positive and negative parts u±
of u are positive subharmonic functions by Lemma 1.9. Moreover,
‖u±‖p ≤ ‖u‖p. Hence, the statement follows from Theorem 12.17 and
the fact that u = u+ − u−. �

We finish this section with a series of applications which are left as
exercises.

Remark. Let (b, c) be a connected graph over (X,m) with an in-
trinsic metric % such that the weighted vertex degree is bounded on
distance balls (B∗) and has finite jump size (J). Moreover, let

%1(·) = %(o, ·) ∨ 1

for some o ∈ X. Show that:

(a) Every positive subharmonic function in `p(X, %−2
1 m) for some

p ∈ (1,∞) is constant (Exercise 12.9).

(b) If %q1 ∈ `1(X,m) for q ∈ R, then every positive subharmonic
function u such that, for some ε > 0 and C ≥ 0,

u ≤ C%q+2−ε
1

is constant. In particular, for q > −2 every bounded subharmonic
function is constant (Exercise 12.10).

(c) If m(X) <∞, then every positive subharmonic function u such
that, for some ε > 0 and C ≥ 0,

u ≤ C%2−ε
1

is constant. In particular, every bounded subharmonic function u is
constant (Exercise 12.11).

(d) If, for some β > 0,

lim sup
r→∞

1

rβ
logm(Br+1 \Br) < 0,

then every positive subharmonic function u such that there exist p > 0
and C ≥ 0 with

u ≤ C%p1

is constant (Exercise 12.12).

3. Applications of the Liouville theorems

In this section we derive consequences of the Liouville theorems. In
particular, we use Yau’s Liouville theorem to show several uniqueness
properties for forms and operators. Moreover, we use Karp’s Liouville
theorem to give a criterion for recurrence.

We now harvest various consequences of the Liouville theorems es-
tablished in Section 2. More specifically, we will show form unique-
ness, Markov uniqueness and essential self-adjointness whenever the
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weighted degree is bounded on distance balls for some intrinsic metric
by applying Yau’s theorem in Subsection 3.1. We will then use Yau’s
theorem again to characterize the domain of the generators on `p in
Subsection 3.2. Finally, we will apply Karp’s theorem to establish a
volume growth criterion for recurrence in Subsection 3.3.

The Liouville theorems presented in the previous section only es-
tablish the constancy of positive subharmonic functions. However, to
prove form uniqueness and essential self-adjointness, we need to show
the triviality of α-harmonic functions for α > 0. The following basic
lemma allows us to pass from the constancy of positive subharmonic
functions to triviality of α-harmonic functions. It will be used repeat-
edly in the results that follow.

Lemma 12.19. Let (b, c) be a graph over (X,m) and let p ∈ [1,∞].
If every positive subharmonic function in `p(X,m) is constant, then
every α-harmonic function in `p(X,m) is trivial for α > 0.

Proof. By Lemma 1.9, both the positive and negative parts u±
of an α-harmonic function u are positive α-subharmonic functions and
hence subharmonic if α > 0. Therefore, u+ and u− are constant by
assumption and so is u = u+−u−. As (L+α)u = (c/m+α)u = 0 and
α > 0, it follows that u = 0. �

3.1. Form uniqueness and essential self-adjointness. In this
subsection we discuss the uniqueness of the form and essential self-
adjointness of the Laplacian when there exists an intrinsic metric such
that the weighted degree is bounded on balls.

We first discuss form uniqueness. We recall that Q(D) is the re-
striction of Q to the form closure of the restriction to Cc(X) while
Q(N) is the restriction of Q to D ∩ `2(X,m). In Theorem 3.12 we have
shown that form uniqueness is equivalent to Markov uniqueness of the
operator. We start by showing that these two form domains are equal
whenever condition (B∗) holds by applying Yau’s Liouville theorem.

Theorem 12.20 ((B∗) implies Q(D) = Q(N)). Let (b, c) be a graph
over (X,m). If there exists an intrinsic metric % such that Deg is
bounded on distance balls (B∗), then

Q(D) = Q(N).

In particular, there exists a unique operator L associated to (b, c) which
is the unique Markov realization of L and has domain

D(L) = {f ∈ D ∩ `2(X,m) | Lf ∈ `2(X,m)}.

Proof. Theorem 3.2 gives that Q(D) = Q(N) if and only if every
α-harmonic function for α > 0 in D(Q(N)) = D ∩ `2(X,m) is trivial.
Hence, the result follows immediately by applying Theorem 12.15 and
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Lemma 12.19 to connected components of the graph. The “in par-
ticular” statement follows immediately from Corollary 3.3 and Theo-
rem 3.12. �

Next, we discuss essential self-adjointness. We recall that essential
self-adjointness means that the restriction of L to Cc(X) has a unique
self-adjoint extension in `2(X,m). To be able to even state this prop-
erty, we additionally need the assumption that LCc(X) ⊆ `2(X,m).
This assumption is characterized in Theorem 1.29.

Theorem 12.21 ((B∗) implies essential self-adjointness). Let (b, c)
be a graph over (X,m). If LCc(X) ⊆ `2(X,m) and there exists an
intrinsic metric % that such that Deg is bounded on distance balls (B∗),
then the restriction of L to Cc(X) is essentially self-adjoint and the
unique self-adjoint extension L has domain

D(L) = {f ∈ `2(X,m) | Lf ∈ `2(X,m)}.

Proof. By Theorem 3.6, essential self-adjointness of the restriction
of L to Cc(X) is equivalent to the triviality of α-harmonic functions in
`2(X,m) for α > 0. Hence, essential self-adjointness follows immedi-
ately by combining Theorem 12.15 and Lemma 12.19 over connected
components of the graph. The statement about the domain of L follows
from Theorem 3.6 as L = L(D) in the essentially self-adjoint case. �

Remark. We note that as finiteness of balls (B) clearly implies
that the weighted degree function is bounded on balls (B∗), it fol-
lows that the results above generalize the Gaffney theorems, Theo-
rems 12.7 and 12.8, found in Subsection 1.1.

3.2. Domains of the generators. In this subsection we give con-
sequences of the Liouville theorems for the domains of the generators
on `p(X,m).

We recall that the generators L(p) of semigroups and resolvents on
`p(X,m) for p ∈ (1,∞) were introduced in Section 1 by extending the
semigroup on the Hilbert space `2(X,m) to all `p(X,m) for p ∈ [1,∞].
In particular, we note that by Theorem 2.13, the action of L(p) is given
by L.

Theorem 12.22 (Domain of L(p) under (B∗)). Let (b, c) be a graph
over (X,m). Let D(L(p)) denote the domain of L(p), the generator of
the semigroup on `p(X,m) for p ∈ (1,∞). If there exists an intrinsic
metric % such that Deg is bounded on distance balls (B∗), then

D(L(p)) = {f ∈ `p(X,m) | Lf ∈ `p(X,m)}.

Proof. From Theorem 3.8 we get that D(L(p)) = {f ∈ `p(X,m) |
Lf ∈ `p(X,m)} if and only if α-harmonic functions for α > 0 in
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`p(X,m) are trivial. Hence, the statement follows immediately by The-
orem 12.15 and Lemma 12.19 applied to connected components of the
graph. �

3.3. Recurrence. We now show that if the measure of distance
balls does not grow too rapidly, then a graph is recurrent.

We recall that in Chapter 6 we discussed the notion of recurrence
for connected graphs. One characterization of recurrence is that all
bounded superharmonic functions, i.e., bounded functions u satisfying
Lu ≥ 0, are constant. We use this characterization along with Karp’s
theorem to show recurrence under a growth condition on the measure
of balls with respect to an intrinsic metric.

Theorem 12.23 (Volume growth and recurrence). Let b be a con-
nected graph over (X,m). Suppose that there exists an intrinsic metric
% such that Deg is bounded on distance balls (B∗) and % has finite jump
size (J). Let Br denote the distance ball of radius r about a vertex o
defined with respect to %. If∫ ∞

r0

r

m(Br)
dr =∞

for some r0 ≥ 0, then b is recurrent.

Remark. It is not hard to see that
∫∞
r0
r/m(Br)dr = ∞ for all

r0 ≥ 0 and all o ∈ X if the integral diverges for one r0 ≥ 0 and one
o ∈ X.

Proof. By Theorem 6.1 (iv.c) the graph is recurrent if and only
if every bounded superharmonic function is constant. Let v be a non-
trivial bounded superharmonic function. Then, as c = 0, u = −v +
‖v‖∞ is a positive bounded subharmonic function. We may assume
that there exists an r1 > r0 such that u1Br1 6= 0. By assumption, for
p ∈ (1,∞), we have∫ ∞

r1

r

‖u1Br‖
p
p
dr ≥ 1

‖u‖p∞

∫ ∞
r0

r

m(Br)
dr =∞.

By Karp’s Liouville theorem, Theorem 12.17, we infer that u is con-
stant, which implies that v is constant as well. This finishes the
proof. �

We finish this section with a series of remarks.

Remark. Theorem 12.23 is optimal in the sense that there exist
examples of transient graphs satisfying (B∗) and (J) with m(Br) grow-
ing like r2+ε for any ε > 0 (Exercise 12.2). It is also possible to give
a characterization of recurrence involving the finiteness of the measure
of the space (Exercise 12.13).



498 12. HARMONIC FUNCTIONS AND CACCIOPPOLI THEORY

Remark. We will prove a criterion for stochastic completeness
which allows for a much stronger volume growth, see Theorem 14.11
in Section 3.

4. Shnol′ theorems

In this section we use Caccioppoli inequalities to study the spectrum
of the Laplacian via generalized eigenfunctions. In particular, we prove
two versions of a Shnol′ result which states that whenever generalized
eigenfunctions do not grow too fast, the generalized eigenvalue is in the
spectrum.

We denote the spectrum of the Laplacian L = L(D) associated to
a graph (b, c) over (X,m) by σ(L). We refer to a non-trivial function
u ∈ F which satisfies

Lu = λu

for λ ∈ R as a generalized eigenfunction. We prove two versions of a
Shnol′ theorem for which we make the notion of growing not too fast
precise. In the first version, we consider subexponentially bounded
generalized eigenfunctions. In the second, more general, version, we
assume that the ratio of norms of the generalized eigenfunction on the
boundary divided by the interior tends to zero.

We first make the notion of a subexponentially bounded function
precise.

Definition 12.24 (Subexponentially bounded function). Let % be
an intrinsic metric. A function u ∈ C(X) is said to be subexponentially
bounded with respect to % if, for some o ∈ X and all α > 0,

e−α%(o,·)u ∈ `2(X,m).

Remark. The definition above raises the question if the notion
depends on the choice of o ∈ X. In fact, if e−α%(o,·)u ∈ `2(X,m) for
some o ∈ X and some α > 0, then e−β%(x,·)u ∈ `2(X,m) for all x ∈ X
and all β ≥ α (Exercise 12.14).

Remark. We have seen the notion of graphs satisfying a strong
isoperimetric inequality. In this case, if the weighted degree is bounded,
the constant functions are not subexponentially bounded (Exercise 12.15).

For both versions of the Shnol′ theorem we require that balls defined
with respect to an intrinsic metric are finite and that the metric has
finite jump size. We note that under these assumptions, the graph is
locally finite by Lemma 11.28 and there exists a unique operator L
associated to (b, c) by Theorem 12.20.
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Theorem 12.25 (Shnol′ theorem). Let (b, c) be a graph over (X,m)
and let % be an intrinsic metric with finite distance balls (B) and finite
jump size (J). If λ ∈ R and u ∈ F satisfy

Lu = λu

and u 6= 0 is subexponentially bounded, then λ ∈ σ(L).

Remark. From the theorem above we can conclude that if the
measure of balls grows subexponentially, then 0 is in the spectrum of
L if c = 0 (Exercise 12.16).

We will deduce the first version of the Shnol′ theorem from the
more general version presented below. To state this second version, we
require the notion of an annulus about a set. For U ⊆ X and R ≥ 0,
we let

AR(U) = BR(U) ∩BR(X \ U),

which can be understood as an annulus of radius R about the boundary
of U .

Theorem 12.26 (General Shnol′ theorem). Let (b, c) be a graph
over (X,m) and let % be an intrinsic metric with finite distance balls
(B) and finite jump size (J) denoted by s. Let λ ∈ R and let u ∈ F be
such that Lu = λu and u 6= 0. If there exists a sequence of finite sets
(Un) and R > 2s with

‖u1AR(Un)‖
‖u1Un‖

→ 0

as n→∞, then λ ∈ σ(L).

The key estimate for the proof of the general Shnol′ theorem is the
Shnol′ inequality presented below.

Lemma 12.27 (Shnol′ inequality). Let (b, c) be a graph over (X,m)
and let % be an intrinsic metric with finite distance balls (B) and finite
jump size (J) denoted by s. Let U be a finite set and let u ∈ F and
λ ∈ R satisfy Lu = λu. Let ε > 0 and define η = ηU,ε by

η(x) = ηU,ε(x) =

(
1− %(x, U)

ε

)
+

.

Then, there exists a C ≥ 0 such that, for all v ∈ D ∩ `2(X,m),∣∣(Q− λ)(uη2, v)
∣∣ ≤ C‖v‖Q‖u1Aε+2s(U)‖.

Remark. As U is finite, so is Bε(U) due to the assumption of
finiteness of distance balls. In particular, η ∈ Cc(X) as η is supported
on Bε(U). Hence, uη2 belongs to D and we can form Q(uη2, v) in the
statement of the lemma.
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Proof. Due to the finiteness of U and the finiteness of distance
balls, the set Bδ(U) is finite for all δ > 0. In particular, the sets
Aε+s(U) and Dε,s, which will be introduced below, are finite as they
are subsets of Bδ(U) for suitable δ. For the same reason, all cutoff
functions encountered in the proof belong to Cc(X). Finally, we note
that N(U) ⊆ Bs(U) for the combinatorial neighborhood N(U) of U so
that N(U) is finite. These finiteness properties will be used tacitly in
the proof.

By Green’s formula, Proposition 1.4, applied to u ∈ F , which sat-
isfies Lu = λu and η2v ∈ Cc(X), we have

λ〈uη2, v〉 =
∑
x∈X

(λu)(x)η2(x)v(x)m(x) =
∑
x∈X

Lu(x)(η2v)(x)m(x)

=
1

2

∑
x,y∈X

b(x, y)∇x,yu∇x,y(η
2v) +

∑
x∈X

c(x)(uη2v)(x).

On the other hand, by the definition of Q, we get

Q(uη2, v) =
1

2

∑
x,y∈X

b(x, y)∇x,y(uη
2)∇x,yv +

∑
x∈X

c(x)(uη2v)(x).

Hence, combining these equalities gives

(Q− λ)(uη2, v) =
1

2

∑
x,y∈X

b(x, y)
(
∇x,y(uη

2)∇x,yv −∇x,yu∇x,y(η
2v)
)
.

Now, applying the first two Leibniz rules in Lemma 2.25 gives

. . . =
1

2

∑
x,y∈X

b(x, y)
(
u(x)∇x,yη

2∇x,yv + η2(y)∇x,yu∇x,yv

− v(x)∇x,yu∇x,yη
2 − η2(y)∇x,yu∇x,yv

)
.

We observe that the second and fourth terms above cancel. Applying
the equality α2 − β2 = (α + β)(α − β) for α, β ∈ R to the remaining
terms yields

. . . =
1

2

∑
x,y∈X

b(x, y)
(
u(x)(η(x) + η(y))∇x,yη∇x,yv

− v(x)(η(x) + η(y))∇x,yη∇x,yu
)
.

Now, by construction, η is supported in Bε(U) and constant on U .
Thus, we have ∇x,yη = 0 for x ∼ y if either x or y is not in

Dε,s(U) = Bε+s(U) ∩Bs(X \ U),
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which is a subset of Aε+s(U). Furthermore, 0 ≤ η ≤ 1, so η(x)+η(y) ≤
2. Hence,

|(Q− λ)(uη2, v)| ≤
∑
x,y∈X

b(x, y)|u(x)||∇x,yη||∇x,yv|

+
1

2

∑
x,y∈Dε,s(U)

b(x, y)|v(x)(η(x) + η(y))∇x,yη||∇x,yu|.

Using the Cauchy–Schwarz inequality, the inequality (α+ β)2 ≤ 2α2 +
2β2 for α, β ∈ R and symmetry yields

. . . ≤ Q1/2(v)

(
2
∑
x,y∈X

b(x, y)u2(x)(∇x,yη)2

)1/2

+

 ∑
x,y∈Dε,s(U)

b(x, y)η2(x)(∇x,yu)2

1/2

·

 ∑
x,y∈Dε,s(U)

b(x, y)v2(x)(∇x,yη)2

1/2

.

We now discuss the terms appearing in the preceding estimate: The
first term in the first product is part of our ultimate estimate. As for
the second term of the first product, we note from the discussion above
that ∇x,yη = 0 if either x or y is not in Aε+s(U) and x ∼ y. Moreover,
by definition, the function η is 1/ε-Lipschitz continuous with respect
to %. So, as % is intrinsic we get by a direct computation, see Lemma
11.3, the estimate∑

y∈X

b(x, y)(∇x,yη)2 ≤ m(x)

ε2
1Aε+s(U)(x).

Hence, the term in question can be estimated by∑
x,y∈X

b(x, y)u2(x)(∇x,yη)2 =
∑
x∈X

u2(x)
∑
y∈X

b(x, y)(∇x,yη)2

≤ 1

ε2
‖u1Aε+s(U)‖2.

We now focus on the second product. For the first term, namely∑
x,y∈Dε,s(U)

b(x, y)η2(x)(∇x,yu)2,

we want to apply the Caccioppoli inequality, Theorem 12.6. Here, a
slight adjustment is necessary for the following reason: We want to
end up with the restriction of u to an annulus, specifically to Aε+2s(U).
Now, the sum is taken over a type of annulus Dε,s(U) which is contained
in Aε+s(U). However, the cutoff function η appearing in the sum is not
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supported on an annulus but rather on Bε(U). In order to remedy this,
we will replace η by a function χ which agrees with η on Dε,s(U) and
at the same time is supported on an annulus. More precisely, we define

χ =

(
1− %(·, U ∩Bs(X \ U))

ε

)
+

and note that χ agrees with η on Dε,s(U), is supported on Aε+s(U) and
satisfies ∇x,yχ 6= 0 only if both x and y belong to Aε+2s(U) for x ∼ y.
Now, we are ready to apply Theorem 12.6 in the following chain of
estimates,∑

x,y∈Dε,s(U)

b(x, y)η2(x)(∇x,yu)2

=
∑

x,y∈Dε,s(U)

b(x, y)χ2(x)(∇x,yu)2

≤
∑
x,y∈X

b(x, y)χ2(x)(∇x,yu)2

≤ C

(
λ‖χu‖2 +

∑
x,y∈X

b(x, y)u2(x)(∇x,yχ)2

)

≤ C

(
λ+

1

ε2

)2

‖u1Aε+2s(U)‖2.

Here, the last inequality follows from the fact that χ is supported on
Aε+s(U) combined with the estimate∑

y∈X

b(x, y)(∇x,yχ)2 ≤ m(x)

ε2
1Aε+2s(U)(x).

Finally, the second term of the second product can be estimated as∑
x,y∈Dε,s(U)

b(x, y)v2(x)(∇x,yη)2 ≤
∑
x∈X

v2(x)

(∑
y∈X

b(x, y)(∇x,yη)2

)

≤ 1

ε2
‖v‖2.

Putting these three estimates into the chain of inequalities above we
conclude the result since ‖v‖2

Q = Q(v) + ‖v‖2. �

Remark. We comment on the structural content of the preceding
lemma in a series of remarks:

(a) The argument given in the above proof actually provides an
estimate for the term

T (u, v, η) =

∣∣∣∣∣12 ∑
x,y∈X

b(x, y)
(
∇x,y(uη

2)∇x,yv −∇x,yu∇x,y(η
2v)
)∣∣∣∣∣
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for arbitrary u ∈ F and v ∈ D. More specifically, it shows that
T (u, v, η) is bounded above by (2 + 1

ε
) times

Q1/2(v)‖u1Aε+s(U)‖+ ‖v1Aε+s(U)‖
(
‖1Aε+2s(U)uLu‖1 + ‖u1Aε+2s(U)‖2

)1/2
.

(b) In the lemma, the function u satisfies additionally Lu = λu and
v ∈ `2(X,m). These conditions allow one to simplify the estimate in
part (a): The `2 condition on v makes it possible to consider v instead
of the restriction of v to the annulus in the `2-norm. The equation
Lu = λu makes it possible to replace the product uLu by λu2. This
equation is also used at the beginning of the proof to show that the
expression of interest, namely |(Q− λ)(uη2, v)|), agrees with T (u, v, η).

(c) The term T (u, v, η) can be understood as∑
x∈X

L(η2u)(x)v(x)m(x)−
∑
x∈X

Lu(x)η2(x)v(x)m(x)

by Green’s formula. Moreover, if u actually belongs to D and not only
F it can also be understood as

Q(η2u, v)−Q(u, η2v).

This ends the remark.

Having established the Shnol′ inequality, we can prove the general
version of the Shnol′ theorem. The proof uses the concept of Weyl
sequences from Appendix 2. In particular, Theorem E.3 gives a char-
acterization for λ to be in the spectrum in terms of a sequence whose
energy goes to zero.

Proof of Theorem 12.26. Let u ∈ F be such that Lu = λu.
Let (Un) be a sequence of finite sets with

‖u1AR(Un)‖
‖u1Un‖

→ 0

as n → ∞, where R > 2s. Let ε = R − 2s > 0. By assumption, the
ε-ball about every finite set U is finite and, therefore, ηUn,ε ∈ Cc(X)
for all n ∈ N. Hence,

un = uη2
Un,ε ∈ Cc(X) ⊆ D(Q),

which we now show to be a Weyl sequence. Since ‖un‖ ≥ ‖u1Un‖, by
applying the Shnol′ inequality, Lemma 12.27, we get for all v ∈ D(Q)
with ‖v‖Q = 1

|(Q− λ)(un, v)|
‖un‖2

≤ C
‖u1Aε+2s(Un)‖2

‖un‖2
≤ C
‖u1Aε+2s(Un)‖2

‖u1Un‖2
→ 0

as n → ∞. Thus, (un/‖un‖) is a Weyl sequence and, therefore, λ ∈
σ(L) by Theorem E.3. �

To conclude the Shnol′ theorem from the more general version we
need the following auxiliary lemma.
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Lemma 12.28. Let g : [0,∞) −→ [0,∞) such that for every α > 0
there exists a constant Cα ≥ 0 with

g(r) ≤ Cαe
αr

for all r ≥ 0. Then, for all ε > 0 and δ > 0, there exists an unbounded
monotonically increasing sequence (rk) in (0,∞) with

g(rk + ε) ≤ eδg(rk)

for all k ∈ N.

Proof. Assume the contrary. Then there exists an r0 ≥ 0 such
that g(r0) > 0 and g(r + ε) > eδg(r) for all r ≥ r0. By induction we
get

g(r0 + nε) ≥ eδng(r0)

for n ∈ N. Now, by the assumption g(r) ≤ Cαe
αr applied to r = r0 +nε

and α = δ/(2ε), we get

g(r0) ≤ g(r0 + nε)e−δn ≤ Cαe
α(r0+nε)e−δn = Cαe

αr0e−δn/2 → 0

as n→∞. This contradicts g(r0) > 0. �

Proof of Theorem 12.25. Let u satisfy Lu = λu and be subex-
ponentially bounded. Furthermore, let ur = u1Br for r > 0. Then,
using that u is subexponentially bounded, we get for α > 0

‖ur‖2 =
∑
x∈Br

(eα%(o,x)e−α%(o,x)u(x))2m(x) ≤ e2αr‖e−α%(o,·)u‖2.

Hence, g : [0,∞) −→ [0,∞) given by g(r) = ‖ur‖2 satisfies the assump-
tion of the lemma above with Cα = ‖e−α%(o,·)u‖2. Thus, for every n ∈ N
and ε = 2R, there exists a sequence (r̃k(n)) such that

‖ur̃k(n)+2R‖2 ≤ e1/n‖ur̃k(n)‖2.

Letting rn = r̃n(n) +R, we get

‖urn+R‖2 ≤ e1/n‖urn−R‖2.

We notice that AR(Brn) = Brn+R\Brn−R. We use this and the inequal-
ity above to estimate

‖u1AR(Brn )‖2

‖urn‖2
=
‖urn+R‖2 − ‖urn−R‖2

‖urn‖2

≤ (e1/n − 1)
‖urn−R‖2

‖urn‖2

≤ (e1/n − 1)→ 0

as n→∞. Hence, λ ∈ σ(L) follows from Theorem 12.26. �
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Exercises

Example exercises.

Exercise 12.1 (Failure of `1-Liouville). Show that there exists a
connected graph b over (X,m) with an intrinsic metric % such that:

• the weighted vertex degree is bounded on distance balls (B∗)
• there exists a non-constant harmonic function in `1(X,m).

(Hint: Consider a graph over Z with exponentially decaying edge
weights and measure such that the quotient of the two is not square
summable.)

Exercise 12.2 (Volume growth and recurrence). Show that for any
ε > 0 there exists a connected graph b over (X,m) with an intrinsic
metric % and the following properties:

• the weighted vertex degree is bounded on distance balls (B∗) and %
has finite jump size (J)
• the measure m(Br) of the distance balls Br grows like r2+ε

• the graph is transient.

(Hint: Consider a graph over N with b(x, y) 6= 0 if and only if
|x− y| = 1 and apply Theorem 9.21.)

Exercise 12.3 (Subexponentially bounded functions in Zn). Let
X = Zn for n ∈ N and b be the graph with standard weights where
b(x, y) = 1 if and only if |x − y| = 1 and let m = 1. Denote by Br

the ball of radius r about 0 ∈ Zn with respect to the combinatorial
graph metric. Show that a function u is subexponentially bounded if
and only if

lim sup
r→∞

1

r
log ‖u1Br‖∞ ≤ 0.

In particular, show that every polynomial u is subexponentially bounded.
Here a polynomial is a function in the linear hull of {(x1, . . . , xn) 7→
xk11 · · · xknn | k1, . . . , kn ∈ N0}.

Exercise 12.4 (Subexponentially bounded functions on regular
trees). Let b be a k-regular tree with standard weights, which is a graph
without cycles where every vertex has k + 1 neighbors and m = 1.
Denote by Sr the sphere of radius r about an arbitrary vertex with
respect to the combinatorial graph metric. Show that a function u is
subexponentially bounded if

lim sup
r→∞

1

r
log ‖u1Sr‖∞ ≤ −

1

2
log k.
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Exercise 12.5 (Subexponentially bounded functions on spherically
symmetric trees*). Let b be a spherically symmetric tree with stan-
dard weights where the number of forward neighbors in the r-th sphere
with respect to the combinatorial graph distance is a monotonically
increasing function, see Example 9.2 for the definition of a spherically
symmetric tree. Give a criterion for a function to be subexponentially
bounded in the spirit of Exercise 12.4 in the following two situations:

(a) Consider the normalizing measure and the combinatorial graph dis-
tance.

(b) Consider the counting measure and the degree path metric from
Definition 11.18.

Challenge!

Exercise 12.6 (Subexponentially bounded functions on anti-trees*).
Let b be an anti-tree with standard weights where the r-sphere has
s(r) = (r + 1)α vertices for α > 0, see Example 9.3 for the definition
of an anti-tree. Give a criterion for a function to be subexponentially
bounded in the spirit of Exercise 12.4 in the following two situations:

(a) Consider the normalizing measure and the combinatorial graph dis-
tance.

(b) Consider the counting measure and the degree path metric from
Definition 11.18.

Challenge!

Extension exercises.

Exercise 12.7 (`1-Liouville theorem). Let b be a connected stochas-
tically complete graph over (X,m). Show that every positive super-
harmonic function in `1(X,m) is constant.

(Hint 1: Compare a positive superharmonic function to the Green’s
function G(o, ·) for some fixed o ∈ X.)

(Hint 2: Show that the Green’s function G(o, ·) is not in `1(X,m)
for all o ∈ X.)

Exercise 12.8 (Growth and subharmonic functions). Let (b, c) be
a graph with an intrinsic metric % such that Deg is bounded on distance
balls (B∗) and has finite jump size (J). Suppose that u is a positive
subharmonic function which satisfies

lim sup
r→∞

1

r2 log r
‖u1Br‖pp <∞.

Show that u is constant.
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For Exercises 12.9 to 12.12 let (b, c) be a connected graph over
(X,m) with an intrinsic metric % be such that the weighted vertex
degree is bounded on distance balls (B∗) and has finite jump size (J).
Furthermore, define

%1(·) = %(o, ·) ∨ 1

for some o ∈ X.

Exercise 12.9. Show that, for p ∈ (1,∞), every positive subhar-
monic function in `p(X, %−2

1 m) is constant.

Exercise 12.10. Let q ∈ R. Assume that %q1 ∈ `1(X,m). Show
that every positive subharmonic function u such that for some ε > 0
and C ≥ 0

u ≤ C%q+2−ε
1

is constant. In particular, show that if q > −2, then every bounded
subharmonic function u is constant.

Exercise 12.11. Assume that m(X) <∞. Show that every posi-
tive subharmonic function u such that for some ε > 0 and C ≥ 0

u ≤ C%2−ε
1

is constant. In particular, show that every bounded subharmonic func-
tion u is constant.

Exercise 12.12. Let Br for r ≥ 0 be the distance balls about some
vertex defined with respect to % and assume that for some β > 0

lim sup
r→∞

1

rβ
logm(Br+1 \Br) < 0.

Then, every positive subharmonic function u such that there exists
p > 0 and C ≥ 0 such that

u ≤ C%p1

is constant.

Exercise 12.13 (Characterization of recurrence). Let b be a con-
nected graph over (X,m). Show that b is recurrent if and only if there
exists a finite measure m and an intrinsic metric % such that all distance
balls are finite (B) and % has finite jump size (J).

(Hint: See Exercise 6.13 and use the f given there to define the
measure mf (x) =

∑
y∈X b(x, y)(f(x) − f(y))2 and metric df (x, y) =

|f(x)− f(y)|.)
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Exercise 12.14 (Subexponentially bounded function). Let (b, c)
be a graph over (X,m) and let % be an intrinsic metric. Let f ∈ C(X)
and assume that e−α%(o,·)f ∈ `2(X,m) for some α > 0 and o ∈ X. Show
that e−β%(x,·)f ∈ `2(X,m) for all β ≥ α and all x ∈ X.

Exercise 12.15 (Isoperimetric inequality and growth). Let b be a
graph over (X,m) with bounded weighted vertex degree which satis-
fies a strong isoperimetric inequality with constant α > 0, see Defini-
tion 10.5. Show that the constant functions are not subexponentially
bounded.

Exercise 12.16 (Subexponential volume growth and spectrum).
Let b be a graph over (X,m) and let % be an intrinsic metric with finite
balls (B) and finite jump size (J). Let Br denote the distance balls
about a vertex for r ≥ 0 and assume that

lim sup
r→∞

1

r
logm(Br) ≤ 0.

Show that 0 is in the spectrum of the unique associated operator L.
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Notes

Caccioppoli inequalities are a well-known tool in geometric analysis,
see the volumes [Cac63a, Cac63b] for the original work of Cacciop-
poli. We focus in these notes on the graph case but also give some
references for manifolds and Dirichlet forms.

The Caccioppoli-type inequality presented as Theorem 12.4 can be
found in [HKMW13], as well as [TH10, CdVTHT11, Mil11]. In
the special case of the normalized Laplacian, the Caccioppoli inequality
for `2, Theorem 12.12, appears in [CG98, LX10], and for `p for p ∈
(1,∞), Theorem 12.14, in [HS97, HJ14, RSV97]. For general graph
Laplacians, the p-Caccioppoli inequality, Theorem 12.14, appears in
[HK14]. For Dirichlet forms, the Caccioppoli inequality for p = 2 is
shown for strongly local Dirichlet forms in [BdMLS09] and for general
Dirichlet forms in [FLW14].

Yau’s theorem, Theorem 12.15, was proven by Yau for manifolds
in [Yau76] and is a corollary of Karp’s theorem shown in [Kar82].
This was later extended to strongly local Dirichlet forms by Sturm in
[Stu94]. For graphs, the general statement is proven by Hua/Keller
in [HK14], improving upon results from [HS97, RSV97, Mas09,
HJ14].

The results on form uniqueness and essential self-adjointness, The-
orems 12.20 and 12.21, can be found in [HKMW13] and give an ana-
logue to results of Roelcke [Roe60], Chernoff [Che73] and Strichartz
[Str83] for Riemannian manifolds. The result on Markov unique-
ness in Theorem 12.20 can be found in [Sch20b] and gives an ana-
logue to a theorem of Gaffney, see [Gaf51, Gaf54], and also [Mas05,
GM13]. For prior and related work on graphs, see [CdVTHT11,
Mil11, Mil12, MT14, MT15].

The volume test for recurrence, Theorem 12.23, can be found for
Riemannian manifolds in [Kar82], see also [Gri83, Gri85, Var83].
An extension to strongly local Dirichlet forms is given in [Stu94]. For
graphs, this was shown in [HK14], improving previous criteria for
graphs found in [DK88, RSV97, Woe00] and for jump processes in
[MUW12]. There is also a similar criterion in terms of the boundary
of balls proven by Nash-Williams in [NW59], see also the presentation
in [Gri18]. The characterization of recurrence in terms of intrinsic
metrics which appears in the exercises is from [Sch20b].

The classical Shnol′ theorem can be found in [Sno57] for Euclidean
space and was rediscovered by Simon in [Sim81], see the discussion
in [CFKS87]. For an accessible reference for the original proof of
Shnol′, see [Gla66]. For strongly local Dirichlet forms, this result can
be found in [BdMLS09]. A first version for graphs appears in [HK11].
The proof given here follows [FLW14], which gives a proof for general
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Dirichlet forms. For a different approach relating the growth of solu-
tions to the ground state, see [BP20, BD19].

Shnol′ theorems show that generalized eigenvalues belong to the
spectrum once they admit generalized eigenfunctions which do not grow
too fast. There is also interest in converse results showing that for,
in some sense, most points in the spectrum there exists a generalized
eigenfunction which does not grow to fast. This is often discussed in the
context of expansion in terms of generalized eigenfunctions. A treat-
ment for graphs can be found in [LT16]. For strongly local Dirichlet
forms, see [BdMS03]. We refer to these works for further references.
We also note that both Shnol′ results and their converses are also dis-
cussed for special graphs based on lattices with additional long range
interaction terms in [Han19].

Finally, we note that the spelling of Shnol′ in the non-Russian lit-
erature shows some degree of variation. Here, we follow the spelling
given in articles in the Russian Mathematical Surveys on the occasion
of the 70th birthday of Shnol′[ABG+99] and upon his passing away
[AAA+17].



CHAMBER 13

Spectral Bounds

C... rules everything around me.
Method Man.

This chapter is dedicated to the study of the bottom of the spectrum
and the bottom of the essential spectrum

λ0(L) = inf σ(L) and λess
0 (L) = inf σess(L)

of the Laplacian L = L(D) associated to a graph. We will give lower
and upper bounds of the form

h2

2
≤ λ0(L) ≤ λess

0 (L) ≤ µ2

8
,

where h is an isoperimetric or Cheeger constant and µ is an exponential
volume growth rate. We establish the lower bound in Section 1 and the
upper bound in Section 2. Along the way, we also prove lower bounds
for the bottom of the spectrum of the Neumann Laplacian L(N) in
Subsection 1.2 and upper bounds in Section 2.

1. Cheeger constants and lower spectral bounds

In this section we prove an analogue to Cheeger’s famous theorem
on Riemannian manifolds. This result relates an isoperimetric con-
stant, called the Cheeger constant, to the bottom of the spectrum.
We will first introduce the Cheeger constant and then prove a Cheeger
inequality for the Laplacian L = L(D) associated to a graph in Subsec-
tion 1.1. Afterwards, we turn to estimates for the Neumann Laplacian
and the case of finite measure in Subsection 1.2.

We first give the definition of the Cheeger constant. To this end,
recall the definition of the boundary of a set W ⊆ X, which is given
by

∂W = (W ×X \W ) ∪ (X \W ×W ),

and the concept of an intrinsic metric, which is a pseudo metric %
satisfying ∑

y∈X

b(x, y)%2(x, y) ≤ m(x)

for all x ∈ X.

511
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Definition 13.1 (Cheeger constant). Let b be a graph over (X,m)
and let % be an intrinsic metric. For a finite set W ⊆ X, we let the
area of the boundary be given by

Ab%(∂W ) =
1

2

∑
(x,y)∈∂W

b(x, y)%(x, y) =
1

2
(b%)(∂W ).

We define the Cheeger constant h = hb%,m by

h = inf
W⊆X,W finite

Ab%(∂W )

m(W )
.

Remark. Using the assumption that % is intrinsic, it follows that
the area of the boundary of any finite set is finite (Exercise 13.1).

Remark. In Section 1 we introduced an isoperimetric constant
α which depends only on the graph b over X. More specifically, we
considered

α = inf
W⊆X,W finite

1
2
b(∂W )

n(W )
.

In the spectral estimates for the Laplacian L associated to a graph b
over a measure space (X,m) given in Section 6, the measure m entered
the estimates via the weighted vertex degree. In this section we prove
a lower spectral bound which depends on h only. The measure m then
appears in the definition of the intrinsic metric.

1.1. A Cheeger inequality. In this subsection we state and prove
a Cheeger inequality for L.

In order to carry out the proof, we recall the area and co-area
formula from Section 2. For a function f ∈ C(X) we denote the level
sets of f , for t ∈ R, by

Ωt(f) = {x ∈ X | f(x) > t}.

The co-area formula, Lemma 10.8, applied with the weight w = 1
2
b%

says

1

2

∑
x,y∈X

b(x, y)%(x, y)|f(x)− f(y)| =
∫ ∞
−∞

Ab%(∂Ωt(f))dt.

Furthermore, the area formula, Lemma 10.9, for positive f ≥ 0 gives∑
x∈X

m(x)f(x) =

∫ ∞
0

m(Ωt(f))dt,

where in both formulae the value ∞ is allowed. However, as we will
apply these formulae for f = ϕ2 and ϕ ∈ Cc(X), the value is always
finite.
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Theorem 13.2 (Cheeger inequality). Let b be a graph over (X,m)
and let % be an intrinsic metric. Then,

λ0(L) ≥ h2

2
.

Proof. Let ϕ ∈ Cc(X) and denote the level sets of ϕ2 by Ωt =
Ωt(ϕ

2). Then, by the area and co-area formulae, Lemmas 10.9 and 10.8
and the definition of the Cheeger constant, we derive

h‖ϕ‖2 = h
∑
x∈X

ϕ2(x)m(x)

= h

∫ ∞
0

m(Ωt)dt

≤
∫ ∞

0

Ab%(∂Ωt)dt

=
1

2

∑
x,y∈X

b(x, y)%(x, y)|ϕ2(x)− ϕ2(y)|

=
1

2

∑
x,y∈X

b(x, y)%(x, y)|ϕ(x)− ϕ(y)||ϕ(x) + ϕ(y)|.

An application of the Cauchy–Schwarz inequality then yields

. . . ≤ 1√
2
Q1/2(ϕ)

(∑
x,y∈X

b(x, y)%2(x, y)(ϕ(x) + ϕ(y))2

)1/2

.

Now, Young’s inequality (α+ β)2 ≤ 2α2 + 2β2 for α, β ∈ R, symmetry
of both b and % and the intrinsic metric property give

. . . ≤
√

2Q1/2(ϕ)‖ϕ‖.
Putting everything together then yields

h√
2
≤ Q1/2(ϕ)

‖ϕ‖
.

By squaring both sides, this gives the statement by the variational
characterization of λ0(L), see Theorem E.8. �

Remark. The proof of the theorem above is very similar to the
proof of Theorem 10.20 and, in particular, to Lemma 10.12. How-
ever, the presence of the intrinsic metric % is an essential ingredient in
estimating the sums in the proof above.

Remark. When % satisfies a uniform lower bound, one also has
an upper bound on the bottom of the spectrum via h (Exercise 13.2).
We recall that when % satisfies a uniform lower bound, Deg is a bounded
function and thus L is a bounded operator on `2(X,m) by Lemma 11.22.
Furthermore, in this case, we can characterize the vanishing of h via
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the equality of the bottom of the spectra of L and of the generator of
the semigroup on `1(X,m) (Exercise 13.3).

1.2. The Neumann Laplacian and finite measure. In this
subsection we first give an estimate for the bottom of the spectrum
of the Neumann Laplacian in terms of a slightly modified Cheeger
constant. Afterwards, we consider the case of finite measure and focus
on the bottom of the spectrum of the Neumann Laplacian restricted
to the orthogonal complement of the constant functions.

We first introduce a Cheeger constant for the Neumann Laplacian.
Recall that L(N), the Neumann Laplacian, is the operator associated to
the form Q(N), which is the restriction of Q to D(Q(N)) = D∩`2(X,m).
We define the Neumann Cheeger constant by

h(N) = inf
W⊆X,m(W )<∞

Ab%(∂W )

m(W )
.

We have the following estimate, which is analogous to Theorem 13.2.

Theorem 13.3 (Cheeger for Neumann – λ0 version). Let b be a
graph over (X,m) and let % be an intrinsic metric. Then,

λ0(L(N)) ≥ h(N)2

2
.

