# The magnetic bottle on graphs

### Medini Zied

#### University of Carthage and University of Orléans

3 août 2017

### International Conference at the University of Potsdam, Germany Analysis and Geometry on Graphs and Manifolds



## Preliminaries and notation

- Definitions and notation
- Linear like graph
- Operator

# 2 magnetic bottle

## Plan



- Definitions and notation
- Linear like graph
- Operator



# Definitions and notation

- A graph G is a couple (V, E) where :
  - V is a countable elements are called vertices.
  - $E \subset V \times V$  is the set of edges.
- Tow vertices x and y are called neighbors if they are connected with an edge and we write  $x \sim y$ .
- $m:V
  ightarrow (0,\infty)$  is a weight on vertices.

# Definitions and notation

- A graph G is a couple (V, E) where :
  - V is a countable elements are called vertices.
  - $E \subset V \times V$  is the set of edges.
- Tow vertices x and y are called neighbors if they are connected with an edge and we write  $x \sim y$ .
- $m: V \to (0,\infty)$  is a weight on vertices.

# Definitions and notation

- A graph G is a couple (V, E) where :
  - V is a countable elements are called vertices.
  - $E \subset V \times V$  is the set of edges.
- Tow vertices x and y are called neighbors if they are connected with an edge and we write  $x \sim y$ .
- $m: V \to (0,\infty)$  is a weight on vertices.

• Let  $\gamma = \{x_0, x_1, \dots, x_n\}$  be a part of V, we say  $\gamma$  is a path if

$$x_k \sim x_{k+1}, \ \forall 0 \leq k \leq n-1.$$

 A graph is connected if for all x, y ∈ V, there exists a path γ joining x and y :

$$\forall x \neq y \in V, \exists a path \gamma = (x_0, x_1, \dots, x_n); x_0 = x, x_n = y.$$

- A cycle is a path whose end and origin are identical
- A finite linear graph is a couple (V, E) where  $V = \{1, ..., n\}$  and  $E = \{\{i, i+1\}, 1 \le i \le n-1\}$

## Linear like graph

Let (N<sub>n</sub>)<sub>n</sub> be a strictly increasing sequence of N with N<sub>0</sub> = 0. We suppose for n ∈ N :

$$I_n = [N_n + 1, N_{n+1}]$$

#### it's a finite linear graph.

 Let G<sub>n</sub> = (V<sub>n</sub>, E<sub>n</sub>) be a finite graphs where E<sub>n</sub> is the set of edges, and V<sub>n</sub> is the set of vertices. we suppose that there exist v<sup>1</sup><sub>n</sub>, v<sup>2</sup><sub>n</sub> ∈ V<sub>n</sub> with :

$$e_n^+ = \{N_n, v_n^1\}$$

## Linear like graph

Let (N<sub>n</sub>)<sub>n</sub> be a strictly increasing sequence of N with N<sub>0</sub> = 0. We suppose for n ∈ N :

$$I_n = [N_n + 1, N_{n+1}]$$

it's a finite linear graph.

• Let  $G_n = (V_n, E_n)$  be a finite graphs where  $E_n$  is the set of edges, and  $V_n$  is the set of vertices. we suppose that there exist  $v_n^1, v_n^2 \in V_n$  with :

$$e_n^+ = \{N_n, v_n^1\}$$
  
 $e_n^- = \{N_n + 1, v_n^2\}$ 

We consider the graph G = (V, E) where :

• 
$$V = \bigcup_{n=1}^{\infty} V_n \cup I_n.$$
  
•  $E = \bigcup_{n=0}^{\infty} (E_n \cup \{e_n^+, e_n^-\} \cup E_{I_n})$ 

$$G = (V, E)$$
 is called linear like graph.  
 $m: V \to (0, \infty)$  with  $: m(v) = \begin{cases} m_{|V_n^-|} = m_{V_n^-|} \\ m_{|L_n|} = m_{L_n} \end{cases}$  Where  $:$ 

$$V_n^- = V_n \setminus \{v_n^1, v_n^2\}, I_n^+ = \{v_n^1, v_n^2\}$$
 and  $L_n = I_n \cup I_n^+$ 

