Differential forms on products of fractals

Michael Hinz

Bielefeld University

Analysis and Geometry on Graphs and Manifolds International Conference at the University of Potsdam, Germany July 31 - August 04, 2017

Michael Hinz Differential forms on products of fractals

Work in progress joint with Dan Kelleher (Alberta).

Our aims:

- Abstract definition of 2-forms on products of (p.c.f.s.s.) fractals.
- Approximations by functions on graphs.

Related questions on manifold via semigroups (work in progress).

Known before:

- 1-forms on fractals studied by several authors.
- Simple fractals ('p.c.f.s.s.') do not carry non-zero 2-forms.
- Unpublished earlier notes by Strichartz / Wen, but no limit statements. Our method is different.

Analysis on non-smooth metric measure spaces

General question: If no smoothness / rectifiability ...

How to replace items of analysis and differential geometry ?

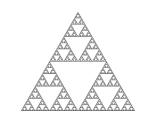
Lipschitz analysis (metric dominates)

- upper gradients $|f(z_2) f(z_1)| \leq \int_0^l g(\gamma(s)) ds$
- Lipschitz constant $(\text{Lip } f)(z_0) = \liminf_{r \to 0} \sup_{\varrho(z_0, z) = r} \frac{|f(z) f(z_0)|}{r}$
- doubling measure, Poincaré inequality: minimal upper gradient dominates Lip f; under reverse Poincaré f' well defined
- *inapplicable to 'fractals'* like self-similar Sierpinski carpets (cf. *Bourdon/Pajot, Mackay/Tyson*)

Semmes, Cheeger '99, also: Heinonen, Koskela, Shanmugalingam, Sturm, Gigli, etc.

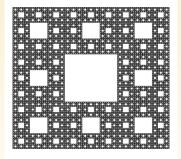
Analysis via energy (energy dominates)

On some spaces existence and uniqueness of a 'generic' Dirichlet form $(\mathcal{E}, \mathcal{D}(\mathcal{E}))$ resp. Brownian motion $(Y_t)_{t\geq 0}$ are known.



Sierpinski gasket ... Goldstein '86, Kusuoka '86, Barlow / Perkins '87.

Michael Hinz



Sierpinski carpet ... Barlow/Bass '88, '98, Barlow/Bass/Kumagai/Teplyaev '10.

Michael Hinz

Differential forms on products of fractals

- Kigami, 'Analysis on Fractals', Cambridge Univ. Press, 2001
- Strichartz, 'Introduction to Differential Equations on Fractals', Princeton Univ. Press, 2006
- Barlow, 'Diffusions on Fractals', Springer LNM, 1998

For some fractal spaces (p.c.f.s.s.) construction of an energy form \mathcal{E} is *easy*, via graph approximations.

We will consider the Sierpinski gasket K (prototype for p.c.f.s.s.).

Finite graphs

Let V be a vertex set of a finite graph, I(V) space of functions on V. Graph energy is defined as

$$\mathcal{E}_V(f) := \sum_{p \in V} \sum_{q \in V} c(p,q)(f(p) - f(q))^2,$$

where c(p,q) = 1 if $p \sim q$ and zero otherwise. Have

$$\mathcal{E}_V(f) = \int_K \Gamma_V(f)(p) \, d\delta_V(p),$$

where δ_V counting measure on V and

$$-_V(f)(p) = \sum_{q \in V} c(p,q)(f(p) - f(q))^2$$

energy density of f w.r.t. δ_V .

Michael Hinz

Let $l_a(V \times V)$ be space of antisymmetric functions on $V \times V$, $\omega(p,q) = -\omega(q,p)$. Call ω and η equiv. if $\omega(p,q) = \eta(p,q)$ whenever $p \sim q$.

Definition

Quotient space $l_a(V \times V) / \sim$ is space of 1-forms.

'Functions on oriented edges'.

• Difference operator $\delta_0 f(p,q) = f(p) - f(q)$ can be interpreted as linear map

$$\delta_0: I(V) \to I_a(V imes V)/\sim .$$

If we set

$$(g\delta_0 f)(p,q) := \overline{g}(p,q)(f(p) - f(q)),$$

where $\bar{g}(p,q) := \frac{1}{2}(g(p) + g(q))$, Leibniz rule holds.