Proof. We follow verbatim the proof of Theorem 13.2 with func-
tions in D(Q(N)) = D ∩ `2(X,m) instead of functions in Cc(X). Since
such functions are in `2(X,m), the level sets of their squares have finite
measure, which allows us to carry over the arguments. �

We now present a Cheeger inequality for graphs of finite measure,
that is, for a graph b over (X,m) which satisfies m(X) < ∞. As
above, we consider the Neumann Laplacian which has zero bottom of
the spectrum if m(X) < ∞. This follows as the constant functions
are in D(L(N)) and are eigenfunctions corresponding to the eigenvalue
zero, see Theorem 5.8. If a function f ∈ D(Q(N)) is orthogonal to the
constant functions in `2(X,m), we write f ⊥ 1. The following spectral
quantity measures the spectral gap of L(N) in this case,

λ1(L(N)) = inf
f∈D(Q(N)), f⊥1, ‖f‖=1

Q(N)(f).

We will estimate λ1(L(N)) for graphs with finite measure by the
following isoperimetric constant

h
(N)
1 = inf

W⊆X,m(W )≤m(X)/2

Ab%(∂W )

m(W )
.

More specifically, we prove the following estimate.
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Theorem 13.4 (Cheeger for Neumann – λ1 version). Let b be a
graph over (X,m) with m(X) < ∞ and let % be an intrinsic metric.
Then,

λ1(L(N)) ≥ h
(N)
1

2

2
.

Proof. The proof utilizes the same basic ideas as the proofs above.

However, in order to use the isoperimetric constant h
(N)
1 we have to

restrict our attention to functions which are supported on sets with at
most half of the full measure. To this end we need some preparation.

For a number t ∈ R and a function f ∈ C(X) we use the notation

m(f > t) = m({x ∈ X | f(x) > t})

with analogous definitions for m(f ≥ t), m(f < t) and m(f ≤ t). We
start with a claim which yields a quantity generalizing the notion of a
median of a function on finite sets to functions on infinite sets.

Claim. There exists an M ∈ R such that

m(f > M) ≤ m(X)

2
and m(f < M) ≤ m(X)

2
.

Proof of the claim. Let F : R −→ R be given by

F (t) = m(f ≤ t)− m(X)

2
.

It is easy to see that F is a monotone increasing right continuous func-
tion such that limt→±∞ F (t) = ±m(X)/2. By the nested interval prin-
ciple and the right continuity, one finds an M ∈ R such that

F (M) ≥ 0 and F (t) ≤ 0 for t < M.

From F (M) ≥ 0, we conclude

m(f > M) = m(X)−m(f ≤M) =
m(X)

2
− F (M) ≤ m(X)

2
.

Moreover, from F (t) ≤ 0 for t < M , we deduce

m(f < M) ≤ sup
t<M

m(f ≤ t) = sup
t<M

(
F (t) +

m(X)

2

)
≤ m(X)

2
.

This proves the claim.

As m(X) < ∞, we have that 1 is an eigenfunction corresponding
to the eigenvalue 0, see Theorem 5.8. Let f ∈ D(L(N)) with f ⊥ 1.
Furthermore, set g = f −M , where M is as in the claim and observe
that g ∈ D(L(N)). Then, m(supp g±) ≤ m(X)/2. Then, by the same
line of argument as in the proof of Theorem 13.2, we obtain

h
(N)
1

2

2
‖g±‖2 ≤ Q(N)(g±).
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To combine these two estimates we notice that, since Q(N) is a Dirichlet
form, we have

Q(N)(g+ + g−) = Q(N)(|g|) ≤ Q(N)(g) = Q(N)(g+ − g−)

and, therefore, using bilinearity,

Q(N)(g+, g−) ≤ 0

which readily gives

Q(N)(g+) +Q(N)(g−) ≤ Q(N)(g).

Furthermore, since f ⊥M , we obtain

‖f‖2 ≤ ‖f‖2 + ‖M‖2 = ‖f −M‖2 = ‖g‖2 = ‖g+‖2 + ‖g−‖2

and, hence,

h
(N)
1

2

2
‖f‖2 ≤ h

(N)
1

2

2

(
‖g+‖2 + ‖g−‖2

)
≤ Q(N)(g+) +Q(N)(g−)

≤ Q(N)(g) = Q(N)(f).

This proves the theorem. �

2. Volume growth and upper spectral bounds

In this section we prove upper bounds for the bottom of the spec-
trum and the bottom of the essential spectrum in terms of exponential
volume growth. A particular consequence of our theorems is that a
graph with subexponential volume growth has bottom of the spectrum
at zero.

We will prove our upper bounds for the Neumann Laplacian L(N) =

L
(N)
b,0,m of a graph. In previous chapters, we have established various cri-

teria for L(N) and L to agree. Hence, we get results for L as corollaries
by applying these results.

2.1. The Brooks–Sturm theorem. In this subsection we first
state a theorem which we refer to as the Brooks–Sturm theorem. This
theorem connects the bottom of the spectrum with volume growth. We
then state some consequences of this result.

Let b be a graph over (X,m) and let % be an intrinsic metric. The
distance balls Br(o) of radius r about a vertex o ∈ X with respect to
% are given as

Br(o) = {x ∈ X | %(o, x) ≤ r}.
We define the exponential volume growth rate with variable center

µ0 by

µ0 = lim inf
r→∞

inf
o∈X

1

r
log

m(Br(o))

m(B1(o))
.
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Furthermore, we define the exponential volume growth rate µ by

µ = inf
o∈X

lim inf
r→∞

1

r
log

m(Br(o))

m(B1(o))
.

Obviously,

µ0 ≤ µ.

In fact, taking the infimum over o ∈ X in the definition of µ is not
necessary since the limit inferior does not depend on o, as the next
lemma shows.

Lemma 13.5. Let b be a connected graph over (X,m). Then,

µ = lim inf
r→∞

1

r
logm(Br(x))

for all x ∈ X.

Proof. For z ∈ X, let

µ0(z) = lim inf
r→∞

1

r
logm(Br(z)) = lim inf

r→∞

1

r
log

m(Br(z))

m(B1(z))
,

where the second equality follows from r−1 logm(B1(z))→ 0 as r →∞.
Let x, y ∈ X. As % takes values in [0,∞), for t = %(x, y) < ∞ and
r ≥ t,

Br−t(y) ⊆ Br(x).

Consider a sequence (rk) such that the limit inferior in the definition
of µ0(x) is realized and observe that

1

rk
logm(Brk−t(y)) ≤ 1

rk
logm(Brk(x))

for all large k. Since (rk − t)/rk → 1 as k →∞, we infer

µ0(y) ≤ lim inf
k→∞

1

rk
logm(Brk−t(y)) ≤ lim inf

k→∞

1

rk
logm(Brk(x)) = µ0(x).

Reversing the roles of x and y then yields µ0(x) = µ0(y). �

In the following subsections we will prove the following connection
between the volume growth and the bottom of the (essential) spectrum.

Theorem 13.6 (Theorem of Brooks–Sturm). Let b be a connected
graph over (X,m) and let % be an intrinsic metric. Then,

λ0(L(N)) ≤ µ2
0

8
.

If, furthermore, m(X) =∞, then

λess
0 (L(N)) ≤ µ2

8
.
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In the case of jump size bounded from above and from below we get
another estimate. In this case the Laplacian is bounded, Lemma 11.22
and L = L(D) = L(N).

Theorem 13.7. Let b be a graph over (X,m) and let % be an in-
trinsic metric such that %(x, y) ∈ [δ, 1] for x ∼ y and δ > 0. Then,

λ0(L) ≤ (eµ0/2 − 1)2

1 + δ2eµ0
.

If, furthermore, m(X) =∞, then

λess
0 (L) ≤ (eµ/2 − 1)2

1 + δ2eµ
.

Remark. If one computes the Taylor expansion of the right-hand
side as a function of µ0 (µ, respectively) at µ0 = 0 (µ = 0, respectively),
then one sees that the first order term is exactly the bound which is
obtained in Theorem 13.6 if δ = 1.

Before we come to the proof, let us discuss a result corresponding
to Theorem 13.6 for the Dirichlet Laplacian L(D). In the setting of
Theorem 13.7, the operators L(D) and L(N) agree as they are bounded
operators. However, there are other situations when these two opera-
tors agree. We highlight some such situations below.

Theorem 13.8. Let b be a connected graph over (X,m) and let % be
an intrinsic metric such that one of the following conditions is satisfied:

(B) All distance balls with respect to % are finite.
(B∗) The weighted degree Deg is bounded on all distance balls with

respect to %.
(D) The weighted degree Deg is bounded.
(M) infx∈X m(x) > 0.

(M∗) All infinite paths have infinite measure.

Then, L(D) = L(N) so that

λ0(L(D)) ≤ µ2
0

8

and if m(X) =∞, then

λess
0 (L(D)) ≤ µ2

8
.

The proof of the theorem above is a direct consequence of Theo-
rem 13.6 and the equality of L(N) and L(D). However, we will also
discuss a direct proof in Subsection 2.3 under any of the conditions
(B), (D) or (M).

Remark. It is obvious that (B) =⇒ (B∗) and (M) =⇒(M∗).



2. VOLUME GROWTH AND UPPER SPECTRAL BOUNDS 519

We now provide a corollary of Theorem 13.7 in the case where the
jump size is exactly 1. Recall the definition of the normalizing measure
given by n(x) =

∑
y∈X b(x, y) for x ∈ X.

Corollary 13.9 (Fujiwara’s theorem). Let b be a connected graph
over (X,n) and consider the volume growth with respect to the combi-
natorial graph distance. Then, for the operator L = L(D) = L(N),

λ0(L) ≤ 1− 1

cosh(µ0/2)

and, if n(X) =∞, then

λess
0 (L) ≤ 1− 1

cosh(µ/2)
.

Proof. By Theorem 1.27, the Laplacian L(D) is bounded and L(D) =
L(N) since Deg = 1 in the case of the normalizing measure. Further-
more, by Example 11.21, the combinatorial graph distance d is an in-
trinsic metric in this case. As d(x, y) = 1 for all x ∼ y, Theorem 13.7
gives

λ0(L) ≤ (eµ0/2 − 1)2

(1 + eµ0)
= 1− 2eµ0/2

1 + eµ0
= 1− 1

cosh(µ0/2)
.

Similarly,

λess
0 (L) ≤ 1− 1

cosh(µ/2)

if n(X) =∞. This completes the proof. �

2.2. The test functions. Next, we introduce the test functions
for the proof of the Brooks–Sturm theorem.

For the parameters r ≥ 0, o ∈ X and β > 0, we define the function
fr,o,β : X −→ [0,∞) by

fr,o,β(x) =
((
eβr ∧ eβ(2r−%(o,x))

)
− 1
)

+
.

We observe the following basic properties of f = fr,o,β, where Br =
Br(o),

• f |Br = eβr − 1
• f |B2r\Br = eβ(2r−%(o,·)) − 1
• f |X\B2r = 0.

We will use f as a test function to estimate the bottom of the spectrum
and the bottom of the essential spectrum.

The important conceptual feature of the functions f = fr,o,β is
the exponential decay on B2r \ Br. For β > µ0/2, the functions f 2

decay faster than the volume grows. Furthermore, the function is cut
off twice. The first cutoff consists of the subtraction by 1 and the
second is the cutoff at distance 2r, which ensures that the functions
are supported on distance balls. In this way, we can guarantee that
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the functions are square summable under appropriate hypotheses. The
other cutoff on Br is not needed for the estimate of λ0 but only for
λess

0 . The important feature of this cutoff is that the normalization of
f converges weakly to zero as r →∞.

Furthermore, for the parameters r ≥ 0, o ∈ X and β > 0, we define
the auxiliary functions gr,o,β : X −→ [0,∞) by

gr,o,β = (fr,o,β + 2) 1B2r(o).

We observe the following basic properties for g = gr,o,β

• g|Br = eβr + 1
• g|B2r\Br = eβ(2r−%(o,·)) + 1
• g|X\B2r = 0.

We prove the following further properties of the functions above.

Lemma 13.10 (Test functions). Let b be a graph over (X,m) and
let % be an intrinsic metric. Let o ∈ X, r ≥ 0 and β > 0.

(a) For all x, y ∈ X, f = fr,o,β and g = gr,o,β,

(f(x)− f(y))2 ≤ C(β)
(
g2(x) + g2(y)

)
%2(x, y),

with C(β) = β2/2. If, furthermore, %(x, y) ≤ 1 for all x ∼ y, then

C(β) = Cx,y(β) =
(eβ − 1)2

1 + %2(x, y)e2β
.

In particular, the functions fr,o,β are Lipschitz continuous with re-
spect to %.

If µ0 <∞, then there exist sequences (ok) in X and (rk) in [0,∞) such
that:

(b) frk,ok,β, grk,ok,β ∈ `2(X,m) for all k.
(c) If β > µ0/2,

lim
k→∞

‖grk,ok,β‖
‖frk,ok,β‖

= 1.

If µ <∞, then there exists an o ∈ X, such that:

(d) fr,o,β, gr,o,β ∈ `2(X,m) for all r ≥ 0 and β > 0.
(e) If β > µ0/2, then there exists a sequence (rk) such that

lim
k→∞

‖grk,o,β‖
‖frk,o,β‖

= 1.

(f) If m(X) =∞, then

fr,o,β
‖fr,o,β‖

→ 0 weakly as r →∞.

Proof. (a) Let x, y ∈ X and let

t = r ∧ (2r − %(o, x)) and s = r ∧ (2r − %(o, y)).



2. VOLUME GROWTH AND UPPER SPECTRAL BOUNDS 521

We consider the case x, y ∈ B2r(o) first. Then, by Lemma 2.29 (a),

|fr,o,β(x)− fr,o,β(y)| = |eβt − eβs| ≤ β

2
(eβt + eβs)|t− s|.

We use |t−s| ≤ |%(o, x)−%(o, y)|, which can be seen by checking cases,
eβt ≤ gr,o,β(x), eβs ≤ gr,o,β(y) and the triangle inequality to get

. . . ≤ β

2
(gr,o,β(x) + gr,o,β(y))%(x, y).

Squaring both sides and using the inequality (a + b)2 ≤ 2(a2 + b2)
finishes the proof in the case that x, y ∈ B2r(o).

Since fr,o,β is supported on X \ B2r(o), the statement is clear for
x, y ∈ X \ B2r(o). For x ∈ B2r(o), y ∈ X \ B2r(o), we have again by
Lemma 2.29 (a),

|fr,o,β(x)− fr,o,β(y)| = |eβt − 1|
= |eβt − eβ·0|

≤ β

2
(eβt + 1)t

=
β

2
(gr,o,β(x) + gr,o,β(y))t.

Since %(0, y) ≥ 2r, we have

t = r ∧ (2r − %(o, x)) ≤ 2r − %(o, x) ≤ %(o, y)− %(o, x) ≤ %(x, y),

which finishes the proof of the first statement of (a).
The second statement follows along the same lines using Lemma 2.29 (b)

and noting that

γ 7→ γ

(1 + γ2e2β)1/2

is an increasing function for γ ≥ 0.
The Lipschitz continuity of f with respect to % is now clear as g is

bounded.

(b) If µ0 < ∞, then there exist sequences (ok) in X and rk → ∞
such that

µ0 = lim
k→∞

1

2rk
log

m(B2rk(ok))

m(B1(ok))
.

In particular, m(B2rk(ok)) < ∞ and, therefore, fk = frk,ok,β and
gk = grk,ok,β ∈ `2(X,m) for β > 0, since fk, gk are bounded functions
supported on B2rk(ok).

(c) Let β > µ0/2 and let ε < 1 such that 0 < ε < β − µ0/2. Then
there exists a k0 such that, for k ≥ k0,

m(B2rk(ok))

m(B1(ok))
≤ e(2µ0+ε)rk .
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By definition gk = (fk + 2)1B2rk
(ok), so we estimate using Cauchy–

Schwarz and Young’s inequality (s+ t)2 ≤ (1− ε)−1s2 + ε−1t2,

‖gk‖2 ≤
(
‖fk‖+ 2

√
m(B2rk(ok))

)2

≤ 1

1− ε
‖fk‖2 +

4

ε
m(B2rk(ok)).

Now, there exist k1 ≥ k0 and a constant c > 0 such that for all k ≥ k1,

‖fk‖2 ≥ m(Brk(ok))(e
βrk − 1)2 ≥ cm(Brk(ok))e

2βrk .

Thus, for all k ≥ k1,

‖gk‖2

‖fk‖2
≤ 1

1− ε
+

4

εc
e−2βrk

m(B2rk(ok))

m(Brk(ok))
.

Now, given ε as above, there exists k2 ≥ k1 such that for all k ≥ k2,

m(Brk(ok))

m(B1(ok))
≥ inf

o∈X

m(Brk(o))

m(B1(o))
≥ e(µ0−ε)rk .

Therefore,

m(B2rk(ok))

m(Brk(ok))
=
m(B2rk(ok))

m(B1(ok))

m(B1(ok))

m(Brk(ok))
≤ e(µ0+2ε)rk .

Since 0 < ε < β − µ0/2, we can combine this with the estimate above
to conclude

‖gk‖2

‖fk‖2
≤ 1

1− ε
+

4

εc
e(µ0−2β+2ε)rk → 1

1− ε
as k → ∞. Since ε was chosen arbitrarily and 0 ≤ fk ≤ gk, statement
(c) follows.

(d) and (e): Let µ < ∞ and let o ∈ X. Then by Lemma 13.5, for
every ε > 0 there exist rk →∞ such that

m(B2rk(o)) ≤ e(2µ+ε)rk .

Now, the proof of statements (d) and (e) follows along the same lines
as the proofs of (b) and (c) with ok replaced by o.

For (f) let ϕ ∈ `2(X,m) with ‖ϕ‖ = 1. For every ε > 0, there exists
an r > 0 such that

‖ϕ1X\Br(o)‖ ≤
ε

2
.

Moreover, since m(X) =∞, there exists an R ≥ r such that

m(Br(o)) ≤
ε2

4
m(BR(o))

and, therefore,

‖fr,o,β1Br(o)‖2 = (eβr − 1)2m(Br(o)) ≤
ε2

4
(eβr − 1)2m(BR(o))

≤ ε2

4
‖fr,o,β1BR(o)‖2 ≤ ε2

4
‖fr,o,β‖2.
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Putting this together with the estimate for ‖ϕ1X\Br(o)‖ for r chosen as
above and using the Cauchy–Schwarz inequality, we arrive at

〈ϕ, fr,o,β〉 ≤ 〈ϕ1Br(o), fr,o,β1Br(o)〉+ 〈ϕ1X\Br(o), fr,o,β〉
≤ ‖ϕ‖‖fr,o,β1Br(o)‖+ ‖ϕ1X\Br(o)‖‖fr,o,β‖
≤ ε‖fr,o,β‖.

This implies (f). �

The first part of the lemma above provides the tools needed to
establish the next proposition estimating the energy of f by the norm
of g. These estimates will be crucial for the proof of the main theorems.

Proposition 13.11. Let b be a graph over (X,m) and let % be an
intrinsic metric. Then, for the functions fr,o,β, gr,o,β, r ≥ 0, o ∈ X,
β > 0, we have

Q(fr,o,β) ≤ β2

2
‖gr,o,β‖2.

If % ∈ [δ, 1] for x ∼ y and δ > 0, then

Q(fr,o,β) ≤ (eβ − 1)2

(1 + δ2e2β)
‖gr,o,β‖2.

Proof. By the first inequality of Lemma 13.10 (a) above and the
fact that % is an intrinsic metric, we estimate

Q(fr,o,β) =
1

2

∑
x,y∈X

b(x, y)(fr,o,β(x)− fr,o,β(y))2

≤ β2

4

∑
x,y∈X

b(x, y)
(
g2
r,o,β(x) + g2

r,o,β(y)
)
%2(x, y)

=
β2

2

∑
x∈X

g2
r,o,β(x)

∑
y∈X

b(x, y)%2(x, y)

≤ β2

2

∑
x∈X

g2
r,o,β(x)m(x)

=
β2

2
‖gr,o,β‖2.

If δ ≤ %(x, y) ≤ 1 for x ∼ y, then we use the inequality of
Lemma 13.10 (a) with C(β) = (eβ − 1)2/(1 + %2(x, y)e2β) as above
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to estimate

Q(fr,o,β) ≤ 1

2

∑
x,y∈X

b(x, y)
(eβ − 1)2

(1 + %(x, y)2e2β)

(
g2
r,o,β(x) + g2

r,o,β(y)
)
%2(x, y)

≤ (eβ − 1)2

(1 + δ2e2β)

∑
x∈X

g2
r,o,β(x)

∑
y∈X

b(x, y)%2(x, y)

≤ (eβ − 1)2

(1 + δ2e2β)
‖gr,o,β‖2.

This completes the proof. �

2.3. Proofs of the theorems. We now give the proofs of the
Brooks–Sturm theorem and its variants, Theorems 13.6, 13.7 and 13.8.

Proof of Theorem 13.6. Let the sequences (ok) and (rk) be
taken from Lemma 13.10 (b) and set fk,β = frk,ok,β and gk,β = grk,ok,β for
β > 0. By the first inequality of Proposition 13.11 and Lemma 13.10 (b)
we have fk,β ∈ `2(X,m) and Q(fk,β) < ∞ for all k ∈ N0 and β > 0.
Hence, fk,β ∈ `2(X,m) ∩ D = D(Q(N)). By the variational characteri-
zation of λ0(L(N)), Theorem E.8, we get

λ0(L(N)) = inf
f∈D(Q(N))

Q(N)(f)

‖f‖2

≤ inf
k∈N0,β>µ0/2

Q(N)(fk,β)

‖fk,β‖2

≤ inf
β>µ0/2

β2

2
lim
k→∞

‖gk,β‖2

‖fk,β‖2

=
µ2

0

8
,

where we used Lemma 13.10 (c) in the last equality.

For the proof of the inequality for λess
0 (L(N)), we assume thatm(X) =

∞ and consider the functions fk,β = frk,o,β with (rk) and o chosen as in
Lemma 13.10 (d)–(f) for β > µ/2. Again by virtue of Proposition 13.11
and Lemma 13.10 (d), we have fk,β ∈ D(Q(N)). Furthermore, by (f) of
Lemma 13.10 the functions fk,β/‖fk,β‖ converge weakly to 0 as k →∞.
Thus, by the Persson theorem, Theorem E.12, Proposition 13.11 and
Lemma 13.10 (d) we obtain

λess
0 (L(N)) ≤ lim inf

k∈N0

Q(N)(fk,β)

‖fk,β‖2
≤ β2

2
lim inf
k→∞

‖gk,β‖2

‖fk,β‖2
=
β2

2
.

Since the estimate holds for all β > µ/2 we conclude the statement. �

Proof of Theorem 13.7. The proof is analogous to that of The-
orem 13.6 but we use the second inequality of Proposition 13.11 instead
of the first one. �
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Proof of Theorem 13.8. Obviously, (B) =⇒ (B∗) and (M) =⇒
(M∗). In the previous chapters we have proven that any of the con-
ditions (B∗), (D) and (M∗) imply L(D) = L(N). In particular, the
implication for (B∗) follows from Theorem 12.20, the implication for
(D) follows from Theorem 1.27 and the implication for (M∗) follows
from Theorem 8.4.

However, let us sketch a direct proof under any of the stronger
assumptions (B), (D) or (M). In any of these cases, one has to show
that the test functions f = fr,o,β are in D(Q(D)) for appropriate r, o
and β. Lemma 13.10 already gives that f ∈ `2(X,m). In the case of
(D), the form Q is bounded and, therefore, D(Q(D)) = `2(X,m). In
the case of (B) the distance balls are finite and as suppf ⊆ B2r(o),
we have f ∈ Cc(X) ⊆ D(Q(D)). Finally, consider the case (M). If
µ0 = ∞ or µ = ∞, then there is nothing to prove. So assume the
contrary. Then, there exist distance balls of finite measure. But (M)
implies that these balls must be finite. Since f is supported on balls,
we conclude f ∈ Cc(X) and, thus, f ∈ D(Q(D)). �

Remark. If one is only interested in a weaker result such as

λ0(L(N)) ≤ µ2
0

8
involving an upper exponential volume growth defined by

µ0 = inf
o∈X

lim sup
r→∞

1

r
logm(Br(o)),

then it suffices to consider the test functions fβ = e−β%(o,·) with β >
µ0/2 (Exercise 13.4).
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Exercises

Extension Exercises.

Exercise 13.1 (Finite boundary area). Let b be a graph over
(X,m) and let % be an intrinsic metric. Show that for all finite sets the
area of the boundary is finite. More specifically, if W is a finite subset
of X, then

Ab%(∂W ) ≤ (mn)1/2(W ),

where n denotes the normalizing measure n(x) =
∑

y∈X b(x, y).

Exercise 13.2 (Upper bound via h). Let b be a graph over (X,m).
Let % be an intrinsic metric such that %(x, y) ≥ C > 0 for all x ∼ y.
Show that for the Cheeger constant h we have

λ0(L) ≤ h

C
.

Exercise 13.3 (λ0(L) = λ0(L(1))). Let b be a graph over (X,m)
with associated operator L = L(D) and denote by λ0(L) the bottom of
the spectrum of L. Let L(1) denote the generator of the semigroup on
`1(X,m) and let

λ0(L(1)) = inf
f∈D(L(1)),‖f‖1=1

‖L(1)f‖1.

Let % be an intrinsic metric such that %(x, y) ≥ C > 0 for all x ∼ y.
Show that

λ0(L) = λ0(L(1))

if and only if h = 0.

Exercise 13.4 (Upper exponential growth). Let b be a graph over
(X,m). Let % be an intrinsic metric. Let the upper exponential volume
growth be defined by

µ0 = inf
o∈X

lim sup
r→∞

1

r
logm(Br(o)),

where Br(o) is defined with respect to %. Show that

λ0(L(N)) ≤ µ2
0

8

using the test functions fβ = e−β%(o,·) for β > µ0/2.
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Notes

The (pre)-history of Cheeger’s inequality was already extensively
discussed in the notes for Chapter 10, so we mention here only the
seminal work of Cheeger [Che70] for manifolds, the works of Dodz-
iuk [Dod84] and Dodziuk/Kendall [DK86] for infinite graphs and
Alon/Milman [AM85] for finite graphs. The result as it is discussed
here, Theorem 13.2 in Section 1, appeared in [BKW15]. We note that
this theorem allows us to recover the results of [Dod84, DK86] as
these papers deal with a bounded situation in which case the combina-
torial graph metric is equivalent to an intrinsic metric. Furthermore,
an extension to the p-Laplacian is found in [KM16]. In particular
[KM16] includes Theorem 13.3 as a special case. Although Theo-
rem 13.4 seems not to have been published before, it is proven by
well-known techniques.

The history of the upper spectral bound in terms of exponential
volume growth which we refer to as Brooks–Sturm theorem in Section 2
has its beginning in the work of Brooks [Bro81]. In this paper, an
estimate for λess

0 is found in the context of Riemannian manifolds. This
was later generalized to the context of strongly local Dirichlet forms
in an unpublished manuscript by Notarantonio [Not98]. For strongly
local Dirichlet forms, Sturm proved an estimate for λ0 in [Stu94]. For
more subtle estimates for λ0 in the case of Riemannian manifolds we
refer the reader to Li/Wang [LW01, LW10].

In the case of graphs and the normalized Laplacian, correspond-
ing results were obtained and successively improved upon by various
authors, for examples see [DK88, OU94, Fuj96a, Hig03]. Theo-
rems 13.6, 13.7 and 13.8 were proven in [HKW13] in the more general
context of regular Dirichlet forms. A slightly less general version of
Theorem 13.7 was independently proven by Folz [Fol14a]. Fujiwara’s
Theorem, Corollary 13.9, can be found in [Fuj96a].





CHAMBER 14

Volume Growth Criterion for Stochastic
Completeness and Uniqueness Class

Raw I’mma give to ya, with no trivia, raw like ...
U-God.

In this chapter we present a volume growth criterion for stochastic
completeness. More specifically, we show that the measure of finite
balls defined with respect to an intrinsic metric must grow superexpo-
nentially in order for a graph to be stochastically incomplete.

Let b be a graph over (X,m). In Chapter 7 we studied the phenom-
enon of stochastic completeness. This property has many equivalent
formulations. In particular, stochastic completeness is equivalent to
the preservation of the constant function 1 by the semigroup or to
uniqueness of bounded solutions of the heat equation.

More precisely, if L = L(D) is the Laplacian associated to b over
(X,m), then we say that b over (X,m) is stochastically complete if

e−tL1 = 1

for all t ≥ 0, where e−tL is the semigroup associated to L. Furthermore,
we recall that a function u : [0,∞) × X −→ R is called a solution of
the heat equation with initial condition u0 ∈ C(X) if u(·, 0) = u0,
t 7→ ut(x) is continuous on [0,∞) and differentiable on (0,∞) for all
x ∈ X, ut ∈ F for all t > 0 and

(L+ ∂t)ut(x) = 0

for all x ∈ X and t > 0, where L is the formal Laplacian of b over
(X,m). In Theorem 7.2 we have shown for connected graphs that
stochastic completeness is equivalent to the fact that the only bounded
solution u of the heat equation with u0 = 0 is the zero function.

We now state the volume growth criterion for stochastic complete-
ness that we will establish in this chapter. Let % be an intrinsic metric
with finite balls Br around a fixed vertex and let log# = 1 ∨ log. If∫ ∞

0

r

log#(m(Br))
dr =∞,

then the graph is stochastically complete. This is shown as Theo-
rem 14.11 in Section 3. We note that the statement is incorrect when
using the combinatorial graph metric as we have seen in Chapter 9

529
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that there exists stochastically incomplete graphs whose balls in the
combinatorial graph metric grow polynomially.

We will actually prove a more general theorem, namely, Theo-
rem 14.2 in Section 1, which we refer to as a uniqueness class theorem.
It says that if the `2 norm on distance balls of a solution u of the heat
equation with u0 = 0 does not grow too rapidly, then u = 0. However,
this theorem does not hold for general graphs but only for graphs which
we call globally local. The globally local condition means that we can
control the jump size of the metric outside of large distance balls.

We then deduce the volume growth criterion for stochastic com-
pleteness from the uniqueness class theorem by considering so-called
refinements, which we discuss in Section 2. A refinement is a mod-
ified graph where additional vertices are “inserted” in existing edges
and, as a result, the jump size becomes smaller. Thus, refined graphs
can be made to satisfy the globally local condition. We can then in-
fer stochastic completeness of the refined graph from the uniqueness
class statement. It is left to show that stochastic completeness of the
original graph follows from the stochastic completeness of the refined
graph. This is achieved in Theorem 14.8 with the help of the Omori–
Yau maximum principle.

There is one more rather technical twist in the argument. Specifi-
cally, globally local graphs with finite distance balls are always locally
finite. Furthermore, the concept of refinements can only be applied to
locally finite graphs. However, for non-locally finite graphs with finite
distance balls, there are infinitely many neighbors which are far away
from all vertices. In order to complete the proof, we will also show that
removing edges corresponding to large distances has no impact on the
stochastic completeness of the graph. This is carried out in Section 3.

1. Uniqueness class

In this section we prove a uniqueness class criterion for solutions
of the heat equation. More specifically, we show that if a solution of
the heat equation with zero initial conditions on a globally local graph
does not grow too fast, then the solution must be zero.

We will first introduce the class of globally local graphs. Roughly
speaking, for such graphs the jump size outside of a ball decays as we
take larger and larger balls. When the metric is additionally assumed
to be intrinsic, we will prove a condition under which there exists a
unique solution of the heat equation for such graphs.

If b is a graph over X with a pseudo metric %, we recall that the
jump size of % is given by

s = sup{%(x, y) | x, y ∈ X, x ∼ y}.
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We say that a graph has finite jump size if s < ∞ and denote this
condition by (J). In what follows we consider the jump size outside of
distance balls. More specifically, we define the jump size at distance
larger or equal to r for r ∈ R by

sr = sup{%(x, y) | x, y ∈ X, x ∼ y, %(x, o) ∧ %(y, o) ≥ r},

where o ∈ X is a fixed vertex. We note that although the choice of the
vertex o plays a role in the definition of sr, this choice will ultimately
play no role in our results. Furthermore, we note that s = s0 is the
jump size of the graph.

We now define the notion of a graph and a pseudo metric to be
globally local.

Definition 14.1 (Globally local graphs). A graph b over X with
a pseudo metric % is globally local with respect to a monotonically
increasing function f : (0,∞) −→ (0,∞) if there exist constants A > 1,
B > 0 and r0 > 0 such that

sr ≤
Br

f(Ar)

for all r ≥ r0 and s0 = s <∞.

Remark. We note that r 7→ Br/f(Ar) does not need to be mono-
tone decreasing. Since sr ≤ s < ∞ for all r ≥ 0, we immediately see
that being globally local is only a restriction whenever f(r) > r for r
large. Indeed, we often think of f as satisfying limr→∞ r/f(r) = 0 as,
for example, when f(r) = r log r for r > 0.

We recall that a pseudo metric % is called intrinsic if∑
y∈X

b(x, y)%2(x, y) ≤ m(x)

for all x ∈ X. We also recall our geometric condition (B) that all
distance balls with respect to an intrinsic metric % are finite, that is,

(B) The distance balls Br(o) are finite for all o ∈ X and r ≥ 0.

With these definitions we can now formulate our uniqueness class cri-
terion.

Theorem 14.2 (Uniqueness class). Let b be a graph over (X,m)
and let % be an intrinsic metric with finite balls (B). Assume that
b is globally local with respect to a monotonically increasing function
f : (0,∞) −→ (0,∞) such that∫ ∞

1

r

f(r)
dt =∞.
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Let 0 < T ≤ ∞. If a solution of the heat equation u : [0, T )×X −→ R
with initial condition u0 = 0 satisfies∫ T

0

‖ut1Br‖2dt ≤ ef(r)

for all r ≥ 0, then u = 0.

Remark. By definition, globally local graphs have finite jump size
(J). Therefore, together with the assumption (B) the graphs considered
in the theorem are locally finite, see Lemma 11.28. We note that it is
possible to give a uniqueness class statement for graphs satisfying only
(B) and (J) (Exercise 14.2).

The proof of this theorem is rather involved and will be given at
the end of this section. We first give a basic estimate for solutions
of the heat equation multiplied by a finitely supported function. This
estimate involves an application of a Caccioppoli-type inequality. To
state it we recall the notion of the norm of the gradient squared of a
function f ∈ C(X), given by

|∇f |2(x) =
1

m(x)

∑
y∈X

b(x, y)(∇x,yf)2,

where ∇x,yf = f(x)− f(y) for x, y ∈ X.

Lemma 14.3 (Basic estimate). Let b be a graph over (X,m). Let
0 < T ≤ ∞ and let u : [0,∞) × X −→ R be a solution of the heat
equation. Let K ⊆ X be finite and ϕ : [0, T )×X −→ R satisfy

• suppϕt ⊆ K for all t ∈ [0, T )
• t 7→ ϕt(x) is continuous on [0, T ) for all x ∈ X
• t 7→ ϕt(x) is continuously differentiable on (0, T ) for all x ∈ X.

Then, for all 0 ≤ δ ≤ t < T ,

‖utϕt‖2 − ‖ut−δϕt−δ‖2 ≤
∫ t

t−δ

∑
x∈X

u2
τ (x)

(
∂τϕ

2
τ + |∇ϕτ |2

)
(x)m(x)dτ.

Proof. We compute, using the fundamental theorem of calculus,

‖utϕt‖2 − ‖ut−δϕt−δ‖2 =

∫ t

t−δ
∂τ‖uτϕτ‖2dτ

= 2

∫ t

t−δ

∑
x∈X

(uτϕτ∂τ (uτϕτ ))(x)m(x)dτ

= 2

∫ t

t−δ

∑
x∈X

(
u2
τϕτ∂τϕτ + uτϕ

2
τ∂τuτ

)
(x)m(x)dτ

=

∫ t

t−δ

∑
x∈X

(
u2
τ∂τϕ

2
τ + 2uτϕ

2
τ∂τuτ

)
(x)m(x)dτ,
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where we can interchange differentiation and the sum since ϕτ is sup-
ported on a fixed finite set. Since u is a solution of the heat equation
we infer

. . . =

∫ t

t−δ

∑
x∈X

(
u2
τ∂τϕ

2
τ − 2uτϕ

2
τLuτ

)
(x)m(x)dτ.

By a Caccioppoli-type inequality, Theorem 12.4, we obtain

. . . ≤
t∫

t−δ

∑
x∈X

(
u2
τ∂τϕ

2
τ + u2

τ |∇ϕτ |2
)

(x)m(x)dτ,

which finishes the proof. �

Next, we take a closer look at the integral error term on the right-
hand side of Lemma 14.3. The ultimate goal is to estimate this term
by Ge−f(Er)/r2 with constants E,G > 1 for large r. We will then
iterate the estimate above until we reach time t = 0, at which point
the initial condition u0 = 0 cancels the second term on the left-hand
side. Applying this estimate with an appropriate ϕ, which is based on
the intrinsic metric and will be supported on balls, will the give the
necessary growth condition to yield uniqueness.

The required estimate will be achieved below in Grigor′yan’s in-
equality, Lemma 14.5, which is deduced from the following main tech-
nical estimate.

Lemma 14.4 (Main technical estimate). Let b be a graph over (X,m).
Let % be an intrinsic metric with finite distance balls (B) and finite jump
size (J) denoted by s. Let f : (0,∞) −→ (0,∞) be a monotonically in-
creasing function, let 0 < T ≤ ∞ and let u : [0, T ) × X −→ R be a
solution of the heat equation such that∫ T

0

‖ut1Br‖2dt ≤ ef(r)

for all r ≥ 0. Let sr denote the jump size at distance greater than or
equal to r with s0 = s. Let 0 < r < R, 0 < λ < 1, 0 < δ ≤ t < T , and
let C and ε be chosen such that

C ≥ 8 exp

(
sr−2s(4(R− r) + 2s)

Cδ

)
and ε ≥

2s2
r−2s

C
.

Then,

‖ut1Br‖2 ≤ e
ε
Cδ ‖ut−δ1BR‖2 + e

2ε
Cδ

2

(1− λ)2(R− r)2
e−

((λ(R−r)−s)+)2

Cδ
+f(R+s).

Remark. Note that C can indeed be chosen as asserted in the
lemma since the function a 7→ (a/8)a is strictly monotonically increas-
ing on [a0,∞) for a0 large enough.
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Proof. We define

rλ = (1− λ)r + λR

to interpolate between r and R via λ and fix ε > 0 as assumed in the
lemma. We apply Lemma 14.3 to the function ϕ : [0, t]×X −→ [0,∞)
defined by

ϕτ (x) = η(x)eξ(x,τ),

where

η(x) =

(
1− %(x,Brλ)

R− rλ

)
+

and ξ(x, τ) = −
(

%2
o(x) + ε

C(t+ δ − τ)

)
with %o(x) = (%(x, o)−r)+ for x ∈ X and τ ∈ [0, t], with the convention
that eξ(x,t+δ) = 0.

As Br ⊆ Brλ we have η = 1 on Br. Furthermore, clearly %0(x) = 0
on Br so that

ϕτ = e
−ε

C(t+δ−τ)

on Br. In particular, ϕt = e−ε/(Cδ) and ϕt−δ = e−ε/(2Cδ) on Br. More-
over, as %(x,Brλ) ≥ R − rλ for x ∈ X \ BR, we have η = 0 and thus
ϕτ = 0 outside of BR. By the assumption that balls are finite, we
infer that suppϕτ is included in a fixed finite set for all τ . Therefore,
Lemma 14.3 yields

e−
2ε
Cδ ‖ut1Br‖2 ≤ ‖utϕt‖2

≤‖ut−δϕt−δ‖2 +

∫ t

t−δ

∑
x∈X

u2
τ (x)

(
∂τϕ

2
τ + |∇ϕτ |2

)
(x)m(x)dτ

≤ e−
ε
Cδ ‖ut−δ1BR‖2 +

∫ t

t−δ

∑
x∈X

u2
τ (x)

(
∂τϕ

2
τ + |∇ϕτ |2

)
(x)m(x)dτ,

where we use the estimate ξ(x, t−δ) ≤ −ε/(2cδ) to get ϕt−δ ≤ e−ε/(2cδ)

in the last line.
We are left to show∫ t

t−δ

∑
x∈X

u2
τ (x)

(
∂τϕ

2
τ + |∇ϕτ |2

)
(x)m(x)dτ ≤ 2e−

((λ(R−r)−s)+)2

Cδ
+f(R+s)

(1− λ)2(R− r)2
,

which combined with the estimate above will complete the proof. As η
is finitely supported, by Young’s inequality and the definition of ϕ we
then have

|∇ϕτ |2(x)m(x) =
∑
y∈X

b(x, y)
(
η(x)eξ(x,τ) − η(y)eξ(y,τ)

)2

=
∑
y∈X

b(x, y)
(
η(x)

(
eξ(x,τ) − eξ(y,τ)

)
+ eξ(y,τ)(∇x,yη)

)2

≤ 2
∑
y∈X

b(x, y)
(
η2(x)

(
eξ(x,τ) − eξ(y,τ)

)2
+ e2ξ(y,τ)(∇x,yη)2

)
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= 2ϕ2
τ (x)

∑
y∈X

b(x, y)
(
1− eξ(y,τ)−ξ(x,τ)

)2

+ 2
∑
y∈X

b(x, y)e2ξ(y,τ)(∇x,yη)2.

We furthermore note that

∂τϕ
2
τ (x) = 2η2(x)e2ξ(x,τ)∂τξ(x, τ) = 2ϕ2

τ (x)∂τξ(x, τ).

Hence, putting these two calculations together yields

(∂τϕ
2
τ + |∇ϕτ |2)(x)m(x)

≤ 2
∑
y∈X

b(x, y)e2ξ(y,τ)(∇x,yη)2

+ 2ϕ2
τ (x)

(
∂τξ(x, τ)m(x) +

∑
y∈X

b(x, y)
(
1− eξ(y,τ)−ξ(x,τ)

)2

)
.