We consider the graph G = (V, E) where :

• 
$$V = \bigcup_{n=1}^{\infty} V_n \cup I_n.$$
  
•  $E = \bigcup_{n=0}^{\infty} (E_n \cup \{e_n^+, e_n^-\} \cup E_{I_n})$ 

G = (V, E) is called linear like graph.

$$m: V \to (0,\infty)$$
 with  $: m(v) = \begin{cases} m_{|V_n^-|} = m_{V_n^-|} \\ m_{|L_n|} = m_{L_n} \end{cases}$  Where  $:$ 

 $V_n^- = V_n \setminus \{v_n^1, v_n^2\}$ ,  $I_n^+ = \{v_n^1, v_n^2\}$  and  $L_n = I_n \cup I_n^+$ 

We consider the graph G = (V, E) where :

• 
$$V = \bigcup_{n=1}^{\infty} V_n \cup I_n.$$
  
•  $E = \bigcup_{n=0}^{\infty} (E_n \cup \{e_n^+, e_n^-\} \cup E_{I_n})$ 

$$G = (V, E)$$
 is called linear like graph.  
 $m : V \to (0, \infty)$  with  $: m(v) = \begin{cases} m_{|V_n^-|} = m_{V_n^-|} \\ m_{|L_n|} = m_{L_n} \end{cases}$  Where  $:$ 

$$V_n^- = V_n \setminus \{v_n^1, v_n^2\}, I_n^+ = \{v_n^1, v_n^2\}$$
 and  $L_n = I_n \cup I_n^+$ 

$$\ell^2(V,m) = \{ f \in C(V) \mid \|f\| < \infty \},$$

endowed with the inner product :

$$\langle f,g \rangle_V = \sum_{x \in V} m(x) f(x) g(x)$$

and the norm

$$||f||_V = \sqrt{\langle f, f \rangle_V}.$$

we called magnetic potential the function :

$$\begin{array}{ccccc} \theta & : & V_n \times V_n & \longrightarrow & \mathbb{R} \\ & & & (x,y) & \longmapsto & \theta_{x,y} \end{array}$$

$$\ell^{2}(V,m) = \{ f \in C(V) \mid | f \| < \infty \},$$

endowed with the inner product :

$$\langle f,g \rangle_V = \sum_{x \in V} m(x) f(x) g(x)$$

and the norm

$$||f||_V = \sqrt{\langle f, f \rangle_V}.$$

$$\begin{array}{ccccc} \theta & : & V_n \times V_n & \longrightarrow & \mathbb{R} \\ & & & (x,y) & \longmapsto & \theta_{x,y} \end{array}$$

$$\ell^{2}(V,m) = \{ f \in C(V) \mid | f \| < \infty \},$$

endowed with the inner product :

$$\langle f,g \rangle_V = \sum_{x \in V} m(x) f(x) g(x)$$

and the norm

$$||f||_V = \sqrt{\langle f, f \rangle_V}.$$

$$\begin{array}{cccc} \theta & : & V_n \times V_n & \longrightarrow & \mathbb{R} \\ & & (x, y) & \longmapsto & \theta_{x, y} \end{array}$$

$$\ell^{2}(V,m) = \{ f \in C(V) \mid | f \| < \infty \},$$

endowed with the inner product :

$$\langle f,g \rangle_V = \sum_{x \in V} m(x) f(x) g(x)$$

and the norm

$$||f||_V = \sqrt{\langle f, f \rangle_V}.$$

we called magnetic potential the function :

$$\begin{array}{cccc} \theta & : & V_n \times V_n & \longrightarrow & \mathbb{R} \\ & & (x,y) & \longmapsto & \theta_{x,y} \end{array}$$

which checks :

θ<sub>x,y</sub> = -θ<sub>y,x</sub>
 θ<sub>x,y</sub> = 0, if x and y are not neighber
 We define the quadratic form q<sub>θ</sub> :

$$q_{\theta}(f) = \sum_{n \ge 0} \sum_{x,y \in V_n} |f(x) - \exp(i\theta)f(y)|^2 + \sum_{n \ge 0} \sum_{i=N_n+1}^{N_{n+1}} |f(x_i) - f(x_{i+1})|^2$$

$$+\sum_{\substack{n\geq 0}}\sum_{\substack{x,y\in I_n^+\\x\sim y}}|f(x)-f(y)|^2$$