Michael Hinz

Sierpinski gasket

On K construct energy functional

$$\mathcal{E}_{\mathcal{K}}(f) = \ \ ''\int_{\mathcal{K}} |\nabla f(x)|^2 dx \ \ ''$$

as the limit of rescaled energy forms on approximating graphs with vertex sets V_n ,

$$\mathcal{E}_n(f) = \left(\frac{5}{3}\right)^n \sum_{p \in V_n} \sum_{q \in V_n} c_n(p,q)(f(p) - f(q))^2.$$

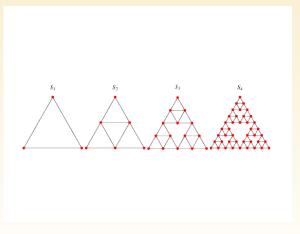
Definition (Energy form as a discrete limit, Kigami '89, '93, Kusuoka '93)

For 'any function' f on K for which the limit is finite, define

$$\mathcal{E}_{\mathcal{K}}(f) := \lim_{n} \mathcal{E}_{n}(f).$$

Michael Hinz

Differential forms on products of fractals



Michael Hinz Differential forms on products of fractals

Michael Hinz Differential forms on products of fractals

- To find correct rescaling, solve a sequence of discrete Dirichlet problems.
- Obtain a space $\mathcal{F}_{\mathcal{K}}$ of functions on \mathcal{K} with finite energy, i.e.

$$\mathcal{E}_{\mathcal{K}}:\mathcal{F}_{\mathcal{K}}\to [0,+\infty).$$

• Simultaneously get a (resistance) metric ρ_R on K so that

 $\mathcal{F}_{\mathcal{K}} \subset C^{\beta}(\mathcal{K})$ (Hölder-Sobolev embedding),

this metric also 'makes definition of $\mathcal{E}_{\mathcal{K}}$ precise'.

- Construction is purely combinatorial, no volume measure is used.
- With 'any reasonable' finite Borel measure m on K the pair $(\mathcal{E}_K, \mathcal{F}_K)$ becomes a strongly local regular Dirichlet form on $L_2(K, m)$.

Two prominent choices of measures, both atom free:

 Natural self-similar Hausdorff measure μ: 'Equidistributed on K', but energy and μ are singular, no way to write

"
$$\mathcal{E}_{\mathcal{K}}(f) = \int_{\mathcal{K}} \Gamma_{\mathcal{K}}(f) \, d\mu$$
 "

with a function $\Gamma_{\kappa}(f)$ (Ben-Bassat/Strichartz/Teplyaev '99, Hino '04).

 Kusuoka measure ν: Comes from energy, not self-similar, 'concentrated around junction points', for any f ∈ F_K can find a function Γ_K(f) ∈ L¹(K, ν) such that

$$\mathcal{E}_{\mathcal{K}}(f) = \int_{\mathcal{K}} \Gamma_{\mathcal{K}}(f) \, d\nu,$$

and the energy density $\Gamma_{\mathcal{K}}(f)$ is an analog of $|\nabla f|^2$.

In what follows we use ν . Also: This slide makes the talk nontrivial.

Michael Hinz

Consider $V_n \subset K$ as a boundary and call a function f on K *n*-piecewise harmonic (ph) if it is the harmonic continuation to k of a function on V_n . If f *n*-ph, then also *m*-ph for $m \ge n$.

Well known:

- The ph functions are dense in $\mathcal{F}_{\mathcal{K}}$ with respect to $\mathcal{E}_{\mathcal{K}}$.
- The ph functions are dense in $\mathcal{F}_{\mathcal{K}}$ in uniform norm.

Use ph functions to make connection

discrete graph structures \Leftrightarrow continuous fractal K.

For ph f can rewrite $\Gamma_{\mathcal{K}}(f)$.

 $\mathcal{K} \subset \mathbb{R}^2$ is self-similar space under the similarities

$$F_i(x) = \frac{1}{2}(x - q_i) + q_i, \quad i = 0, 1, 2,$$

where $V_0 = \{q_0, q_1, q_2\}$ is set of vertices of a non-degenerate triangle. Let W_n be the set of words $w = w_1...w_n$ of length n over $\{0, 1, 2\}$ and write $F_w := F_{w_1} \circ F_{w_2} \circ ... \circ F_{w_n}$.