To continue, we denote the terms in the previous inequality by

I1(x, τ) =
∑
y∈X

b(x, y)e2ξ(y,τ)(∇x,yη)2

and

I2(x, τ) = ∂τξ(x, τ)m(x) +
∑
y∈X

b(x, y)
(
1− eξ(y,τ)−ξ(x,τ)

)2
.

It remains to show that∫ t

t−δ

∑
x∈X

u2
τ (x)

(
I1(x, τ) + ϕ2

τ (x)I2(x, τ)
)
dτ ≤ e−

((λ(R−r)−s)+)2

Cδ
+f(R+s)

(1− λ)2(R− r)2
.

We estimate the terms involving I1 and I2 separately to conclude the
proof. In fact, we will see that the upper bound is for the term involving
I1 and the term involving I2 is actually less than or equal to 0.

Estimating the term involving I1: Recall that the function η is equal
to 1 on Brλ and is equal to 0 on X \ BR. Thus, I1(·, τ) vanishes on
Brλ−s ∪X \BR+s, where s is the jump size of the metric.

Let x ∈ BR+s\Brλ−s and y ∈ X with y ∼ x. We note by the triangle
inequality that the term eξ(x,τ)(η(x)−η(y)) vanishes whenever %(o, y) <
rλ − s. This follows since %(o, x) ≤ %(o, y) + %(y, x) < rλ − s+ s = rλ,
so that η(x) = η(y) = 1 in this case.

On the other hand, for y ∈ X \Brλ−s, the function %o(·) = (%(·, o)−
r)+ satisfies

−%2
o(y) ≤ −((rλ − s− r)+)2 = −((λ(R− r)− s)+)2



536 14. VOLUME GROWTH FOR STOCHASTIC COMPLETENESS

since rλ = (1− λ)r + λR. If, additionally, t− δ < τ ≤ t, then

e2ξ(y,τ) = exp

(
− 2(%2

o(y) + ε)

C(t+ δ − τ)

)
≤ exp

(
−2((λ(R− r)− s)+)2

Cδ

)
.

Finally, observe that as η is 1/(R−rλ)-Lipschitz with respect to the
intrinsic metric %, Proposition 11.29 and R− rλ = R− (1−λ)r+λR =
(1− λ)(R− r) yield∑

y∈X

b(x, y)(∇x,yη)2 ≤ 1

(1− λ)2(R− r)2
m(x).

Taking these observations into account and integrating over space and
time we obtain∫ t

t−δ

∑
x∈X

u2
τ (x)I1(x, τ)dτ

=

∫ t

t−δ

∑
x∈BR+s\Brλ−s

u2
τ (x)

∑
y∈X\Brλ−s

b(x, y)e2ξ(y,τ)(∇x,yη)2dτ

≤ e−
2((λ(R−r)−s)+)2

Cδ

∫ t

t−δ

∑
x∈BR+s\Brλ−s

u2
τ (x)

∑
y∈X

b(x, y)(∇x,yη)2dτ

≤ 1

(1− λ)2(R− r)2
e−

2((λ(R−r)−s)+)2

Cδ

∫ t

t−δ

∑
x∈BR+s\Brλ−s

u2
τ (x)m(x)dτ

≤ 1

(1− λ)2(R− r)2
e−

2((λ(R−r)−s)+)2

Cδ
+f(R+s),

where we used the assumption
∫ T

0
‖u1BR+s

‖2dτ ≤ ef(R+s) in the last
estimate.

Estimating the term involving I2: Specifically, we have to control
the term u2ϕ2I2 integrated over space and a time interval. Since ϕ
vanishes on X \ BR it suffices to control u2ϕ2I2 on BR × [t − δ, t].
Furthermore,

∂τξ(x, τ) = −∂τ
(

%2
o(x) + ε

C(t+ δ − τ)

)
= − %2

o(x) + ε

C(t+ δ − τ)2
≤ 0

and for t − δ ≤ τ ≤ t, x ∈ Br−s and y ∼ x we have by the definitions
of %o(·) = (%(·, o)− r)+ and ξ(·, τ) = −(%2

o(·) + ε)/(C(t + δ − τ)) that
%o(x) = 0 = %o(y) and thus ξ(x, τ) = ξ(y, τ). Therefore, we infer for
t− δ ≤ τ ≤ t and x ∈ Br−s that

I2(x, τ) = ∂τξ(x, τ)m(x) +
∑
y∈X

b(x, y)
(
1− eξ(y,τ)−ξ(x,τ)

)2 ≤ 0,

so that u2ϕ2I2 ≤ 0 on Br−s × [t− δ, t].
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Therefore, it suffices to estimate u2ϕ2I2 on BR \Br−s× [t−δ, t]. We
will ultimately show that I2 ≤ 0 on this set as well, which will conclude
the proof.

Let t − δ ≤ τ ≤ t and x ∈ BR \ Br−s. Then, %o(x) ≤ R − r and
t + δ − τ ≥ δ. Moreover, for y ∼ x, we have y ∈ X \ Br−2s and,
therefore, %(x, y) ≤ sr−2s ≤ s. Furthermore, the triangle inequality
implies %o(y) ≤ %o(x)+%(x, y) and |%o(x)−%o(y)| ≤ %(x, y). Combining
these observations we obtain

|ξ(x, τ)− ξ(y, τ)| = |%o(x)− %o(y)||%o(x) + %o(y)|
C(t+ δ − τ)

≤ %(x, y)(%o(x) + %o(y))

C(t+ δ − τ)

≤ %(x, y)(2%o(x) + %(x, y))

C(t+ δ − τ)

≤ sr−2s(2(R− r) + s)

Cδ
.

We use this chain of inequalities repeatedly as well as (1 − ea)2 ≤
a2e2a∨0 for a ∈ R and Young’s inequality to estimate, for all t − δ ≤
τ ≤ t and x ∈ BR \Br−s, y ∼ x with %o(y) ≤ %o(x),

(
1− eξ(y,τ)−ξ(x,τ)

)2 ≤ (ξ(y, τ)− ξ(x, τ))2 e2(ξ(y,τ)−ξ(x,τ))

≤ %2(x, y)(%o(x) + %o(y))2

C2(t+ δ − τ)2
e
sr−2s(4(R−r)+2s)

Cδ

≤ 4%2
o(x)

C2(t+ δ − τ)2
e
sr−2s(4(R−r)+2s)

Cδ %2(x, y)

and, with %o(y) > %o(x),

(
1− eξ(y,τ)−ξ(x,τ)

)2 ≤ (ξ(y, τ)− ξ(x, τ))2

≤ %2(x, y)(2%o(x) + %(x, y))2

C2(t+ δ − τ)2

≤
4%2

o(x) + 2s2
r−2s

C2(t+ δ − τ)2
%2(x, y),

where we use in the last inequality that %(x, y) ≤ sr−2s since x ∈
X \Br−s. Putting these two estimates together by separating the sum
over y ∈ X into sums over %o(y) ≤ %o(x) and %o(y) > %o(x) and using
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that % is intrinsic, we obtain∑
y∈X

b(x, y)
(
1− eξ(y,τ)−ξ(x,τ)

)2

≤
4%2

o(x)e
sr−2s(4(R−r)+2s)

Cδ + 4%2
o(x) + 2s2

r−2s

C2(t+ δ − τ)2

∑
y∈X

b(x, y)%2(x, y)

≤
8%2

o(x)e
sr−2s(4(R−r)+2s)

Cδ + 2s2
r−2s

C2(t+ δ − τ)2
m(x).

We end the proof by putting the estimates above together. Recall
that we are interested in estimating I2(x, τ) for x ∈ BR \ Br−s and
τ ∈ [t−δ, t]. We calculated above that ∂τξ(x, τ) = −(%2

o(x)+ε)/(C(t+
δ− τ)2) for all x ∈ X and τ ∈ [0, t]. Thus, we obtain for x ∈ BR \Br−s
and t− δ ≤ τ ≤ t that

I2(x, τ) = ∂τξ(x, τ)m(x) +
∑
y∈X

b(x, y)
(
1− eξ(y,τ)−ξ(x,τ)

)2

≤

(
− %2

o(x) + ε

C(t+ δ − τ)2
+

8%2
o(x)e

sr−2s(4(R−r)+2s)

Cδ + 2s2
r−2s

C2(t+ δ − τ)2

)
m(x)

=

(
%2
o(x)

(
8

C
e
sr−2s(4(R−r)+2s)

Cδ − 1

)
+

(
2s2

r−2s

C
− ε
))

m(x)

C(t+ δ − τ)2
.

Thus, I2(x, τ) ≤ 0 since the assumption on C and ε read as

C ≥ 8 exp

(
sr−2s((4(R− r) + 2s)

Cδ

)
and ε ≥

2s2
r−2s

C
.

This finishes the proof. �

We now apply the technical estimate established above to prove
Grigor′yan’s inequality for solutions of the heat equation on globally
local graphs. This allows us to estimate the norm of a solution of the
heat equation on a ball by the norm on a larger ball but at a previous
time plus an error term.

Lemma 14.5 (Grigor′yan’s inequality). Let b be a graph over (X,m).
Let % be an intrinsic metric with finite distance balls (B) and finite jump
size (J). Let f : (0,∞) −→ (0,∞) be a monotonically increasing func-
tion such that % is globally local with respect to f . Let u : [0, T ]×X −→
R be a solution of the heat equation which satisfies∫ T

0

‖ut1Br‖2dt ≤ ef(r)
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for r ≥ 0. Then, there exist constants r1 > 0 and D,E, F,G > 1 such
that, for all r ≥ r1 and 0 < δ < t < T with

δ ≤ r2

Df(Er)
,

we have

‖ut1Br‖2 ≤ F‖ut−δ1BEr‖2 +
Ge−f(Er)

r2
.

Proof. We prove the statement by applying the main technical
estimate, Lemma 14.4, above with a proper choice of constants. From
the assumption that the graph is globally local there exist constants
A > 1, B > 0 and r0 > 0 such that sr ≤ Br/f(Ar) for all r ≥ r0.
Furthermore, s0 = s <∞, where s is the jump size.

Let 1 < E ′ < E < A and letR = E ′r. Various subsequent estimates
are only true for r large enough and this will eventually determine the
constant r1 in the statement of the lemma. However, since the actual
choice of r1 is as cumbersome as it is irrelevant, we will keep this choice
implicit and only refer to choosing r large enough. On the other hand,
this choice will only depend on the constants A,E ′, E and s.

Consider parameters α,C > 0, which will be specified later, and let

δ(r, α, C) =
r2

αCf(Er)
and ε(r, C) =

2s2
r−2s

C
.

In order to apply the main technical estimate we have to establish a
lower bound on C, which we ultimately do below. For r ≥ 0 consider

a(r) =
αsr−2s(4(E ′ − 1)r + 2s)f(Er)

r2
=
sr−2s(4(R− r) + 2s)

Cδ(r, α, C)
,

where the second equality is an immediate consequence of the definition
of δ and R = E ′r. We next give an upper bound for a(r). To this end,
we observe that for large r we have f(Er) ≤ f(A(r − 2s)), since f is
monotonically increasing and E < A. Moreover, we use the assumption
sr ≤ Br/f(Ar) to estimate

a(r) ≤ α
B(r − 2s)

f(A(r − 2s))

(4(E ′ − 1)r + 2s)f(Er)

r2

≤ 4αBE ′
(r − 2s)(r + 2s)

r2

f(Er)

f(A(r − 2s))

≤ 4αBE ′ ≤ 4αAB

for large enough r. So, whenever we choose C ≥ 8e4αAB we have, for
large enough r,

C ≥ 8e4αAB ≥ 8ea(r) = 8 exp

(
sr−2s(4(R− r) + 2s)

Cδ(r, α, C)

)
,
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which is the required bound on C in the main technical estimate,
Lemma 14.4 above.

Noting that with C, ε(r, C), δ(r, α, C), R = E ′r as above, we have

1

Cδ(r, α, C)
=
αf(Er)

r2
and R− r = (E ′ − 1)r

we apply Lemma 14.4 with r large enough, T > t > δ(r, α, C) > 0 and
λ = 1/2 to obtain

‖ut1Br‖2 ≤ e
ε(r,C)

Cδ(r,α,C)‖ut−δ(r,α,C)1BE′r‖
2

+ e
2ε(r,C)
Cδ(r,α,C)

8

(E ′ − 1)2r2
e−α

((E′−1)r/2−s)2+
r2

f(Er)+f(E′r+s).

We proceed to estimate the remaining terms which still depend on
α, r and C to get the asserted inequality. We start with the exponential
factor on the right-hand side, which we estimate by e−f(Er) by choosing
α appropriately. Thus, choose α > 1 such that

α
((E ′ − 1)r/2− s)2

+

r2
≥ 2

for r large enough. We note that α > 1 can be chosen to only depend
on E ′ and s. Recalling that f(Er) ≥ f(E ′r + s) for r large enough
since E > E ′ and f is monotonically increasing, we immediately get
with this choice of α

e−α
((E′−1)r/2−s)2+

r2
f(Er)+f(E′r+s) ≤ e−2f(Er)+f(E′r+s) ≤ e−f(Er)

for r large enough.
Next, we bound the term eε/(Cδ). We use the definitions of ε(r, C)

and δ(r, α, C), along with the estimates sr ≤ Br/f(Ar), f(Er) ≤
f(A(r − 2s)) for r large enough since A > E and C ≥ 8e4αAB, to
estimate

ε(r, C)

Cδ(r, α, C)
=

2αs2
r−2sf(Er)

Cr2
≤ 2αB2(r − 2s)2f(Er)

Cr2f 2(A(r − 2s))
≤ αB2e−4αAB

4f(A(r − 2s))

for r large enough. Hence, as f is monotonically increasing, there exists
a constant F > 1 such that

exp

(
ε(r, C)

Cδ(r, α, C)

)
≤ F

for all C ≥ 8e4αAB and r large enough.
Finally, we let

G =
8F 2

(E ′ − 1)2
.

We observe that all of the constants α,E,E ′, F,G were chosen inde-
pendently of C. This allows us to further increase C ≥ 8e4αAB to get
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the estimate

‖ut1Br‖2 ≤ F‖ut−δ1BE′r‖
2 +

Ge−f(Er)

r2

for all 0 < δ < t < T with

δ = δ(r, α, C) =
r2

αCf(Er)
≤ r2

Df(Er)
,

where

D = 8αe4αAB.

Finally notice that BE′r ⊆ BEr = BR as E ′ < E, which finishes the
proof. �

We now recall the statement of the main result of this section, the
uniqueness class assertion of Theorem 14.2. Specifically, we have a
graph b with an intrinsic metric % with finite balls and such that b is
globally local with respect to a monotone increasing function f : (0,∞) −→
(0,∞) with

∫∞
1
r/f(r)dr = ∞. Hence, there exist constants A,B > 1

such that sr ≤ Br/f(Ar) for all large r, where sr is the jump size of
the graph outside of the ball of radius r. Finally, we assume that u is
a solution of the heat equation with initial condition u0 = 0 such that∫ T

0
‖ut1Br‖2dt ≤ ef(r). Our aim is to show that u = 0.
As a final step in preparation for the proof we show that the function

f appearing in the statement of Theorem 14.2 can be chosen to grow
at least linearly. This will be convenient for the proof.

Lemma 14.6. Let b, % and f be as in the statement of Theorem 14.2.
Without loss of generality we can assume that f(r) ≥ r for all r large.

Proof. If f is not greater than or equal to r, then replace f with
g(r) = f(r) ∨ r, which obviously satisfies g(r) ≥ r and ef(r) ≤ eg(r).
Moreover, if M = {r ≥ 1 | f(r) < r}, then∫ ∞

1

r

g(r)
dr = |M |+

∫
[1,∞)\M

r

f(r)
dr,

where |M | is the Lebesgue measure of M .
If |M | =∞, then

∫∞
1
r/g(r)dr =∞.

Now, if |M | < ∞ and
∫

[1,∞)\M r/f(r)dr = ∞, then
∫∞

1
r/g(r)dr =

∞ as well. Now, assume that |M | < ∞ and
∫

[1,∞)\M r/f(r)dr < ∞.

Then, as
∫∞

1
r/f(r)dr =∞, it follows that the function r 7→ r/f(r) is

unbounded on M . Hence, for each C > 1, there exists an r0 ∈M such
that r0 > Cf(r0). Now, using the monotonicity of f we may assume
that f ≥ 1. Then, for all h < C − 1 ≤ (C − 1)f(r0 − h), by using the
monotonicity of f we get

r0 − h > Cf(r0)− h ≥ Cf(r0 − h)− h ≥ f(r0 − h),
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so that r0 − h ∈ M . But this would imply |M | = ∞. Therefore,∫∞
1
r/g(r)dr =∞.
Finally, using sr ≤ s0 = s < ∞ the globally local assumption

sr ≤ B′r/g(Ar) for large r is satisfied with the slight modification of
replacing the original B by B′ = B ∨ As. �

We now put all of these results together to prove the uniqueness
class result for the heat equation on globally local graphs.

Proof of Theorem 14.2. Let r1 > 0 and D,E, F,G > 1 be
constants as in Grigor′yan’s inequality, Lemma 14.5. Let r ≥ r1 and
Rk = Ek−1r for k ∈ N. As Lemma 14.6 allows us to assume f(r) ≥ r,
there exists a constant H such that

F k−1e−f(Rk+1) = F k−1e−f(Ekr) ≤ F k−1e−E
kr ≤ H

for all r ≥ r1 and k ∈ N. Since
∫∞

1
r/f(r)dr = ∞ and f is monotoni-

cally increasing, it follows that
∞∑
k=1

R2
k

f(ERk)
=∞.

Hence, for every 0 < t < T there exists a natural number N and δk ≥ 0
with

δk ≤
R2
k

Df(ERk)

for k = 1, . . . , N such that
∑N

k=1 δk = t. An iterative application of
Grigor′yan’s inequality, Lemma 14.5, with radii Rk = Ek−1r and time
differences δk yields∑
x∈Br

u2
t (x)m(x) ≤ F

∑
x∈BR2

u2
t−δ1(x)m(x) +

Ge−f(R2)

r2

≤ FN
∑

x∈BRN+1

u2
t−

∑N
k=1 δk

(x)m(x) +G

N∑
k=1

F k−1e−f(Rk+1)

R2
k

≤ GHE2

E2 − 1

1

r2
,

where for the last inequality we used F k−1e−f(Rk+1) ≤ H, Rk = Ek−1r,∑N
k=1 δk = t and u0 = 0. Noting that the finiteness of the values of

the intrinsic metric gives X =
⋃
r Br, and letting r → ∞ implies that

ut = 0 which completes the proof. �

2. Refinements

In this section we study refinements of graphs. More specifically,
we introduce a procedure for adding vertices within an edge to make
vertices closer together with respect to an intrinsic metric. We then
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show that if a refinement of a graph is stochastically complete, then
the original graph must be stochastically complete.

We recall that our ultimate aim in this chapter is to deduce the
volume growth criterion∫ ∞

0

r

log#(m(Br))
dr =∞

for graphs with finite distance balls. We will do so from the unique-
ness class criterion, Theorem 14.2, which only holds for globally local
graphs. The technique of refinements is used to turn a graph which
satisfies the volume growth criterion into a globally local graph and
then to apply the uniqueness class theorem to the resulting graph.

To do so we have to ensure various things. First of all, we show
in Theorem 14.8 that stochastic completeness of a refinement implies
stochastic completeness of the original graph. We do this by applying
the Omori–Yau maximum principle. Secondly, we show that the metric
and volume of a refinement of a graph are comparable to the original
graph in Lemma 14.9. Finally, in Lemma 14.10 we prove that for every
given control function on the jump size outside of balls, there is a
refinement which satisfies this control.

The actual definition of a refinement is rather technical so we ex-
plain the basic idea first. Although we work with intrinsic metrics in
this section, we note that the construction of the refinement works for
a general pseudo metric.

Let b be a graph over (X,m) and let % be an intrinsic metric. Let
n be a function on the edges with values in the non-negative integers.
The construction of the refinement of b is as follows:

• If (x, y) is an edge, then we replace {x, y} by {x = x0, x1, . . . , xn(x,y)+1 =
y}. In other words, we “insert” n(x, y) vertices “into” the edge (x, y).
• The new edge weights are set to be (n + 1)b. The intuitive under-

standing of this choice is that the magnitude of the edge weight is
the strength of the bond between vertices and by inserting vertices
these vertices are now “closer” together and therefore the strength
of the bond increases.
• To keep the distance between the original vertices the same, we set

the distance for each new edge to be %/(n + 1). We denote the
resulting metric by %′.
• Finally, the measure m is left unchanged on the original vertices and
m is defined on the new vertices so that the metric %′ will be intrinsic.

After this intuitive explanation, we present the formal definition of
a refinement.

Definition 14.7 (Refinement of a graph). Let b be a locally finite
graph over (X,m) and let % be an intrinsic metric for b. Let n : X ×
X −→ N0 be a symmetric function such that n(x, y) ≥ 1 only if x ∼ y
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and %(x, y) > 0. The refinement of b with respect to n is the graph b′

over (X ′,m′) with metric %′ as follows:

• The vertex set X ′ is the union

X ′ = X∪̇
⋃

x,y∈X

Xx,y,

where Xx,y = Xy,x are pairwise disjoint sets, i.e., Xx,y ∩Xw,z = ∅ if
{x, y} 6= {w, z} such that #Xx,y = n(x, y).
• The measure m′ is given by

m′|X = m and m′|Xx,y =
2b(x, y)%2(x, y)

n(x, y) + 1

for x ∼ y.
• The edge weight b′ is defined as follows: For x ∼ y, we fix an enu-

meration of Xx,y = {x1, . . . , xn(x,y)}, set x0 = x, xn(x,y)+1 = y and
let

b′(x0, x1) = . . . = b′(xn(x,y), xn(x,y)+1) = (n(x, y) + 1)b(x, y).

Otherwise, we set b′ = 0 and write w ∼′ z if b′(w, z) > 0 for w, z ∈ X ′.
• The distance %′ is defined in three steps:

If w, z ∈ {x, y} ∪Xx,y for some x ∼ y, then we set

%′(w, z) = min

{
k%(x, y)

n(x, y) + 1
| w = x0 ∼′ . . . ∼′ xk = z in {x, y} ∪Xx,y

}
.

If w ∈ X and z ∈ {x, y}∪Xx,y for some x ∼ y and z 6= x, y, then
we set

%′(w, z) = min
v∈{x,y}

(%(w, v) + %′(v, z)).

If w ∈ {x, y} ∪Xx,y and z ∈ {x′, y′} ∪Xx′,y′ for some x ∼ y and
x′ ∼ y′ with {x, y} 6= {x′, y′}, then we set

%′(w, z) = min
v∈{x,y},v′∈{x′,y′}

(%′(w, v) + %(v, v′) + %(v′, z)).

Remark. We note that we only define refinements for locally finite
graphs since we cannot assure that b′ is summable about vertices for a
non-locally finite b.

We now prove the main theorem of this section. It states that if
a refinement of a graph is stochastically complete, then the original
graph is stochastically complete. The proof involves the Omori–Yau
maximum principle, see Section 7. We note that in Theorem 7.2 we
assume connectedness of the graph for the various notions of stochastic
completeness to be equivalent. However, for the result below, we do
not assume connectedness and rather use the fact that stochastic in-
completeness of the entire graph is equivalent to the existence of a con-
nected component which is stochastically incomplete (Exercise 14.3).
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Theorem 14.8 (Stability of stochastic completeness under refine-
ments). Let b be a locally finite graph over (X,m) with an intrinsic
metric %. If a refinement of b is stochastically complete, then b is
stochastically complete.

Proof. Let n : X × X −→ N0 be such that n(x, y) ≥ 1 only if
x ∼ y and %(x, y) > 0. Let b′ over (X ′,m′) be the refinement of b with
respect to n. Assume that b over (X,m) is stochastically incomplete.
Then, b must have at least one stochastically incomplete connected
component. The Omori–Yau maximum principle, Theorem 7.2 (iv),
yields a function u ∈ F on this component with supu ∈ (0,∞) and
β > 0 such that Lu < −1 on the set Xβ = {x ∈ X | u(x) > supu−β}.

We define a function u′ on X ′ next. First, we let

u′|X = u.

For x, y ∈ X with n(x, y) ≥ 1 (which occurs only for x ∼ y and
%(x, y) > 0), let ηx,y : [0, %(x, y)] −→ R be defined by

ηx,y(t) =
1

2
t2 +

(
u(y)− u(x)

%(x, y)
− %(x, y)

2

)
t+ u(x).

We note that ηx,y(0) = u(x) and ηx,y(%(x, y)) = u(y). We write
{x, y} ∪Xx,y = {x0, . . . , xn(x,y)+1} with x = x0 ∼′ . . . ∼′ xn(x,y)+1 = y.
Moreover, we define

u′(xk) = ηx,y

(
k

%(x, y)

n(x, y) + 1

)
for k = 1, . . . , n(x, y). Furthermore, the enumeration of Xx,y is unique
up to reversing the order of the vertices. As ηx,y(t) = ηy,x(%(x, y)− t),
the function u′ is well-defined, i.e., u′ is independent of the enumeration
of Xx,y.

We will now prove that u′ is bounded from above and satisfies
L′u′ < −1/2 on

X ′β = {x′ ∈ X ′ | u′(x′) > supu′ − β},

where L′ denotes the formal Laplacian of b′ on (X ′,m′). This will
show that the refinement is stochastically incomplete by the Omori-
Yau maximum principle.

We note that the second derivative of ηx,y is equal to 1. Therefore,
ηx,y is convex and, hence, ηx,y ≤ u(x)∨ u(y). So, from u′ = u on X we
infer

sup
X
u = sup

X′
u′

and thus u′ is bounded. Moreover, we deduce

X ′β ⊆ Xβ ∪
⋃
x∈Xβ

⋃
y∼x

Xx,y.



546 14. VOLUME GROWTH FOR STOCHASTIC COMPLETENESS

Thus, it suffices to check L′u′ < −1/2 for all x ∈ Xβ and all x′ ∈ Xx,y

for x ∈ Xβ with y ∼ x.
Let x ∈ Xβ and y′ ∈ X ′ with x ∼′ y′. Then, there exists a unique

y ∈ X with y′ ∈ Xx,y. We let n = n(x, y). Then,

b′(x, y′) = (n+ 1)b(x, y), m′(x) = m(x), u′(x) = u(x)

and

u′(y′) = ηx,y

(
%(x, y)

n+ 1

)
=

%2(x, y)

2(n+ 1)2
− u(x)− u(y)

n+ 1
− %2(x, y)

2(n+ 1)
+ u(x).

Therefore, we get

b′(x, y′)(u′(x)− u′(y′))

= b(x, y)(n+ 1)

(
− %2(x, y)

2(n+ 1)2
+
u(x)− u(y)

n+ 1
+
%2(x, y)

2(n+ 1)

)
≤ b(x, y)(u(x)− u(y)) +

b(x, y)%2(x, y)

2
.

We sum up these inequalities over y′ ∈ X ′, use that % is intrinsic and
employ Lu < −1 on Xβ to obtain

L′u′(x) =
1

m′(x)

∑
y′∈X′

b′(x, y′)(u(x)− u(y′))

≤ Lu(x) +
1

2m(x)

∑
y∈X

b(x, y)%2(x, y)

< −1 +
1

2
= −1

2
.

This shows L′u′ < −1/2 on Xβ.
Let x ∈ Xβ, y ∈ X with y ∼ x and n = n(x, y) ≥ 1. We enumerate

{x, y} ∪ Xx,y = {x0, . . . , xn} with x = x0 ∼′ . . . ∼′ xn+1 = y and set
r = %(x, y). Then, u′(xk) = ηx,y(kr/(n + 1)) for all k = 1, . . . , n and
for i ∈ {±1} we have

b′(xk, xk+i) = (n+ 1)b(x, y)

m′(xk) =
2b(x, y)r2

n+ 1

u′(xk) =
k2r2

2(n+ 1)2
− k(u(x)− u(y))

n+ 1
− kr2

2(n+ 1)
+ u(x)

u′(xk+i) =
(k + i)2r2

2(n+ 1)2
− (k + i)(u(x)− u(y))

n+ 1
− (k + i)r2

2(n+ 1)
+ u(x).

Therefore, we get

L′u′(xk) =
1

m′(xk)

∑
i∈{±1}

b′(xk, xk+i)(u(xk)− u(xk+i))
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=
n+ 1

2r2

∑
i∈{±1}

(
−(2ki+ i2)r2

2(n+ 1)
+ i(u(x)− u(y)) +

ir2

2

)
= −1

4

∑
i∈{±1}

(2ki+ i2) = −1

2
.

Hence, there exists a function u′ on X ′ such that supu′ ∈ (0,∞)
and L′u′ < −1/2 on X ′β. Therefore, b′ over (X ′,m′) is stochastically
incomplete by Theorem 7.2 (iv). �

Next, we show that the metric defined for a refinement is an intrinsic
metric if the original metric is intrinsic. Moreover, we show that the
measure of balls of the refinement is comparable to the measure of the
original balls. Finally, we show that balls in the refinement are finite
whenever they are finite in the original graph.

For two pseudo metrics % on X and %′ on X ′ we denote the distance
balls about a vertex o ∈ X ∩X ′ for r ≥ 0 by Br and B′r, respectively.

Lemma 14.9 (Refinements and volume growth). Let b be a locally
finite graph over (X,m) and let % be an intrinsic metric for b. For a
refinement b′ over (X ′,m′) and metric %′ with respect to a function n
the following statements hold:

(a) %′ is an intrinsic metric for b′ such that % = %′ on X ×X.
(b) m(Br) ≤ m′(Br′) ≤ 3m(Br) for all r ≥ 0.
(c) The ball B′r is finite if and only if Br is finite for all r ≥ 0.

Proof. (a): It follows readily from the definition that %′ is a pseudo
metric with % = %′ on X ×X. To see that %′ is intrinsic let x ∈ X and
calculate∑

y′∈X′
b′(x, y′)%′(x, y′)2 =

∑
y∈X

∑
y′∈Xx,y

b′(x, y′)%′(x, y′)2

=
∑
y∈X

b(x, y)(n(x, y) + 1)
%2(x, y)

(n(x, y) + 1)2

≤ m(x) = m′(x).

Furthermore, for x ∼ y every x′ ∈ Xx,y has exactly two neighbors which
we denote by y′ and y′′. For these neighbors, it follows by definition
that

b′(x′, y′) = b′(x′, y′′) = b(x, y)(n(x, y) + 1),

%′(x′, y′) = %′(x′, y′′) =
%(x, y)

n(x, y) + 1
and

m′(x′) =
2b(x, y)%2(x, y)

n(x, y) + 1
.
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Therefore,∑
z′∈X′

b′(x′, z′)%′(x′, z′)2 =
2b(x, y)%2(x, y)

n(x, y) + 1
= m′(x′).

This proves (a).

(b): By (a) we have Br = B′r ∩X. Thus,

Br ⊆ B′r ⊆ Br ∪
⋃

x∈Br,y∼x

Xx,y.

Now, m′|X = m, therefore,

m(Br) ≤ m′(B′r).

Moreover, for x ∈ X we get by the definition of m′ and since % is
intrinsic

m′

(⋃
y∼x

Xx,y

)
=
∑
y∼x

n(x, y)
2b(x, y)%2(x, y)

n(x, y) + 1
≤ 2m(x).

Therefore, as m = m′ on X, we conclude

m′(B′r) ≤ m(Br) +
∑
x∈Br

m′

(⋃
y∼x

Xx,y

)
≤ 3m(Br).

This proves (b).

(c): This follows directly from the inclusion

Br ⊆ B′r ⊆ Br ∪
⋃

x∈Br,y∼x

Xx,y

established at the beginning of the proof of (b), local finiteness of the
graph and the finiteness of all Xx,y for x ∼ y. �

Next, we show that given a graph and a function g which is uni-
formly positive on compact sets we find a function n such that we can
control the jump size outside of balls of a refinement by g. To make
this precise, we say that a function g : (0,∞) −→ (0,∞) is uniformly
positive on a set M ⊆ (0,∞) if there exists a CM > 0 such that g ≥ CM
on M .

Lemma 14.10 (Refinements and jump size). Let b be a locally finite
graph over (X,m) and let % be a pseudo metric on X. For every func-
tion g : (0,∞) −→ (0,∞) which is uniformly positive on every compact
set, there exists a symmetric function n : X×X −→ N0 with n(x, y) ≥ 1
only if x ∼ y and %(x, y) > 0 such that the refinement b′ over (X ′,m′)
and %′ with respect to n satisfies

s′r ≤ g(r),

where s′r = sup{%′(x, y) | x, y ∈ X ′, x ∼′ y, %(x, o) ∧ %′(y, o) ≥ r} for
all r ≥ 0 and some fixed o ∈ X.
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Proof. We set n(x, y) = 0 if b(x, y) = 0 or %(x, y) = 0. For
x, y ∈ X with x ∼ y and %(x, y) > 0, let

rx,y = ((%(x, o) ∨ %(y, o)) + %(x, y)) ∨ 2.

Then, choose n(x, y) ∈ N0 so large that

%(x, y)

infr∈[1,rx,y ] g(r)
≤ n(x, y) + 1,

which is possible since g is uniformly positive on [1, rx,y].
We now show that the refinement of b with respect to n satisfies

s′r ≤ g(r). Let r′ ≥ 1 and x′, y′ ∈ X ′ \ B′r′ with x′ ∼′ y′, where B′r′
denotes the ball of radius r′ about o with respect to %′. Let x, y ∈ X,
x ∼ y, be the unique vertices such that x′, y′ ∈ {x, y}∪Xx,y. Then, by
the definition of %′ and the fact that %′ extends %, we get

r′ < %′(o, x′) ≤ %′(o, x) + %′(x, x′) ≤ %(o, x) + %(x, y) ≤ rx,y.

By the definitions of %′ and n we have, using 1 ≤ r′ < rx,y,

%′(x′, y′) =
%(x, y)

n(x, y) + 1
≤ inf

r∈[1,rx,y ]
g(r) ≤ g(r′).

This completes the proof. �

3. Volume growth criterion for stochastic completeness

In this section we prove the volume growth criterion for stochastic
completeness of graphs. We do so by combining the uniqueness class
statement for the heat equation with the technique of refinements.

Our goal in this section is to prove the the following volume growth
criterion for stochastic completeness of graphs. We recall that we have
defined log# = log∨1. This allows us to cover the case when the
measure of all distance balls is small in the result below.

Theorem 14.11 (Grigor′yan’s theorem). Let b be a graph over
(X,m) and let % be an intrinsic metric with finite balls (B). If∫ ∞

0

r

log#(m(Br))
dr =∞,

then the graph is stochastically complete.

Remark. We can also give a related volume growth criterion (Ex-
ercise 14.4).

As already discussed in the beginning of this chapter, we prove the
theorem by refining the graph to match a given jump rate, which is pos-
sible by Lemma 14.10. Moreover, Lemma 14.9 shows that the metric
and volume of a graph and a refinement of the graph are comparable.
Therefore, by choosing an appropriate function with which to make the
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graph globally local, we can apply the uniqueness class criterion, The-
orem 14.2, to the refinement. Finally, we have shown that stochastic
completeness of the refinement implies stochastic completeness of the
original graph in Theorem 14.8.

However, refinements are only defined for locally finite graphs and
Theorem 14.11 only assumes finite balls. The lemma below takes care
of this issue. Specifically, the lemma says that edges corresponding to
large jumps can be removed without changing stochastic completeness.
This allows us to circumvent the assumption of local finiteness.

Let b be a graph over (X,m) with a pseudo metric % and let 0 <
s <∞. We define the truncated edge weight

bs = b1{%≤s}.

Then, bs is a graph over (X,m) and the pseudo metric % has finite
jump size s and thus satisfies (J). Moreover, if % is intrinsic for b over
(X,m), then % is obviously intrinsic for bs over (X,m).

Lemma 14.12 (Truncation and stability of stochastic complete-
ness). Let b be a graph over (X,m) with an intrinsic metric % and
let s > 0. If bs over (X,m) is stochastically complete, then b over
(X,m) is stochastically complete.

Proof. As before, we may reduce to the case of connected graphs
by working on connected components. We will show that stochas-
tic incompleteness of b implies stochastic incompleteness of bs. So,
assume that b is stochastically incomplete. By the Omori–Yau maxi-
mum principle, Theorem 7.2 (iv), there exists a function u ∈ F with
supu ∈ (0,∞) and β > 0 such that Lu < −1 on Xβ = {x ∈ X | u(x) >
supu− β}. We can assume that

supu ≤ s2

2

as, otherwise, we subtract the constant supu − s2/2 from u. Further-
more, we can choose α < β such that supu > α and since Xα ⊆ Xβ

for α < β, we infer

Lu < −1 and u > 0 on Xα.

We now denote the formal Laplacian of bs over (X,m) by Ls. For
x ∈ Xα, we estimate, using u(x) > 0 and the fact that % is intrinsic,

Lsu(x) = Lu(x)− 1

m(x)

∑
y∈X,%(x,y)>s

b(x, y)(u(x)− u(y))

< −1 +
1

m(x)

∑
y∈X,%(x,y)>s

b(x, y)u(y)
%2(x, y)

s2

≤ −1 +
supu

s2
≤ −1

2
.
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This proves stochastic incompleteness of bs by the Omori–Yau maxi-
mum principle, Theorem 7.2 (iv). �

We now combine all of the pieces to prove the main result of this
chapter.

Proof of Theorem 14.11. Let b be a graph over (X,m) and %
be an intrinsic metric with finite balls (B) such that∫ ∞

0

r

log#(m(Br))
dr =∞.

By Lemma 14.12 we can assume that % has finite jump size (J). Now,
finite jump size (J) and finite balls (B) imply that b is locally finite by
Lemma 11.28.

Consider now the function f : (0,∞) −→ [1,∞) given by

f(r) = log#(m(Br)).

Since f is monotonically increasing, the function g(r) = r/f(Ar) for
r ≥ 0 and A > 1 is uniformly positive on compact sets. Hence, we can
apply Lemma 14.10 to find a function n such that the corresponding
refinement b′ over (X ′,m′) with the intrinsic metric %′ is globally local
with respect to f . By Theorem 14.8, it now suffices to show that b′

over (X ′,m′) is stochastically complete. By Theorem 7.2 (vi.a) this
is equivalent to showing that every bounded solution u of the heat
equation with u0 = 0 is trivial as we may assume connectedness by
restricting to connected components.

We denote the distance ball about a vertex o ∈ X ⊆ X ′ with radius
r with respect to %′ by B′r. By Lemma 14.9 we have that %′ is an
intrinsic metric such that

log(m′(B′r)) ≤ log(m(Br)) + log 3.

Let u : (0,∞)×X ′ −→ R be a bounded solution of the heat equation
with u0 = 0. For T > 0, u satisfies∫ T

0

‖u1B′r‖
2dt ≤ T (supu)2m′(B′r) = T (supu)2elog(m′(B′r)) ≤ ef(r)+C ,

where C > 0 is a constant. Since b′ is globally local with respect to f
and, therefore, also with respect to f +C and satisfies the assumption∫ ∞

1

r

f(r) + C
dr ≥ D

∫ ∞
1

r

log#(m(Br))
dr =∞,

where D is a constant, the uniqueness class criterion, Theorem 14.2
yields that u = 0 on (0, T ) ×X ′. As T was chosen arbitrarily, we get
u = 0. This completes the proof. �
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Exercises

Example exercise.

Exercise 14.1 (Non-uniqueness of solutions of the heat equation).
Show that there exists a graph with standard weights and bounded
vertex degree for which there exists a non-trivial solution of the heat
equation u with u0 = 0 such that, for some C > 0,∫ T

0

‖ut1Br‖2dt ≤ eCr log r

for all r ≥ 0.
(First hint: Consider the graph b over X = Z and b(k, n) = 1 if and

only if |k − n| = 1 and m = 1.)
(Second hint: For k ∈ N consider the function pk : Z −→ Z

pk(n) =

{
(n+ k) · · · (n+ 1) · n · · · (n− k + 1) for n ≥ 0,

(−n− 1 + k) · · · (−n) · (−n+ 1) · · · (−n− k) for n < 0.

Note that this function can be thought of as a discrete analogue to the
function x 7→ x2k in the continuum setting with the major difference
that pk(n) vanishes for |n| < k. Moreover, for β > 0, let η : [0,∞] −→
[0,∞) be defined by

η(t) = exp
(
−t−β

)
and η(0) = 0. Consider u : (0,∞)×X −→ R given by

ut(n) = η(t) +
∞∑
k=1

η(k)(t)

2k!
pk(n),

where η(k) is the k-th derivative of η. Show that u is a solution of the
heat equation with u0 = 0 and satisfies the estimate above.)

Extension exercises.

Exercise 14.2 (Uniqueness class for (B) and (J)). Let b be a graph
over (X,m) with an intrinsic metric that has finite balls (B) and finite
jump size (J). Show that every solution of the heat equation u with
u0 = 0 such that there exist α > 0 and C > 0 with∫ T

0

‖ut1Br‖2dt ≤ Ceαr

for r > 0 satisfies u = 0.

