Glivenko–Cantelli Theory, Banach-space valued Ergodic Theorems and uniform approximation of the integrated density of states

Ivan Veselić, TU Dortmund

Universität Potsdam, August 2017

joint with Christoph Schumacher (TU Dortmund) & Fabian Schwarzenberger (HTW Dresden)

Spectral distribution function of Hamiltonians on \mathbb{Z}^d

Hamiltonian = (negative) Laplacian + multiplication operator = kinetic energy + potential energy (in Quantum Mechanics) $(H\phi)(x) = \sum_{y \text{ neighbour of } x} (\phi(x) - \phi(y)) + V(x)\phi(x)$

 \Rightarrow *H* selfadjoint and $\sigma(H) \subset \mathbb{R}$.

How to describe 'density of the spectrum'?

Spectral distribution function of Hamiltonians on \mathbb{Z}^d

Hamiltonian = (negative) Laplacian + multiplication operator
= kinetic energy + potential energy (in Quantum Mechanics)

$$(H\phi)(x) = \sum_{y \text{ neighbour of } x} (\phi(x) - \phi(y)) + V(x)\phi(x)$$

 \Rightarrow *H* selfadjoint and $\sigma(H) \subset \mathbb{R}$.

How to describe 'density of the spectrum'?

Local procedure, using cubes $\Lambda = \mathbb{Z}^d \cap [-L, L]^d$ and $H_L = \mathbf{1}^*_{\Lambda} H \mathbf{1}_{\Lambda}$:

$$\mathbb{R} \ni E \to N_L(E) := \frac{\#\{ \text{ eigenvalues of } H_L \leq E \}}{(2L+1)^d}$$

is a probability distribution function.

Spectral distribution function of Hamiltonians on \mathbb{Z}^d

Hamiltonian = (negative) Laplacian + multiplication operator
= kinetic energy + potential energy (in Quantum Mechanics)

$$(H\phi)(x) = \sum_{y \text{ neighbour of } x} (\phi(x) - \phi(y)) + V(x)\phi(x)$$

 \Rightarrow *H* selfadjoint and $\sigma(H) \subset \mathbb{R}$.

How to describe 'density of the spectrum'?

Local procedure, using cubes $\Lambda = \mathbb{Z}^d \cap [-L, L]^d$ and $H_L = \mathbf{1}^*_{\Lambda} H \mathbf{1}_{\Lambda}$:

$$\mathbb{R} \ni E \to N_L(E) := \frac{\#\{ \text{ eigenvalues of } H_L \leq E \}}{(2L+1)^d}$$

is a probability distribution function.

Well known:

Under appropriate ergodicity assumptions on potential or *coloring* $V : \mathbb{Z}^d \to \mathbb{R}$

$$\lim_{L\to\infty}N_L(E)=:N(E)$$

exists for almost all $E \in \mathbb{R}$ and is a distribution function.

- \blacktriangleright finitely many values $|\mathcal{A}| < \infty$
- existence of pattern frequencies:

 $P \in \mathcal{P}_r =$ all patterns of size $[-r, r]^d$

- \blacktriangleright finitely many values $|\mathcal{A}| < \infty$
- existence of pattern frequencies:

 $P \in \mathcal{P}_r = \mathsf{all} \mathsf{ patterns} \mathsf{ of size } [-r,r]^d$

$$\nu_L(P) = \frac{\text{occurences of } P \text{ in } [-L, L]^d}{(2L+1)^d}$$

- \blacktriangleright finitely many values $|\mathcal{A}| < \infty$
- existence of pattern frequencies:

$$P \in \mathcal{P}_r = \mathsf{all} \; \mathsf{patterns} \; \mathsf{of} \; \mathsf{size} \; [-r,r]^d$$

$$\nu_L(P) = \frac{\text{occurences of } P \text{ in } [-L, L]^d}{(2L+1)^d}$$

Assumption: $\forall r \forall P \in \mathcal{P}_r$ exists

$$\lim_{L\to\infty}\nu_L(P)=:\nu(P)$$

 \blacktriangleright finitely many values $|\mathcal{A}| < \infty$

existence of pattern frequencies:

$$P \in \mathcal{P}_r = \mathsf{all} \; \mathsf{patterns} \; \mathsf{of} \; \mathsf{size} \; [-r,r]^d$$

$$u_L(P) = rac{\operatorname{occurrences} \operatorname{of} P \operatorname{in} [-L, L]^d}{(2L+1)^d}$$