Given $w \in W_n$ write

$$K_w := F_w(K).$$

Michael Hinz

Given two vertices $p, q \in V_n$ and a point $x \in K$, write

$$c_n(p,q,x) := \sum_{w \in W_n: \ p,q \in K_w} \frac{\mathbf{1}_{K_w(p)}(x)}{\nu(K_w(p))},$$

where $K_w(p)$ the subtriangle K_{wi} of K_w containing p.

Definition (Semi-discrete rewriting of energy density)

For any *n*-ph *f* and ν -a.e. $x \in K$ we set

$$\Gamma_{K,n}(f)(x) := \left(\frac{5}{3}\right)^n \sum_{p \in V_n} \sum_{q \in V_n} c_n(p,q,x)(f(p) - f(q))^2.$$

Note: Integration w.r.t. ν just gives $\mathcal{E}_n(f)$.

The Kusuoka measure ν provides the correct local weights.

Michael Hinz

This connects well to a classical result:

Proposition (Kusuoka '89)

For any ph function f we have

$$\lim_{n} \Gamma_{n}(f)(x) = \Gamma_{K}(f)(x),$$

both for ν -a.e. $x \in K$ and in $L^p(K, \nu)$, $1 \leq p < +\infty$.

(Follows from convergence of a bounded martingale.)

Note: Integrated formula is trivial, the above is not.

1-forms

From the first order calculus for Dirichlet forms it follows that

 \bullet there are a Hilbert space $\mathcal{H}_{\mathcal{K}}$ and a derivation

$$\partial: \mathcal{F}_{\mathcal{K}} \to \mathcal{H}_{\mathcal{K}}$$

such that $\langle \partial f, \partial g
angle_{\mathcal{H}_{\mathcal{K}}} = \mathcal{E}_{\mathcal{K}}(f,g)$ for any $f,g \in \mathcal{F}_{\mathcal{K}}$

Corollary (Discrete approximation, immediate)

For an element $g\partial f = "gdf "$ of \mathcal{H}_K with $f,g \in \mathcal{F}_K$ we have

$$\|g\partial f\|_{\mathcal{H}_{K}}^{2}=\lim_{n}\left(\frac{5}{3}\right)^{n}\sum_{p\in V_{n}}\sum_{q\in V_{n}}c_{n}(p,q)\bar{g}(p,q)^{2}(f(p)-f(q))^{2}$$

Here c(p,q) = 1 if $p \sim_n q$ and zero otherwise.

Michael Hinz

Definition (cf. Cipriani/Sauvageot '03, '09, lonescu/Rogers/Teplyaev '12)

To $\mathcal{H}_{\mathcal{K}}$ we refer as the Hilbert space of L^2 -differential 1-forms associated with $(\mathcal{E}, \mathcal{F}_{\mathcal{K}})$.

For general local regular Dirichlet forms consistent with classical case (and, if coexistent, with Lipschitz analysis).

Basic idea: " $\mathcal{H}_{\mathcal{K}} = L^2(\mathcal{K}, T^*\mathcal{K}, \nu)$ ".

It also follows from first order calculus for Dirichlet forms that

• there is a measurable field of Hilbert spaces $(\mathcal{H}_x)_{x\in\mathcal{K}}$ such that

$$\mathcal{H}_{\mathcal{K}}=\int_{\mathcal{K}}^{\oplus}\mathcal{H}_{x}\ \nu(dx),$$

and $\langle \partial f, \partial g \rangle_{\mathcal{H}_x} = \Gamma_{\mathcal{K}}(f, g)(x)$ for ν -a.e. $x \in \mathcal{K}$. Basic idea: " $\mathcal{H}_x = T_x^* \mathcal{K}$ ".

Corollary (Semi-discrete approximation for 1-forms, immediate)

For any n-piecewise harmonic f, g and ν -a.e. $x \in K$ we have

$$\|g\partial f\|_{\mathcal{H}_x}^2 = \lim_n \left(\frac{5}{3}\right)^n \sum_{p \in V_n} \sum_{q \in V_n} c_n(p,q,x) \overline{g}(p,q)^2 (f(p) - f(q))^2,$$

both for ν -a.e. $x \in K$ and in $L^p(K, \nu)$, $1 \leq p < +\infty$.

Michael Hinz

Bielefeld University

Basic idea to get 2-forms would be

$${}^{\prime}\mathcal{H}_x\wedge\mathcal{H}_x=T_x^*K\wedge T_x^*K^{\prime\prime}.$$

On K we do no non-trivial 2-forms exist, above spaces are $\{0\}$:

Proposition (Kusuoka '89, Hino '10	,)
<i>We have</i> dim $\mathcal{H}_{x} = 1$ for ν -a.e. $x \in$	K.