Exercise 14.3 (Stochastic completeness and connected compo-
nents). Let b be a graph over (X,m). Show that the graph is stochas-
tically complete if and only if all connected components of the graph
are stochastically complete.
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Exercise 14.4 (Karp–Li Theorem). Let b be a graph over (X,m)
with an intrinsic metric that has finite balls (B). Show that if

m(Br) ≤ er
2

for r ≥ 0, then the graph is stochastically complete.
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Notes

The results of this chapter are inspired by the corresponding crite-
ria for stochastic completeness of Riemannian manifolds going back to
work of Gaffney [Gaf59], Karp/Li [KL] and culminating in Grigor′yan’s
volume growth result in [Gri86], see also the survey [Gri99]. Other
approaches to volume growth criteria for manifolds can be found in
[Dav92, Tak89]. An extension of Grigor′yan’s result to strongly local
Dirichlet forms is established in [Stu94].

For graphs, the volume growth criterion of Grigor′yan fails badly
when using the standard graph metric, see [Woj08, Woj11]. This
inspired the application of intrinsic metrics to the graph setting to
find an analogue for the result of Grigor′yan. The use of intrinsic
metrics was first successfully applied by Grigor′yan/Huang/Masamune
for jump processes in [GHM12]; however, their result did not yield
the optimal volume growth bound on graphs. This optimal result was
later achieved by Folz [Fol14b] using probabilistic techniques, so-called
quantum or metric graphs and Sturm’s extension of Grigor′yan’s result.
Huang [Hua14b] achieved similar results using quantum graphs and
analytic techniques while Huang/Shiozawa [HS14] gave a probabilis-
tic proof using refinements instead of quantum graphs. However, the
main estimate used in Grigor′yan’s proof on manifolds, yielding a much
stronger uniqueness class statement for the heat equation, is wrong for
graphs, even when using intrinsic metrics, see [Hua11a, Hua12].

The approach presented in this chapter follows the recent work of
Huang/Keller/Schmidt [HKS20], which recovers Grigor′yan’s original
inequality and uniqueness class statement for globally local graphs.
With this result and the technique of refinements from [HS14], the
paper [HKS20] gives a purely analytic proof of Grigor′yan’s volume
growth criterion for graphs as presented here. Furthermore, [HKS20]
removes all restrictions on the graph structure found in previous results
on graphs in [Fol14b, Hua14b, HS14]. For further background and
discussion, see [Woj21].
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Notice

The appendices deal with background material. Although there
is a natural progression, and thus dependence, between the material
presented here, we attempt to make each appendix more self-contained
by recalling basic relevant notions when they are needed.



APPENDIX A

The Spectral Theorem

’Cause I bake the cake, then take the cake and eat it, too.
Inspectah Deck.

In this appendix we discuss basics concerning self-adjoint opera-
tors on infinite-dimensional Hilbert spaces. In particular, we prove the
spectral theorem, which states that every such operator is unitarily
equivalent to a multiplication operator on an L2 space. We then show
how this allows us to apply functions to an operator.

We assume that the reader is familiar with basic notions of func-
tional analysis; however, we do recall some standard definitions. For
a thorough exposition of the concepts discussed here we recommend
the textbooks [RS80, Tes14, Wei80]. For general background on
measure theory see, e.g., [Rud87].

We let H denote a Hilbert space with inner product 〈·, ·〉. We
consider complex Hilbert spaces and assume that the inner product is
linear in the second argument. Real spaces can be complexified. Thus,
all of our results below apply to the real case as well.

An operator on H is a linear map

A : D(A) −→ H,

where D(A) is a subspace of H which we call the domain of A. We say
that A is densely defined if D(A) is dense in H. We call an operator A
closed if fn → f for fn ∈ D(A) along with Afn → g imply f ∈ D(A)
and Af = g. We say that an operator A is bounded if there exists a
constant C ≥ 0 such that ‖Af‖ ≤ C‖f‖ for all f ∈ D(A). In this case,
‖A‖, the norm of A, is the smallest such constant C.

If A is densely defined and bounded, then A can be uniquely ex-
tended to a bounded operator on the entire Hilbert space H and we
denote this extension by A as well. We note that a bounded operator
defined on the entire space is always closed. We denote the space of
bounded operators defined on the entire Hilbert space H by B(H).

For operators A and B on H we define the sum A + B to be the
linear map with domain

D(A+B) = D(A) ∩D(B)

by (A+B)f = Af +Bf.
We will also consider operators between different Hilbert spaces

H1 and H2. In this case, the above definitions hold with the obvious

557
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modifications. In particular, an operator A from H1 to H2 is a linear
map from a subspace D(A) of H1 into H2. A most relevant instance is
the product AB of operators B from H1 into H2 and A from H2 into
H3. This product is defined on

D(AB) = {f ∈ D(B) | Bf ∈ D(A)}

and acts by ABf = A(Bf). Finally, if an operator A from H1 to H2

is injective, we define A−1 to be the unique inverse of A with domain
D(A−1) = AD(A) ⊆ H2.

Whenever A is an operator on H and z ∈ C, we write (A − z) for
the operator A − zI on D(A), where I denotes the identity operator
on H. We define the resolvent set of A to be

%(A) = {z ∈ C | (A− z) is bijective and (A− z)−1 is bounded}

and the spectrum of A as

σ(A) = C \ %(A).

We recall the standard fact that σ(A) is always a closed set. For z ∈
%(A), we call the operator (A− z)−1 the resolvent of A at z.

For an operator A that is not closed, we have

%(A) = ∅.

This follows since if (A− z)−1 is bijective and bounded, then (A− z)−1

is bounded on the entire Hilbert space and, therefore, closed. But then
(A−z) and, hence, A would also be closed. This shows that the notion
of a resolvent set is only relevant for closed operators.

On the other hand, for a closed operator A the definition of the
resolvent set can be simplified to

%(A) = {z ∈ C | (A− z) is bijective}.

This follows since if A is closed and A− z is bijective, then (A− z)−1

is bounded by the closed graph theorem.
An operator A is called invertible if A : D(A) −→ H is bijective. If

A and B are invertible operators and D(B) ⊆ D(A), then

A−1 −B−1 = A−1(B − A)B−1,

as follows by a direct calculation. In particular, if z1, z2 ∈ %(A), then

(A− z1)−1 − (A− z2)−1 = (z1 − z2)(A− z1)−1(A− z2)−1.

We refer to these formulae as resolvent identities . As a particular
consequence, we note that the second formula implies that resolvents
commute. Moreover, the second formula and boundedness properties,
see Corollary A.12 below, imply that the resolvent map

%(A) −→ B(H), z 7→ (A− z)−1



A. THE SPECTRAL THEOREM 559

is continuous, i.e., for a sequence (zn) in %(A) with zn → z ∈ %(A) we
have

lim
n→∞

‖(A− zn)−1 − (A− z)−1‖ = 0.

If A is densely defined, then we define the adjoint A∗ of A to be
the operator with domain

D(A∗) =

{
f ∈ H

∣∣∣∣ there exists a g ∈ H with 〈f, Ah〉 = 〈g, h〉
for all h ∈ D(A)

}
acting as

A∗f = g.

In particular,
〈Af, g〉 = 〈f, A∗g〉

for all f ∈ D(A) and g ∈ D(A∗) and A∗ has the maximal domain
among all operators with this property. The operator A∗ is always
closed.

We note that D((A− λ)∗) = D(A∗) and

(A− λ)∗ = A∗ − λ
for all λ ∈ C. Furthermore, for z ∈ %(A),

((A− z)−1)∗ = (A∗ − z)−1.

If A is densely defined, we say that A is symmetric if A∗ is an
extension of A, that is, D(A) ⊆ D(A∗) and Af = A∗f for all f ∈ D(A).
Equivalently, A is symmetric if and only if A is densely defined and

〈Af, g〉 = 〈f, Ag〉
for all f, g ∈ D(A). With these preparations, we now define the class
of operators of primary interest.

Definition A.1 (Self-adjoint operators). We call a densely defined
operator A self-adjoint if A = A∗.

By definition, a self-adjoint operator is symmetric. Moreover, as
the adjoint is always a closed operator, all self-adjoint operators are
closed.

Self-adjoint operators are the topic of this appendix. Before we de-
velop the general theory further, we pause for a moment to present a
key example which should be kept in mind, namely, that of multiplica-
tion operators. The main result of this section is that any self-adjoint
operator is equivalent, in a sense that will be made precise, to such an
operator where the multiplying function is real-valued.

Example A.2 (Multiplication operators). Let (X,µ) be a measure
space and let u : X −→ C be measurable. The operator Mu of multi-
plication by u has domain

D(Mu) = {f ∈ L2(X,µ) | uf ∈ L2(X,µ)}



560 A. THE SPECTRAL THEOREM

and acts as

Muf = uf

for all f ∈ D(Mu). As discussed below, the operator Mu is densely
defined. Furthermore, it can readily be seen that Mu is closed. If
u 6= 0 almost everywhere, then Mu is injective and M−1

u = M1/u. The
adjoint of Mu is given by (Mu)

∗ = Mu. In particular, Mu is self-adjoint
if u is real-valued. Finally, Mu is bounded if u is bounded.

The proofs of these statements are rather straightforward. We only
sketch how to show that the domain of Mu is dense. For n ∈ N, we
define

Xn = {x ∈ X | |u(x)| ≤ n}.
Then, the characteristic functions 1Xn for n ∈ N tend pointwise in-
creasingly towards the constant function with value 1. In particular,
we have 1Xnf → f for any f ∈ L2(X,µ) by Lebesgue’s dominated
convergence theorem. On the other hand, by the definition of Xn, the
function 1Xnf belongs to D(Mu) for any n ∈ N.

As the discussion above shows, we can infer features of Mu from
those of u. For our subsequent theory, it will also be important that the
converse holds, i.e., that u is actually determined by Mu. To conclude
this, we need the measure space to satisfy an additional weak condition
which we now introduce.

Lemma A.3. Let (X,µ) be a measure space and let u : X −→ C be
measurable. Then, the following statements are equivalent:

(i) Any measurable set B ⊆ X with µ(B) > 0 contains a measurable
subset B′ ⊆ B with 0 < µ(B′) <∞.

(ii) If u1, u2 : X −→ C satisfy Mu1 = Mu2, then u1 = u2 almost every-
where.

Proof. (i) =⇒ (ii): Let u1, u2 be as in (ii). By restricting to

Xn = {x ∈ X | |u1(x)| ≤ n and |u2(x)| ≤ n}
for n ∈ N and noting that X =

⋃
nXn we can assume without loss of

generality that both u1 and u2 are bounded functions. Hence, Mu1 and
Mu2 are defined on L2(X,µ).

Now, consider the set

B = {x ∈ X | u1(x) 6= u2(x)}.
As Mu1 = Mu2 , we have u11B′ = u21B′ for any measurable set B′ ⊆ B
with 1B′ ∈ L2(X,µ). Hence, for any measurable set B′ ⊆ B with
µ(B′) < ∞ we infer that u1 equals u2 almost everywhere on B′. On
the other hand, by B′ ⊆ B, we know that u1 6= u2 almost everywhere
on B′. This gives that B′ has measure zero. Hence, any measurable
set B′ ⊆ B with finite measure has measure zero and we conclude from
(i) that B has measure zero. This gives u1 = u2 almost everywhere.
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(ii) =⇒ (i): Assume that a measurable set B ⊆ X has the prop-
erty that any measurable subset B′ ⊆ B satisfies either µ(B′) = 0 or
µ(B′) =∞. We have to show that µ(B) = 0.

Now, for any n ∈ N and f ∈ L2(X,m), the set

B′n = {x ∈ B | |f(x)| ≥ 1

n
}

must have measure zero, as otherwise we have µ(B′n) = ∞, yielding
a contradiction to f ∈ L2(X,m). As this holds for each n, we infer
that any f ∈ L2(X,µ) must vanish almost everywhere on B. Thus,
the operator of multiplication by u1 = 1B agrees with the operator of
multiplication by u2 = 0. Hence, by (ii) we infer that B must have
measure zero. �

Definition A.4 (No atoms of infinite mass). We say that (X,µ)
has no atoms of infinite mass if any measurable set B ⊆ X with
µ(B) > 0 contains a measurable subset B′ ⊆ B with 0 < µ(B′) <∞.

Part (ii) of the preceding lemma shows that this condition is exactly
the appropriate condition for our aim of concluding properties of u from
those of Mu. However, this condition does not seem to be commonly
considered in the literature. Thus, we would like to emphasize that if
(X,µ) is σ-finite, i.e., if X can be expressed as a countable union of
measurable sets each of which has finite measure, then (X,µ) has no
atoms of infinite mass.

In our dealing with measure spaces, sets of measure zero will not
play a role. For this reason it will not be the range of u but rather
a modified version of the range which takes the measure into account,
which will be relevant for us when we derive features of Mu from those
of u.

Definition A.5 (Essential range). Let (X,µ) be a measure space
and u : X −→ C. The essential range of u is

{λ ∈ C | µ(u−1(Bε(λ))) > 0 for all ε > 0}.

It is not hard to see that the essential range of a function is always
a closed subset of C and that no measurability assumption on u is
needed for this. Examples show that, in general, neither the range of
a function is contained in the essential range nor must the essential
range be contained in the range.

Remark (When the essential range is the closure of the range).
The essential range of a function is clearly contained in the closure of
the range of the function. A converse holds in a suitable topological
situation for continuous functions. More specifically, if X carries a
topology generating the σ-algebra and the measure µ on X has full
support, i.e., any open non-empty subset of X has positive measure,
then a short argument shows that the range of any continuous function
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is contained in the essential range of the function. As the essential
range is closed, we infer that in this case the essential range agrees
with the closure of the range of the function. We will make use of this
when presenting the spectral mapping theorem.

We now the give the connection between the spectrum and the
essential range.

Lemma A.6 (Spectrum of multiplication operators). Let (X,µ) be
a measure space which has no atoms of infinite mass. Let u : X −→ C
be measurable and Mu be the operator of multiplication by u. Then,
σ(Mu) equals the essential range of u, i.e.,

σ(Mu) = {λ ∈ C | µ(u−1(Bε(λ))) > 0 for all ε > 0}.

Proof. For λ not in the essential range, the operator M1/(u−λ) is
obviously a bounded inverse for Mu − λ = Mu−λ. Conversely, consider
λ belonging to the essential range of u. Using the assumption that
there are no atoms of infinite mass, for any ε > 0, we can construct
f ∈ L2(X,µ) with ‖f‖ = 1 and ‖(Mu−λ)f‖ < ε. This contradicts the
existence of a bounded inverse to Mu − λ. �

From the definitions it is not hard to derive the following additional
properties of multiplication operators. They will be used repeatedly in
what follows.

Proposition A.7 (Further features of multiplication operators).
Let (X,µ) be a measure space which has no atoms of infinite mass and
let u : X −→ C be measurable. Then, the following statements hold:

(a) The operator Mu is self-adjoint if and only if the essential range
of u is contained in R, which, in turn, holds if and only if u is
real-valued almost everywhere.

(b) The operator Mu is bounded if and only if the essential range of u
is bounded, which, in turn, holds if and only if u ∈ L∞(X,µ). In
this case,

‖Mu‖ = ‖u‖∞ = sup{|λ| | λ is in the essential range of u}.

We now highlight an example of a multiplication operator which
will arise throughout.

Example A.8 (Multiplication by the identity). We let X = R, µ
be a finite measure on R and let u = id: R −→ R be the identity
mapping, that is,

id(x) = x

for all x ∈ R. We denote the corresponding operator by Mid and refer
to Mid as the operator of multiplication by the identity. As id maps
into R, the operator Mid is self-adjoint. As µ is finite, µ does not
have atoms of infinite mass. In particular, the spectrum of Mid is the
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essential range of the identity mapping. This essential range can easily
be seen to be equal to the support of µ, i.e.,

σ(Mid) = supp(µ) = {λ ∈ R | µ((λ− ε, λ+ ε)) > 0 for all ε > 0}.

By the previous proposition, Mid is bounded if and only if supp(µ) is
a bounded set.

After this discussion of multiplication operators, we now work to-
wards introducing a natural notion of equivalence between operators.
We consider the case of two Hilbert spaces (H1, 〈·, ·〉1) and (H2, 〈·, ·〉2).
An operator U : H1 −→ H2 is called unitary if D(U) = H1, U is onto
and

〈f, g〉1 = 〈Uf, Ug〉2
for all f, g ∈ H1. In particular, U is a bounded operator which is
bijective with U∗ = U−1.

Given an operator A1 with domain D(A1) ⊆ H1 and an operator
A2 with domain D(A2) ⊆ H2 we say that A1 is unitarily equivalent to
A2 if there exists a unitary operator U : H2 −→ H1 such that D(A1) =
UD(A2) and

A1 = UA2U
−1.

As a special case, if A is an operator on H with domain D(A), then
we say that A is unitarily equivalent to a multiplication operator Mu if
there exists a measure space (X,µ), a measurable function u : X −→ C
and a unitary operator U : L2(X,µ) −→ H such that D(A) = UD(Mu)
and

A = UMuU
−1.

By definition, unitary operators are structure preserving maps be-
tween Hilbert spaces. So, unitarily equivalent operators can naturally
be considered indistinguishable in terms of structural properties. In
particular, we note that the spectrum of an operator is preserved by
unitary equivalence. Therefore, if A is unitarily equivalent to Mu, then

σ(A) = σ(Mu),

which is equal to the essential range of u by Lemma A.6 whenever
(X,µ) has no atoms of infinite mass.

Having introduced these notions we can now precisely announce
the main result that we prove in this appendix: That every self-adjoint
operator is unitarily equivalent to a multiplication operator and even
a direct sum of operators which are multiplication by the identity. We
refer to this result as the spectral theorem.

We now start to work towards the proof of the spectral theorem.
We start with a basic formula which will be used in several places in
what follows.
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Lemma A.9. Let A be a self-adjoint operator on H with domain
D(A) and let z = a+ ib ∈ C. Then,

‖(A− z)f‖2 = ‖(A− a)f‖2 + b2‖f‖2

for all f ∈ D(A).

Proof. We expand the left-hand side via the inner product and
use the fact that if A is self-adjoint, then (A − a) is also self-adjoint,
which implies

〈(A− a)f, ibf〉+ 〈ibf, (A− a)f〉 = 0

for all f ∈ D(A). This allows us to cancel the mixed terms and prove
the equality. �

We now use the lemma above to characterize when λ ∈ C belongs
to the resolvent set.

Proposition A.10. Let A be a self-adjoint operator on H with
domain D(A) and let λ ∈ C. Then, λ ∈ %(A) if and only if there exists
a constant C > 0 with

‖(A− λ)f‖ ≥ C‖f‖
for all f ∈ D(A). If such a C > 0 exists, then ‖(A− λ)−1‖ ≤ 1/C.

Proof. Let λ ∈ %(A). Then, there exists a bounded linear opera-
tor B with B(A−λ) = ID(A), where ID(A) denotes the identity operator
on D(A). This gives

‖f‖ = ‖B(A− λ)f‖ ≤ ‖B‖‖(A− λ)f‖
for all f ∈ D(A). The desired statement follows with C = 1/‖B‖.

Conversely, suppose that there exists a constant C > 0 as assumed.
Then, clearly, (A − λ) is injective. We next show that (A − λ) is
surjective as well. To do so, it suffices to show that the image of
(A− λ) is both dense and closed in H.

Claim. (A− λ)D(A) is closed.
Proof of the claim. Let g be in the closure of (A− λ)D(A). Then,

there exists a sequence fn ∈ D(A) with (A − λ)fn → g as n → ∞.
Therefore, ((A − λ)fn) is a Cauchy sequence and, by the assumption
on A, it follows that (fn) must be a Cauchy sequence as well. As H is
a Hilbert space, there exists an f ∈ H such that fn → f as n→∞. It
remains to show that f ∈ D(A) and (A− λ)f = g.

For h ∈ D(A), we obtain from the self-adjointness of A

〈f, (A− λ)h〉 = lim
n→∞
〈fn, (A− λ)h〉 = lim

n→∞
〈(A− λ)fn, h〉 = 〈g, h〉.

This yields f ∈ D((A− λ)∗) = D(A∗) = D(A) and

(A− λ)f = (A− λ)∗f = g.

Hence, (A− λ)D(A) is closed as claimed.
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Claim. (A− λ)D(A) is dense.
Proof of the claim. Let g ⊥ (A− λ)D(A) so that

0 = 〈g, (A− λ)f〉
for all f ∈ D(A). This implies g ∈ D(A∗) = D(A) with

(A− λ)g = 0.

Now, Lemma A.9 implies ‖(A − λ)g‖ = ‖(A − λ)g‖. Therefore, 0 =
‖(A− λ)g‖ ≥ C‖g‖ with C > 0 so that g = 0 and we infer the desired
statement.

Finally, we note that (A − λ)−1 : H −→ D(A) is bounded by 1/C
as, for every f ∈ H,

‖f‖ = ‖(A− λ)(A− λ)−1f‖ ≥ C‖(A− λ)−1f‖,
which directly yields ‖(A−λ)−1‖ ≤ 1/C. This completes the proof. �

Passing to complements in Proposition A.10 gives a characterization
of when λ ∈ C belongs to the spectrum. We refer to this characteri-
zation as Weyl’s criterion for the spectrum. We will see variations on
this criterion in later appendices, see Section 2.

Corollary A.11 (Weyl’s criterion – spectrum). Let A be a self-
adjoint operator on H with domain D(A) and let λ ∈ C. Then, λ ∈
σ(A) if and only if there exists a normalized sequence fn ∈ D(A) with

lim
n→∞

‖(A− λ)fn‖ = 0.

We also obtain the following fundamental results on the spectrum of
self-adjoint operators as well as a bound on the norm of the resolvent.

Corollary A.12 (Spectrum is real). If A is a self-adjoint opera-
tor, then σ(A) ⊆ R. Moreover,

‖(A− z)−1‖ ≤ 1

|Im z|
for z ∈ C \ R and the resolvent map z 7→ (A− z)−1 is continuous.

Proof. Consider z = a+ ib with b 6= 0. Then, Lemma A.9 implies
‖(A − z)f‖ ≥ |b|‖f‖ for all f ∈ D(A). So z ∈ %(A) and the estimate
follows from Proposition A.10. The continuity of the resolvent map
then follows from the resolvent identity and the estimate. �

Key quantities for the spectral theorem are the spectral measures,
which we introduce next. We let A be a self-adjoint operator on H.
We will show that for every f ∈ H there exists a unique finite positive
regular Borel measure µf on R with

〈f, (A− z)−1f〉 =

∫
1

x− z
dµf (x)



566 A. THE SPECTRAL THEOREM

for all z ∈ C \ R. This measure satisfies µf (R) = ‖f‖2. We call µf
the spectral measure associated to f . By polarization, for all f, g ∈ H,
there then exists a unique finite signed regular Borel measure µ on R
with

〈f, (A− z)−1g〉 =

∫
1

x− z
dµ(x)

for all z ∈ C \ R.
We first present some properties of the map z 7→ 〈f, (A − z)−1f〉.

We let

C± = {z ∈ C | ± Im z > 0}

denote the upper and lower half plane.

Proposition A.13. Let A be a self-adjoint operator on H. Let
f ∈ H with f 6= 0 and define Ff : C \ R −→ C by

Ff (z) = 〈f, (A− z)−1f〉.

Then, the following statements hold:

(a) Ff is holomorphic.
(b) ± ImFf (z) > 0 for z ∈ C±.
(c) |Ff (z)Im z| ≤ ‖f‖2 for all z ∈ C \ R.

Proof. (a): This follows from the resolvent formula

(A− z)−1 − (A− z0)−1 = (z − z0)(A− z)−1(A− z0)−1

and the continuity of the mapping z 7→ (A − z)−1 given in Corol-
lary A.12.

(b): Since A is self-adjoint, 〈(A − a)g, g〉 is real for all g ∈ D(A)
and a ∈ R. We now calculate as follows:

ImFf (z) = Im 〈f, (A− z)−1f〉
= Im 〈(A− z)(A− z)−1f, (A− z)−1f〉
= Im z〈(A− z)−1f, (A− z)−1f〉
= Im z‖(A− z)−1f‖2.

This gives the statement.

(c): This follows by the estimate for ‖(A − z)−1‖ given in Corol-
lary A.12 and the Cauchy-Schwarz inequality as

|Ff (z)Im z| = |〈f, (A− z)−1f〉Im z|
≤ ‖f‖‖(A− z)−1f‖|Im z|
≤ ‖f‖2.

This finishes the proof. �
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Given the preceding proposition, the existence and uniqueness of
the spectral measure is a direct consequence of the following famous
result concerning Herglotz–Nevanlinna functions. We refrain from giv-
ing a proof but rather refer to the already mentioned literature [Tes14,
Wei80].

Theorem A.14 (Borel transform). Let F : C \R −→ C satisfy the
following properties:

(a) F is holomorphic
(b) ± ImF (z) > 0 for all z ∈ C±
(c) |F (z)Im z| ≤M for all z ∈ C \ R and some M .

Then, there exists a unique positive finite regular Borel measure µ on
R with

F (z) =

∫
1

x− z
dµ(x)

for all z ∈ C \ R and µ(R) ≤M .

The preceding theorem gives the existence of the spectral measures
as well as the estimate µf (R) ≤ ‖f‖2. It does not give the stronger
statement that µf (R) = ‖f‖2. This statement can be inferred from our
discussion of the little spectral theorem below. However, we now give
a direct proof.

Proposition A.15. Let A be self-adjoint on H. Then, µf (R) =
‖f‖2 for all f ∈ H.

Proof. Let λ ∈ R with λ 6= 0. By the characterizing property of
µf we obtain, after multiplication by −λi,

〈f,−λi(A− λi)−1f〉 =

∫
−λi
x− λi

dµf (x).

Now, we consider the limit as λ→∞ on both sides. On the right-hand
side we obtain from Lebesgue’s dominated convergence theorem∫

−λi
x− λi

dµf (x)→
∫

1dµf (x) = µf (R)

as λ→∞. On the left-hand side we obtain

〈f,−λi(A− λi)−1f〉 → 〈f, f〉 = ‖f‖2

since

−λi(A− λi)−1f → f

as λ→∞, as we now show.
To show that limλ→∞−λi(A−λi)−1f = f we first note by Lemma A.9

that

‖f‖2 = ‖(A− λi)(A− λi)−1f‖2

= ‖A(A− λi)−1 f‖2 + λ2‖(A− λi)−1f‖2,
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where the last term is non-negative. This gives

‖A(A− λi)−1‖ ≤ 1

for all λ > 0. Moreover, as A(A − λi)−1f = (A − λi)−1Af for all
f ∈ D(A), we have by Corollary A.12

‖A(A− λi)−1f‖ = ‖(A− λi)−1Af‖ ≤ 1

λ
‖Af‖2 → 0

as λ → ∞. Thus, A(A − λi)−1 is bounded in norm by 1 uniformly
in λ > 0 and converges pointwise to 0 as λ → ∞ on the dense set
D(A). Hence, it converges pointwise to 0 on the entire space. Thus,
the operators

−λi(A− λi)−1 = (A− λi)(A− λi)−1−A(A− λi)−1 = I −A(A− λi)−1

converge pointwise to the identity. This proves the statement. �

As we will see later, the spectral measures are the key object in the
presentation of a self-adjoint operator as a multiplication operator. In
order to simplify the subsequent discussion we define, for z ∈ C \ R,
the function ϕz : R −→ C by

ϕz(x) =
1

x− z
.

Moreover, for f ∈ H, we let

Hf = Lin{(A− z)−1f | z ∈ C \ R}.
We will show that (A− z)−1 acting on Hf is unitarily equivalent to

multiplication by ϕz on L2(R, µf ). Along the way, we will need that the
closure of the linear span of the functions ϕz for z ∈ C \ R is dense in
L2(R, µf ). This is a rather direct consequence of the Stone–Weierstrass
theorem. As this will be used in various places below we state it as a
separate lemma.

Lemma A.16. Let A be the closure of the linear span of the func-
tions ϕz for z ∈ C \ R, i.e.,

A = Lin{ϕz | z ∈ C \ R}.
Then, A is an algebra and is equal to the space of continuous complex-
valued functions on R vanishing at ∞, i.e.,

A = C0(R,C).

Proof. First, we note that for z1, z ∈ C \ R with z1 6= z we have

ϕz1ϕz =
ϕz1 − ϕz
z1 − z

∈ A.

Letting z1 → z, then gives that ϕ2
z ∈ A for all z ∈ C \ R. This shows

that A is an algebra. As the functions ϕz clearly vanish nowhere,
separate points and ϕz = ϕz ∈ A, the rest of the statement follows by
the Stone–Weierstrass theorem. �
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Remark. The argument given in the preceding proof allows for
some variants. Among them we mention the following two statements.
They will not be used in what follows below but may be useful in other
contexts.

(a) For t > 0 we define the function ψt : [0,∞) −→ R via

ψt(x) =
1

t+ x
.

Then, the linear span of the functions ψt for t > 0 is dense in the algebra
C0([0,∞),R) of continuous real-valued functions on [0,∞) vanishing at
∞. Indeed, this follows by simply mimicking the argument in the proof
above.

(b) Let J be a subset of C\R. Assume that there exists a w ∈ C\R
such that both w and w are accumulation points of J . Then, the
linear span Lin(J) of {ϕz | z ∈ J} is dense in C0(R,C). Indeed,
arguing as in the proof above we can show that products ϕz1 · · ·ϕzn for
pairwise different z1, . . . , zn ∈ J belong to Lin(J). As both w and w are
accumulation points of J , this gives that all powers of the form ϕmwϕ

k
w

for k,m ∈ N belong to closure of Lin(J). Hence, the algebra generated
by ϕw and ϕw belongs to the closure of Lin(J) and this algebra can be
seen to agree with C0(R,C) by the Stone–Weierstrass theorem.

We now gather some basic features of the space Hf and the rela-
tionship between Hf and L2(R, µf ).

Proposition A.17. Let A be a self-adjoint operator on H and let
f ∈ H.

(a) (A− λ)−1Hf ⊆ Hf for any λ ∈ %(A).
(b) For all z1, z2 ∈ C \ R,

〈(A− z1)−1f, (A− z2)−1f〉 = 〈ϕz1 , ϕz2〉L2(R,µf ).

Proof. We first note that for z1, z2 ∈ C \ R, with z1 6= z2,

ϕz1 − ϕz2 = (z1 − z2)ϕz1ϕz2 .

Furthermore, we recall the resolvent identity, which states

(A− z1)−1 − (A− z2)−1 = (z1 − z2)(A− z1)−1(A− z2)−1.

These identities will be used below.

(a) We first consider λ = z1 ∈ C \ R ⊆ %(A). For any z2 ∈ C \ R
with z2 6= z1, the resolvent identity gives

(A− z1)−1(A− z2)−1f =
1

z1 − z2

((A− z1)−1f − (A− z2)−1f) ∈ Hf .

By continuity of the resolvent map z 7→ (A−z)−1 for z ∈ C\R given in
Corollary A.12, we infer (A− z1)−1(A− z1)−1f ∈ Hf for all z1 ∈ C \R.
This implies that Hf is invariant under (A−z)−1 for any z ∈ C\R. As
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any λ ∈ %(A) can be obtained as a limit of a sequence (zn) in C\R, we
obtain the desired statement by the continuity of the resolvent map.

(b) A direct computation for z1 6= z2 invoking the formulas dis-
cussed at the beginning of the proof gives

〈(A− z1)−1f, (A− z2)−1f〉 = 〈f, (A− z1)−1(A− z2)−1f〉
= (z1 − z2)−1

〈
f,
(
(A− z1)−1 − (A− z2)−1

)
f
〉

= (z1 − z2)−1

∫
(ϕz1 − ϕz2) dµf

=

∫
ϕz1ϕz2dµf

=

∫
ϕz1ϕz2dµf

= 〈ϕz1 , ϕz2〉.

This shows the desired equality for z1 6= z2. The general case then
follows from the continuity of the resolvent map. �

We next prove a first version of the spectral theorem. In particular,
we find that (A − z)−1 is unitarily equivalent to multiplication by ϕz
and the restriction of A to Hf is unitarily equivalent to multiplication
by the identity.

Lemma A.18 (Little spectral theorem). Let A be a self-adjoint op-
erator on H and let f ∈ H.

(a) There is a unique unitary operator Uf : L2(R, µf ) −→ Hf with

Ufϕz = (A− z)−1f

for all z ∈ C \ R. This operator satisfies Uf1 = f .
(b) For all z ∈ C \ R,

(A− z)−1 = UfMϕzU
−1
f .

(c) The operator A maps D(A)∩Hf into Hf and the restriction A|Hf
of A to Hf with domain D(A|Hf ) = D(A) ∩ Hf and A|Hfg = Ag
is a self-adjoint operator on Hf satisfying

A|Hf = UfMidU
−1
f .

(d) supp(µf ) ⊆ σ(A).

Proof. (a) and (b): We first show the existence of such a unitary
operator Uf . Part (b) of Proposition A.17 easily gives

‖
N∑
n=1

anϕzn‖ = ‖
N∑
n=1

an(A− zn)−1f‖
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for all z1, . . . , zn ∈ C \ R and an ∈ C. This implies that the map
Lin{ϕz | z ∈ C \ R} −→ Hf given by

N∑
n=1

anϕzn 7→
N∑
n=1

an(A− zn)−1f

is well-defined and isometric. We can thus extend this map to an
isometric map on Lin{ϕz | z ∈ C \ R} which, by Lemma A.16, is the
set of continuous functions which vanish at infinity. Hence, the map is
densely defined on L2(R, µf ). Furthermore, the map has dense range by
the definition of Hf . As the map is isometric, it can then be extended
uniquely to a unitary operator Uf .

Next, we show that (A− z)−1Uf = UfMϕz . First, by definition, for
z1 ∈ C \ R we have

(A− z)−1Ufϕz1 = (A− z)−1(A− z1)−1f.

Furthermore, by using the resolvent identity for z 6= z1, we get

UfMϕzϕz1 = Uf (ϕzϕz1)

= Uf
(
(z − z1)−1(ϕz − ϕz1)

)
= (z − z1)−1

(
(A− z)−1f − (A− z1)−1f

)
= (A− z)−1(A− z1)−1f,

so that (A − z)−1Ufϕz1 = UfMϕzϕz1 for all z 6= z1 and, thus, for all
z ∈ C \R by continuity. Therefore, as the set {ϕz | z ∈ C \R} is dense
in L2(R, µf ), we get

(A− z)−1 = UfMϕzU
−1
f

on L2(R, µf ) for all z ∈ C \ R.

Now, we prove Uf1 = f . In particular, this implies f ∈ Hf as Uf
maps into Hf . As (A − z)−1 is injective, it suffices to show (A −
z)−1Uf1 = (A − z)−1f . By what we have already shown and the
definition of Uf we directly compute

(A− z)−1Uf1 = UfMϕz1

= Ufϕz

= (A− z)−1f.

This gives Uf1 = f .

(c) As stated in (a) of Proposition A.17, the subspaceHf is invariant
under (A− z)−1 for all z ∈ C \ R, i.e., (A− z)−1Hf ⊆ Hf . By a short
computation, this shows that the orthogonal complement H⊥f of Hf is

invariant as well, i.e., (A− z)−1H⊥f ⊆ H⊥f for all z ∈ C \ R.
These invariance properties in turn easily give the equality

D(A) ∩Hf = (A− z)−1Hf
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for all z ∈ C\R. Indeed, the inclusion⊇ follows from (A−z)−1Hf ⊆ Hf

as (A− z)−1 clearly maps into D(A). The inclusion ⊆ follows as each
g ∈ D(A) can be written as (A− z)−1h for some h ∈ H. Decomposing
h into h1 ∈ Hf and h2 ∈ H⊥f , using that both Hf and H⊥f are invariant

under (A − z)−1 and that (A − z)−1 is injective, we conclude that h2

must be zero if g belongs to Hf . So, for g ∈ D(A) ∩ Hf , we find
g = (A− z)−1h1 with h1 ∈ Hf . This finishes the proof of the equality
D(A) ∩Hf = (A− z)−1Hf .

This equality has strong consequences for the restriction A|Hf of A
to D(A)∩Hf . More specifically, it gives that (A|Hf−z) maps D(A)∩Hf

onto Hf . Hence,

(A|Hf − z) : D(A) ∩Hf −→ Hf

is bijective as it is a restriction of the injective operator A − z. This
bijectivity implies (

A|Hf − z
)−1

g = (A− z)−1g

for all g ∈ Hf .
Combining this with what we have shown already in (b), we con-

clude
(A|Hf − z)−1g = (A− z)−1g = UfMϕzU

−1
f g

for all z ∈ C \ R and g ∈ Hf . Hence, the operators (A|Hf − z)−1 and

UfMϕzU
−1
f agree on Hf . By taking inverses we get

A|Hf − z = UfM 1
ϕz
U−1
f .

As M1/ϕz + z = Mid, we have

A|Hf = UfMidU
−1
f .

By Proposition A.7 (a), Mid is a self-adjoint operator. As self-
adjointness is preserved by unitary equivalence, we infer that A|Hf is
self-adjoint as well.

(d) We have

supp(µf ) = σ(Mid) = σ(A|Hf ) ⊆ σ(A).

Here, the first equality follows from our discussion of multiplication
operators, see Example A.8, the second equality follows from the uni-
tary equivalence between Mid and A|Hf established in (c) and the last
inclusion can be shown as follows: By (a) of Proposition A.17, Hf is
invariant under (A − λ)−1 for λ ∈ %(A). Therefore, the restriction of
(A−λ)−1 to Hf gives a bounded operator, which obviously is an inverse
to (A|Hf − λ). Thus, any λ ∈ %(A) belongs to %(A|Hf ) and the desired
inclusion follows. �

For later use, we note the following corollary of (d) from the previ-
ous result. The corollary will be used repeatedly, often tacitly, in the
remaining part of this appendix.
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Corollary A.19. Let A be a self-adjoint operator on H, f ∈ H
and µf be the spectral measure associated to f . Then,∫

R
ψdµf =

∫
σ(A)

ψdµf

for all measurable ψ : R −→ [0,∞), where both sides may take the value
∞. In particular,

L2(R, µf ) = L2(σ(A), µf ).

If ψ ∈ L1(R, µf ), then both sides are finite.

The little spectral theorem deals with the action of A on the Hilbert
space Hf . By decomposing an arbitrary Hilbert space into a direct
sum of such subspaces Hf it is possible to show that any self-adjoint
operator is unitarily equivalent to a multiplication operator. This is
presented next.

Theorem A.20 (Spectral theorem). Let A be a self-adjoint opera-
tor on H. Then, there exists a measure space (X,µ) without atoms of
infinite mass, a measurable function u : X −→ R and a unitary map
U : L2(X,µ) −→ H with

A = UMuU
−1.

In particular, σ(A) is equal to the essential range of u and A is bounded
if and only if u is essentially bounded. If H is separable, then the
measure space can be chosen to be σ-finite.

Proof. Using the Kuratowski–Zorn lemma, we can find a set I and
fι ∈ H for ι ∈ I decomposing H into a sum of mutually orthogonal
subspaces

H =
⊕
ι∈I

Hfι .

The little spectral theorem, Lemma A.18, then gives for each ι ∈ I a
unitary map

Uι : L
2(R, µfι) −→ Hfι

such that µfι is a finite measure and the restriction of A to Hfι is given
by UιMidU

−1
ι . Taking sums, we obtain a unitary map

V =
⊕
ι∈I

Uι :
⊕
ι∈I

L2(R, µfι) −→
⊕
ι∈I

Hfι = H

with

A = V
⊕
ι∈I

MidV
−1.

We will now discuss how to express the orthogonal sum of L2 spaces
as a single L2 space. Consider X = R × I. Set Rι = {(x, ι) | x ∈ R}
for ι ∈ I and equip X with the σ-algebra consisting of all subsets B
such that B ∩ Rι is measurable for any ι ∈ I. Extend µfι to Rι via
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µfι(B × {ι}) = µfι(B) for measurable B ⊆ R. We define a measure µ
on X via

µ(B) =
∑
ι∈I

µfι(B ∩ Rι).

As each µfι is a finite measure, it is clear that µ has no atoms of infinite

mass. Let ĩd : X −→ R denote the projection onto the first coordinate,
i.e.,

ĩd(x, ι) = x.

By construction, L2(X,µ) is canonically unitarily equivalent to the
direct sum ⊕ιL2(R, µfι) and under this unitary equivalence Mĩd be-
comes ⊕ιMid. In particular, by combining this unitary equivalence
with the map V above, we get a unitary map

U : L2(X,µ) −→ H

with
A = UMĩdU

−1.

This is the desired statement.

We now prove the statement on the spectrum and boundedness ofA.
By Lemma A.6, the essential range is the spectrum of the multiplication
operator Mu. As the spectrum of an operator is preserved by unitary
equivalence, this is also the spectrum of A. Furthermore, A is bounded
if and only if Mu is bounded if and only if u is essentially bounded by
Proposition A.7 (b).

If H is separable, then we can provide a more explicit construction
which avoids using the Kuratowski–Zorn lemma and yields a σ-finite
measure space. More specifically, in the case that H is separable, there
exists a countable dense subset (gn) in H. By induction, we then con-
struct a sequence (fn) such that the spaces Hfn are pairwise orthog-
onal and {g1, . . . , gn} ⊆ ⊕nk=1Hfk : Define f1 = g1. Now, assume that
f1, . . . , fn have the desired properties. Let m be the smallest integer
larger than n such that gm does not belong to ⊕nk=1Hfk . Define fn+1

to be the orthogonal projection of gm onto (⊕nk=1Hfk)
⊥. Then Hfn+1

is orthogonal to Hfk for k = 1, . . . , n as each Hfk is invariant under
(A− z)−1 for z ∈ C \ R, and hence so is (⊕nk=1Hfk)

⊥.
By construction, we have

{gn | n ∈ N} ⊆
⊕
n∈N

Hfn .