Assumption: $\forall r \forall P \in \mathcal{P}_r$ exists

$$\lim_{L\to\infty}\nu_L(P)=:\nu(P)$$

Theorem Lenz, Müller & Ves. 08

$$\lim_{n\to\infty}\left\|N_L-N\right\|_{\infty}=0$$

In fact for any $r < L \in \mathbb{N}$

$$\sup_{E \in \mathbb{R}} \left\| \mathsf{N}_{\mathsf{L}}(E) - \mathsf{N}(E) \right\|_{\infty} \leq const \left[\frac{1}{r} + \frac{r}{L} + \sum_{P \in \mathcal{P}_{r}} \left| \nu_{\mathsf{L}}(P) - \nu(P) \right| \right]$$

Sum is finite since \mathcal{A} finite.

Comment

Results does not require that the limiting distribution function is continuous.

Comment

Results does not require that the limiting distribution function is continuous.

Examples of colorings $V\colon \mathbb{Z}^d ightarrow \mathcal{A}$ satisfying assumptions

- ▶ $V = \mathbf{1}_{\mathrm{VP}}$, where $\mathrm{VP} \subset \mathbb{Z}^d$ denotes the set of points visible form the origin
- ▶ V(x), $x \in \mathbb{Z}^d$, i.i.d sequence of random variables \Rightarrow almost surely satisfied

Comment

Results does not require that the limiting distribution function is continuous.

Examples of colorings $V \colon \mathbb{Z}^d \to \mathcal{A}$ satisfying assumptions

- ▶ $V = \mathbf{1}_{\mathrm{VP}}$, where $\mathrm{VP} \subset \mathbb{Z}^d$ denotes the set of points visible form the origin
- ▶ V(x), $x \in \mathbb{Z}^d$, i.i.d sequence of random variables \Rightarrow almost surely satisfied

Actually, Theorem applies to abstract fields

$$\mathcal{P}(\mathbb{Z}^d) \ni \Lambda \mapsto f_\Lambda \in \mathcal{B}$$
 Banach space

satisfying

- \blacktriangleright almost additivity with respect to finite Λ
- \blacktriangleright equi-variance with respect to colouring V, respectively patterns

Almost addittivity (semi locality, low complexity) Let $\Lambda_1, \ldots, \Lambda_N \subset \mathbb{Z}^d$ finite, disjoint and $\Lambda := \Lambda_1 \cup \ldots \cup \Lambda_N$

$$\Rightarrow \qquad \left\|f_{\Lambda} - \sum_{j=1}^{N} f_{\Lambda_{j}} - \sum_{j=1}^{N} \sharp \partial \Lambda_{j}\right\|_{\mathcal{B}} \leq \text{const.} \sum_{j=1}^{N} \sharp \partial \Lambda_{j}$$

True for the eigenvalue countig functions due to interlacing theorem for eigenvalues.

Each removed edge gives a rank one perturbation.

Almost addittivity (semi locality, low complexity) Let $\Lambda_1, \ldots, \Lambda_N \subset \mathbb{Z}^d$ finite, disjoint and $\Lambda := \Lambda_1 \cup \ldots \cup \Lambda_N$

$$\Rightarrow \sup_{\omega \in \mathcal{A}^{\mathbb{Z}^d}} \left\| f_{\Lambda}(\omega) - \sum_{j=1}^N f_{\Lambda_j}(\omega) \right\|_{\mathcal{B}} \leq \text{const.} \sum_{j=1}^N \sharp \partial \Lambda_j$$

for all patterns/configurations $\omega \in \mathcal{A}^{\mathbb{Z}^d}$, if coloring generated by stochastic field

True for the eigenvalue countig functions due to interlacing theorem for eigenvalues.

Each removed edge gives a rank one perturbation.

Equi-variance with respect to colouring V

same patterns	\Rightarrow	same values
$V _{\Lambda} = V _{\Lambda+k}$	\Rightarrow	$f_{\Lambda} = f_{\Lambda+k}$

Obviously true for the eigenvalue countig functions.

same patterns	\Rightarrow	same values
$V _{\Lambda} = V _{\Lambda+k}$	\Rightarrow	$f_{\Lambda} = f_{\Lambda+k}$

Obviously true for the eigenvalue countig functions.

Questions

Does uniform convergence theorem & error estimate hold

- ▶ for Laplacians of more general groups that \mathbb{Z}^d ?
- ► for potential fields or colorings where the set of values A is infinite or even uncountable?