Therefore: Look at products $K \times K$.

Aim: Semi-discrete approximation formula for 2-forms + integrated version.

Products of gaskets

We partially follow Strichartz '05.

 $\mathcal{K}', \mathcal{K}''$ identical copies of \mathcal{K} , each endowed with Kusuoka measure ν', ν'' and Dirichlet forms $(\mathcal{E}', \mathcal{F}')$ and $(\mathcal{E}'', \mathcal{F}'')$ as Dirichlet forms as before. Consider

$${\mathcal K}^2:={\mathcal K}' imes {\mathcal K}'', \quad ext{endowed with} \quad
u^2:=
u' imes
u''.$$

Define

$$\mathcal{E}(f) := \int_{\mathcal{K}''} \mathcal{E}'(f(\cdot, x''))\nu''(dx'') + \int_{\mathcal{K}'} \mathcal{E}''(f(x', \cdot))\nu'(dx'), \quad f \in \mathcal{F},$$

with domain \mathcal{F} defined in straightforward way.

 $(\mathcal{E},\mathcal{F})$ is a strongly local regular Dirichlet form on $L^2(K^2,
u^2)$.

Michael Hinz

Energy densities for functions $f \in \mathcal{F}$ exist and satisfy

 $\Gamma(f)(x) = \Gamma'(f(\cdot, x''))(x') + \Gamma''(f(x', \cdot))(x'')$

for ν^2 -a.e. $x = (x', x'') \in K^2$, cf. Bouleau/Hirsch '91, i.e.

$$" |\nabla f|^2 = \left(\frac{\partial f}{\partial x'}\right)^2 + \left(\frac{\partial f}{\partial x''}\right)^2 ".$$

Michael Hinz Differential forms on products of fractals The span of functions of tensor form

$$f = f' \otimes f''$$

with f' and f'' *n*-ph on K' and K'', respectively, is \mathcal{E} -dense in \mathcal{F} . For such f,

$$\Gamma_n(f)(x) = f''(x'')^2 \Gamma'_n(f')(x') + f'(x')^2 \Gamma''_n(f'')(x'').$$

Corollary (again via martingale convergence)

For any f of form n-ph \otimes n-ph we have

$$\lim_{n} \Gamma_{n}(f)(x) = \Gamma(f)(x),$$

both for ν^2 -a.e. $x \in K^2$ and in $L^p(K^2, \nu^2)$, $1 \le p < \infty$.

Michael Hinz

Plugging in the semi-discrete approximations, using Hölder continuity and some cancellations, obtain:

Lemma

For any f of form $ph \otimes ph$ have

$$\Gamma(f)(x) = \lim_{n} \left(\frac{5}{3}\right)^{n} \sum_{p \in V_{n}^{2}} \sum_{q \sim_{n} p} c(p, q, x) (f(p) - f(q))^{2},$$

both for ν^2 -a.e. $x=(x',x'')\in {\mathcal K}^2$ and in $L^p({\mathcal K}^2,\nu^2),\,1\leq p<\infty,$ where

$$(q',q'')=q$$
 \sim_n $p=(p',p'')$

means summation over all pairs (q',q'') such that either q'=p' or q''=p'' and

$$c(p,q;x) := c'(p',q',x')c''(p'',q'',x'').$$

Michael Hinz

Similarly as before

- can define Hilbert space \mathcal{H} of 1-forms on the product K^2 and a derivation $\partial: \mathcal{F} \to \mathcal{H}$
- have the direct integral representation

$$\mathcal{H}=\int_{\mathcal{K}^2}\mathcal{H}_x\,\nu^2(dx)$$

with
$$\langle \partial f, \partial g
angle_{\mathcal{H}_x} = \mathsf{\Gamma}(f,g)(x)$$
 for u^2 -a.e. $x \in \mathsf{K}^2$.

Proposition

We have dim
$$\mathcal{H}_x = 2$$
 for ν^2 -a.e. $x \in K^2$.