As {gn | n ∈ N} is dense in H by assumption, we infer that ⊕nHfn

is dense in H and, hence, agrees with H. So, we have a countable
decomposition. Now, we can mimic the above considerations to arrive
at the desired statement. �

Remark. From the proof above, asX is a disjoint union of copies of
R, we can think of X as a topological space with a topology generating
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the σ-algebra of the measure space (X,µ). Furthermore, by removing
those points of X that do not belong to the support of the measure,
µ can be taken to have full support on X. Finally, u is clearly a
continuous mapping on X. Hence, we are in the case when the essential
range of u is the closure of the range of u, see the remark following
Definition A.5. In particular, we get that the spectrum of A is equal
to u(X).

The spectral theorem allows us to define functions of a self-adjoint
operator. This is known as the functional or spectral calculus. We now
give a precise definition.

Definition A.21 (Functional calculus). If ϕ : R −→ C is measur-
able, A is self-adjoint and (X,µ), u and U are as in Theorem A.20,
then we define the operator ϕ(A) acting on the domain

D(ϕ(A)) = UD(Mϕ◦u)

as
ϕ(A) = UMϕ◦uU

−1.

Remark (Consistency, uniqueness and domain of ϕ). We consider
the situation of the previous definition.

(a) For ϕ = id: R −→ R, we find ϕ(A) = UMuU
−1 = A. Moreover,

as (Mu − z)−1 = M1/(u−z) for z ∈ C \ R whenever u maps into R, we
obtain

ϕz(A) = (A− z)−1,

where ϕz(x) = 1/(x− z) for z ∈ C \ R. Furthermore, for the constant
function 1: R −→ R via 1(x) = 1 for all x ∈ R, we find 1(A) = I, where
I is the identity operator. In this sense our definition of functions of A
is consistent with what is expected.

(b) The consistency discussed in (a) implies that the definition of
ϕ(A) does not depend on the actual choice of U and (X,µ). Indeed,
(a) shows the independence of U and (X,µ) for ϕ = ϕz for z ∈ C \ R.
By Lemma A.16 this easily gives independence for any continuous
ϕ : R −→ C with compact support. By taking suitable limits, com-
pare Lemma A.27 below, this gives the desired independence for all
measurable ϕ : R −→ C.

(c) We do not need ϕ to be defined on all of R. In fact, it suffices
for ϕ to be defined on the essential range of u, which is equal to σ(A).
Then any extension of ϕ to R will give the same operator when applied
to A.

By (c) of the preceding remark, to establish properties of ϕ(A) it
suffices to consider the properties of the restriction of ϕ to σ(A). We
denote this restriction by ϕ|σ(A), i.e., ϕ|σ(A) : σ(A) −→ C is given by
ϕ|σ(A)(x) = ϕ(x). With this notation, we now give some basic proper-
ties of the functional calculus.
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Proposition A.22 (Basic properties of ϕ(A)). Let A be a self-
adjoint operator on H with spectrum σ(A) and let ϕ, ψ : R −→ C be
measurable on σ(A). Then, the following statements hold:

(a) ϕ(A)∗ = ϕ(A).
(b) The operator ϕ(A) is self-adjoint if and only if the essential range

of ϕ|σ(A) is contained in R.
(c) The operator ϕ(A) is bounded if and only if ϕ|σ(A) is essentially

bounded, in which case

‖ϕ(A)‖ = ‖ϕ|σ(A)‖∞.
(d) D(ϕ(A)ψ(A)) ⊆ D((ϕψ)(A)) and on D(ϕ(A)ψ(A)) we have

(ϕψ)(A) = ϕ(A)ψ(A).

(e) D(ϕ(A)+ψ(A)) ⊆ D((ϕ+ψ)(A)) and on D(ϕ(A)+ψ(A)) we have

(ϕ+ ψ)(A) = ϕ(A) + ψ(A).

Proof. This follows from the definition of ϕ(A) and the corre-
sponding properties of multiplication operators, in particular, see Propo-
sition A.7 for properties (b) and (c). �

Remark. Note that in (d) and (e) the domains of (ϕψ)(A) and
(ϕ+ψ)(A) can indeed be strictly bigger than the domains of ϕ(A)ψ(A)
and ϕ(A) + ψ(A), respectively. For example, it is possible that ϕ and
ψ are unbounded functions which result in operators not defined on
the entire Hilbert space whereas ϕ+ ψ or ϕψ are zero, resulting in an
operator defined on the entire Hilbert space.

Remark (Spectral mapping theorem). The spectral theorem also
gives a relationship between the spectra of A and ϕ(A) whenever ϕ :
σ(A) −→ R is continuous. More specifically, we get

σ(ϕ(A)) = ϕ(σ(A)).

This can be seen as follows: Let A be unitarily equivalent to Mu.
As unitary equivalence preserves the spectrum, the spectrum of A is
equivalent to the essential range of u which, by the remark following
the spectral theorem, is equivalent to the closure of the range of u. By
the same argument, the spectrum of ϕ(A) is equivalent to the closure
of the range of ϕ ◦ u which, by the continuity of ϕ, is equivalent to the
closure of ϕ(σ(A)). This completes the proof.

The spectral theorem makes it possible to exhibit the spectral mea-
sure in the following way.

Proposition A.23 (Spectral measures via the spectral theorem).
Let A be a self-adjoint operator on H and let (X,µ), u and U be as in
Theorem A.20. Let f ∈ H and let ψ = U−1f . Then,∫

R
ϕdµf =

∫
X

(ϕ ◦ u)|ψ|2dµ
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for all measurable ϕ : R −→ [0,∞), where both sides may take the value
∞. If ϕ ∈ L1(R, µf ), then both sides are finite.

Proof. As U : L2(X,µ) −→ H is unitary, we find∫
R
ϕzdµf = 〈f, (A− z)−1f〉

= 〈f, U(Mu − z)−1U−1f〉
= 〈ψ, (Mu − z)−1ψ〉

=

∫
X

(ϕz ◦ u)|ψ|2dµ

for f ∈ H and z ∈ C \ R. By Lemma A.16 this equality extends
to all continuous functions ϕ : R −→ C with compact support. From
monotone convergence we then extend the equality to all measurable
functions ϕ : R −→ [0,∞). Decomposing ϕ ∈ L1(R, µf ) as a linear
combination of functions in L1(R, µf ) with values in [0,∞) we then
obtain the statement for ϕ ∈ L1(R, µf ). �

Given the preceding computation of the spectral measure, we now
give some connections between the spectral calculus and the spectral
measures. The arising formulas will be most useful for our subsequent
considerations.

Proposition A.24 (Functional calculus and spectral measures).
Let A be a self-adjoint operator on H, let f ∈ H and let ϕ : R −→ C
be measurable.

(a) f ∈ D(ϕ(A)) if and only if ϕ ∈ L2(R, µf ) = L2(σ(A), µf ), in which
case

‖ϕ(A)f‖2 =

∫
|ϕ|2dµf .

In particular, f ∈ D(A) if and only if
∫
x2dµf <∞.

(b) If f ∈ D(ϕ(A)), then

〈f, ϕ(A)f〉 =

∫
ϕdµf and |ϕ|2µf = µϕ(A)f .

(c) The map L2(R, µf ) −→ H given by ϕ 7→ ϕ(A)f is isometric with
range Hf and maps ϕz to (A− z)−1f for any z ∈ C \ R.

Remark. We note that (c) may be rephrased as saying that the
operator Uf from the little spectral theorem, Lemma A.18, is given by
Ufϕ = ϕ(A)f .

Proof. Let (X,µ), u and U be as in Theorem A.20, i.e.,

A = UMuU
−1,

where U : L2(X,µ) −→ H is unitary. Then, by definition,

ϕ(A) = UMϕ◦uU
−1
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holds for all measurable ϕ : R −→ C. We set

ψ = U−1f.

(a) We first show the characterization of the domain of ϕ(A). By
Proposition A.23, we have ϕ ∈ L2(R, µf ) if and only if∫

|ϕ ◦ u|2|ψ|2dµ <∞

which, by the definition of the domain of a multiplication operator, is
equivalent to

ψ ∈ D(Mϕ◦u).

As ψ = U−1f , this holds if and only if f ∈ D(ϕ(A)) from the definition
of the domain of ϕ(A).

Now, if ϕ belongs to L2(R, µf ), then, as U is unitary, Proposi-
tion A.23 gives

‖ϕ(A)f‖2 = ‖Mϕ◦uψ‖2 =

∫
|ϕ ◦ u|2|ψ|2dµ =

∫
|ϕ|2dµf ,

which proves the formula given in (a). The last statement of (a) is
immediate by taking ϕ = id.

(b) As U is unitary and U−1ϕ(A) = Mϕ◦uU
−1, we obtain

〈f, ϕ(A)f〉 = 〈U−1f, U−1ϕ(A)f〉 = 〈ψ,Mϕ◦uψ〉 =

∫
(ϕ ◦ u)|ψ|2dµ.

Since we assume f ∈ D(ϕ(A)), part (a) gives ϕ ∈ L2(R, µf ). As µf is
finite, ϕ ∈ L2(R, µf ) implies ϕ ∈ L1(R, µf ) and Proposition A.23 yields∫

(ϕ ◦ u)|ψ|2dµ =

∫
ϕdµf .

Putting these equations together gives the first formula claimed in (b).

We now show

|ϕ|2µf = µϕ(A)f .

It suffices to show ∫
χ|ϕ|2dµf =

∫
χdµϕ(A)f

for all bounded measurable functions χ : R −→ C. As χ is bounded
and µf is finite for all f ∈ H, by part (a) the operator χ(A) is defined
on the entire Hilbert space H. Hence, from the already established first
formula of (b), the fact that U is unitary and the definitions of ϕ(A)
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and χ(A), we find∫
χdµϕ(A)f = 〈ϕ(A)f, χ(A)ϕ(A)f〉

= 〈U−1ϕ(A)f, U−1χ(A)UU−1ϕ(A)f〉
= 〈Mϕ◦uψ,Mχ◦uMϕ◦uψ〉

=

∫
(χ ◦ u)|ϕ ◦ u|2|ψ|2dµ

=

∫
χ|ϕ|2dµf ,

where we used Proposition A.23 in the last equality. This is the desired
statement.

(c) From the formula ‖ϕ(A)f‖2 =
∫
|ϕ|2dµf for ϕ ∈ L2(X,µ)

proven in (a) we see that the map in question is isometric. For ϕ = ϕz
with z ∈ C \ R we have ϕz(A)f = (A− z)−1f , as can be seen directly.
Hence, we see that the map in question maps Lin{ϕz | z ∈ C \R} into
Hf . As this linear hull is a dense subspace of L2(R, µf ) by Lemma A.16
and the map is isometric and thus continuous, it maps L2(R, µf ) into
Hf . As the set {(A − z)−1f | z ∈ C \ R} is dense in Hf and belongs
to the range of the map, we see that the map has dense range in Hf .
As the map is isometric, we infer that the range of the map is actually
equal to Hf . �

A direct consequence of the preceding proposition is the following
statement concerning bounded functions.

Corollary A.25 (Bounded functional calculus). Let A be a self-
adjoint operator on H and ϕ : R −→ C be measurable and bounded on
σ(A). Then, D(ϕ(A)) = H and, for every f ∈ H,

‖ϕ(A)f‖2 =

∫
|ϕ|2dµf , 〈f, ϕ(A)f〉 =

∫
ϕdµf

and
|ϕ|2µf = µϕ(A)f .

Proof. As ϕ is bounded on σ(A) and µf is a finite measure sup-
ported on σ(A), we have D(ϕ(A)) = H from (a) of Proposition A.24,
which also gives the first equality. The remaining equalities then follow
from (b) of Proposition A.24. �

We also note the following consequence which concerns signed spec-
tral measures corresponding to two elements of the Hilbert space.

Proposition A.26. Let A be a self-adjoint operator on H and
let f, g ∈ H. Then, there exists a unique finite signed regular Borel
measure µ on R with

〈f, (A− z)−1g〉 =

∫
1

x− z
dµ(x)
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for all z ∈ C \ R. If ϕ : R −→ C is measurable and f, g ∈ D(ϕ(A)),
then

〈f, ϕ(A)g〉 =

∫
ϕdµ.

In particular, this holds for all f, g ∈ H when ϕ is bounded and mea-
surable.

Proof. The existence of such a signed measure is given by the
existence of µf and µg and polarization. The remaining statements
follow by Proposition A.24 (b) and polarization as well. �

We also note the following continuity features of the functional cal-
culus.

Lemma A.27 (Continuity of the functional calculus). Let A be a
self-adjoint operator on H. Let ϕn : R −→ C for n ∈ N and ϕ : R −→ C
be measurable.

(a) If ϕ, ϕn are bounded on σ(A) with ‖(ϕn−ϕ)|σ(A)‖∞ → 0 as n→∞,
then

lim
n→∞

‖ϕn(A)− ϕ(A)‖ = 0.

(b) If |ϕn(x)| ≤ |ϕ(x)| for n ∈ N and ϕn(x)→ ϕ(x) as n→∞ for all
x ∈ σ(A), then for all f ∈ D(ϕ(A)),

lim
n→∞

‖(ϕn(A)− ϕ(A))f‖ = 0.

Proof. (a) By Proposition A.22 we have

‖ϕn(A)− ϕ(A)‖ = ‖(ϕn − ϕ)(A)‖ ≤ ‖(ϕn − ϕ)|σ(A)‖∞
and (a) follows.

(b) We use part (a) of Proposition A.24 repeatedly. First, as f ∈
D(ϕ(A)), it follows that ϕ ∈ L2(R, µf ). Furthermore, as |ϕn(x)| ≤
|ϕ(x)| for all n ∈ N and x ∈ σ(A), we have ϕn ∈ L2(R, µf ) and thus
f ∈ D(ϕn(L)) for all n ∈ N. Finally,

‖ϕ(A)f − ϕn(A)f‖2 =

∫
|ϕ− ϕn|2dµf → 0

as n → ∞ by Lebesgue’s dominated convergence theorem since the
integrand converges to 0 pointwise, the ϕn are bounded by ϕ and ϕ ∈
L2(R, µf ). �

Of particular relevance for applications of the functional calculus
are characteristic functions of measurable sets. They are discussed
next. Recall that B(H) denotes the space of bounded operators on H.
Given a self-adjoint operator A we define

E : {measurable subsets of R} −→ B(H)

via
E(B) = 1B(A).
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We call the operator E(B) the spectral projection associated to B.
We now highlight some properties of E which follow directly from

Proposition A.22. By definition, for every measurable set B, the opera-
tor E(B) is unitarily equivalent to multiplication by the characteristic
function v = 1B ◦ u = 1u−1(B), where u−1(B) is the preimage of B.
Clearly, v = v = v2, so that E(B) is an orthogonal projection, i.e.,
satisfies

E(B) = E(B)∗ = E(B)E(B).

Similarly, we infer from 1B11B2 = 1B1∩B2 that

E(B1)E(B2) = E(B1 ∩B2) = E(B2)E(B1)

whenever B1, B2 are measurable subsets of R. Moreover, we obviously
have E(∅) = 0 as 1∅ = 0. These consideration give, in particular,

E(B1)E(B2) = E(∅) = 0

whenever B1 ∩ B2 = ∅. Moreover, as 1∪nBn is the monotone point-

wise limit of
∑N

n=1 1Bn whenever the sets Bn are mutually disjoint, we
infer E(

⋃
nBn) = ⊕nE(Bn). Furthermore, E(R) = I is the identity

operator.
To summarize, we note that E satisfies the following properties:

• E(B) is an orthogonal projection for each measurable B ⊆ R.
• E(

⋃
nBn) = ⊕nE(Bn) for mutually disjoint measurable sets.

• E(∅) = 0.

In this sense, the map E resembles a measure. We refer to E as the
projection valued measure associated to A or the spectral family .

The map E is intimately linked to the spectral measures. This is
discussed in the subsequent two propositions.

Proposition A.28 (Spectral measure via projection valued mea-
sures). Let A be a self-adjoint operator on H with associated projection
valued measure E. Then, for any f ∈ H, we have

µf (B) = 〈f, E(B)f〉 = ‖E(B)f‖2

for any measurable set B ⊆ R.

Proof. By the definition of E(B) = 1B(A) and (b) of Proposi-
tion A.24 we have

µf (B) =

∫
1Bdµf = 〈f, E(B)f〉

for any measurable set B in R and any f ∈ H. Moreover, as E(B)
satisfies E(B)2 = E(B) = E(B)∗, we also find

〈f, E(B)f〉 = 〈f, E(B)∗E(B)f〉 = 〈E(B)f, E(B)f〉 = ‖E(B)f‖2.

This finishes the proof. �

Remark. We note that for B = R, the proposition above gives
µf (R) = ‖f‖2, which was already shown in Proposition A.15.
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Proposition A.29. Let A be a self-adjoint operator on H with
associated projection valued measure E. Let B ⊆ R be measurable.
Then, for all f ∈ H,

µE(B)f = 1Bµf .

In particular, for any g ∈ E(B)H, we have µg = 1Bµg,

supp(µg) ⊆ B,

where B denotes the closure of B, and g ∈ D(ϕ(A)) if and only if
ϕ ∈ L2(σ(A), µg) for any measurable ϕ : R −→ C.

Proof. The first statement follows from (b) of Proposition A.24.
Now, for g ∈ E(B)H, we have g = E(B)g as E(B) is an orthogonal
projection and we find µg = 1Bµg. Clearly, 1Bµg is supported on B.
Now, if ϕ : R −→ C is measurable, then the statement on the domain
of ϕ(A) follows from Proposition A.24 (a). This finishes the proof. �

It is possible to characterize the spectrum of A via E. To do so we
define the support of E as

supp(E) = {λ ∈ R | E((λ− ε, λ+ ε)) 6= 0 for all ε > 0}.
With this definition, we can show that the spectrum of A is equal to
the support of E.

Theorem A.30. Let A be a self-adjoint operator with associated
projection-valued measure E. Then,

σ(A) = supp(E).

Proof. As the spectrum is preserved by unitary equivalence, we
may assume that A = Mu, where (X,µ) is a measure space without
atoms of infinite mass and u : X −→ R is measurable by Theorem A.20.
In particular, the spectrum of A is given by the essential range of u.
Hence, it remains to show that supp(E) equals the essential range of
u. Now, for a measurable set B ⊆ R, we have

E(B) = M1B◦u

and, hence, E(B) is not trivial if and only if

0 6= 1B ◦ u = 1u−1(B)

if and only if µ(u−1(B)) > 0. This easily shows that supp(E) is equal
to the essential range of u. �

From the considerations above, we can also express the spectrum in
terms of the spectral measures associated to elements f ∈ H. In fact,
we have already seen that the support of the spectral measure for each
element in the Hilbert space is contained in the spectrum. It turns
out that the union of all such supports covers the entire spectrum. So,
for any point in the spectrum, there will be an element in the Hilbert
space that will see this point via its spectral measure.
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Corollary A.31. Let A be a self-adjoint operator on H. Then,

σ(A) =
⋃
f∈H

supp(µf ).

Proof. We have to show two inclusions. From the little spectral
theorem, Lemma A.18 (d), we already know that supp(µf ) ⊆ σ(A) for
all f ∈ H. This gives the inclusion ⊇.

It remains to show ⊆. Let λ ∈ σ(A). By the spectral theorem,
Theorem A.20, we can assume without loss of generality that A = Mu

for some real-valued measurable function u on a measure space (X,µ)
without atoms of infinite mass. Then, λ belongs to the essential range
of u. For n ∈ N, we define

Cn = {x ∈ X | 1

n+ 1
≤ |u(x)− λ| < 1

n
}.

Clearly, the sets Cn are pairwise mutually disjoint. Moreover, as λ
belongs to the essential range of u, we infer that µ(Cn) > 0 for infinitely
many n. Without loss of generality, we assume µ(Cn) > 0 for all
n ∈ N. As (X,µ) does not have atoms of infinite mass, any Cn admits
a measurable subset Bn with 0 < µ(Bn) <∞. Clearly, the sets Bn are
pairwise mutually disjoint.

Let

f =
∞∑
n=1

1

2n

(
1

µ(Bn)1/2

)
1Bn .

Then, f belongs to L2(X,µ). Moreover, from Proposition A.23, we
find

µf (S) =

∫
(1S ◦ u)|f |2dµ

for all measurable S ⊆ R. Combining this with the obvious inequality

1(λ− 1
n
,λ+ 1

n
) ◦ u ≥ 1Cn ≥ 1Bn

we then obtain

µf

(
(λ− 1

n
, λ+

1

n
)

)
≥
∫

1Bn|f |2dµ =
1

22n

(
1

µ(Bn)1/2

)2

> 0

for all n ∈ N. Hence, λ belongs to the support of µf . �

Remark. If H is separable, then it is even possible to find a single
f ∈ H with

σ(A) = supp(µf ).

To see this we consider the decomposition H = ⊕nHfn provided in the
proof of Theorem A.20. Let Afn be the self-adjoint restriction of A to
Hfn . Then, A is the orthogonal sum of the operators Afn . This easily
gives

σ(A) =
⋃
n

σ(Afn).
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Consider now

f =
∞∑
n=1

1

2n(1 + ‖fn‖)
fn.

As each Hfn is invariant under (A− z)−1 by Proposition A.17 and the
spaces Hfn are pairwise orthogonal for all n ∈ N, we infer

〈f, (A− z)−1f〉 =
∞∑
n=1

1

(2n(1 + ‖fn‖))2
〈fn, (A− z)−1fn〉

for all z ∈ C \R. By the defining feature of the spectral measures this
gives

µf =
∞∑
n=1

1

(2n(1 + ‖fn‖))2
µfn .

This implies

supp(µf ) =
⋃
n

supp(µfn).

As Afn is unitarily equivalent to multiplication by the identity on
L2(X,µfn), it follows that the spectrum of Afn equals the support of
µfn . Thus, by putting everything together we have

σ(A) =
⋃
n

σ(Afn) =
⋃
n

supp(µfn) = supp(µf ).

This shows the desired statement.

We now use the functional calculus developed above to establish
some basic properties of semigroups and resolvents. In particular, we
will discuss how the semigroups and resolvents generate solutions for
certain equations. We will further develop this theory for general Ba-
nach spaces in Appendix D.

For our discussion, we will be interested in self-adjoint operators A
such that σ(A) ⊆ [0,∞). We call such an operator A positive and write
A ≥ 0. We give some equivalent formulations and further discussion of
this condition in Appendix B.

We start with the semigroup. Consider A ≥ 0. Then, for any t ≥ 0,
the map ϕt : R −→ R given by

ϕt(x) = e−tx

is a bounded real-valued function on [0,∞). Hence, due to σ(A) ⊆
[0,∞), the operator ϕt(A) is bounded, self-adjoint and defined on the
entire Hilbert space H for each t ≥ 0 by Proposition A.22. We denote
this operator by e−tA. The family e−tA for t ≥ 0 is called the semigroup
associated to A. We now consider some properties of this family of
operators. These properties play a significant role in our considerations.

Proposition A.32 (Basic properties of the semigroup). Let A be
a positive operator on H. Then,
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(a) For all s, t ≥ 0,

e−(s+t)A = e−sAe−tA.

(b) For all f ∈ H,

lim
t→0+

e−tAf = f.

(c) For all t ≥ 0,

‖e−tA‖ ≤ 1.

Proof. (a) This follows immediately from Proposition A.22 (d).

(b) By Corollary A.25, for f ∈ H, we have

‖e−tAf − f‖2 =

∫ ∞
0

(e−tx − 1)2dµf (x)→ 0

as t→ 0+ by Lebesgue’s dominated convergence theorem. This follows
as the integral is bounded above by 1, converges pointwise to 0 and
each spectral measure is finite.

(c) By Corollary A.25 and Proposition A.15, for f ∈ H we have

‖e−tAf‖2 =

∫ ∞
0

e−2txdµf (x) ≤ µf ([0,∞)) = ‖f‖2.

This gives the desired conclusion. �

Remark. We call property (a) in the proposition above the semi-
group property , property (b) strong continuity and property (c) con-
traction. Thus, we summarize the proposition above by saying that
e−tA is a strongly continuous contraction semigroup.

We will now show that the semigroup generates solutions of the
parabolic equation involving A. In order to make this precise, we recall
that a function u : (0,∞) −→ H is called differentiable if for any t > 0
the limit

lim
h→0

1

h
(u(t+ h)− u(t))

exists. In this case, we denote this limit as ∂tu and call it the deriv-
ative of u. We call the equation (A + ∂t)u = 0 the parabolic equation
associated to A. Any differentiable function u : (0,∞) −→ H which
satisfies (A+ ∂t)u = 0 is called a solution of the parabolic equation.

When dealing with parabolic equations, we are usually interested
in solutions u : (0,∞) −→ H satisfying some additional properties as
t → 0+. For example, a common requirement is that u(t) → f ∈ H
as t → 0+. In this case we refer to u as a solution of the parabolic
equation with initial condition f . Finally, we note that when dealing
with functions u : [0,∞) −→ H we often write ut instead of u(t) for
t ≥ 0. We now show that the semigroup generates a solution of the
parabolic equation with a prescribed initial condition.
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Theorem A.33 (Solution of the parabolic equation). Let A be a
positive operator on H and let f ∈ H. Then, u : [0,∞) −→ H given by

ut = e−tAf

is continuous on [0,∞), differentiable on (0,∞), satisfies ut ∈ D(A)
and

∂tut = −Aut
for all t > 0 as well as u(t)→ f for t→ 0+.

Proof. We prove the theorem through a series of claims.

Claim. The function u is continuous on [0,∞).
Proof of the claim. Let t ≥ 0. Then, for all h ∈ R with t + h ≥ 0,

the operator e−(t+h)A is bounded and Corollary A.25 gives∥∥e−(t+h)Af − e−tAf
∥∥2

=

∫ ∞
0

∣∣e−(t+h)x − e−tx
∣∣2 dµf (x).

Now, |e−(t+h)x − e−tx|2 is bounded by 4 and converges to 0 pointwise
as h → 0 for x ≥ 0. Thus, we obtain from Lebesgue’s dominated
convergence theorem

lim
h→0

∫ ∞
0

∣∣e−(t+h)x − e−tx
∣∣2 dµf (x) = 0.

This proves the continuity of u at t.

Claim. For any t > 0, ut ∈ D(A).
Proof of the claim. By Proposition A.24 (a), we have to show∫

x2dµut(x) < ∞ for t > 0. Now, by Corollary A.25, as f ∈ H =
D(e−tA) we have µut = µe−tAf = |e−t·|2µf . This easily gives∫

x2dµut(x) =

∫
[0,∞)

x2e−2txdµf (x) <∞,

where we used that µf is supported on σ(A) ⊆ [0,∞) and x 7→ x2e−2tx

is bounded on [0,∞).
Claim. For any t > 0, the function u is differentiable in t and

satisfies

∂tut = −Aut.
Proof of the claim. For h ∈ R with |h| ≤ t, we define the function

ψh : [0,∞) −→ R by

ψh(x) =
e−(t+h)x − e−tx

h
− xe−tx.

Then, (d) and (e) of Proposition A.22, give

1

h
(e−(t+h)Af − e−tAf)− Ae−tAf = ψh(A)f,
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where we use e−tAf ∈ D(A) for t > 0, which was established in the
preceding claim to write down the expression on the left-hand side.
Hence, Proposition A.24 (a) yields∥∥∥∥1

h
(e−(t+h)Af − e−tAf)− Ae−tAf

∥∥∥∥2

=

∫ ∞
0

|ψh(x)|2dµf (x).

Now, ψh can easily be seen to converge pointwise to 0 as h → 0 and
to be bounded by x 7→ 2xe−tx, which is bounded on [0,∞). Hence, by
Lebesgue’s dominated convergence theorem, we see that

∫
|ψh|2dµf →

0 as h→ 0 and this gives the desired claim.

Claim. ut → f as t→ 0+.
Proof of the claim. This is immediate from the already established

continuity of u on [0,∞) and u0 = f . �

Remark. (a) The theorem above can be phrased as saying that
u with ut = e−tAf is a solution of the parabolic equation with initial
condition f .

(b) In the above theorem, if f ∈ D(A), then we obtain the differ-
entiability of u at 0 and that the derivative of u at t = 0 is given by
−Af . The proof follows by the obvious modification of the proof of
differentiability given in the theorem.

(c) We will later show in Appendix D that e−tAf is the unique
solution to the equation ∂tut = −Aut with u0 = f. As a particular
consequence of this uniqueness, if e−tA = e−tB for positive operators A
and B, then A = B.

We now turn to resolvents. For a positive operator A, for every
λ < 0, the resolvent (A− λ)−1 exists and is a bounded operator on H
for λ < 0. We now switch notation and write

(A+ α)−1

for α > 0 instead. In particular, the resolvent (A+α)−1 is obtained by
applying the bounded function ϕ : [0,∞) −→ R given by

ϕ(x) =
1

x+ α

for α > 0 to A. We now gather some basic properties of resolvents.

Proposition A.34 (Basic properties of resolvents). Let A be a
positive operator on H. Then,

(a) For all α, β > 0,

(A+ α)−1 − (A+ β)−1 = −(α− β)(A+ α)−1(A+ β)−1.

(b) For all f ∈ H,
lim
α→∞

α(A+ α)−1f = f.

(c) For all α > 0,
‖α(A+ α)−1‖ ≤ 1.
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Proof. (a) This follows directly from the identity

A−1 −B−1 = A−1(B − A)B−1

for invertible operators A and B with D(B) ⊆ D(A).

(b) For every f ∈ H we have by Corollary A.25

‖α(A+ α)−1f − f‖2 =

∫ ∞
0

∣∣∣∣ α

x+ α
− 1

∣∣∣∣2 dµf (x)→ 0

as α→∞ by Lebesgue’s dominated convergence theorem.

(c) By Corollary A.25 and Proposition A.15, for every f ∈ H we
have

‖α(A+ α)−1f‖2 =

∫ ∞
0

∣∣∣∣ α

x+ α

∣∣∣∣2 dµf (x) ≤ µf ([0,∞)) = ‖f‖2.

This completes the proof. �

Remark. We call property (a) in Proposition A.34 the resolvent
identity , property (b) strong continuity and property (c) contraction.
Thus, we summarize the proposition above by saying that α(A+ α)−1

is a strongly continuous contraction resolvent.

From our discussion above, the semigroup e−tA generates a solution
of the parabolic equation ∂tut = −Aut. Similarly, the resolvent also
generates a solution of a naturally arising equation. More specifically,
it is immediate that u = (A+ α)−1f for f ∈ H gives a solution of

(A+ α)u = f.

We refer to this equation as the Poisson equation.
We conclude this appendix by presenting the connection between

the semigroup and the resolvent associated to an operator. In order to
state this connection, we need to integrate Hilbert space-valued func-
tions. Hence, if g : [a, b] −→ H is continuous, we define the integral∫ b

a

g(t)dt

as a Riemann integral via approximation by Riemann sums of step
functions. We will use this to integrate the semigroup directly below.

Theorem A.35 (Semigroups and resolvents). Let A be a positive
operator on H.

(a) For every α > 0,

(A+ α)−1 =

∫ ∞
0

e−tαe−tAdt.

(“Laplace transform”)
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(b) For every t > 0,

e−tA = lim
n→∞

(
n

t

(
A+

n

t

)−1
)n

.

Proof. (a) From the formula

(x+ α)−1 =

∫ ∞
0

e−tαe−txdt,

which holds for all x ≥ 0 and α > 0, we obtain by applying the
functional calculus

(A+ α)−1 =

∫ ∞
0

e−tαe−tAdt.

This gives the conclusion.

(b) We note that

ϕn(x) =

(
n

t

(
x+

n

t

)−1
)n

=

(
1 +

tx

n

)−n
→ e−tx

as n → ∞ for x, t ≥ 0. Hence, by Corollary A.25 and Lebesgue’s
dominated convergence theorem, we obtain, for every f ∈ H,∥∥∥∥e−tAf − (nt (A+

n

t

)−1
)n

f

∥∥∥∥2

=

∫ ∞
0

∣∣e−tx − ϕn(x)
∣∣2 dµf (x)→ 0

as n→∞. This completes the proof. �





APPENDIX B

Closed Forms on Hilbert spaces

Upside downside inside and outside, hittin you from every angle
there’s no doubt ...

Method Man.

This appendix deals with forms. In particular, we will show that a
positive closed form gives rise to a unique positive operator. We will
also characterize the domain of this operator.

We first discuss the operators which will be of interest in this ap-
pendix. These are self-adjoint operators whose spectrum is contained
in the non-negative real numbers.

We start by recalling the relevant notions. We let H denote a
complex Hilbert space. We call an operator A with dense domain
D(A) ⊆ H self-adjoint if A = A∗, where A∗ denotes the adjoint of A.
We denote the spectrum of A by σ(A). If A is a self-adjoint operator,
then σ(A) ⊆ R, as was shown in Corollary A.12. We will now restrict
our attention further to those operators whose spectrum is contained
in the non-negative real numbers.

Lemma B.1. Let A be a self-adjoint operator on H with domain
D(A). Then, the following statements are equivalent:

(i) σ(A) ⊆ [0,∞).
(ii) A is unitarily equivalent to multiplication by an almost everywhere

positive function.
(iii) 〈f, Af〉 ≥ 0 for all f ∈ D(A).
(iv) There exists a self-adjoint operator S with A = S2.

Proof. According to the spectral theorem, Theorem A.20, we can
assume without loss of generality that A is the operator Mu of mul-
tiplication by a measurable function u : X −→ R, where (X,µ) is a
measure space without atoms of infinite mass and D(Mu) = {f ∈
L2(X,µ) | uf ∈ L2(X,µ)}. The spectrum of A is then the essential
range of u by Lemma A.6. Now, the essential range is contained in
[0,∞) if and only if u ≥ 0 almost everywhere and this in turn holds if
and only if

∫
u|f |2dµ = 〈f,Muf〉 ≥ 0 for all f ∈ D(Mu). This shows

the equivalence between (i), (ii) and (iii).
Now, if u ≥ 0 almost everywhere, then Mu = M2

v with v =
√
u and,

thus, (ii) implies (iv). Finally, (iv) implies (iii) via

〈f, Af〉 = 〈f, S2f〉 = 〈Sf, Sf〉 = ‖Sf‖2 ≥ 0.

591
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This finishes the proof. �

We highlight the class of operators appearing in the previous state-
ment by giving a definition.

Definition B.2 (Positive operator). We say that a self-adjoint
operator A is positive if A satisfies one of the equivalent conditions of
Lemma B.1. We write A ≥ 0 in this case.

Remark. We caution that some communities refer to operators
on function spaces as positive if they map positive functions to pos-
itive functions. In this book we refer to such operators as positivity
preserving, see, for example, Section 3 or Appendix C.

When A is positive the function ϕ : [0,∞) −→ R given by ϕ(x) =√
x is defined on the spectrum of A. We can thus use the functional

calculus, see Definition A.21 and the subsequent remark, to define

A1/2 =
√
A = ϕ(A)

and call this operator the square root of A. We now collect some basic
properties of the square root.

Lemma B.3 (Square root). Let A be a positive operator on H.
Then, the following statements hold:

(a)
√
A is self-adjoint and positive.

(b) f ∈ D(A) if and only if f ∈ D(
√
A) and

√
Af ∈ D(

√
A). In

particular, D(A) ⊆ D(
√
A).

(c) (
√
A)2 = A on D(A).

Proof. By Lemma B.1 we may assume that A is unitarily equiv-
alent to multiplication by a function u which is positive almost every-
where on a measure space (X,µ) without atoms of infinite mass. It

follows by the definition of the spectral calculus that
√
A is then uni-

tarily equivalent to multiplication by
√
u. As

√
u is real-valued almost

everywhere, the self-adjointness of
√
A follows from Proposition A.7.

Positivity of
√
A then follows by Lemma B.1. This proves (a). Prop-

erty (b) follows by a short argument involving the definition of the
domain of a multiplication operator, see Example A.2. Property (c) is
then obvious from the discussion above. �

We will study positive operators by means of forms. Roughly speak-
ing, a form is like an inner product except that it may be degenerate
and is not defined on the entire Hilbert space. We make this notion
precise in the following definition.

Definition B.4 (Symmetric positive form). A symmetric positive
form Q on H consists of a dense subspace D(Q) ⊆ H called the domain
of Q together with a map

Q : D(Q)×D(Q) −→ C
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satisfying

• Q(f, g) = Q(g, f) (“Symmetry”)
• Q(f, αg + βh) = αQ(f, g) + βQ(f, h) (“Linearity”)
• Q(f, f) ≥ 0 (“Positivity”)

for all f, g, h ∈ D(Q) and α, β ∈ C.

In this appendix we will deal exclusively with forms that are sym-
metric and positive. We refer to such forms simply as positive forms.
We note that the theory developed below can easily be adapted to a
slightly more general class of forms, namely those which are bounded
below. We do not treat this case here, as we do not meet such forms
in the context of graphs discussed in the bulk of the book.

For f ∈ H, we define Q(f) as

Q(f) =

{
Q(f, f) if f ∈ D(Q)
∞ otherwise.

We note that we can recover the form Q from the values Q(f) for f ∈ H
as the domain of Q is given by

D(Q) = {f ∈ H | Q(f) <∞}
and Q(f, g) can be obtained by using the polarization identity, i.e.,

Q(f, g) =
1

4

3∑
k=0

ikQ(g + ikf)

for f, g ∈ D(Q).
Every form Q induces an inner product on the subspace D(Q) via

〈f, g〉Q = Q(f, g) + 〈f, g〉.
The associated norm is given by

‖f‖Q = 〈f, f〉1/2Q =
(
Q(f) + ‖f‖2

)1/2
.

In the next example we begin to establish the connection between
forms and positive operators. In particular, we show how to define a
form from a positive operator.

Example B.5 (Form associated to a positive operator). Let A be
a positive operator on H. We define the form QA by letting D(QA) =

D(
√
A) and

QA(f, g) = 〈
√
Af,
√
Ag〉

for all f, g ∈ D(
√
A). We call QA the form associated to A.

In particular, if we let (X,µ) be a measure space, u : X −→ [0,∞)
be measurable and Mu be the operator of multiplication by u, then
QMu has domain

D(QMu) = D(M√u) = {f ∈ L2(X,µ) |
∫
u|f |2dµ <∞}
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and acts by

QMu(f, g) =

∫
ufgdµ

for f, g ∈ D(QMu). We note that the integral defining QMu(f, g) exists
as u|fg| ≤ u|f |2 + u|g|2.

We will show that the converse of the preceding example holds un-
der some additional assumptions. For forms with suitable boundedness
properties, this is not hard to see by using the Riesz representation the-
orem. This is the content of the next proposition.

Proposition B.6 (Bounded forms and operators). Let Q be a pos-
itive form with D(Q) = H such that there exists a constant C ≥ 0 with

Q(f, g) ≤ C‖f‖‖g‖
for all f, g ∈ H. Then, there exists a unique positive operator A with
D(A) = H, ‖A‖ ≤ C and

Q(f, g) = 〈f, Ag〉 = 〈Af, g〉
for all f, g ∈ H.

Proof. For a fixed f ∈ H, we consider the map from H to C given
by

g 7→ Q(f, g).

This map is linear and bounded by the assumptions on Q. Hence, by
the Riesz representation theorem, there exists a unique f ′ ∈ H with

Q(f, g) = 〈f ′, g〉
for all g ∈ H. We define A : H −→ H by

Af = f ′.

It follows that A is linear and

Q(f, g) = 〈Af, g〉
for all f, g ∈ H. In particular, we infer

‖Af‖ = sup{〈Af, g〉 | ‖g‖ ≤ 1} ≤ C‖f‖

and, thus, ‖A‖ ≤ C follows. Moreover, by using the symmetry of Q,
we have

〈Af, g〉 = Q(f, g) = Q(g, f) = 〈Ag, f〉 = 〈f, Ag〉,
so that A is symmetric. As A is bounded, it follows that A is self-
adjoint.

Finally, using the positivity of Q, we obtain

〈f, Af〉 = Q(f, f) ≥ 0

and, thus, A is positive. The uniqueness of A is clear. �
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Any form Q with D(Q) = H which satisfies Q(f, g) ≤ C‖f‖‖g‖ for
all f, g ∈ H and some constant C ≥ 0 is called bounded . Hence, we see
from the proposition above that any positive bounded form gives rise
to a unique positive bounded operator. Conversely, if A is a bounded
positive operator, then

√
A is bounded and, thus, QA as defined in Ex-

ample B.5 is a bounded form. Hence, from the considerations above,
we see that there is a one-to-one correspondence between bounded pos-
itive operators and bounded positive forms. We will extend this result
to a larger class of forms in what follows.

We first show that we can weaken the boundedness assumption on
the form to a completeness assumption and still obtain the existence
of an operator. This is the content of the next lemma.

Lemma B.7 (Associated operator). Let Q be a positive form on H.
If (D(Q), 〈·, ·〉Q) is complete, then there exists a positive operator A

with D(Q) = D(
√
A) and

Q(f, g) = 〈
√
Af,
√
Ag〉

for all f, g ∈ D(Q), i.e., Q = QA is the form associated to A.

Proof. By assumption, (D(Q), 〈·, ·〉Q) is a Hilbert space, which
we denote by HQ. Consider

〈·, ·〉 : HQ ×HQ −→ C,
where 〈·, ·〉 denotes the inner product on H. Then, as Q is positive,

|〈f, g〉| ≤ ‖f‖‖g‖ ≤ ‖f‖Q‖g‖Q,
so that 〈·, ·〉 is a bounded form on HQ. Hence, by Proposition B.6,
there exists a unique positive operator T with D(T ) = HQ and

〈f, g〉 = 〈f, Tg〉Q = Q(f, Tg) + 〈f, Tg〉
for all f, g ∈ HQ.