For all  $f \in C_c(V)$ , there is a unique non-negative symmetric operator  $\Delta_{\theta}$  such that :

$$< f, \Delta_{ heta} f >= q_{ heta}(f), \ orall \ f \ \in \ C_c(V)$$

moreover, the magnetic Laplacian acts as follows :

$$\Delta_{\theta}f(x) = \frac{1}{m_n(x)} \sum_{y \sim x} (f(x) - \exp(i\theta)f(y))$$

We denote by  $\Delta_{\theta}$  the Friedrichs extension of  $\Delta_{\theta}|_{C_{c(V)}}$ .

We assume that :

• 
$$q_{V_n^-}(u) = \sum_{x,y \in V_n} |u(x) - \exp(i\theta)u(y)|^2$$
  
•  $q_{L_n} = \sum_{x,y \in L_n} |u(x) - u(y)|^2$   
•  $\tilde{a}(v) = \begin{cases} a_n \text{ if } v \in V_n^-\\ b_n \text{ if } v \in L_n \end{cases}$ 

where :

- $a_n$  the bottom of spectrum of  $q_{V_n}$  on  $\ell^2(V_n, 1)$
- $b_n$  the bottom of spectrum of  $q_{L_n}$  on  $\ell^2(L_n, 1)$

# Plan

## Preliminaries and notation

- Definitions and notation
- Linear like graph
- Operator



#### Theorem 2.1

Let G a linear like graph such that  $\sum_{x\in V} m(x) = \infty$  then :

 $\sigma_{ess}(q_0) \neq \emptyset$ 

#### Theorem 2.1

Let G a linear like graph such that  $\sum_{x\in V} m(x) = \infty$  then :

 $\sigma_{ess}(q_0) \neq \emptyset$ 

#### Lemma {S. Golénia}

Let A, B tow self-adjoint operators with form-domains  $\mathcal{D}(\mathcal{A})$  and  $\mathcal{D}(\mathcal{B})$ , respectively. if A and B have the same form-domian and

 $0 \leq <\psi, A\psi > \leq <\psi, B\psi >$ 

for all  $\psi \in \mathcal{D}(\mathcal{B})$  then  $\sigma_{ess}(\mathcal{B}) = \varnothing$  if and only if  $\sigma_{ess}(\mathcal{A}) = \varnothing$ 

#### Theorem 2.2

Let G a linear like graph and  $q_{\theta}$  the quadratic form on G, such that :

$$\lim_{n\to+\infty}\frac{\tilde{a}(v)}{m(v)}=+\infty$$

then the spectrum of  $q_{\theta}$  is discreet.

#### **Proposition 2.3**

Let G a linear like graph and  $q_{\theta}$  the quadratic form on G if  $|L_n|$  fixed and  $a_n$ ,  $a_{n+1}$  close to 0, then there exist D such that :

$$b_n \geq \frac{D}{2}a_n$$

#### **Proposition 2.4**

Let G be a linear like graph and  $q_{\theta}$  the quadratic form on G if  $a_n$ ,  $a_{n+1}$  fixed and  $|L_n|$  tends to infinity then :

$$b_n \sim \left(\frac{\pi}{(l_n+1)}\right)^2$$

- Y. Colin de Verdière : Asymptotique de Weyl pour les bouteilles magnétiques, Commun. Math. Phys. 105 (1986), 327-335 .
- Y.Colin de Verdière, N.Torki-Hamza and F.Truc : Essential self-adjointness for combinatorial Schrödinger operators III-Magnetic fields, Ann. Fac. Sci. Toulouse Math. Sér, 6, 20 (2011), no. 3, 599-611
- S. Golénia and F. Truc : The magnetic Laplacian acting on discrete cusps, arxiv :150702638v2 Analysis of operators Academic Press.



📎 M. Reed and B. Simon : Methods of Modern Mathematical Physics, Tome I (1980).

# Thank for your attention