Michael Hinz

Consider products of the fibers \mathcal{H}_x :

For fixed $x \in K^2$ tensor products $\omega^1 \otimes \eta^1$ of two elements ω^1 and η^1 of \mathcal{H}_x are defined as the bilinear forms

$$(\omega^1\otimes\eta^1)(\omega^2,\eta^2):=ig\langle\omega^1,\omega^2ig
angle_{\mathcal{H}_x}ig\langle\eta^1,\eta^2ig
angle_{\mathcal{H}_x},\quad\omega^2,\eta^2\in\mathcal{H}_x.$$

They span $\bigotimes^2 \mathcal{H}_x$. Let $\Lambda^2 \mathcal{H}_x$ be subspace spanned by the elements of form

$$\omega \wedge \eta := \omega \otimes \eta - \eta \otimes \omega.$$

On $\Lambda^2 \mathcal{H}_x$ we consider the scalar product defined as the bilinear extension of

$$\left\langle \omega^1 \wedge \eta^1, \omega^2 \wedge \eta^2 \right\rangle_{\mathsf{\Lambda}^2 \mathcal{H}_x} := \left\langle \omega^1, \omega^2 \right\rangle_{\mathcal{H}_x} \left\langle \eta^1, \eta^2 \right\rangle_{\mathcal{H}_x} - \left\langle \omega^1, \eta^2 \right\rangle_{\mathcal{H}_x} \left\langle \eta^1, \omega^2 \right\rangle_{\mathcal{H}_x}.$$

Michael Hinz Differential forms on products of fractals

Definition

To $L^2(K^2, (\mathcal{H}_x)_{x \in K}, \nu^2)$ we refer as the space of L^2 -differential 2-forms on K^2 with respect to ν^2 .

Note: In classical / smooth theory 'always' work with measures that induce energy densities, no need to discuss.

Also, can make sense of $\partial : \mathcal{H} \to L^2(\mathcal{K}^2, (\mathcal{H}_x)_{x \in \mathcal{K}}, \nu^2)$,

$$\partial(g\partial f) = \partial g \wedge \partial f$$

as an unbounded operator.

In particular, for f_1, f_2, h_1, h_2 of form $ph \otimes ph$,

 $\langle \partial f_1 \wedge \partial f_2, \partial h_1 \wedge \partial h_2 \rangle_{\Lambda^2 \mathcal{H}_x} = \det\left((\Gamma(f_i, h_j))_{i,j=1,2}\right).$

Using Leibniz' formula for determinants and projecting to antisymmetric functions, obtain the following.

For a function F = F(p, q), write

$$\delta_1 F(p,q,r) := F(q,r) - F(p,r) + F(p,q).$$

For a function g = g(p), write $\overline{g}(p,q,r) := \frac{1}{3}(g(p) + g(q) + g(r))$.

Theorem (Semi-discrete approximation for 2-forms)

For f_1, f_2, g of form $ph \otimes ph$ we have

$$\|g \partial f_1 \wedge \partial f_2\|_{\Lambda^2 \mathcal{H}_x}^2$$

= $2 \lim_n \left(\frac{5}{3}\right)^{2n} \sum_{p \in V_n^2} \sum_{q \sim_n p} \sum_{r \sim_n p} c_n(p, q, x) c_n(p, r, x) \times$
 $\times \overline{g}(p, q, r)^2 [\partial_1(f_1 \otimes f_2 - f_2 \otimes f_1)(p, q, r)]^2.$

Michael Hinz

Let $K'_n(p'; q', r')$ be the uniquely determined subcell $K'_{w'i}$ containing p' of order |w'i| = n + 1 of the cell K_w of order n containing p', q' and r'. Write

$$K_n(p,q,r) := K'_n(p',q,r') \times K''_n(p'',q'',r'').$$

Theorem (Discrete approximation for 2-forms)

For f_1, f_2, g of form $ph \otimes ph$ we have

$$\begin{split} \|g \,\partial f_1 \wedge \partial f_2\|_{L^2(K^2,(\Lambda^2 \mathcal{H}_x)_{x \in K},\nu^2)}^2 \\ &= 2 \lim_n \left(\frac{5}{3}\right)^{2n} \sum_{p \in V_n^2} \sum_{q \sim_n p} \sum_{r \sim_n p} \frac{1}{\nu^2(K_n(p,q,r))} \times \\ &\times \bar{g}(p,q,r)^2 [\partial_1(f_1 \otimes f_2 - f_2 \otimes f_1)(p,q,r)]^2. \end{split}$$

Integrated version, contains 'local weights'.

Michael Hinz

THANK YOU 🙂

Michael Hinz Differential forms on products of fractals