We will ultimately show that

A = T−1 − I
has the desired properties. Indeed, assuming the definition of A as
T−1 − I makes sense, letting g′ = Tg and noting that g − g′ = Ag′ we
see from the above that

〈f, Ag′〉 = Q(f, g′)

for all f, g ∈ HQ. Using A =
√
A
√
A = (

√
A)∗(
√
A) then gives

Q(f, g′) = 〈
√
Af,
√
Ag′〉

for all f, g ∈ HQ.
To turn this into a rigorous argument, we have to show that T is

injective and that T−1 − I can be seen as a positive operator on H.
One obstacle to overcome is that T and A are only defined on HQ and
we have to extend them to subspaces of H.
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After this sketch, we now proceed to give the proof. As

〈f, Tf〉Q = 〈f, f〉 = ‖f‖2

for all f ∈ HQ, the operator T is positive and bounded on HQ with
‖T‖ ≤ 1. By the spectral theorem, Theorem A.20, applied to T on HQ,
there exists a measure space (X,µQ) without atoms of infinite mass,
a measurable function u : X −→ [0, 1] and a unitary map V : HQ −→
L2(X,µQ) such that

T = V −1MuV.

Here, 0 ≤ u ≤ 1 follows from the fact that T is positive and bounded
with ‖T‖ ≤ 1. Furthermore, as 〈f, Tf〉Q = ‖f‖2, the operator T is
injective and thus u > 0 almost everywhere so that 0 < u ≤ 1 almost
everywhere.

We now define a : X −→ [0,∞) by

a =
1

u
− 1.

For all f, g ∈ HQ, from

〈f, g〉 = 〈f, Tg〉Q =

∫
u(V f)(V g)dµQ

we infer

Q(f, g) = 〈f, g〉Q − 〈f, g〉

=

∫
(V f)(V g)dµQ −

∫
u(V f)(V g)dµQ

=

∫
(1− u)(V f)(V g)dµQ

=

∫
a(V f)(V g)udµQ

=

∫
a(V f)(V g)dµ,

where we define the measure µ = uµQ and use that 1− u = au.
This is almost the desired formula for Q. It just remains to show

that we can use V : HQ −→ L2(X,µQ) to define a unitary map

U : H −→ L2(X,µ)

which satisfies Q(f, g) =
∫
a(Uf)(Ug)dµ for all f, g ∈ D(Q) and

UD(Q) = {f ∈ L2(X,µ) |
∫
a|f |2dµ <∞}.
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If so, then we can define M√a on D(M√a) = UD(Q) and

Q(f, g) =

∫
a(Uf)(Ug)dµ

= 〈M√aUf,M√aUg〉L2(X,µ)

= 〈U−1M√aUf, U
−1M√aUg〉

for all f, g ∈ D(Q). We then let
√
A = U−1M√aU with D(

√
A) = U−1D(M√a) = D(Q),

which will complete the proof.
To this end, we note that V is isometric as a map from D(Q) ⊆ H

to L2(X,µ) as

〈f, g〉 = 〈f, Tg〉Q =

∫
(V f)(V g)udµQ =

∫
(V f)(V g)dµ

= 〈V f, V g〉L2(X,µ).

Furthermore, as L2(X,µQ) is dense in L2(X,µ), the image of V is
dense. AsD(Q) is dense inH, we can extend V to an isometric operator
U : H −→ L2(X,µ) which is onto. As U is also one-to-one, U is unitary.

Moreover, the images of HQ under U and V are equal. This image,
by definition, is L2(X,µQ) and clearly agrees with

{f ∈ L2(X,µ) |
∫
a|f |2dµ <∞}.

Hence, we obtain the asserted formula for UD(Q), which completes the
proof. �

We now give the operator constructed above a name.

Definition B.8 (Associated operator). Let Q be a positive form
on H such that (D(Q), 〈·, ·〉Q) is a Hilbert space. The positive operator
A such that

D(
√
A) = D(Q) and Q(f, g) = 〈

√
Af,
√
Ag〉

is called the operator associated to Q.

From the preceding we see that every form which induces a Hilbert
space structure on its domain gives rise to an associated operator. We
will now show that all such forms come from positive operators. Along
the way, we also characterize the completeness assumption in terms of
lower semi-continuity.

Theorem B.9 (Characterization of closed forms). Let Q be a pos-
itive form on H. Then, the following statements are equivalent:

(i) There exists a positive operator A with Q = QA, i.e., D(Q) =

D(
√
A) and

Q(f, g) = 〈
√
Af,
√
Ag〉
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for all f, g ∈ D(Q).
(ii) Q is lower semi-continuous, i.e.,

Q(f) ≤ lim inf
n→∞

Q(fn)

whenever fn → f as n→∞ in H.
(iii) (D(Q), 〈·, ·〉Q) is a Hilbert space.

Proof of Theorem B.9. (i) =⇒ (ii): We will show that Q is the
supremum of continuous functions Qn, from which (ii) follows easily.

Since A ≥ 0, the operator (A+n)−1 exists and is bounded on H for
all n ∈ N. For f ∈ H, we denote by µf the spectral measure associated
to f and note by Lemma A.18 (d) that supp(µf ) ⊆ [0,∞). We let
ϕn : [0,∞) −→ R be given by ϕn(x) = nx/(x+ n) and note that ϕn is
bounded for every n ∈ N. Thus, by the bounded functional calculus,
Corollary A.25, we may define a continuous map Qn : H −→ [0,∞) via

Qn(f) =

∫ ∞
0

nx

x+ n
dµf (x) = 〈f, nA(A+ n)−1f〉.

We now claim that

Qn(f)↗
∫ ∞

0

xdµf = Q(f)

as n→∞ for every f ∈ H. Here, the convergence follows easily by the
monotone convergence theorem as ϕn(x)↗ x as n→∞. The equality

follows from Proposition A.24 (a), which gives f ∈ D(
√
A) = D(Q) if

and only if
∫
xdµf <∞, in which case

Q(f) = ‖
√
Af‖2 =

∫ ∞
0

xdµf .

This completes the proof.

(ii) =⇒ (iii): Let (fn) be a Cauchy sequence in (D(Q), 〈·, ·〉Q).
Then, (fn) is a Cauchy sequence in H. In particular, there exists an
f ∈ H with fn → f with respect to ‖ · ‖.

Let ε > 0. As (fn) is a Cauchy sequence in (D(Q), 〈·, ·〉Q), there
exists an N ∈ N with

‖fn − fm‖Q < ε

for all n,m ≥ N . Consider now m ≥ N . Then, using (ii), we get

Q(f − fm) ≤ lim inf
n→∞

Q(fn − fm) ≤ ε.

This implies f ∈ D(Q) and Q(f − fm) ≤ ε for all m ≥ N . Therefore,
fn → f with respect to ‖ · ‖Q.

(iii) =⇒ (i): This is shown in Lemma B.7. �

We highlight the class of forms appearing in the previous statement
by giving a definition.
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Definition B.10 (Closed form). We say that a positive form Q
on H is closed if Q satisfies one of the equivalent conditions of Theo-
rem B.9.

The preceding considerations show that all positive closed forms
come from positive operators. We now discuss how to further describe
the domain of the operator associated to such a form.

Theorem B.11 (Domain and action of the operator). Let Q be a
positive closed form on H. Then, the associated operator A has domain

D(A) =

{
f ∈ D(Q)

∣∣∣∣ there exists a g ∈ H with Q(h, f) = 〈h, g〉
for all h ∈ D(Q)

}
and acts on D(A) via

Af = g.

Proof. This follows from the definitions of the associated operator
and the adjoint of the square root, the fact that

√
A is self-adjoint, so

that D(
√
A) = D(

√
A
∗
), and the fact that f ∈ D(A) if and only if√

Af ∈ D(
√
A
∗
) = D(

√
A), see Lemma B.3.

More specifically, for f ∈ D(
√
A) = D(Q) we have

√
Af ∈ D(

√
A
∗
)

if and only if there exists an element g ∈ H such that

〈h,
√
A
√
Af〉 = 〈h, g〉

for all h ∈ D(
√
A) = D(Q), which is equivalent to

〈
√
Ah,
√
Af〉 = Q(h, f) = 〈h, g〉

for all h ∈ D(Q). This completes the proof. �

The following consequence of the previous theorem is a convenient
way to think about the operator associated to a closed form. As a
further fact, we also show that the operator domain is dense in the
form domain with respect to the inner product arising from the form.

Corollary B.12. Let Q be a positive closed form on H. Then,
there exists a unique self-adjoint operator L with

Q(f, g) = 〈f, Lg〉
for all f ∈ D(Q) and g ∈ D(L). The operator L is positive and the
form Q satisfies

D(Q) = D(
√
L) and Q(f, g) = 〈

√
Lf,
√
Lg〉

for all f, g ∈ D(Q). Furthermore, D(L) ⊆ D(Q) is dense with respect
to ‖ · ‖Q.

Proof. We first show uniqueness. Let L be such an operator.
Then, L is a restriction of A, the operator associated to Q, by Theo-
rem B.11. As both L and A are self-adjoint, they must agree.
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The existence of such an operator as well as the connection to the
form follow from Theorem B.9 and Lemma B.3. Finally, to show that
D(L) is dense in D(Q) with respect to ‖·‖Q we suppose not. Then there
exists an f ∈ D(Q), f 6= 0, which is in the orthogonal complement of
D(L) with respect to 〈·, ·〉Q, that is,

〈f, g〉Q = 〈f, g〉+Q(f, g) = 0

for all g ∈ D(L). By the connection between the operator and form we
then obtain

〈f, Lg〉 = −〈f, g〉
for all g ∈ D(L) so that f ∈ D(L∗). As L is self-adjoint, it follows that
f ∈ D(L) so that f = 0. This contradiction yields the claim. �

We now briefly discuss several concepts of independent interest in
the context of forms. These concepts provide a self-adjoint extension
to a symmetric operator that is bounded below.

Given forms Q and Q′ with domains D(Q) and D(Q′) in H, we call
Q′ an extension of Q if

D(Q) ⊆ D(Q′) and Q′(f, g) = Q(f, g)

for all f, g ∈ D(Q). We call a form Q closable if there exists a closed
extension of Q. Equivalently, Q is closable if and only if for every
sequence (fn) in D(Q) such that fn → 0 as n→∞ and Q(fn−fm)→ 0
as n,m→∞, it follows that Q(fn)→ 0 as n→∞.

If Q is closable, then we call the smallest closed extension of Q
the closure of Q and denote the closure by Q. The form Q can be
constructed by letting D(Q) be the closure of D(Q) in H with respect
to the form norm ‖ · ‖Q, that is,

D(Q) = D(Q)
‖·‖Q

and letting

Q(f) = lim
n→∞

Q(fn)

if fn ∈ D(Q) satisfies fn → f in H and Q(fn− fm)→ 0 as n,m→∞.
The closability assumption on Q is then required to show that this
procedure is well-defined and that we can embed D(Q) into H.

After these preparation we now briefly discuss how we can use forms
to obtain a self-adjoint extension of a symmetric operator.

Example B.13 (Friedrichs extension). We recall that a densely
defined operator A0 on H is called symmetric if A∗0 is an extension of
A0, that is, D(A0) ⊆ D(A∗0) and A∗0f = A0f for all f ∈ D(A0). If A0

is a symmetric operator and 〈A0f, f〉 ≥ 0 for all f ∈ D(A0), then we
define a positive form Q0 by letting D(Q0) = D(A0) and

Q0(f, g) = 〈A0f, g〉
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for all f, g ∈ D(A0). It follows by a short argument that the form Q0

is closable. Let Q be the closure of Q0. Then, by Theorem B.9, there
exists a positive self-adjoint operator A which is associated to Q.

We now show that A is an extension of A0. To do so, let f ∈
D(A0) = D(Q0) ⊆ D(Q). By the definition of the closure of Q0 we can
find for any h ∈ D(Q) a sequence (hn) in D(Q0) = D(A0) with hn → h
in H and Q(h− hn)→ 0 as n→∞. Thus, we obtain for all h ∈ D(Q)

Q(h, f) = lim
n→∞

Q(hn, f) = lim
n→∞

Q0(hn, f) = lim
n→∞
〈hn, A0f〉 = 〈h,A0f〉.

By Theorem B.11, we infer f ∈ D(A) and Af = A0f . As f ∈ D(A0)
was arbitrary this implies that A is an extension of A0.

We refer to the extension A constructed above as the Friedrichs
extension of A0. This construction will be used in Section 3 of Appen-
dix E.

We finish this appendix with two ways to approximate the value on
the diagonal of a closed form. More specifically, given a closed form we
define two quadratic forms using the resolvent and semigroup arising
from the associated operator and show that in the limit they agree with
the diagonal of the form.

We call a map q : H −→ (−∞,∞] a quadratic form if q(zf) =
|z|2q(f) for all z ∈ C and f ∈ H and if

q(f + g) + q(f − g) = 2q(f) + 2q(g)

for all f, g ∈ H. The domain of q is given by

D(q) = {f ∈ H | q(f) <∞}.

We can then extend q to a sesquilinear map on D(q)×D(q) via polar-
ization, that is, we let

q(f, g) =
1

4

3∑
k=0

ikq(g + ikf)

for f, g ∈ D(q).
Now, given a positive closed form Q on H, as the associated op-

erator L is positive we can use the functional calculus to define both
the semigroup e−tL for t ≥ 0 and the resolvent (L + α)−1 for α > 0.
We then define the quadratic forms Qα : H −→ R associated to the
resolvent by

Qα(f) = α〈(I − α(L+ α)−1)f, f〉

for α > 0 and the quadratic forms Qt : H −→ R associated to the
semigroup by

Qt(f) =
1

t
〈(I − e−tL)f, f〉
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for t ≥ 0. As both the resolvent and semigroup are bounded self-
adjoint operators, see Propositions A.32 and A.34, we have D(Qα) =
H = D(Qt) as well as

Qα(f, g) = α〈(I − α(L+ α)−1)f, g〉
and

Qt(f, g) =
1

t
〈(I − e−tL)f, g〉

for all f, g ∈ H, as follows from polarization.
We now show that the value of a closed form on the diagonal is the

limit of the value of the quadratic forms associated to the resolvent and
the semigroup.

Corollary B.14. Let Q be a positive closed form on H with as-
sociated operator L. Then, for all f ∈ H,

Q(f) = lim
α→∞

Qα(f) = lim
t→0+

Qt(f),

where the value is finite if and only if f ∈ D(Q).

Proof. The statement follows directly from the connection be-
tween the operator and form, properties of the functional calculus given
in Proposition A.24, and the monotone convergence theorem as

α
(
1− α(x+ α)−1

)
↗ x and

1

t
(1− e−tx)↗ x

as α→∞ and t→ 0+, respectively, for all x ≥ 0. �



APPENDIX C

Dirichlet Forms and Beurling–Deny Criteria

Looks like the work of a master, evidence indicates that’s it’s
stature.

Masta Killa.

In this appendix we discuss some general theory of Dirichlet forms,
including the Beurling–Deny criteria. While this material provides use-
ful background, it is not necessary to follow the discussion of regular
Dirichlet forms on discrete spaces which forms a substantial part of the
book. However, we use this material when dealing with non-regular
Dirichlet forms.

The material presented here can be found in one form or another
in the monographs [BH91, RS78] or in the special case of locally
compact spaces in [Dav89, FŌT11].

We first define the concept of a Dirichlet form. Let (X,µ) be a σ-
finite measure space. Let H be the Hilbert space of square integrable
real-valued functions on X, i.e., H = L2(X,µ). We let Q be a positive
closed form with domain D(Q) ⊆ H, as discussed in Appendix B. In
particular, Q is a positive symmetric form and D(Q) is complete with
respect to the form norm ‖f‖Q = (Q(f) + ‖f‖2)1/2 for all f ∈ D(Q),
where ‖ · ‖ denotes the norm arising from the inner product on H. We
recall that Q is extended on the diagonal to all of H via Q(f) =∞ for
f ∈ H \D(Q).

We call a map C : R −→ R a normal contraction if C(0) = 0 and
|C(s) − C(t)| ≤ |s − t| for all s, t ∈ R. We now state the additional
requirement for a closed form to be a Dirichlet form.

Definition C.1 (Dirichlet form). A positive closed form Q with
domainD(Q) inH = L2(X,µ) is called a Dirichlet form if C◦f ∈ D(Q)
and

Q(C ◦ f) ≤ Q(f)

for all f ∈ D(Q) and all normal contractions C.

We say that the form is compatible with all normal contractions
in this case. This condition has a number of surprising consequences
which we will discuss. We note that while the definition requires com-
patibility with all normal contractions, it actually suffices to check the
condition for the normal contraction given by

C(s) = 0 ∨ s ∧ 1,

603
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that is, cutting below by 0 and above by 1. This follows directly from
the proof of Theorem C.4 given below.

We recall that whenever Q is a positive closed form, the associated
operator L is positive, that is, L is self-adjoint and σ(L) ⊆ [0,∞),
see Theorem B.9 for more details and Lemma B.7 for the construc-
tion of L. As σ(L) ⊆ [0,∞), it follows that we can use the functional
calculus to define both the resolvent (L + α)−1 for α > 0 and the
semigroup e−tL for t ≥ 0, which are bounded operators on H, see
Propositions A.32 and A.34 for basic properties and Theorem A.35 for
the connection between the two. In particular, we recall that the semi-
group is a strongly continuous contraction semigroup and the resolvent
is a strongly continuous contraction resolvent.

We now give some consequences for both semigroups and resolvents
when the associated operator comes from a Dirichlet form. We say that
an operator A with domain D(A) ⊆ L2(X,µ) is positivity preserving
if Af ≥ 0 whenever f ∈ D(A) satisfies f ≥ 0. We say that A is
contracting if Af ≤ 1 whenever f ∈ D(A) satisfies f ≤ 1. When A
is both positivity preserving and contracting, i.e., 0 ≤ Af ≤ 1 for all
f ∈ D(A) with 0 ≤ f ≤ 1, we say that A is Markov .

We start with a lemma which will be applied to the semigroup and
resolvent in what follows.

Lemma C.2. Let A be a bounded self-adjoint positivity preserving
operator on H = L2(X,µ). Then, the quadratic form QI−A defined by

QI−A(f, g) = 〈(I − A)f, g〉

satisfies

QI−A(|f |) ≤ QI−A(f)

for all f ∈ L2(X,µ). If, furthermore, A is Markov, then QI−A is a
Dirichlet form and for f, g ∈ L2(X,µ) ∩ L∞(X,µ) we have

QI−A(fg) ≤ 2‖g‖2
∞QI−A(f) + 2‖f‖2

∞QI−A(g).

Proof. We show the first statement for simple functions. The
statement for functions in L2(X,µ) then follows by approximation.
Let f =

∑n
k=1 fk1Uk for f1, . . . , fn ∈ R and U1, . . . , Un ⊆ X which are

measurable disjoint sets of finite measure. Then, by a direct calculation
we find the following explicit formula for QI−A(f)

QI−A(f) =
1

2

n∑
k,l=1

bk,l(fk − fl)2 +
n∑
k=1

ckf
2
k ,

where bk,l = 〈1Uk , A1Ul〉 and ck = µ(Uk)−
∑n

l=1 bk,l.
If A is positivity preserving, then bk,l ≥ 0 and the explicit formula

for QI−A(f) above easily gives QI−A(|f |) ≤ QI−A(f).
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If A is Markov, then for U =
⋃n
l=1 Ul we have 0 ≤ A1U ≤ 1 and

thus
n∑
l=1

bk,l = 〈1Uk , A1U〉 ≤ µ(Uk).

Therefore, ck ≥ 0 by definition. Then, the explicit formula for QI−A(f)
above easily gives QI−A(C ◦ f) ≤ QI−A(f) for any normal contraction
C. As QI−A is clearly symmetric positive and closed, this shows that
QI−A is a Dirichlet form.

For the last statement, we let g =
∑n

k=1 gk1Uk , where we alter the
sets U1, . . . , Un appearing in the definition of f if necessary. Then,
using Young’s inequality we get

(fkgk−flgl)2 = (gk(fk−fl))+fl(gk−gl))2 ≤ 2g2
k(fk−fl)2+2f 2

l (gk−gl)2,

which, along with the estimate
n∑
k=1

ckf
2
kg

2
k ≤ ‖f‖2

∞

n∑
k=1

ckg
2
k,

yields

QI−A(fg) =
1

2

n∑
k,l=1

bk,l(fkgk − flgl)2 +
n∑
k=1

ckfkgk

≤ 2‖g‖2∞Q(f) + 2‖f‖2
∞Q(g).

This concludes the proof. �

We now state and prove the Beurling–Deny criteria for positive
closed forms. The first criterion shows that a form being compatible
with the absolute value is equivalent to the fact that the heat semigroup
and the resolvent are positivity preserving.

Theorem C.3 (First Beurling–Deny criterion). Let Q be a posi-
tive closed form on H = L2(X,µ) and let L be the associated positive
operator. Then, the following statements are equivalent:

(i) Q(|f |) ≤ Q(f) for all f ∈ H.
(ii) α(L+ α)−1 is positivity preserving for every α > 0.
(iii) e−tL is positivity preserving for every t ≥ 0.

Proof. (i) =⇒ (ii): We note that the norm ‖ · ‖α arising from the
scalar product

〈f, g〉α = Q(f, g) + α〈f, g〉

for α > 0 and f, g ∈ D(Q) is equivalent to ‖·‖Q. We denote the Hilbert
space D(Q) equipped with 〈·, ·〉α by Hα.

Let

g = (L+ α)−1f
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for f ∈ H with f ≥ 0. In order to prove |g| = g, we will show the
following two inequalities:

‖g‖2
α ≤ 〈|g|, g〉α

and

‖|g|‖α ≤ ‖g‖α.
Combining these two inequalities with the Cauchy–Schwarz inequality
and the assumption on Q yields

‖g‖2
α ≤ 〈|g|, g〉α ≤ ‖|g|‖α‖g‖α ≤ ‖g‖2

α,

so that we get equalities in the above and thus |g| is a multiple of g.
Then, ‖g‖2

α ≤ 〈|g|, g〉α implies that |g| = g and thus g ≥ 0.
We are left to show the two inequalities above. To this end consider

the injection J : Hα −→ H, which is bounded, and note that

J∗f = (L+ α)−1f

for f ∈ H. Since g = J∗f and (L + α)−1H ⊆ D(Q), we conclude
g ∈ Hα and by (i) we have |g| ∈ Hα. Therefore, using f ≥ 0, we have

‖g‖2
α = |〈g, J∗f〉α| = |〈Jg, f〉| = |〈g, f〉|
≤ 〈|g|, f〉 = 〈J |g|, f〉 = 〈|g|, J∗f〉α = 〈|g|, g〉α.

This shows the first inequality. For the second inequality, we use the
assumption on Q to obtain

‖|g|‖2
α = Q(|g|) + α‖|g|‖2 ≤ Q(g) + α‖g‖2 = ‖g‖2

α.

This concludes the proof of (i) =⇒ (ii).

(ii) =⇒ (iii): This follows directly from Theorem A.35 (b).

(iii) =⇒ (i): By Lemma C.2 we have

1

t
〈(I − e−tL)|f |, |f |〉 ≤ 1

t
〈(I − e−tL)f, f〉

for all t ≥ 0 and f ∈ H. Letting Qt(f) = 1
t
〈(I − e−tL)f, f〉, Corol-

lary B.14 gives limt→0+ Qt(f) = Q(f) for all f ∈ H. Thus, we conclude

Q(|f |) ≤ Q(f).

This finishes the proof. �

Remark. One can check that (i) in Theorem C.3 is equivalent to:

(i.a) Q(f+) ≤ Q(f) for all f ∈ H,

where f+ = f ∨ 0 denotes the positive part of f .
Indeed, as f+ = (f + |f |)/2, it is clear that (i) implies (i.a). On the

other hand, (i.a) implies Q(f−) ≤ Q(f) and, by considering fs = f+ −
sf− for s > 0, so that (fs)+ = f+ and using bilinearity, Q(f+, f−) ≤ 0,
where f− = −f ∨0 is the negative part of f . Now, using the bilinearity
of the form once more implies (i).
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The second Beurling–Deny criterion deals with Dirichlet forms. In
particular, being a Dirichlet form turns out to be equivalent to the
Markov property for both the heat semigroup and the resolvent.

Theorem C.4 (Second Beurling–Deny criterion). Let Q be a pos-
itive closed form on H = L2(X,µ) and let L be the associated positive
operator. Then, the following statements are equivalent:

(i) Q is a Dirichlet form.
(ii) α(L+ α)−1 is Markov for every α > 0.
(iii) e−tL is Markov for every t ≥ 0.

Proof. (i) =⇒ (ii): As in the proof of Theorem C.3, we write
‖f‖2

α = Q(f) + α‖f‖2 for α > 0 and f ∈ D(Q) and note that ‖ · ‖α is
equivalent as a norm on D(Q) to ‖ · ‖Q. Let f ∈ H satisfy 0 ≤ f ≤ 1
and let α > 0. We let

g = α(L+ α)−1f and h = 0 ∨ g ∧ 1

and show that g = h.
We first note that 〈g, k〉α = α〈f, k〉 for all k ∈ D(Q). We now use

the definition of ‖ · ‖α, the facts that 〈g, h〉α = α〈f, h〉 and ‖g‖2
α =

α〈f, g〉, basic algebraic manipulations, 0 ≤ f ≤ 1 and that Q is a
Dirichlet form to obtain

‖g − h‖2
α = ‖g‖2

α − 2〈g, h〉α + ‖h‖2
α

= ‖g‖2
α − 2α〈f, h〉+ α‖h‖2 +Q(h)

= ‖g‖2
α − α‖f‖2 + α‖f − h‖2 +Q(h)

≤ ‖g‖2
α − α‖f‖2 + α‖f − g‖2 +Q(g)

= 2‖g‖2
α − α

(
‖f‖2 − ‖f − g‖2 + ‖g‖2

)
= 2‖g‖2

α − 2α〈f, g〉 = 0.

Since ‖·‖α is a norm, we conclude g = h and, therefore, we have shown
(i) =⇒ (ii).

(ii) =⇒ (iii): This follows directly from Theorem A.35 (b).

(iii) =⇒ (i): As e−tL is Markov for every t ≥ 0, the form

Qt(f) =
1

t
〈(I − e−tL)f, f〉

is a Dirichlet form by Lemma C.2. Since Q(f) = limt→0+ Qt(f) by
Corollary B.14, the statement follows. �

Remark. From the proof of Theorem C.4 we see that (i) is equiv-
alent to

(i.a) Q(0 ∨ f ∧ 1) ≤ Q(f) for all f ∈ L2(X,µ).

Furthermore, (i) clearly implies

(i.b) Q(f ∧ 1) ≤ Q(f) for all f ∈ L2(X,µ).
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Using t ∨ (−ε) = −ε(−ε−1t ∧ 1) for t ∈ R and ε > 0, one easily sees
that (i.b) implies Q(0 ∨ f) ≤ Q(f) for all f ∈ L2(X,µ). Therefore,
(i.b) is equivalent to both (i.a) and to (i).

Remark. By monotone convergence we see that (iii) in Theo-
rem C.4 is equivalent to

(iii.a) 0 ≤ e−tLf ≤ 1 for all f ∈ L∞(X,µ) with 0 ≤ f ≤ 1.

By duality and the Riesz–Thorin interpolation theorem, see Appen-
dix 4, one sees that (iii.a) is equivalent to

(iii.b) 0 ≤ e−tLf ≤ 1 for all f ∈ Lp(X,µ) with 0 ≤ f ≤ 1 and 1 ≤ p ≤
∞.

We end this section by discussing approximating forms for a Dirich-
let form. Recall that for a positive closed form Q with associated oper-
ator L the quadratic forms Qα for α > 0 and Qt for t ≥ 0 on L2(X,µ)
are defined by

Qα(f, g) = α〈(I − α(L+ α)−1)f, g〉
and

Qt(f, g) =
1

t
〈(I − e−tL)f, g〉.

By the theory above we see that these forms are Dirichlet forms when-
ever Q is a Dirichlet form.

Corollary C.5 (Approximating forms are Dirichlet). Let Q be
a Dirichlet form on H = L2(X,µ). Then, Qα and Qt are Dirichlet
forms.

Proof. By the second Beurling–Deny criterion, Theorem C.4, the
resolvent and the semigroup of a Dirichlet form are Markov. Hence,
the statement follows from Lemma C.2. �

By using the approximating forms, we now derive another conse-
quence of Lemma C.2. More specifically, we show that the bounded
functions in the form domain form an algebra.

Corollary C.6 (Bounded functions form an algebra). Let Q be a
Dirichlet form on H = L2(X,µ). Let D(Q) denote the domain of Q.
Then, D(Q) ∩ L∞(X,µ) is an algebra.

Proof. By Corollary C.5, the approximating forms are Dirichlet
forms. The conclusion then follows from the definition of either form,
the last assertion of Lemma C.2 and the fact that the value of either
approximating form converges to the value of the form as shown in
Corollary B.14. �



APPENDIX D

Semigroups, Resolvents and their Generators

Punks in the back, come on and attract to what ...
GZA.

In this appendix we discuss general background from the theory
of semigroups and resolvents on Banach spaces. In particular, we will
show that every strongly continuous contraction semigroup gives rise to
both an operator and a strongly continuous contraction resolvent. This
operator is called the generator of both the semigroup and the resolvent.
In the case of Hilbert spaces, we discuss how the spectral theorem allows
us to reverse these constructions if the operator is positive. This gives a
one-to-one correspondence between semigroups, resolvents and positive
operators on Hilbert spaces.

For a general introduction to Banach spaces, see [RS80]. For the
spectral theorem and positive operators, see Appendices A and B.

We let E denote a Banach space. An operator on E consists of a
subspace D(A) ⊆ E called the domain of the operator and a linear
map A : D(A) −→ E. We say that an operator A is bounded if there
exists a constant C such that ‖Af‖ ≤ C‖f‖ for all f ∈ D(A). If A is
a bounded operator on E, we let ‖A‖ denote the norm of A, which is
the smallest such constant C. Furthermore, we assume that D(A) = E
whenever A is bounded in what follows. We let B(E) denote the set
of all bounded operators on E and note that B(E) is a Banach space
with respect to the operator norm.

We now define the first central notion of this appendix, namely,
that of a semigroup on a Banach space.

Definition D.1 (Semigroup). Let E be a Banach space and let
B(E) denote the Banach space of bounded operators on E.

(a) We call a map S : [0,∞) −→ B(E) a semigroup if S satisfies S(s+
t) = S(s)S(t) for all s, t ≥ 0.

(b) We call a semigroup S strongly continuous if S additionally satisfies
S(t)f → f as t→ 0+ for all f ∈ E.

(c) We call a semigroup S with ‖S(t)‖ ≤ 1 for every t ≥ 0 a contraction
semigroup.

We first present a central example which should be kept in mind.

Example D.2 (Bounded operators and semigroups). Let A be a
bounded operator on E. Then, for any t ≥ 0, the series

∑∞
n=0(−tA)n/n!

609
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converges absolutely and the mapping SA : [0,∞) −→ B(E) given by

SA(t) =
∞∑
n=0

(−t)n

n!
An

defines a strongly continuous semigroup.

We are mainly interested in strongly continuous contraction semi-
groups as these give rise to the operators of interest. However, we will
first establish various properties of general strongly continuous semi-
groups and observe that by rescaling we can obtain a strongly contin-
uous contraction semigroup.

Proposition D.3. Let S be a strongly continuous semigroup on
E. Then, the following statements hold:

(a) S(0) = I.
(b) There exist constants M ≥ 0 and β > 0 with ‖S(t)‖ ≤ Meβt for

all t ≥ 0.
(c) For every f ∈ E, the map [0,∞) −→ E given by t 7→ S(t)f is

continuous.

Proof. (a) For any f ∈ E, we infer by the strong continuity of the
semigroup that

S(0)f = lim
t→0+

S(t)S(0)f = lim
t→0+

S(t)f = f.

This shows (a).

(b) By the uniform boundedness principle we claim that there exists
a constant δ > 0 with

M = sup{‖S(t)‖ | 0 ≤ t ≤ δ} <∞.
Indeed, assuming that this is not the case, we find a sequence tn → 0+

with ‖S(tn)‖ → ∞ as n→∞. However, by strong continuity we have
S(tn)f → f for all f ∈ E as n → ∞ and the uniform boundedness
principle implies supn ‖S(tn)‖ <∞, which is a contradiction.

Now, by the semigroup property and induction, we then easily infer
‖S(nδ)‖ ≤ Mn for all n ∈ N. The desired statement then follows by
taking any β > logM/δ and applying the semigroup property.

(c) Continuity at t = 0 is clear by strong continuity and part (a).
So, consider now t > 0. Then, continuity from the right follows easily
from the semigroup property and strong continuity as

S(s+ t)f = S(s)S(t)f → S(t)f

as s→ 0+. To show continuity from the left we calculate for 0 < s < t

(S(t)− S(t− s))f = S(t− s)(S(s)f − f)→ 0

as s→ 0+, where we use (b) to get the uniform boundedness of ‖S(t−
s)‖ and strong continuity to conclude that S(s)f − f → 0 as s →
0+. �
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Remark. Part (b) of the previous proposition shows that there
is not much of a difference between a strongly continuous semigroup
and a strongly continuous contraction semigroup. More specifically,

whenever α > β, then S̃(t) = e−tαS(t) is a semigroup with essentially

the same properties as S and ‖S̃(t)‖ ≤ 1 for all sufficiently large t.
We refer to this as rescaling the semigroup and will return to this idea
later.

From the previous proposition we also infer the following continuity
feature of strongly continuous semigroups.

Lemma D.4 (Continuity of compositions). Let S be a strongly con-
tinuous semigroup on E. Then,

S(tn)fn → S(t)f

as tn → t in [0,∞) and fn → f in E.

Proof. By tn → t there exists a constant c > 0 such that tn ∈ [0, c]
for all n ∈ N. By (b) of Proposition D.3 there then exists a constant
C > 0 with ‖S(t)‖ ≤ C and ‖S(tn)‖ ≤ C for all n ∈ N. Now, the
desired statement follows from

‖S(tn)fn − S(t)f‖ ≤ ‖S(tn)fn − S(tn)f‖+ ‖S(tn)f − S(t)f‖
≤ C‖fn − f‖+ ‖S(tn)f − S(t)f‖ → 0

as n → ∞, where the convergence to 0 follows from fn → f and part
(c) of Proposition D.3. �

Strongly continuous semigroups arise naturally in the context of
certain initial value problems. We can already see this connection in
the study of ordinary differential equations. More specifically, if A is
an n× n matrix and f ∈ Rn, the solution to the linear equation

∂tϕ = −Aϕ,

with ϕ(0) = f in the space of differentiable functions ϕ : [0,∞) −→ Rn,
is given by

ϕ(t) = e−tAf.

Here, SA(t) = e−tA is a strongly continuous semigroup as in Exam-
ple D.2.

A very similar statement is true when Rn is replaced by an arbitrary
Banach space E. To make sense of the corresponding terms, we recall
that a function w : [0,∞) −→ E is called differentiable if for any t ≥ 0
the limit

lim
h→0

1

h
(w(t+ h)− w(t)) = lim

s→t

1

t− s
(w(t)− w(s))

exists. We note that for t = 0 we only take the right limit. In this case,
we denote this limit as ∂tw(t) and call it the derivative of w at t. The
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equation leading to the semigroup is

∂tw = −Aw
with w(0) = u, where u ∈ E, A is an operator on E and w is the desired
differentiable function. We call such equations parabolic equations with
initial condition u. We call a differentiable function w which satisfies
the equation a solution of the parabolic equation.

A most prominent example is the heat equation. For this reason
we will also refer to such equations as generalized heat equations. If
A is a bounded operator, then the solution of the generalized heat
equation can be directly seen to be wt = SA(t)u with SA(t) = e−tA, as
in Example D.2. Below we will treat the general case of operators A
which are not necessarily bounded. This possible unboundedness will
mean that we have to be very careful in various places.

The basic underlying concept is that of a generator of a semigroup.
As we will see, the generator is the operator appearing in the parabolic
equation for which the semigroup gives a unique solution. We next
discuss this circle of ideas connecting generators, semigroups and the
parabolic equation.

Definition D.5 (Generator of a semigroup). Let S be a strongly
continuous semigroup on E. We call the operator A on E with domain

D(A) = {f ∈ E | g = lim
t→0+

1

t
(f − S(t)f) exists}

acting as
Af = g

for f ∈ D(A) the generator of the semigroup S.

Indeed, it is not hard to see that D(A) is a subspace of E and that
A is linear on D(A).

Remark. Sometimes the generator is defined with the reverse sign.
However, in view of our applications in the main text, the sign conven-
tion chosen above is more convenient.

We now show that a strongly continuous semigroup gives the unique
solution of the parabolic equation for the generator. We will later
use this to show that a strongly continuous contraction semigroup is
uniquely determined by the generator.

Theorem D.6 (Semigroups and the parabolic equation). Let S be
a strongly continuous semigroup on E with generator A. Then, for
every u ∈ D(A) and every t ≥ 0,

∂tS(t)u = lim
h→0

1

h
(S(t+ h)u− S(t)u)

exists, S(t)u ∈ D(A) and

AS(t)u = S(t)Au = −∂tS(t)u.
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In fact, the function w : [0,∞) −→ E given by wt = S(t)u is the unique
solution of the equation

∂twt = −Awt
in D(A) with w0 = u.

Proof. A direct computation using the semigroup property gives

lim
h→0+

1

h
(S(t+ h)u− S(t)u) = lim

h→0+

1

h
S(t)(S(h)u− u) = −S(t)Au,

where we use that u ∈ D(A) and the definition of the generator. This
shows the existence of the right limit needed for the differentiability of
S(t)u as well as the differentiability at t = 0. For the existence of the
left limit for t > 0, we have, for all h with 0 < h < t,

1

−h
(S(t− h)u− S(t)u) =

1

−h
(S(t− h)(u− S(h)u))→ −S(t)Au

as h → 0+, where we use Lemma D.4 and u ∈ D(A). Hence, S(t)u is
differentiable for all t ≥ 0 and

∂tS(t)u = −S(t)Au.

Therefore,

−S(t)Au = lim
h→0

1

h
((S(t+ h)− S(t))u) = lim

h→0+

1

h
((S(h)− I)(S(t)u)),

which implies S(t)u ∈ D(A) and AS(t)u = S(t)Au. Combining these
equalities proves the first statement of the theorem.

We now turn to proving the second statement. By the already
proven first statement, the function wt = S(t)u solves the parabolic
equation. Furthermore, w0 = S(0)u = u by Proposition D.3 (a). It re-
mains to show the uniqueness of the solution. Let ϕ be another solution
of the equation with initial condition u. For t > 0, let v : [0, t] −→ E
be given by

v(s) = S(t− s)ϕ(s).

Lemma D.4 and the continuity of ϕ easily give that v is continuous on
[0, t]. Moreover, a short computation shows that v is differentiable on
(0, t) with

∂sv(s) = lim
r→s

1

s− r
(v(s)− v(r))

= lim
r→s

1

s− r
(
S(t− s)ϕ(s)− S(t− r)ϕ(r)

)
= lim

r→s

1

s− r
(
S(t− s)− S(t− r)

)
ϕ(s)

+ lim
r→s

1

s− r
S(t− r)(ϕ(s)− ϕ(r))
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= S(t− s) lim
r→s

1

s− r
(
I − S(s− r)

)
ϕ(s)

+ lim
r→s

1

s− r
S(t− r)(ϕ(s)− ϕ(r))

= S(t− s)Aϕ(s) + S(t− s)∂sϕ(s)

= S(t− s)(Aϕ(s) + ∂sϕ(s))

= 0,

where we used the already proven first statement of the theorem,
Lemma D.4 and the fact that ϕ is a solution.

From these considerations we see that for any differentiable function
γ : E −→ R, the function γ ◦ v : [0, t] −→ R is continuous on [0, t] and
differentiable on (0, t) with derivative equal to 0. Thus, γ◦v is constant.
As γ is arbitrary, we infer that v is constant on [0, t]. Hence, v(t) = v(0)
and we obtain

ϕ(t) = S(0)ϕ(t) = v(t) = v(0) = S(t)ϕ(0) = S(t)u,

so that ϕ agrees with S(t)u for t ≥ 0. This completes the proof. �

For our further investigations we need an integral version of the
heat equation. This statement can be thought of as a version of
the fundamental theorem of calculus in our setting. To formulate it,
we need to integrate Banach space-valued functions. Thus, whenever
g : [a, b] −→ E is continuous, we define the integral∫ b

a

g(s)ds

as a Riemann integral via approximation by Riemann sums of step
functions. It follows that the fundamental theorem of calculus holds
for continuous functions with basically the same proof. We will need
this in what follows.

Lemma D.7 (Integral version of derivative). Let S be a strongly
continuous semigroup on E with generator A. Then, for all f ∈ E and
δ ≥ 0, we have ∫ δ

0

S(s)fds ∈ D(A)

and

S(δ)f − f = −A
∫ δ

0

S(s)fds.

Proof. We clearly have

S(t)

∫ δ

0

S(s)fds−
∫ δ

0

S(s)fds =

∫ t+δ

t

S(s)fds−
∫ δ

0

S(s)fds

=

∫ t+δ

δ

S(s)fds−
∫ t

0

S(s)fds
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= (S(δ)− I)

∫ t

0

S(s)fds

for all t ≥ 0. By the fundamental theorem of calculus we have

1

t

∫ t

0

g(s)ds→ g(0)

as t→ 0+ whenever g : R −→ E is continuous. Therefore, as t 7→ S(t)f
is continuous by Proposition D.3 (c), we get

lim
t→0+

1

t

(
S(t)

∫ δ

0

S(s)fds−
∫ δ

0

S(s)fds

)
= S(δ)f − f,

so that
∫ δ

0
S(s)fds ∈ D(A) and

−A
∫ δ

0

S(s)fds = S(δ)f − f.