Laplace on discrete group, more precisely, on Cayley graph

 ${\mathcal G}$ discrete group, ${\mathcal S}={\mathcal S}^{-1}\subset {\mathcal G}\setminus\{{\rm id}\}$ finite, symmetric generating set

adjacency relation $x \sim y \Leftrightarrow x^{-1}y \in S$ defines Cayley graph Cay(G, S)

Laplace on discrete group, more precisely, on Cayley graph *G* discrete group, $S = S^{-1} \subset G \setminus {\text{id}}$ finite, symmetric generating set

adjacency relation $x \sim y \Leftrightarrow x^{-1}y \in S$ defines Cayley graph Cay(G, S)

Laplace on discrete group, more precisely, on Cayley graph G discrete group, $S = S^{-1} \subset G \setminus {id}$ finite, symmetric generating set

adjacency relation $x \sim y \Leftrightarrow x^{-1}y \in S$ defines Cayley graph Cay(G, S)

Hamilton operator on Cayley graph Cay(G, S)

$$(H\phi)(x) = \sum_{y \in G, y \sim x} (\phi(x) - \phi(y)) + V(x)\phi(x)$$

Hamilton operator on Cayley graph Cay(G, S)

$$(H\phi)(x) = \sum_{y \in G, y \sim x} (\phi(x) - \phi(y)) + V(x)\phi(x)$$

Standing assumption: Amenability

 $\mathsf{Cay}(G,S)$ amenable \Leftrightarrow exists Følner sequence $\Lambda_1 \subset \Lambda_2 \subset \Lambda_3 \subset \ldots G$

$$\Leftrightarrow \Lambda_j \neq \emptyset \ \text{ finite and } \ \lim_{j \to \infty} \frac{|\partial \Lambda_j|}{|\Lambda_j|} = 0$$

where $\partial \Lambda := \{(x, y) \mid \Lambda \ni x \sim y \notin \Lambda\}$

amenability of Cay(G, S) independent of choice of S

Temporary assumption: Symmetric tiling

finite $\Lambda \in \mathcal{P}(G)$ tiles G symmetricaly \Leftrightarrow there is set $C = C^{-1} \subseteq G$ such that $G = \dot{\bigcup}_{g \in C} \Lambda g.$ Λ_1

Temporary assumption: Symmetric tiling

Temporary assumption: Symmetric tiling

Assume existence of Foelner sequence of symmetric tiles.

Theorem Lenz, Schwarzenberger, Ves. 2011

Let $V: G \to \mathcal{A}$ have frequencies and $f : \mathcal{P}(G) \to \mathcal{B}$ be V equi-variant and almost-additive. Let (Λ_n) be a Følner sequence such that each Λ_n symmetrically tiles G. Let (U_j) be arbitrary Følner sequence.

Then the Banach space limit

$$\overline{f} := \lim_{j \to \infty} \frac{f_{U_j}}{|U_j|}$$

exists

Theorem Lenz, Schwarzenberger, Ves. 2011

Let $V: G \to \mathcal{A}$ have frequencies and $f : \mathcal{P}(G) \to \mathcal{B}$ be V equi-variant and almost-additive. Let (Λ_n) be a Følner sequence such that each Λ_n symmetrically tiles G. Let (U_j) be arbitrary Følner sequence.

Then the Banach space limits

$$\overline{f} := \lim_{j \to \infty} \frac{f_{U_j}}{|U_j|} = \lim_{n \to \infty} \sum_{P \in \mathcal{P}(\Lambda_n)} \nu(P) \frac{\tilde{f}(P)}{|\Lambda_n|}$$

exist and coincide. For $j, n \in \mathbb{N}$ the difference

$$\left\|\frac{f_{U_j}}{|U_j|} - \sum_{P \in \mathcal{P}(\Lambda_n)} \nu(P) \frac{\tilde{f}(P)}{|\Lambda_n|}\right\|_{\mathcal{B}}$$

is bounded above by

$$const.\left[\frac{|\partial \Lambda_n|}{|\Lambda_n|} + \frac{|\partial^{diam(\Lambda_n)}U_j|}{|U_j|} + \sum_{P \in \mathcal{P}(\Lambda_n)} \left|\frac{\nu_{U_j}(P)}{|U_j|} - \nu(P)\right|\right]$$

How restrictive is the assumption of having a symmetric tiling Følner sequence?