This completes the proof. �

We now return to the notion of rescaling a semigroup by an expo-
nential function. This will be used later when we discuss the inverse of
the operator A+ α for α > 0.

Lemma D.8 (Rescaling the semigroup). Let S be a strongly contin-
uous contraction semigroup on E with generator A. Then, for α > 0,

the function S̃ : [0,∞) −→ B(E) given by

S̃(t) = e−tαS(t)

is a strongly continuous contraction semigroup with generator A+ α.

Proof. Clearly S̃ is a semigroup. It is strongly continuous as S is
strongly continuous and t 7→ e−tα is a continuous function. The fact

that S̃ is a contraction semigroup is obvious from the fact that S is a
contraction semigroup and α > 0.

We next turn to proving the statement about the generator. Denote

the generator of S̃ by Ã. Let f ∈ D(A). Then,

1

t
(S̃(t)f − f) =

1

t
(e−tαS(t)f − f)

=
1

t
(e−tαS(t)f − e−tαf) +

1

t
(e−tαf − f)

= e−tα
1

t
(S(t)f − f) +

1

t
(e−tαf − f)

→ −Af − αf

as t → 0+, where we used in the last step that f ∈ D(A) and the
formula for the derivative of the exponential function. This shows

D(A) ⊆ D(Ã) and Ãf = (A+ α)f for f ∈ D(A).
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It remains to show that D(Ã) ⊆ D(A). Consider f ∈ D(Ã). Then,

1

t
(S(t)f − f) = etα

1

t
(S̃(t)f − f) +

1

t
(etαf − f)→ −Ãf + αf

as t→ 0+. This convergence shows f ∈ D(A). �

We recall that an operatorA is called closed if fn → f for fn ∈ D(A)
together with Afn → g implies that f ∈ D(A) and Af = g. We will
now show that the generator of a strongly continuous semigroup is
closed. Furthermore, we will show that adding any strictly positive
constant to the generator produces an invertible operator which has a
bounded inverse. For this property, we need the additional assumption
that the semigroup is a contraction semigroup.

Theorem D.9 (Basic spectral theory of generators). Let S be a
strongly continuous contraction semigroup on E with generator A. Then,
A is closed and D(A) is dense in E. For any α > 0, the operator A+α
is bijective with bounded inverse given by

(A+ α)−1 =

∫ ∞
0

e−tαS(t)dt

with ‖(A+ α)−1‖ ≤ 1/α.

Proof. We first show that D(A) is dense in E. Let f ∈ E. By
Lemma D.7, we have, for all δ ≥ 0,∫ δ

0

S(s)fds ∈ D(A).

By part (c) of Proposition D.3, the function t 7→ S(t)f is continuous
so, by the fundamental theorem of calculus, we have

lim
δ→0+

1

δ

∫ δ

0

S(s)fds = f.

The denseness of D(A) follows.

We next show that A is closed. Consider a sequence (fn) in D(A)
with fn → f and Afn → g for f, g ∈ E. Then, by Lemma D.7 and
Theorem D.6, we have

S(t)fn − fn = −A
∫ t

0

S(s)fnds = −
∫ t

0

S(s)Afnds

for any n ∈ N and any t > 0. Taking the limit as n → ∞ and using
continuity gives

S(t)f − f = −
∫ t

0

S(s)gds

for any t > 0. Dividing both sides by t and using the fundamental
theorem of calculus to take the limit as t→ 0+ we infer f ∈ D(A) and
Af = g.
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We now turn to the statement concerning the inverse of A+α. For
α > 0, we define G(α) by

G(α) =

∫ ∞
0

e−tαS(t)dt.

Then, for every α > 0, the operator G(α) is bounded with

‖G(α)‖ ≤ 1

α
.

Indeed, clearly G(α) is linear and, as S is a contraction semigroup, we
find

‖G(α)f‖ ≤
∫ ∞

0

e−tα‖S(t)f‖dt ≤ ‖f‖
∫ ∞

0

e−tαdt ≤ 1

α
‖f‖

for any f ∈ E. Therefore, G(α) is bounded with ‖G(α)‖ ≤ 1/α as
claimed.

We finish the proof by showing that G(α) is the inverse of A + α
for α > 0. We first show that for f ∈ E and α > 0, G(α)f ∈ D(A)
and (A+ α)G(α)f = f .

Let S̃(t) = e−tαS(t). Then, S̃ is a strongly continuous semigroup

with generator A + α by Lemma D.8. Now, Lemma D.7 applied to S̃
gives

S̃(δ)f − f = (−A− α)

∫ δ

0

S̃(s)fds

for any δ > 0. We take the limit as δ →∞ on both sides and use that
A+ α is closed to obtain G(α)f ∈ D(A) and

(A+ α)G(α)f = f.

Similarly, from the definition of G(α) and Theorem D.6 we infer,
for any f ∈ D(A),

G(α)(A+ α)f =

∫ ∞
0

e−tαS(t)(A+ α)fdt

= (A+ α)

∫ ∞
0

e−tαS(t)fdt

= (A+ α)G(α)f

= f,

from what we have already shown. These equalities show that (A+α) is
the inverse of the bounded operator G(α). Hence, (A+α) is a bijective
operator and

(A+ α)−1 = G(α).

This completes the proof. �

We now use the preceding considerations to show that if two strongly
continuous contraction semigroups have the same generator, then they
must be equal.
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Corollary D.10 (Uniqueness of generators). If S and S̃ are strongly

continuous contraction semigroups on E with generator A, then S = S̃.

Proof. As D(A) is dense in E by Theorem D.9, it suffices to show

that S(t)u = S̃(t)u for all u ∈ D(A) and all t ≥ 0. As both S and S̃ are
strongly continuous contraction semigroups, it follows that t 7→ S(t)u

and t 7→ S̃(t)u are both solutions of

∂tw = −Aw

with w(0) = u by Theorem D.6. Hence, by the uniqueness statement

in Theorem D.6, it follows that S(t)u = S̃(t)u for all t ≥ 0. This
completes the proof. �

We now apply the theory developed above to the case when the
Banach space is a Hilbert space. We let A be a densely defined operator
on a Hilbert space H with adjoint A∗. We recall that the operator A
is self-adjoint if A = A∗. Furthermore, for a self-adjoint operator A on
H, the spectral theorem allows us to define functions of an operator.
More specifically, if A is unitarily equivalent to multiplication by u and
ϕ is a measurable function on the essential range of u, then ϕ(A) is
unitarily equivalent to multiplication by ϕ ◦ u. For more details, see
the definition and discussion following Theorem A.20.

We let σ(A) denote the spectrum of A and recall that σ(A) ⊆ R
for a self-adjoint operator A. Furthermore, a self-adjoint operator A is
called positive if σ(A) ⊆ [0,∞), equivalently, if A is unitarily equivalent
to multiplication by a positive function u, see Lemma B.1.

For general Banach spaces, we have shown that the generator of
a strongly continuous contraction semigroup is closed and densely de-
fined. We now show that on a Hilbert space, if the semigroup addi-
tionally takes values in the self-adjoint operators, then the generator is
positive.

Lemma D.11. Let H be a Hilbert space. If S is a strongly con-
tinuous contraction semigroup on H taking values in the self-adjoint
operators, then the generator A of S is positive.

Proof. We first note that A is densely defined by Theorem D.9.
Furthermore, A is symmetric, as follows from the self-adjointness of
S(t) for t ≥ 0. Hence, A∗ is an extension of A. Thus, in order to
establish self-adjointness it suffices to show that D(A∗) ⊆ D(A).

Let f ∈ D(A∗) and let α > 0. By Theorem D.9, A + α is bijective
with bounded inverse. Hence, there exists a g ∈ D(A) with

(A+ α)g = (A∗ + α)f.

As A is symmetric, this gives (A∗+α)(f−g) = 0, so that f−g belongs
to the kernel of (A∗ + α). This kernel agrees with the orthogonal
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complement of the range of A + α and thus is trivial. This shows
f = g ∈ D(A). Therefore, A is self-adjoint.

Finally, as A + α is bijective with bounded inverse for any α > 0,
it follows that (−∞, 0) belongs to the resolvent set of A. Thus, A is
positive by Lemma B.1. �

We now establish a one-to-one correspondence between positive op-
erators and strongly continuous contraction semigroups taking values
in the space of bounded self-adjoint operators.

Corollary D.12 (Hilbert space semigroups and generators). Let
H be a Hilbert space.

(a) If A is a positive operator on H, then S : [0,∞) −→ B(H) given
by

S(t) = e−tA

is a strongly continuous contraction semigroup with self-adjoint

generator A. Furthermore, if Ã is a positive operator and e−tA =

e−tÃ, then A = Ã.
(b) If S is a self-adjoint strongly continuous contraction semigroup on

H, then S(t) = e−tA, where A is the generator of S.

Proof. (a) The fact that S(t) = e−tA is a strongly continuous con-
traction semigroup was already shown in Proposition A.32 by using the
functional calculus and Lebesgue’s dominated convergence theorem.

We now show that A is the generator of e−tA. Let f ∈ D(A). By
Proposition A.24 we get∥∥∥∥1

t
(e−tAf − f) + Af

∥∥∥∥2

=

∫ ∞
0

∣∣∣∣e−tx − 1

t
+ x

∣∣∣∣2 dµf (x)→ 0

as t → 0+. The convergence follows by Lebesgue’s dominated conver-
gence theorem. This follows since we have pointwise convergence by
the differentiability of the exponential function and the integrand is
bounded above by 2x, which is in L2(R, µf ) by Proposition A.24 as f
belongs to D(A).

This convergence shows that f is in the domain of the generator of S
and that A agrees with the generator applied to f . As A is self-adjoint
by assumption and the generator of S is self-adjoint by Lemma D.11,
it follows that A is the generator of S.

Finally, let e−tA = e−tÃ for Ã positive. Then both e−tA and e−tÃ are
strongly continuous contraction semigroups from what we have already
shown. By definition of the generator we have, for all f ∈ D(A),

Af = lim
t→0+

1

t
(f − e−tAf) = lim

t→0+

1

t
(f − e−tÃf).
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This shows f ∈ D(Ã) and, therefore, the right-hand side is equal to Ãf .

Therefore, Af = Ãf for f ∈ D(A). As both A and Ã are self-adjoint,

it follows that A = Ã.

(b) By Lemma D.11, the generator A of S is positive. Hence, by
part (a), we have that t 7→ e−tA is a strongly continuous contraction
semigroup with generator A. Therefore,

S(t) = e−tA

by Corollary D.10. This completes the proof. �

After this discussion of semigroups on Banach and Hilbert spaces
we now turn to resolvents. As semigroups, resolvents are families of
operators determined by a generator. Resolvents and semigroups are
strongly related. Indeed, they can be seen as two different perspectives
on the same object which is the generator. Unlike the case of semi-
groups, for resolvents the generator is already determined from any
single element of the family. This is a structural advantage of working
with resolvents.

Definition D.13 (Resolvents). Let E be a Banach space.

(a) We call a map G : (0,∞) −→ B(E) a resolvent if G satisfies the
resolvent identity , that is,

G(α)−G(β) = −(α− β)G(α)G(β)

for all α, β > 0.
(b) We call a resolvent G strongly continuous if G additionally satisfies

αG(α)f → f as α→∞ for all f ∈ E.
(c) We call a resolvent G with ‖αG(α)‖ ≤ 1 for every α > 0 a contrac-

tion resolvent .

Remark. The definitions above show that in some situations it
makes sense to think of αG(α) as the primary object rather than G(α).

We now gather some simple properties of resolvents. In particular,
we show that resolvents commute.

Proposition D.14. Let G be a resolvent on E.

(a) For all α, β > 0,

G(α)G(β) = G(β)G(α)

and

Range(G(α)) = Range(G(β)).

(b) If G is additionally a contraction resolvent, then G(αn)f → G(α)f
as αn → α for αn, α > 0.
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Proof. (a) The first part of the claim is a direct consequence of
the resolvent identity since

−(α− β)G(α)G(β) = G(α)−G(β)

= −(G(β)−G(α)) = (β − α)G(β)G(α).

From the resolvent identity, we also easily obtain

Range(G(β)) ⊆ Range(G(α))

for all α, β > 0 since G(β) = G(α)(I + (α − β)G(β)). By symmetry,
this gives the desired statement.

(b) This follows directly from the contraction and resolvent identity
properties as

‖(G(α)−G(αn))f‖ = ‖(α− αn)G(α)G(αn)f‖ ≤ |α− αn|
ααn

‖f‖.

This completes the proof. �

We now establish some additional properties of strongly continuous
resolvents which will lead to the definition of the generator.

Proposition D.15. Let G be a strongly continuous resolvent on
E. Then, for each α > 0, the operator G(α) : E −→ Range(G(α)) is
bijective and the operator with domain D(A) = Range(G(α)) acting as

Af = G(α)−1f − αf
for f ∈ D(A) does not depend on α > 0.

Proof. We first show that G(α) injective. Let f satisfy G(α)f = 0
for some α > 0. Then, the resolvent identity gives G(β)f = 0 for
all β > 0. By strong continuity we conclude 0 = αG(α)f → f as
α → ∞, so that f = 0. Hence, G(α) : E −→ Range(G(α)) is bijective
as claimed.

By Proposition D.14 (a), the range of G(α) does not depend on
α > 0. Therefore, D(A) does not depend on α. We now show that
G(α)−1f − αf also does not depend on α. Applying the resolvent
identity twice we infer

G(α)
(
(G(α)−1f − αf)− (G(β)−1f − βf)

)
= f − αG(α)f −

(
G(β)− (α− β)G(α)G(β)

)
(G(β)−1f − βf)

= β
(
G(β)f −G(α)f − (α− β)G(α)G(β)f

)
= 0.

By the already proven injectivity of G(α) this shows

G(α)−1f − αf = G(β)−1f − βf,
so that Af does not depend on α > 0. Clearly, A is linear. This finishes
the proof. �

Given the preceding result, we now define the generator of a resol-
vent.
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Definition D.16 (Generator of a resolvent). Let G be a strongly
continuous resolvent on E. The operator with D(A) = Range(G(α))
and acting as

Af = G(α)−1f − αf
for f ∈ D(A) is called the generator of the resolvent.

As with the generator of a strongly continuous semigroup, we now
highlight some properties of the generator of a strongly continuous
resolvent. In particular, we show that if two resolvents have the same
generator, then they must be equal.

Corollary D.17 (Basic properties of resolvents). Let G be a strongly
continuous resolvent on E. Then, the generator A of G is closed, D(A)
is dense in E and for any α > 0 the operator A+ α is bijective with

G(α) = (A+ α)−1.

In particular, if G and G̃ are both strongly continuous contraction re-

solvents with generator A, then G = G̃.

Proof. That G(α) = (A + α)−1 is a direct consequence of the
definitions. As G(α) is a bounded operator for every α > 0, G(α) is
closed. Hence, as the inverse of a closed operator is closed, it follows
that A is closed.

We now show that D(A) is dense in E. Let f ∈ E. Then,
αG(α)f ∈ D(A) = Range(G(α)) and αG(α)f → f as α → ∞ by
strong continuity. Hence, D(A) is dense in E. The uniqueness state-
ment follows directly. �

Given the preceding concepts we can reformulate Theorem D.9 as
describing the close relationship between resolvents and semigroups. In
particular, we show that any strongly continuous contraction semigroup
defines a strongly continuous contraction resolvent.

Theorem D.18 (Relationship between resolvents and semigroups).
Let S be a strongly continuous contraction semigroup on E. Then, the
map G : (0,∞) −→ B(E) given by

G(α) =

∫ ∞
0

e−tαS(t)dt

defines a strongly continuous contraction resolvent and the generator
of G and S agree. In particular, if A is the generator of S, then

G(α) = (A+ α)−1

for all α > 0, so that

(A+ α)−1 =

∫ ∞
0

e−tαS(t)dt.

(“Laplace transform”)
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Proof. If A is the generator of S, then Theorem D.9 gives

G(α) =

∫ ∞
0

e−tαS(t)dt = (A+ α)−1.

The resolvent identity then follows from

G(α)−G(β) = (A+ α)−1 − (A+ β)−1

= (A+ α)−1((A+ β)− (A+ α))(A+ β)−1

= (β − α)(A+ α)−1(A+ β)−1

= −(α− β)G(α)G(β).

The fact that G is a contraction resolvent also follows directly from
Theorem D.9, which gives ‖(A+ α)−1‖ ≤ 1/α.

To show that G is strongly continuous, let f ∈ E and ε > 0. By the
strong continuity of S, there exists a δ > 0 such that ‖S(t)f − f‖ < ε
for all t ∈ [0, δ). Then, using the fact that S is a contraction semigroup,
we get

‖αG(α)f − f‖ =

∥∥∥∥∫ ∞
0

αe−tα(S(t)f − f)dt

∥∥∥∥
≤
∫ δ

0

αe−tα‖S(t)f − f‖dt+

∫ ∞
δ

αe−tα‖S(t)f − f‖dt

< ε

∫ δ

0

αe−tαdt+ 2‖f‖
∫ ∞
δ

αe−tαdt

= ε(1− e−δα) + 2‖f‖e−δα

→ ε

as α→∞. Hence, G is strongly continuous.
The fact that A is the generator of G follows from G(α) = (A+α)−1

and Corollary D.17. This completes the proof. �

We now have a closer look at resolvents and their generators in the
case of Hilbert spaces. In particular, we use the functional calculus
to show that there is a one-to-one correspondence between positive
operators and strongly continuous contraction resolvents which take
values in the self-adjoint operators.

Corollary D.19 (Hilbert space resolvents and generators). Let
H be a Hilbert space.

(a) If A is a positive operator on H, then G : (0,∞) −→ B(H) given
by

G(α) = (A+ α)−1

defines the unique strongly continuous contraction resolvent with
generator A taking values in the self-adjoint operators.
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(b) If G is a strongly continuous contraction resolvent on H taking
values in the self-adjoint operators, then the generator A of G is
the positive operator with G(α) = (A+ α)−1 for α > 0.

Proof. (a) That G(α) = (A + α)−1 is a strongly continuous con-
traction resolvent on H was already shown in Proposition A.34 by
using the functional calculus and Lebesgue’s dominated convergence
theorem. Alternatively, by using the material in this appendix, we
note that as A is positive, S(t) = e−tA is the unique strongly continu-
ous contraction semigroup with generator A which takes values in the
self-adjoint operators by Corollary D.12 (a). Hence, G(α) = (A+α)−1

for α > 0 defines a strongly continuous contraction resolvent by Theo-
rem D.18. As A is self-adjoint, it is clear that (A+ α)−1 is self-adjoint
for every α > 0. Uniqueness follows from Corollary D.17.

(b) That the generator A of G satisfies G(α) = (A + α)−1 follows
from Corollary D.17. As G(α) is self-adjoint for every α > 0, it follows
that A is self-adjoint, so σ(A) ⊆ R by Corollary A.12. As (A + α)−1

exists and is a bounded operator for all α > 0, it follows that σ(A) ⊆
[0,∞). Thus, A is a positive operator by definition, see Lemma B.1. �

We note that Theorem D.18 allows us to pass from a strongly con-
tinuous contraction semigroup to a strongly continuous contraction
resolvent on Banach spaces via the Laplace transform formula. For
Hilbert spaces, we have also proven this via the functional calculus in
Theorem A.35 (a). We now show that in the case of Hilbert spaces, we
may pass from a strongly continuous contraction resolvent to a strongly
continuous contraction semigroup. This extends Theorem A.35 (b) and
completes the cycle connecting operators, semigroups and resolvents in
the case of Hilbert spaces.

Proposition D.20. Let H be a Hilbert space. Let G be a strongly
continuous contraction resolvent on H taking values in the self-adjoint
operators and let A be the generator of G. Then,

S(t) = lim
n→∞

(
n

t

(
A+

n

t

)−1
)n

gives the unique strongly continuous contraction semigroup on H with
generator A, i.e., S(t) = e−tA for all t ≥ 0.

Proof. By Corollary D.19 (b) it follows that the generator A of
G is a positive operator. Therefore, by Corollary D.12 (b), S(t) =
e−tA gives the strongly continuous contraction semigroup on H with
generator A. The fact that

e−tA = lim
n→∞

(
n

t

(
A+

n

t

)−1
)n

was shown in Theorem A.35 (b) by using the functional calculus and
Lebesgue’s dominated convergence theorem. �
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We finish this appendix by briefly discussing adjoint operators on
Banach spaces and their resolvents. We recall that whenever E is a
Banach space, E∗, the dual space of E consisting of all linear continuous
maps from E to the underlying field, is a Banach space as well with
respect to the norm

‖φ‖E∗ = sup{|φ(f)| | ‖f‖ ≤ 1}.
For any bounded operator A : E −→ E, we then define the adjoint
operator A∗ : E∗ −→ E∗ by (A∗φ) = φ ◦ A, that is,

(A∗φ)f = φ(Af)

for every f ∈ E. Clearly, A∗ is a bounded operator as well since

‖A∗φ‖E∗ = ‖φ ◦ A‖E∗ ≤ ‖φ‖E∗‖A‖
for all φ ∈ E∗.

For an arbitrary densely defined operator A on E, we define the
adjoint A∗ on E∗ by

D(A∗) = {φ ∈ E∗ | there exists a ψ ∈ E∗ extending φ ◦ A}
via

A∗φ = ψ

for all φ ∈ D(A∗). We note that ψ is unique as A is densely defined.
It turns out that strongly continuous contraction resolvents on Ba-

nach spaces can be extended to their dual spaces.

Proposition D.21. Let E be a Banach space. Let S be a strongly
continuous contraction semigroup on E with generator A. Denote the
associated resolvent by G, i.e., G : (0,∞) −→ B(E) via

G(α) = (A+ α)−1.

Then, for any α > 0, the operator A∗ + α is bijective and

(A∗ + α)−1 = G(α)∗.

Proof. As (A+ α)−1 = G(α) is a bounded operator for α > 0, so
is T = G(α)∗. Clearly,

Tφ = φ ◦G(α) = φ ◦ (A+ α)−1.

We prove a series of claims:

Claim 1. For any φ ∈ E∗ the element Tφ belongs to D(A∗).
Proof of Claim 1. We have to show that (Tφ) ◦A can be extended

to an element of E∗. This, however, is clear as on D(A) we find

(Tφ) ◦ A = φ ◦ (A+ α)−1A

= φ ◦ (A+ α)−1(A+ α)− αφ ◦ (A+ α)−1

= φ− αφ ◦G(α)

and the last term can obviously be extended to an element of E∗.

Claim 2. For any φ ∈ E∗, we have (A∗ + α)Tφ = φ.
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Proof of Claim 2. By Claim 1, the operator (A∗ + α)T is defined
on E∗. Moreover, for any φ ∈ E∗, we have

(A∗ + α)(Tφ) = φ ◦ (A+ α)−1 ◦ (A+ α) = φ

on D(A). As D(A) is dense in E by Corollary D.17, (A∗ + α)Tφ = φ
for any φ ∈ E∗. This proves the claim.

Claim 3. For any φ ∈ D(A∗), we have T (A∗ + α)φ = φ.
Proof of Claim 3. A direct computation shows

T (A∗ + α)φ = φ ◦ (A+ α)G(α) = φ.

Combining Claim 2 and Claim 3 we obtain that

G(α)∗ = T = (A∗ + α)−1

and this is the desired statement. �



APPENDIX E

Aspects of Operator Theory

... you see without a trace, a whole bunch of people gathered in
around the place.

Mellow Dee.

This final appendix collects various pieces of operator theory. First,
we prove a characterization of the resolvent of an operator as the unique
minimizer of an equation involving the form. Then, we give criteria for
a number to be in the spectrum and essential spectrum of an operator
in terms of the spectral family and Weyl sequences. This has direct
consequences for compact perturbations of an operator which we dis-
cuss. We next consider bounds on the bottom of the spectrum and
prove the min-max principle. We then turn to upper bounds for the
bottom of the essential spectrum via a Persson theorem. Next, we
study the notion of commuting operators. In particular, we show that
a bounded operator commutes with a symmetric operator if and only if
the resolvent or semigroup of the Friedrichs extension of the symmetric
operator commute with the bounded operator. Finally, we recall the
Riesz–Thorin interpolation theorem.

1. A characterization of the resolvent

In this section we prove a characterization of the resolvent of an
operator. More specifically, given a closed form, we show that the
resolvent of the associated operator gives the unique minimizer of an
equation involving the form.

We recall that for a positive symmetric form Q on a complex Hilbert
space H with domain D(Q) we define the inner product 〈·, ·〉Q as

〈f, g〉Q = Q(f, g) + 〈f, g〉

for f, g ∈ D(Q). We denote the corresponding norm by ‖ · ‖Q. If
Q is closed, then D(Q) is a Hilbert space with respect to 〈·, ·〉Q, see
Theorem B.9 for various formulations of this notion. In particular, a
positive closed form gives rise to a unique self-adjoint operator L which
satisfies D(Q) = D(

√
L) and

Q(f, g) = 〈
√
Lf,
√
Lg〉

for all f, g ∈ D(Q).

627
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We say that the operator L is associated to Q, see Lemma B.7 for
a construction of L. Furthermore, we note that the domain and action
of L can be characterized as

D(L) =

{
f ∈ D(Q)

∣∣∣∣ there exists a g ∈ H with Q(h, f) = 〈h, g〉
for all h ∈ D(Q)

}
with Lf = g, see Theorem B.11. In particular,

Q(f, g) = 〈Lf, g〉

for all f ∈ D(L) ⊆ D(Q) and g ∈ D(Q), see Corollary B.12.
We note that L is positive in this case, that is, L is self-adjoint and

(L+α)−1 exists and is a bounded self-adjoint operator which maps into
D(L) for every α > 0. This operator is called the resolvent associated
to L.

Given these preparations, we now state a characterization of the
resolvent in terms of the form.

Theorem E.1 (Characterization of the resolvent as a minimizer).
Let Q be a positive closed form on H with associated operator L. For
f ∈ H and α > 0, define j : D(Q) −→ [0,∞) by

j(v) = Q(v) + α

∥∥∥∥v − 1

α
f

∥∥∥∥2

.

Then, j satisfies the formula

j(v) = j ((L+ α)−1 f) +Q
(
(L+ α)−1f − v

)
+ α

∥∥(L+ α)−1f − v
∥∥2
.

In particular, (L+ α)−1f is the unique minimizer of j on D(Q).

Proof. It suffices to show the formula for j. The statement on the
minimizer is then immediate. For ease of notation we set

Gα = (L+ α)−1

and

Qα(u, v) = Q(u, v) + α〈u, v〉
for α > 0. Given this, the right-hand side of the formula for j can be
written as

RHS = j(Gαf) +Qα(Gαf − v).

We will compute the two terms appearing in RHS. In order to do so,
we need a little bit of preparation. We obviously have

Qα(Gαf, v) = 〈f, v〉

for all f ∈ H and v ∈ D(Q), which directly yields

Qα(Gαf) = 〈f,Gαf〉 = 〈Gαf, f〉,
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where we use the self-adjointness of Gα. Furthermore, a direct compu-
tation gives

j(v) = Qα(v)− 〈v, f〉 − 〈f, v〉+
1

α
‖f‖2.

Now, we turn to computing the two terms in RHS: By the last two
equalities we obtain for the first term

j(Gαf) = Qα(Gαf)− 〈Gαf, f〉 − 〈f,Gαf〉+
1

α
‖f‖2

= 〈f,Gαf〉 − 〈Gαf, f〉 − 〈f,Gαf〉+
1

α
‖f‖2

= −〈f,Gαf〉+
1

α
‖f‖2.

For the second term, using Qα(Gαf, v) = 〈f, v〉 repeatedly we obtain

Qα(Gαf − v) = Qα(Gαf)−Qα(Gαf, v)−Qα(v,Gαf) +Qα(v)

= 〈f,Gαf〉 − 〈f, v〉 − 〈v, f〉+Qα(v).

Putting the two terms together we can now compute

RHS = j(Gαf) +Qα(Gαf − v)

= Qα(v)− 〈f, v〉 − 〈v, f〉+
1

α
‖f‖2 = j(v),

which finishes the proof. �

Remark (Geometric interpretation). It is possible to interpret the
previous result in terms of Hilbert space geometry on a suitably chosen
Hilbert space. First, v = Gαf is equivalent to (L + α)v = f , which in
turn is equivalent to the fact that v ∈ D(Q) with Qα(v, w) = 〈f, w〉 for
all w ∈ D(Q). We can write this as

Q(v, w) + α〈v − 1

α
f, w〉 = 0

for w ∈ D(Q). Rewriting this with the (semi)-inner product

〈(a, b), (c, d)〉∗ = Q(a, c) + α〈b, d〉
on D(Q)×D(Q) we infer that v = Gαf if and only if (v, v − α−1f) is
perpendicular to the diagonal, i.e.,

(v, v − 1

α
f) = (v, v)− (0,

1

α
f) ⊥ U,

where U is the subspace

U = {(w,w) | w ∈ D(Q)}.
So, if x = −(0, α−1f), then we want to find an element ṽ ∈ U such
that x+ ṽ is perpendicular to U .

By standard theory this problem has a unique solution, which is
given by the minimizer of ‖ · ‖∗ on x + U whenever 〈·, ·〉∗ is an inner
product inducing a Hilbert space structure. Now, in general, 〈·, ·〉∗ is
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not an inner product and completeness may fail on D(Q)×D(Q). So,
the basic theory does not apply directly. However, it is not necessary
for 〈·, ·〉∗ to be an inner product giving a Hilbert space structure on the
entire space, it suffices that 〈·, ·〉∗ is an inner product on U making U
into a Hilbert space. This is indeed the case in our situation and we
infer that v = Gαf holds if and only if v minimizes ‖ · ‖∗ on x+U . As,
j(·) = ‖ · ‖2

∗ on x+ U we obtain the statement of the theorem.

2. The discrete and essential spectrum

In this section we discuss basic spectral features of self-adjoint op-
erators. More specifically, we give criteria for a number to be in the
spectrum and the essential spectrum of an operator. This is first done
in terms of the spectral family and then in terms of Weyl sequences.
This has direct consequences for compact perturbations of an opera-
tor. Afterwards, we consider bounds on the bottom of the spectrum
and prove the min-max principle. Finally, we turn to upper bounds for
the bottom of the essential spectrum via a Persson theorem.

We let L be a self-adjoint operator on a Hilbert space H with do-
main D(L) and spectrum σ(L). We note that σ(L) ⊆ R by Corol-
lary A.12. In particular, if there exist λ ∈ R and f ∈ D(L) with f 6= 0
such that

Lf = λf

then (L−λ) is not one-to-one and, thus, λ ∈ σ(L). In this case, we call
λ an eigenvalue for L corresponding to the eigenfunction f . We call the
space spanned by all eigenfunctions corresponding to an eigenvalue λ
the eigenspace of λ. Clearly, the eigenspace is a subspace. It is closed,
as can easily be seen from the fact that L is a closed operator. If λ is
an eigenvalue for L, then the multiplicity of λ is the dimension of the
eigenspace of λ.

We decompose σ(L) into two subsets. Specifically, the discrete spec-
trum σdisc(L) consists of isolated eigenvalues of finite multiplicity. The
essential spectrum σess(L) is the complement in σ(L) of the discrete
spectrum, that is, σess(L) = σ(L) \ σdisc(L).

2.1. Characterization via the spectral family. We first char-
acterize when a number belongs to the spectrum, the discrete or the
essential spectrum as well as when the number is an eigenvalue in terms
of spectral projections.

Recall that we denote by E(B) the spectral projection associated
to a measurable set B ⊆ R defined via the spectral theorem as

E(B) = 1B(L),

where 1B is the characteristic function of the set B.
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Let f ∈ H. For the spectral measure µf associated f we have

µf (B) = 〈f, E(B)f〉 = ‖E(B)f‖2,

as shown in Proposition A.28. Furthermore, as E(B) is an orthogonal
projection for every measurable set B, it follows that if B1 and B2 are
disjoint sets, then E(B1)H ⊥ E(B2)H, i.e., E(B1)g and E(B2)g are
orthogonal for every g ∈ H.

We will denote the support of the spectral measure µf by

supp(µf ) = {λ ∈ R | µf ((λ− ε, λ+ ε)) > 0 for all ε > 0}.
We note by Corollary A.31 that supp(µf ) ⊆ σ(L). Furthermore, by
Proposition A.29, if f ∈ E(B)H, then the support of µf is contained
in the closure of B, that is,

supp(µf ) ⊆ B.

The connection between the spectral family and the spectrum is
discussed next.

Proposition E.2 (Spectral parts and spectral family). Let L be a
self-adjoint operator on H and let E be the associated spectral family.
Let λ ∈ R.

(a) λ ∈ σ(L) if and only if λ ∈ supp(E), i.e.,

E((λ− ε, λ+ ε)) 6= 0

for all ε > 0.
(b) λ is an eigenvalue of L if and only if E({λ}) 6= 0, in which case

the range of E({λ}) is the eigenspace of λ. Furthermore, f ∈ H is
an eigenfunction corresponding to λ if and only if µf is supported
on {λ}.

(c) λ ∈ σdisc(L) if and only if λ ∈ σ(L) and there exists an ε > 0 such
that the range of E((λ− ε, λ+ ε)) is finite-dimensional.

(d) λ ∈ σess(L) if and only if the range of E((λ− ε, λ+ ε)) is infinite-
dimensional for all ε > 0.

Proof. (a) This has already been shown in Theorem A.30.

(b) From Proposition A.24, as (x− λ)2 = 0 for x = λ, we get

‖(L− λ)f‖2 =

∫
(x− λ)2dµf =

∫
R\{λ}

(x− λ)2dµf

for any f ∈ D(L). As (x − λ)2 > 0 for all x 6= λ, we infer that
f ∈ D(L) with f 6= 0 is an eigenfunction corresponding to λ if and
only if µf = 1{λ}µf , i.e., if and only if 1R\{λ}µf = 0. Now, 1R\{λ}µf = 0
if and only if µf (R \ {λ}) = 0 and Proposition A.28 gives

‖E(R \ {λ})f‖2 = µf (R \ {λ}) = 0.

Thus, we infer that f ∈ D(L) is an eigenfunction corresponding
to λ if and only if E((R \ {λ}))f = 0. This, in turn, is equivalent to
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f = E({λ})f as f = E({λ})f +E(R\{λ})f , where the summands are
orthogonal. This shows the first statement of (b). The other statement
has been shown along the way.

(c) If λ is an isolated eigenvalue of finite multiplicity, then there ex-
ists an ε > 0 such that E((λ−ε, λ+ε)) = E({λ}) is finite-dimensional,
as follows from (a) and (b). Conversely, if E((λ − ε, λ + ε)) is finite-
dimensional for some ε > 0 and λ belongs to the spectrum, i.e.,
E((λ − ε′, λ + ε′) 6= 0 for all ε′ > 0 by (a), we infer from (b) that
λ must be an eigenvalue of finite multiplicity.

(d) This follows immediately from (c) and the definition of the
essential spectrum as the complement of the discrete spectrum within
the spectrum. �

2.2. Weyl sequences and compact perturbations. We give
characterizations for a value to be in the spectrum and essential spec-
trum of an operator via sequences of functions. We then give conse-
quences for compact perturbations of an operator.

A famous criterion for a number λ to be in the spectrum of L states
that λ ∈ σ(L) if and only if there exists a normalized sequence (fn) in
D(L) such that

lim
n→∞

‖(L− λ)fn‖ = 0,

see Corollary A.11. This criterion goes back to work of Weyl [Wey10].
Consequently, the sequence (fn) is called a Weyl sequence and the
criterion for the existence of such a sequence is called Weyl’s criterion.
We now introduce a variant of the Weyl sequence criterion which is
adapted from [Sto01]. In contrast to the above, the formulation we
give here is in terms of the form and, therefore, (fn) only has to be in
the form domain.

To this end, we assume additionally that L is positive and denote
the form associated to L by Q. We recall that in this case D(Q) =

D(
√
L) with

Q(f, g) = 〈Lf, g〉
for all f ∈ D(L) and g ∈ D(Q). Furthermore, as usual we denote the
form norm arising from Q by

‖f‖Q = (Q(f) + ‖f‖2)1/2

for f ∈ D(Q).

Theorem E.3 (Weyl’s criterion – spectrum). Let Q be a positive
closed form on H, let L be the associated operator and let λ ∈ R. Then,
λ ∈ σ(L) if and only if there exists a normalized sequence (fn) in D(Q)
such that

lim
n→0

sup
g∈D(Q),‖g‖Q=1

(Q− λ)(fn, g) = 0.
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Proof. If λ ∈ σ(L), then by Corollary A.11 there exists a nor-
malized sequence (fn) in D(L) ⊆ D(Q) such that ‖(L− λ)fn‖ → 0 as
n→∞. Then, for all g ∈ D(Q) with ‖g‖Q = 1, we have

|(Q− λ)(fn, g)| = |〈(L− λ)fn, g〉| ≤ ‖(L− λ)fn‖ → 0

as n→∞.
Conversely, suppose that (fn) is a normalized sequence in D(Q)

which satisfies supg∈D(Q),‖g‖Q=1(Q− λ)(fn, g)→ 0 as n→∞ and sup-

pose that λ 6∈ σ(L). Then, (L − λ)−1 is a bounded operator and,
thus, hn = (L − λ)−1fn for n ∈ N is a bounded sequence in D(L).
Furthermore, (hn) is also bounded with respect to ‖ · ‖Q as

‖hn‖2
Q = 〈Lhn, hn〉+ ‖hn‖2 = 〈fn, hn〉+ (1 + λ)‖hn‖2 ≤ C

for some constant C and all n ∈ N. Thus, we obtain the contradiction

1 = ‖fn‖2 = (Q− λ)〈fn, (L− λ)−1fn〉 = (Q− λ)〈fn, hn〉
≤ C1/2 sup

g∈D(Q),‖g‖Q=1

(Q− λ)(fn, g)→ 0

as n→∞. Therefore, λ ∈ σ(L), which completes the proof. �

Next, we present a Weyl’s criterion for λ ∈ σ(L) to be in the es-
sential spectrum. To this end, we additionally need that the Weyl
sequence converges weakly to zero. We recall that a sequence (fn) is
said to converge weakly to f in H if 〈g, fn〉 → 〈g, f〉 for all g ∈ H. In
particular, any orthonormal sequence converges weakly to 0.

A crucial feature of a weak convergence is the following: When-
ever fn converges weakly to f and P is the projection onto a finite-
dimensional subspace, then

lim
n→∞

Pfn = Pf.

Indeed, P can be written as

P =
N∑
k=1

〈gk, ·〉gk

for N ∈ N and normalized pairwise orthogonal gk for k = 1, . . . , N .
This easily gives the claim.

Theorem E.4 (Weyl’s criterion – essential spectrum). Let Q be
a positive closed form on H, let L be the associated operator and let
λ ∈ R. Then, λ ∈ σess(L) if and only if there exists a normalized
sequence (fn) in D(Q) converging weakly to zero such that

lim
n→∞

sup
g∈D(Q),‖g‖Q=1

(Q− λ)(fn, g) = 0.

Proof. Let λ ∈ σess(L). Then, for any sequence εn > 0 such
that εn → 0 as n → ∞ we have that the range of EnH is infinite-
dimensional by Proposition E.2, where En = E((λ−εn, λ+εn)). Letting
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fn ∈ EnH for n ∈ N be orthonormal we obtain a sequence which is
weakly convergent to zero. By Proposition A.29, the spectral measure
µfn is supported on [λ− εn, λ+ εn] and fn ∈ D(L) ⊆ D(Q). Moreover,
by Proposition A.28 and the fact that (fn) is orthonormal we get

µfn([λ− εn, λ+ εn]) ≤ ‖fn‖2 = 1.

Combining these facts and using Proposition A.24 (a) we obtain

‖(L− λ)fn‖2 =

∫ λ+εn

λ−εn
(x− λ)2dµfn ≤ ε2

n → 0

as n → ∞. As in the proof of Theorem E.3, for all g ∈ D(Q) with
‖g‖Q = 1 we thus obtain

|(Q− λ)(fn, g)| = |〈(L− λ)fn, g〉| ≤ ‖(L− λ)fn‖ → 0

as n→∞. Thus, (fn) has the desired properties.

Conversely, let (fn) in D(Q) be a normalized sequence converging
weakly to zero such that (Q− λ)(fn, g)→ 0 as n→∞ uniformly with
respect to ‖g‖Q = 1. Suppose that λ is not in the essential spectrum
and let ε > 0 be such that the space Hε = EεH = E((λ−ε, λ+ε))H is
finite-dimensional. By construction, (L− λ) has a bounded inverse on
H⊥ε = (EεH)⊥. We argue next that (fn) can be chosen to be in H⊥ε .

By the discussion before the statement of the theorem, we have
Eεfn → 0 as fn → 0 weakly for n → ∞. As (L − λ) is a bounded
operator on the finite-dimensional space Hε, this implies

|(Q− λ)(Eεfn, g)| = |〈(L− λ)Eεfn, g〉| ≤ C‖Eεfn‖‖g‖ → 0

as n→∞. Thus, by considering fn = Eεfn + (Eεfn)⊥, we can assume
without loss of generality that Eεfn = 0, i.e., fn ∈ H⊥ε . Therefore,

hn = ((L− λ)|H⊥ε )−1fn

exists, is in D(L) and is bounded with respect to ‖ · ‖Q as in the proof
of Theorem E.3, i.e.,

‖hn‖2
Q = 〈fn, hn〉+ (1 + λ)‖hn‖2 ≤ C

for some C ≥ 0. Hence, with gn = hn/‖hn‖Q, we obtain the contradic-
tion

1 = ‖fn‖2 = |(Q− λ) (fn, hn) | ≤ C1/2 |(Q− λ) (fn, gn)| → 0

as n→∞. This proves the statement. �

We refer to the sequences (fn) appearing in Theorems E.3 and E.4
also as Weyl sequences.

From the proof of the result above, we get the following criterion for
a number to be in the essential spectrum in terms of Weyl sequences.
We also refer to this as Weyl’s criterion and note that we do not re-
quire positivity of the operator as we do not work with forms in this
formulation.
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Corollary E.5 (Weyl’s criterion – essential spectrum). Let L be a
self-adjoint operator on H and let λ ∈ R. Then, λ ∈ σess(L) if and only
if there exists a normalized sequence (fn) in D(L) converging weakly to
zero such that

lim
n→∞

‖(L− λ)fn‖ = 0.

As a direct consequence, we now show that the essential spectrum
does not change under compact perturbations. We recall that an oper-
ator A : H −→ H with D(A) = H is called compact if A maps bounded
sets to relatively compact sets, i.e., to sets whose closure is compact.
We now give a consequence of this definition.

Lemma E.6. Let A be a compact operator on H. Then, A maps
weakly convergent sequences to convergent sequences.

Proof. Let (fn) be a weakly convergent sequence with weak limit
f . Then, the set {fn} is bounded by the uniform boundedness principle.

Since A is compact, the set {Afn | n ∈ N} is compact. Moreover, the
set is clearly separable. Hence, any sequence in this set has a convergent
subsequence. In particular, (Afn) and each of its subsequences has a
convergent subsequence. Weak convergence of (fn) then implies that
any of these convergent subsequences must have the same limit: Indeed,
let g be the limit of the subsequence Afnk . Then, we find

〈g, h〉 = lim
k→∞
〈Afnk , h〉 = lim

k→∞
〈fnk , A∗h〉 = 〈f, A∗h〉

for any h ∈ H. So, g only depends on f and is independent of the
subsequence. This gives convergence of the sequence itself. �

Remark. On a separable Hilbert space one can also show the con-
verse, i.e., that an operator is compact if and only if it maps weakly
convergent sequences to convergent sequences. On arbitrary Hilbert
spaces, an analogous characterization holds if sequences are replaced
by nets. We refrain from giving details.

Given an operator L and a bounded operator A on H, we may define
the operator L + A with domain D(L+ A) = D(L) and (L + A)f =
Lf + Af for all f ∈ D(L + A). Given these notions, we easily obtain
the following statement.

Theorem E.7 (Stability of essential spectrum under compact per-
turbation). Let A and L be self-adjoint operators on H. If A is com-
pact, then

σess(L) = σess(L+ A).

Proof. The proof follows immediately from Corollary E.5 and
Lemma E.6. �

Remark (Characterization of essential spectrum by compact per-
turbations). Theorem E.7 shows that the essential spectrum is stable
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under compact perturbation. This is not just a feature of the essential
spectrum but can be considered as a characterizing property of the es-
sential spectrum. There are various ways to make this precise. Here,
we note that

σess(L) =
⋂
A

σ(L+ A),

where the intersection is taken over all compact self-adjoint operators
A.

Indeed, the inclusion ⊆ follows easily from the previous theorem
since

σess(L) = σess(L+ A) ⊆ σ(L+ A)

for all compact operators A.
The inclusion ⊇ follows as σ(L) ⊇

⋂
A σ(L + A) since A = 0 is a

compact operator and, for any λ ∈ σdisc(L), we have λ /∈ σ(L − P )
for the finite-dimensional and, thus, compact projection P onto the
eigenspace of λ.

2.3. The min-max principle. We first prove a variational char-
acterization for the bottom of the spectrum of a positive operator. We
then state and prove a general min-max principle and discuss an ap-
plication to non-linear functions of operators.

We start by proving a characterization of the bottom of the spec-
trum of a positive operator. This is a special case of the general
min-max principle which we prove later. However, as it is the most
commonly appearing manifestation of the variational principle and the
proof is rather straightforward, we establish it first before proceeding
to the more general statement. The equality we show here is also some-
times referred to as the Rayleigh–Ritz formula.

Theorem E.8 (Variational characterization of λ0). Let Q be a pos-
itive closed form and let L be the associated operator on H. Let λ0(L)
denote the bottom of the spectrum of L. Then,

λ0(L) = inf
f∈D(L),‖f‖=1

〈f, Lf〉 = inf
f∈D(Q),‖f‖=1

Q(f).

Furthermore, if f ∈ D(Q) is normalized and satisfies Q(f) = λ0(L),
then f ∈ D(L) and Lf = λ0(L)f , i.e., f is a normalized eigenfunction
corresponding to the eigenvalue λ0(L).

Proof. The second equality is clear from the connection between
the form and the operator and the fact that D(L) is dense with respect
to the form norm ‖ · ‖Q by Corollary B.12. Hence, we focus on proving
the first equality. In order to do so, we will show two inequalities.

To this end, we recall that by Proposition A.24 (b) we have

〈f, Lf〉 =

∫
xdµf ,
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where the integral is over the support of the spectral measure µf for
f ∈ D(L). Furthermore, Proposition A.15 gives µf (σ(L)) = ‖f‖2.

Now, we let λ0 = λ0(L) and let f ∈ D(L) be normalized. As
σ(L) ⊆ [λ0,∞), we obtain

〈f, Lf〉 =

∫ ∞
λ0

xdµf ≥ λ0

∫ ∞
λ0

dµf = λ0‖f‖2 = λ0.

This shows λ0 ≤ inf〈f, Lf〉 for all normalized f ∈ D(L).
Conversely, since λ0 ∈ σ(L), we have E([λ0, λ0 + ε)) 6= 0 for all

ε > 0 by Proposition E.2 (a). Hence, for every ε > 0 there exists a
normalized f with f = E([λ0, λ0 + ε))f . By Proposition A.29, f has
spectral measure supported on [λ0, λ0 +ε] and f ∈ D(L). We then find

〈f, Lf〉 =

∫ λ0+ε

λ0

xdµf ≤ (λ0 + ε)‖f‖2 = λ0 + ε.

As ε > 0 was arbitrary, this gives λ0 ≥ inf〈f, Lf〉 for all normalized
f ∈ D(L).

For the furthermore statement, suppose that f ∈ D(Q) = D(
√
L)

is normalized and satisfies Q(f) = λ0. By Proposition A.24 (a), we
now get

0 = Q(f)− λ0 = ‖
√
Lf‖2 − λ0‖f‖2 =

∫ ∞
λ0

(x− λ0)dµf .

As the integrand is non-negative, µf is supported on {λ0} which, by
Proposition E.2 (b), is equivalent to λ0 being an eigenvalue with eigen-
function f . �

The characterization above deals with the bottom of the spectrum.
We will now present a generalization that will capture all eigenvalues
below the bottom of the essential spectrum.

We recall that for t ∈ R, we let

Et = E((−∞, t]) = 1(−∞,t](L)

denote the spectral family associated to L. We will first show how the
dimension of the range of the spectral family is related to a generaliza-
tion of the variational constant appearing in the previous theorem.

Lemma E.9. Let Q be a positive closed form and let L be the asso-
ciated operator on H. For n ∈ N, set

νn(L) = sup
ϕ1,...,ϕn∈H

inf
f∈{ϕ1,...,ϕn}⊥∩D(L)

‖f‖=1

〈f, Lf〉

and set ν0(L) = inff∈D(L),‖f‖=1〈f, Lf〉.
(a) If t < νn, then dim Ran Et ≤ n.
(b) If t > νn, then dim Ran Et ≥ n+ 1.
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Proof. We prove both (a) and (b) by contraposition. Suppose
dim Ran Et > n. Then, for any ϕ1, . . . , ϕn ∈ H, there exists an f ∈
Ran Et such that ‖f‖ = 1 and f ∈ {ϕ1, . . . , ϕn}⊥. Since f ∈ Ran Et,
it follows by Proposition A.29 that f ∈ D(L) and by Proposition A.24
we get

〈f, Lf〉 =

∫
σ(L)

xdµf =

∫ t

0

xdµf ≤ t‖f‖2 = t.

This gives νn ≤ t.

Similarly, for (b) suppose that dim Ran Et ≤ n. Choose ϕ1, . . . ϕn ∈
H such that the span of {ϕ1, . . . ϕn} is Ran Et. Then, for every f ∈
D(L) with ‖f‖ = 1 and f ∈ {ϕ1, . . . , ϕn}⊥, it follows that f ∈
Ran E((t,∞)). Therefore, by Proposition A.29 and Proposition A.24

〈f, Lf〉 =

∫ ∞
t

xdµf ≥ t,

which implies νn ≥ t. This completes the proof. �

Let n(L) ∈ N0 ∪ {∞} be the dimension of the range of the spectral
projection below the infimum of the essential spectrum, i.e.,

n(L) = dim Ran E((−∞, λess
0 (L)).

We note that n(L) is the number of isolated eigenvalues, counted with
multiplicity, below the bottom of the essential spectrum. In particular,
if λ0(L) < λess

0 (L), then we denote the eigenvalues below λess
0 (L) by

λn(L) for 0 ≤ n < n(L) in increasing order counted with multiplicity.
The following result gives a way of calculating the eigenvalues below

the bottom of the essential spectrum as well as the bottom of the
essential spectrum. It contains Theorem E.8 as the case n = 0.

Theorem E.10 (Min-max principle). Let Q be a positive closed
form and let L be the associated operator on H. For n ∈ N, set

νn(L) = sup
ϕ1,...,ϕn∈H

inf
f∈{ϕ1,...,ϕn}⊥∩D(L)

‖f‖=1

〈f, Lf〉

and ν0(L) = inff∈D(L),‖f‖=1〈f, Lf〉. Then, for 0 ≤ n < n(L), we have

νn(L) = λn(L).

Moreover, if n(L) <∞, then

νn(L) = λess
0 (L)

for n ≥ n(L) and if n(L) =∞, then

νn(L)↗ λess
0 (L)

as n→∞.
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Proof. We let νn denote νn(L) and λess
0 denote λess

0 (L). We show
a series of claims.

Claim 1. νn ≤ λess
0 for all n ∈ N0.

Proof of Claim 1. Assume the contrary. Then, there exists n ∈ N
and ε > 0 such that λess

0 + ε < νn. Lemma E.9 then gives

dim Ran Eλess0 +ε ≤ n,

which contradicts λess
0 ∈ σess(L) by Proposition E.2 (d).

Claim 2. For each n ∈ N, there are at most n eigenvalues strictly
less than νn.

Proof of Claim 2. Assume that λ0 ≤ λ1 ≤ . . . ≤ λk are eigenvalues
with λk < νn and k ≥ n. Then, for ε > 0 such that λk + ε < νn,
we have n + 1 ≤ k + 1 ≤ dim Ran Eλk+ε, yielding a contradiction to
Lemma E.9.

Claim 3. νn ∈ σ(L) for all n ∈ N0.
Proof of Claim 3. Combining the two implications in Lemma E.9,

we see that E((νn− ε, νn + ε)) 6= 0 for all ε > 0, that is, νn ∈ supp(E).
Therefore, by Proposition E.2 (a), we have νn ∈ σ(L) for all n ∈ N0.

From Claim 3 and the decomposition of the spectrum into dis-
crete and essential parts, we infer that νn either belongs to the discrete
spectrum or to the essential spectrum. We analyze these two cases
separately in the subsequent two claims.

Claim 4. If νn ∈ σess(L), then for all k ∈ N0 we have

νn+k = λess
0 .

Proof of Claim 4. By νn ∈ σess(L), the definition of νk and Claim 1
we find

λess
0 ≤ νn ≤ νn+k ≤ λess

0

for all k ∈ N0. This gives the desired statement.

Claim 5. If νn ∈ σdisc(L), then νk is the k-th isolated eigenvalue
below the infimum of the essential spectrum counted with multiplicity.

Proof of Claim 5. From Claim 4, we find νk ∈ σdisc(L) for all
k = 0, 1, . . . , n. Now, consider k ∈ {0, . . . , n}. As νk is isolated in the
spectrum, there exists an ε > 0 such that (νk− ε, νk + ε)∩σ(L) = {νk}
and thus

dim Ran Eνk = dim Ran Eνk+ε ≥ k + 1

by Lemma E.9. Therefore, there are at least k + 1 eigenvalues λ0 ≤
λ1 ≤ . . . ≤ λk ≤ νk. On the other hand, by Claim 2, there are at most
k eigenvalues strictly below νk and the proof is finished.

The statement of the theorem concerning νn for 0 ≤ n < n(L)
follows immediately from Claim 5. Given this, the last statement of
the theorem then follows from Claim 4 and the fact that, if the mono-
tone increasing νn converge, their limit must belong to the essential
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spectrum as an accumulation point of the spectrum and, hence, be the
infimum of the essential spectrum. �

We now apply the min-max principle above to estimate the eigenval-
ues when applying functions to the value of a form and to the eigenval-
ues. For a positive closed formQ with domainD(Q) we callD0 ⊆ D(Q)
a form core if D0 is dense in D(Q) with respect to the form norm.
In particular, as D(L) is dense in D(Q) in the form norm by Corol-
lary B.12, it follows that we can choose the functions appearing in the
definition of νn(L) in the min-max principle to be in the form core.
This will be used in the proof below.

Theorem E.11 (Generalized min-max principle). Let (Q1, D(Q1))
and (Q2, D(Q2)) be positive closed forms with a common form core D0

and let L1 and L2 be the associated operators. Assume that there exist
continuous monotonically increasing functions f1, f2 : [λ0(L2),∞) −→
R such that for all ϕ ∈ D0 with ‖ϕ‖ = 1

f1(Q2(ϕ)) ≤ Q1(ϕ) ≤ f2(Q2(ϕ)).

Then, for 0 ≤ n < min(n(L1), n(L2)),

f1(λn(L2)) ≤ λn(L1) ≤ f2(λn(L2)).

Moreover, if limr→∞ f1(r) = limr→∞ f2(r) = ∞, then σess(L1) = ∅ if
and only if σess(L2) = ∅.

Proof. By the min-max principle, Theorem E.10, we know for
a self-adjoint operator L and n ∈ N0 that νn(L) = λn(L) if νn(L) <
λess

0 (L) and νn(L) = λess
0 (L) otherwise. Assume n < min{n(L1), n(L2)}

and let ϕ
(j)
0 , . . . , ϕ

(j)
n−1 be the eigenfunctions of Lj corresponding to

λ0(Lj), . . . , λn−1(Lj) for j = 1, 2. Let

U
(n)
j = {ϕ(j)

0 , . . . , ϕ
(j)
n−1}⊥ ∩ {ψ ∈ D0 | ‖ψ‖ = 1}

for j = 1, 2.
Now, observe that for a continuous monotonically increasing func-

tion
f : [0,∞) −→ R and a function g : X −→ [0,∞) defined on an ar-
bitrary set X we have

inf
x∈X

f(g(x)) = f

(
inf
x∈X

g(x)

)
.

We apply this observation with f = f1 and g = g1 : U
(n)
2 −→ [0,∞)

given by g(ψ) = Q1(ψ) first and f = f2 and g = g2 : U
(n)
1 −→ [0,∞)

given by g2(ψ) = Q2(ψ) second to obtain

f1(λn(L2)) = f1

(
inf

ψ∈U(n)
2

Q2(ψ)

)
= inf

ψ∈U(n)
2

f1 (Q2(ψ)) ≤ inf
ψ∈U(n)

2

Q1(ψ)
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≤ νn(L1) = λn(L1) = inf
ψ∈U(n)

1

Q1(ψ)

≤ inf
ψ∈U(n)

1

f2 (Q2(ψ)) = f2

(
inf

ψ∈U(n)
1

Q2(ψ)

)
≤ f2(νn(L2)) = f2(λn(L2)).

This directly implies the first statement.
If λess

0 (L2) =∞, then n(L2) =∞ and limn→∞ λn(L2) =∞. There-
fore, limn→∞ f1(λn(L2)) = ∞ by the assumption on f1. Hence, by
the above we get λess

0 (L1) = ∞. The other implication follows analo-
gously. �

2.4. The bottom of the essential spectrum. We end this sec-
tion by giving a bound on the bottom of the essential spectrum of a
positive operator.

Theorem E.12 (Persson theorem). Let Q be a positive closed form
on H and let L be the associated operator. Assume that there exists a
normalized sequence (fn) in D(Q) that converges weakly to zero in H.
Then,

λess
0 (L) ≤ lim inf

n→∞
Q(fn).

Proof. The inequality is trivial if λess
0 (L) = 0 as Q(f) ≥ 0 for all

f ∈ D(Q). Hence, we assume that λess
0 (L) > 0 and let 0 < λ < λess

0 (L).
We will show that there exists an N ≥ 0 such that Q(fn) > λ for all
n ≥ N .

Let λ1 be such that λ < λ1 < λess
0 (L) and let ε > 0 be arbitrary. As

λ1 < λess
0 (L), the range of the spectral projection Eλ1 = E((−∞, λ1])

is finite-dimensional by Proposition E.2 (d). Hence, Eλ1 is a compact
operator. Therefore, as (fn) converges weakly to zero, ‖Eλ1fn‖ → 0
as n → ∞ by Lemma E.6. Thus, there exists an N ≥ 0 such that
‖Eλ1fn‖2 < ε for n ≥ N . Letting µfn be the spectral measure asso-
ciated to fn, we estimate by using Proposition A.24 (a) and Proposi-
tion A.28 that, for n ≥ N ,

Q(fn) = ‖L1/2fn‖2 =

∫
σ(L)

xdµfn ≥
∫ ∞
λ1

xdµfn

≥ λ1

∫ ∞
λ1

dµfn

= λ1(‖fn‖2 − ‖Eλ1fn‖2)

> λ1(1− ε).

We conclude the asserted inequality by choosing ε = (λ1 − λ)/λ1 > 0.
This completes the proof. �
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Remark. We note that the theorem above can also be easily de-
duced from the min-max principle. However, since we use it indepen-
dently of the min-max principle, we give an independent proof.

3. Reducing subspaces and commuting operators

In this section we study the notion of commuting operators. In par-
ticular, we show that a bounded operator commutes with a symmetric
operator if and only if the resolvent or the semigroup of the Friedrichs
extension of the symmetric operator commute with the bounded oper-
ator. Along the way we introduce the notion of a reducing subspace
for a symmetric operator.

We let H denote a Hilbert space. We recall that an operator L
with dense domain D(L) ⊆ H is called self-adjoint if L = L∗, where L∗

denotes the adjoint of L. Furthermore, we call a self-adjoint operator
L positive if σ(L) ⊆ [0,∞), where σ(L) denotes the spectrum of L. In
this case, we can use the spectral theorem to apply measurable func-
tions with domain [0,∞) to the operator. See the discussion following
Definition A.21 as well as Proposition A.24 for more details.

Whenever an operator is bounded, we assume that the domain of
the operator is the entire Hilbert space H. We note, in particular, that
if L is positive and ϕ is bounded on [0,∞), then ϕ(L) is bounded and,
thus, D(ϕ(L)) = H, see Corollary A.25. We recall that an operator L
with domain D(L) is called closed if whenever a sequence (fn) in D(L)
converges to f ∈ H and Lfn converges to g ∈ H, then f ∈ D(L) and
Lf = g. In particular, this is always the case for self-adjoint operators.
For example, whenever L is positive and ϕ : [0,∞) −→ R is measurable,
ϕ(L) is self-adjoint and therefore closed.

In what follows, we will need the fact that the spectral calculus
is well-behaved with respect to convergence of functions. A sufficient
statement for our purposes is given in the next lemma, which was
already shown as part of Lemma A.27.

Lemma E.13. Let L be a positive operator on H. Suppose that

ϕn, ϕ : [0,∞) −→ R

are measurable functions with |ϕn(x)| ≤ |ϕ(x)| and ϕn(x) → ϕ(x) as
n→∞ for all x ∈ [0,∞). If f ∈ D(ϕ(L)), then

lim
n→∞

ϕn(L)f = ϕ(L)f.

Let A be a bounded operator on H. We say that a subspace U ⊆ H
is invariant under A if A maps U into U . We will be interested in the
case when the domain of an operator is invariant under A and we can
interchange the operator and A. This is characterized in various ways
in the following theorem.
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Theorem E.14 (Characterization of commuting operators). Let L
be a positive operator on H with domain D(L) and let A be a bounded
operator on H. Then, the following statements are equivalent:

(i) D(L) is invariant under A and LA = AL on D(L).
(ii) D(L1/2) is invariant under A and L1/2A = AL1/2 on D(L1/2).
(iii) 1[0,t](L)A = A1[0,t](L) for all t ≥ 0.
(iv) e−tLA = Ae−tL for all t ≥ 0.
(v) (L+ α)−1A = A(L+ α)−1 for all α > 0.
(vi) ϕ(L)A = Aϕ(L) for all bounded measurable functions ϕ : [0,∞) −→

C.

Proof. (i) =⇒ (v): From (i) we get A(L + α)f = (L + α)Af for
all α ∈ R and f ∈ D(L). As L is positive, it follows that (L + α) is
invertible for all α > 0 and thus

(L+ α)−1A = A(L+ α)−1

on D(L). As both A and (L + α)−1 are bounded, the equality can be
extended to H. This is the desired conclusion.

We next show that (iii), (iv), (v) and (vi) are all equivalent:

(iii) =⇒ (iv): This follows by a simple approximation argument
using Lemma E.13.

(iv) =⇒ (v): This follows immediately from the Laplace transform
formula given in Theorem A.35, i.e.,

(L+ α)−1 =

∫ ∞
0

e−tαe−tLdt.

(v) =⇒ (vi): The assumption (v) together with a Stone–Weierstrass
argument shows ψ(L)A = Aψ(L) for all continuous functions ψ : [0,∞) −→
C which vanish at infinity, see Lemma A.16. Now, it is not hard to see
by using Lemma E.13 that the set

{ϕ : [0,∞) −→ C | ϕ measurable and bounded with ϕ(L)A = Aϕ(L)}

is closed under pointwise convergence of uniformly bounded sequences.
This gives the desired statement (vi).

(vi) =⇒ (iii): This is obvious.

We finally show (ii) =⇒ (i) and (vi) =⇒ (ii):

(ii) =⇒ (i): If f ∈ D(L), then L1/2f ∈ D(L1/2), see Lemma B.3.
Therefore, by assumption we have AL1/2f ∈ D(L1/2) and

AL1/2f = L1/2Af.

Thus, as L1/2Af ∈ D(L1/2), we have Af ∈ D(L) by Lemma B.3 again
so that D(L) is invariant under A. Now, LAf = ALf is clear as
L = L1/2L1/2.
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(vi) =⇒ (ii): We denote the spectral family associated to L by En,
i.e., En = 1[0,n](L) and note that En maps into D(L1/2) by Proposi-

tion A.29. Furthermore, by Proposition A.22, L1/2En is a bounded
operator and thus commutes with A by assumption.

Let f ∈ D(L1/2) and fn = Enf . Since A commutes with En we get

Afn = AEnf = EnAf,

so that Afn ∈ D(L1/2) for all n. Furthermore,

L1/2Afn = L1/2AEnf = L1/2EnAf = AL1/2Enf.

Since fn → f and L1/2Enf → L1/2f by Lemma E.13, using that A is
bounded we now get Afn → Af and L1/2Afn → AL1/2f as n → ∞.
As L1/2 is closed, this gives Af ∈ D(L1/2) and L1/2Af = AL1/2f for
all f ∈ D(L1/2). This completes the proof. �

The preceding theorem naturally leads to the following definition.

Definition E.15 (Commuting operators). Let L be a positive op-
erator on H and let A be a bounded operator on H. We say that A
commutes with L if one of the equivalent statements of Theorem E.14
holds.

We also note the following consequence of the preceding considera-
tions.

Corollary E.16. Let L be a positive operator on H and let A be
a bounded operator on H. Then, A commutes with L if and only if A∗

commutes with L.

Proof. Suppose thatA commutes with L. Let f ∈ D(L∗) = D(L).
We want to show that A∗f ∈ D(L∗) = D(L). For this, it suffices to
show that the mapping g 7→ 〈Lg,A∗f〉 is bounded on D(L). However,
this follows from the fact that A is bounded, L is self-adjoint and that
A and L commute as

|〈Lg,A∗f〉| = |〈ALg, f〉| = |〈LAg, f〉| = |〈Ag, Lf〉|
≤ ‖Lf‖‖A‖‖g‖.

Therefore, D(L) is invariant under A∗ and for f ∈ D(L) we have

LA∗f = (AL)∗f = (LA)∗f = A∗Lf.

This shows that A∗ commutes with L.
An analogous argument shows that if L commutes with A∗, then L

commutes with A. This completes the proof. �

Theorem E.14 deals with symmetries of a self-adjoint operator L.
Often, the self-adjoint operator arises as the Friedrichs extension of a
symmetric operator. We now recall this construction. We let L0 be a
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symmetric operator on H with domain D0 = D(L0). We let Q0 be the
form with domain D(Q0) = D0 acting via

Q0(f, g) = 〈L0f, g〉

for f, g ∈ D0. We assume that Q0 is positive, i.e., Q0(f) = Q0(f, f) ≥ 0
for all f ∈ D0. Then, Q0 is closable, i.e., there exists a closed extension
of Q0. We let Q be the closure of Q0, that is, Q is the smallest closed
extension of Q0 and let D(Q) be the domain of Q. Then the positive
self-adjoint operator L which is associated to the closed form Q is called
the Friedrichs extension of L0. For more details on this construction,
see Example B.13. In particular, we note that the domain D(Q) is the
closure in H of D0 with respect to the form norm ‖ · ‖Q0 , i.e.,

D(Q) = D(Q0)
‖·‖Q0 ,

where ‖f‖Q0 = (Q0(f) + ‖f‖2)1/2 for f ∈ D0. Furthermore,

D(L) = {f ∈ D(Q) | Q(f, h) = 〈g, h〉 for all h ∈ D(Q)}

with Lf = g, see Theorem B.11, as well as D(Q) = D(L1/2) with
Q(f) = ‖L1/2f‖2, see Lemma B.7.

We will now show that in the case when L is the Friedrichs exten-
sion, L commuting with a bounded operator A is equivalent to some
compatibility conditions between A and the forms Q and Q0.

Lemma E.17. Let L0 be a symmetric operator with domain D0, let
Q0 be the associated form and assume that Q0 is positive. Let L be
the Friedrichs extension of L0 associated to the form Q. Let A be a
bounded operator on H such that D0 is invariant under both A and A∗

with

L0A = AL0 and L0A
∗ = A∗L0

on D0. Then, the following statements are equivalent:

(i) A commutes with L.
(ii) D(Q) is invariant under both A and A∗ and for all f, g ∈ D(Q)

Q(Af, g) = Q(f, A∗g).

(iii) There exists a constant C ≥ 0 such that for all f ∈ D0

Q0(Af) ≤ CQ0(f) and Q0(A∗f) ≤ CQ0(f).

Proof. (i) =⇒ (iii): From Theorem E.14 and the assumption we
infer L1/2Af = AL1/2f for all f ∈ D(L1/2). Now, for f ∈ D0 we have

Q0(f) = 〈L0f, f〉 = 〈L1/2f, L1/2f〉 = ‖L1/2f‖2.

As Af ∈ D0 for f ∈ D0, a direct calculation gives

Q0(Af) = ‖L1/2Af‖2 = ‖AL1/2f‖2 ≤ ‖A‖2‖L1/2f‖2 = ‖A‖2Q0(f).

This gives the statement for Q0 and A.
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Now, from Corollary E.16 we get that A∗ and L also commute. A
similar argument then shows that Q0(A∗f) ≤ ‖A∗‖2Q0(f) for f ∈ D0.
This finishes the proof.

(iii) =⇒ (ii): Since L0Af = AL0f for all f ∈ D0, we inferQ0(Af, g) =
Q0(f, A∗g) for all f, g ∈ D0. As Q is the closure of Q0, it now suffices
to show that both (Afn) and (A∗fn) are Cauchy sequences with respect
to ‖ · ‖Q whenever (fn) is a Cauchy sequence with respect to ‖ · ‖Q in
D0. This follows directly from (iii).

(ii) =⇒ (i): Let f ∈ D(L) ⊆ D(Q). By (ii), Af ∈ D(Q). Thus, we
calculate, for all g ∈ D(Q),

Q(Af, g) = Q(f, A∗g) = 〈Lf,A∗g〉 = 〈ALf, g〉.
This implies Af ∈ D(L) and LAf = ALf . Hence, we obtain (i). �

We now turn to the special case when A is the projection onto
a closed subspace. In this case, some further strengthening of the
above result is possible. We first provide an appropriate definition for
symmetric operators.

Definition E.18 (Reducing subspace). Let S be a symmetric op-
erator on H with domain D(S). If U is a closed subspace of H and P
is the orthogonal projection onto U , then we call U a reducing subspace
for S if D(S) is invariant under P and

SPf = PSPf

for all f ∈ D(S).

The previous definition is a commutation condition, as shown in
the next lemma.

Lemma E.19. Let S be a symmetric operator on H with domain
D(S) and let P be the orthogonal projection onto a closed subspace U
of H. Then, the following statements are equivalent:

(i) U is a reducing subspace for S.
(ii) D(S) is invariant under P and SP = PS on D(S).

Proof. (ii) =⇒ (i): This is obvious as P 2 = P .

(i) =⇒ (ii): We first show that PSf = 0 for all f ∈ D(S) with
Pf = 0, that is, for f which are orthogonal to U . Let g ∈ D(S). Then,
as Pf ∈ D(S) ⊆ D(S∗) we obtain

〈PSf, g〉 = 〈Sf, Pg〉 = 〈f, S∗Pg〉 = 〈f, SPg〉 = 〈f, PSPg〉
= 〈Pf, SPg〉 = 0.

As D(S) is dense, we infer PSf = 0.
Let now f ∈ D(S) be arbitrary. Then, f = Pf + (1 − P )f and

both Pf and (1− P )f belong to D(S). Thus, we calculate

PSf = PSPf + PS(1− P )f = PSPf = SPf.
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This finishes the proof. �

In particular, we note that if L is a positive operator, then U is a
reducing subspace for L if and only if P commutes with L.

We now come to the main result of this section which ties symmetric
operators, reducing subspaces and commuting operators together. In
particular, we see that on a reducing subspace, both the semigroup
and the resolvent of the Friedrichs extension of a symmetric operator
commute with the projection onto the subspace.

Corollary E.20 (Characterization of reducing subspaces). Let L0

be a symmetric operator with domain D0, let Q0 be the associated form
and assume that Q0 is positive. Let L be the Friedrichs extension of L0

associated to the form Q. Let U be a closed subspace of H and let A be
the orthogonal projection onto U . Assume that D0 is invariant under
A. Then, the following statements are equivalent:

(i) U is a reducing subspace for L0, i.e., L0A = AL0 on D0.
(ii) Q0(Af,Ag) = Q0(Af, g) = Q0(f, Ag) for all f, g ∈ D0.
(iii) D(Q) is invariant under A and

Q(Af,Ag) = Q(Af, g) = Q(f, Ag)

for all f, g ∈ D(Q).
(iv) U is a reducing subspace for L, i.e., A commutes with L.
(v) A commutes with e−tL for all t ≥ 0.
(vi) A commutes with (L+ α)−1 for all α > 0.

Proof. Obviously, (i) and (ii) are equivalent. The equivalence of
(iii) and (iv) follows from the equivalence of (i) and (ii) in Lemma E.17.
The equivalence between (iv), (v) and (vi) follows immediately from
Theorem E.14. The implication (iii) =⇒ (ii) is clear as AD0 ⊆ D0 by
assumption.

(ii) =⇒ (iii): A direct calculation using (ii) gives for all f ∈ D0 that

Q0(f) = Q0((A+ (1− A))f, f)

= Q0(Af, f) +Q0((1− A)f, f)

= Q0(Af) +Q0((1− A)f).

As Q0 is positive, this shows

Q0(Af) ≤ Q0(f)

for all f ∈ D0. Now, the implication (iii) =⇒ (ii) from Lemma E.17
gives (iii). �

4. The Riesz–Thorin interpolation theorem

The following theorem is used in several places when discussing
bounded operators on `p spaces. We state it here without proof. We
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note that the theorem implies that any f ∈ L1(X,m)∩L∞(X,m) is in
Lp(X,m) for all p ∈ [1,∞].

This result is the work of Riesz [Rie27] and Thorin [Tho48]. A
proof of a more general result called the Stein interpolation theorem,
which implies the Riesz–Thorin theorem, can be found in [SW71].

Theorem E.21 (Riesz–Thorin interpolation theorem). Let (X,m)
be a σ-finite measure space. Let pn, qn ∈ [1,∞] for n = 1, 2 and let A be
a linear operator from Lp1(X,m)∩Lp2(X,m) to Lq1(X,m)+Lq2(X,m)
which satisfies

‖Af‖qn ≤ Cn‖f‖pn
for all f ∈ Lp1(X,m) ∩ Lp2(X,m) and some Cn for n = 1, 2. Let
0 < t < 1 and define p and q by

1

p
=

1− t
p1

+
t

p2

and
1

q
=

1− t
q1

+
t

q2

.

Then,
‖Af‖q ≤ C1−t

1 Ct
2‖f‖p.
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Èl′evich Shnol′ (on the occasion of his seventieth birthday). Uspekhi
Mat. Nauk, 54(3(327)):199–204, 1999.

[BGL14] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and ge-
ometry of Markov diffusion operators, volume 348 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathe-
matical Sciences]. Springer, Cham, 2014.

[BB10] Christian Bär and G. Pacelli Bessa. Stochastic completeness and vol-
ume growth. Proc. Amer. Math. Soc., 138(7):2629–2640, 2010.

[Bar17] Martin T. Barlow. Random walks and heat kernels on graphs, volume
438 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2017.

[BPB06] Cleon S. Barroso and G. Pacelli Bessa. Lower bounds for the first
Laplacian eigenvalue of geodesic balls of spherically symmetric man-
ifolds. Int. J. Appl. Math. Stat., 6(D06):82–86, 2006.

[BHK13] Frank Bauer, Bobo Hua, and Matthias Keller. On the lp spectrum
of Laplacians on graphs. Adv. Math., 248:717–735, 2013.

[BKW15] Frank Bauer, Matthias Keller, and Rados law K. Wojciechowski.
Cheeger inequalities for unbounded graph Laplacians. J. Eur. Math.
Soc. (JEMS), 17(2):259–271, 2015.

[BD19] Siegfried Beckus and Baptiste Devyver. Generalized eigenfunctions
and eigenvalues: a unifying framework for Shnol-type theorems.

651



652 BIBLIOGRAPHY

arXiv:1904.07176, 2019. To appear in Journal d’Analyse Mathema-
tique.

[BP20] Siegfried Beckus and Yehuda Pinchover. Shnol-type theorem for the
Agmon ground state. J. Spectr. Theory, 10(2):355–377, 2020.

[BD58] A. Beurling and J. Deny. Espaces de Dirichlet. I. Le cas élémentaire.
Acta Math., 99:203–224, 1958.

[BD59] A. Beurling and J. Deny. Dirichlet spaces. Proc. Nat. Acad. Sci.
U.S.A., 45:208–215, 1959.

[Big93] Norman Biggs. Algebraic graph theory. Cambridge Mathematical Li-
brary. Cambridge University Press, Cambridge, second edition, 1993.

[BM95] M. Biroli and U. Mosco. A Saint-Venant type principle for Dirichlet
forms on discontinuous media. Ann. Mat. Pura Appl. (4), 169:125–
181, 1995.

[BG15] Michel Bonnefont and Sylvain Golénia. Essential spectrum and Weyl
asymptotics for discrete Laplacians. Ann. Fac. Sci. Toulouse Math.
(6), 24(3):563–624, 2015.

[BGK15] Michel Bonnefont, Sylvain Golénia, and Matthias Keller. Eigenvalue
asymptotics for Schrödinger operators on sparse graphs. Ann. Inst.
Fourier (Grenoble), 65(5):1969–1998, 2015.

[BGK21] Michel Bonnefont, Sylvain Golénia, and Matthias Keller. Eigenvalue
asymptotics and unique continuation of eigenfunctions on planar
graphs. arXiv:2104.03582 [math.CO], 2021.

[BH91] Nicolas Bouleau and Francis Hirsch. Dirichlet forms and analysis
on Wiener space, volume 14 of De Gruyter Studies in Mathematics.
Walter de Gruyter & Co., Berlin, 1991.

[BdMLS09] Anne Boutet de Monvel, Daniel Lenz, and Peter Stollmann. Sch’nol’s
theorem for strongly local forms. Israel J. Math., 173:189–211, 2009.

[BdMS03] Anne Boutet de Monvel and Peter Stollmann. Eigenfunction ex-
pansions for generators of Dirichlet forms. J. Reine Angew. Math.,
561:131–144, 2003.

[Bre10] M. Brelot, editor. Potential theory, volume 49 of Centro Inter-
nazionale Matematico Estivo (C.I.M.E.) Summer Schools. Springer,
Heidelberg; Fondazione C.I.M.E., Florence, 2010. Lectures from the
Centro Internazionale Matematico Estivo (C.I.M.E.) Summer School
held in Stresa, July 2–10, 1969,.

[Bre07] Jonathan Breuer. Singular continuous spectrum for the Laplacian on
certain sparse trees. Comm. Math. Phys., 269(3):851–857, 2007.

[BK13] Jonathan Breuer and Matthias Keller. Spectral analysis of certain
spherically homogeneous graphs. Oper. Matrices, 7(4):825–847, 2013.

[Bro81] Robert Brooks. A relation between growth and the spectrum of the
Laplacian. Math. Z., 178(4):501–508, 1981.

[Bro91] Robert Brooks. The spectral geometry of k-regular graphs. J. Anal.
Math., 57:120–151, 1991.

[BH09] T. Bühler and M. Hein. Spectral clustering based on the graph p-
Laplacian. In Proc. 26th Annual Int. Conf. Mach. Learning, pages
81–88, New York, 2009. ACM.

[BBI01] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric
geometry, volume 33 of Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2001.

[Cac63a] Renato Caccioppoli. Opere. Vol. I: Funzioni di variabili reali ed ap-
plicazioni. Edizioni Cremonese, Rome, 1963.



BIBLIOGRAPHY 653

[Cac63b] Renato Caccioppoli. Opere. Vol. II: Funzioni di variabili complesse.
Equazioni funzionali. Edizioni Cremonese, Rome, 1963.

[Car72] P. Cartier. Fonctions harmoniques sur un arbre. In Symposia Math-
ematica, Vol. IX (Convegno di Calcolo delle Probabilità, INDAM,
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[CKW94] D. I. Cartwright, V. A. Kăımanovich, and W. Woess. Random walks
on the affine group of local fields and of homogeneous trees. Ann.
Inst. Fourier (Grenoble), 44(4):1243–1288, 1994.

[Cha84] Isaac Chavel. Eigenvalues in Riemannian geometry, volume 115 of
Pure and Applied Mathematics. Academic Press, Inc., Orlando, FL,
1984. Including a chapter by Burton Randol, With an appendix by
Jozef Dodziuk.

[Cha06] Isaac Chavel. Riemannian geometry, volume 98 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge,
second edition, 2006. A modern introduction.

[CK91] Isaac Chavel and Leon Karp. Large time behavior of the heat ker-
nel: the parabolic λ-potential alternative. Comment. Math. Helv.,
66(4):541–556, 1991.

[Che70] Jeff Cheeger. A lower bound for the smallest eigenvalue of the Lapla-
cian. In Problems in analysis (Papers dedicated to Salomon Bochner,
1969), pages 195–199. Princeton Univ. Press, Princeton, N. J., 1970.

[CY81] Jeff Cheeger and Shing Tung Yau. A lower bound for the heat kernel.
Comm. Pure Appl. Math., 34(4):465–480, 1981.

[CF12] Zhen-Qing Chen and Masatoshi Fukushima. Symmetric Markov
processes, time change, and boundary theory, volume 35 of Lon-
don Mathematical Society Monographs Series. Princeton University
Press, Princeton, NJ, 2012.

[Che75] Shiu Yuen Cheng. Eigenvalue comparison theorems and its geometric
applications. Math. Z., 143(3):289–297, 1975.

[CY75] Shiu Yuen Cheng and Shing Tung Yau. Differential equations on
Riemannian manifolds and their geometric applications. Comm. Pure
Appl. Math., 28(3):333–354, 1975.

[Che73] Paul R. Chernoff. Essential self-adjointness of powers of generators
of hyperbolic equations. J. Functional Analysis, 12:401–414, 1973.

[CGY00] Fan Chung, Alexander Grigor′yan, and Shing-Tung Yau. Higher
eigenvalues and isoperimetric inequalities on Riemannian manifolds
and graphs. Comm. Anal. Geom., 8(5):969–1026, 2000.

[CY99] Fan Chung and S.-T. Yau. Coverings, heat kernels and spanning
trees. Electron. J. Combin., 6:Research Paper 12, 21, 1999.

[Chu97] Fan R. K. Chung. Spectral graph theory, volume 92 of CBMS Re-
gional Conference Series in Mathematics. Published for the Confer-
ence Board of the Mathematical Sciences, Washington, DC; by the
American Mathematical Society, Providence, RI, 1997.

[Chu83] L. O. Chung. Existence of harmonic L1 functions in complete Rie-
mannian manifolds. Proc. Amer. Math. Soc., 88(3):531–532, 1983.

[CdV98] Yves Colin de Verdière. Spectres de graphes, volume 4 of Cours
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