- ▶ this is satisfied, if one finds a sequence of subgroups (G_n) and associated fundamental domains (F_n), which form a Følner sequence
- ▶ this is satisfied, if is residually finite, amenable group G (Krieger 2007 using Weiss 2001)
- example: Heisenberg group

How restrictive is the assumption of having a symmetric tiling Følner sequence?

- ▶ this is satisfied, if one finds a sequence of subgroups (G_n) and associated fundamental domains (F_n) , which form a Følner sequence
- this is satisfied, if is residually finite, amenable group G (Krieger 2007 using Weiss 2001)
- example: Heisenberg group

- Not very restrictive.
- No discrete amenable groups known which violate condition.
- Still unsatisfactory condition.

Quasi-tilings

Figure: Ball quasi-tilings approximate \mathbb{R}^d or \mathbb{Z}^d very fast.

Quasi-tilings

Figure: Ball quasi-tilings approximate \mathbb{R}^d or \mathbb{Z}^d very fast.

Quasi-tilings

Figure: Ball quasi-tilings approximate \mathbb{R}^d or \mathbb{Z}^d very fast.

$\epsilon\text{-}\mathsf{Quasi}$ tilings of Ornstein and Weiss

ϵ -Quasi tilings of Ornstein and Weiss

$\epsilon\text{-}\mathsf{Quasi}$ tilings of Ornstein and Weiss

Leave at most ϵ -portion uncovered.

Have at most ϵ -portion overlap (within same generation).

$\epsilon\text{-}\mathsf{Quasi}$ tilings of Ornstein and Weiss

Leave at most ϵ -portion uncovered.

Have at most ϵ -portion overlap (within same generation).

Quasi-Tiling

Theorem Pogorzelski, Schwarzenberger 11 based on Ornstein, Weiss 87 Let (U_j) and (S_n) be Følner sequences with $e \in S_n \subseteq S_{n+1}$, $(n \in \mathbb{N})$. For $0 < \epsilon \le 1/10$ there are sets $T_i^{\epsilon} \in \{S_n \mid n \ge i\}$, $i = 1, \ldots, N(\epsilon)$ which fulfil: for $j \ge j_0(\epsilon)$ we find center sets $(C_{i,j})_{i=1}^{N(\epsilon)}$ such that

$$T_i^{\epsilon} C_{i,j} \subseteq U_j (i \in \{1, \ldots, N(\epsilon)\})$$

►
$$\{T_i^{\epsilon}c\}_{c \in C_{i,j}}$$
 is ϵ -disjoint $(i \in \{1, ..., N(\epsilon)\})$

•
$$\{T_i^{\epsilon} C_{i,j}\}_{i=1}^{N(\epsilon)}$$
 is a disjoint family

$$\left| \frac{|T_i^{\epsilon} C_{i,j}|}{|U_j|} - \eta_i(\epsilon) \right| \le 2^{-N(\epsilon)-1} \epsilon \qquad (i \in \{1, \dots, N(\epsilon)\})$$

where

$$\begin{split} & \blacktriangleright \ \ \mathsf{N}(\epsilon) := \lceil \log(\varepsilon) / \log(1-\varepsilon) \rceil \quad 0 < \epsilon \leq 1/10 \\ & \flat \ \eta_i(\varepsilon) := \varepsilon (1-\varepsilon)^{\mathsf{N}(\epsilon)-i} \quad i = 1, \dots, \mathsf{N}(\epsilon). \end{split}$$

Theorem Pogorzelski, Schwarzenberger 2011

For V with pattern frequencies $\nu(P)$, F almost additive & equi-variant, $(U_j) \subset G$ Følner sequence

$$\overline{f} = \lim_{j \to \infty} \frac{f_{U_j}}{|U_j|}$$

exists

Theorem Pogorzelski, Schwarzenberger 2011

For V with pattern frequencies $\nu(P)$, F almost additive & equi-variant, $(U_j) \subset G$ Følner sequence

$$\overline{f} = \lim_{j \to \infty} \frac{f_{U_j}}{|U_j|} = \lim_{\varepsilon \searrow 0} \sum_{i=1}^{N(\epsilon)} \eta_i(\varepsilon) \sum_{P \in \mathcal{P}(T_i^{\epsilon})} \nu(P) \frac{\tilde{f}(P)}{|T_i^{\epsilon}|}$$

exists, where

$$\begin{array}{l} \mathsf{N}(\epsilon) := \lceil \log(\varepsilon) / \log(1 - \varepsilon) \rceil \quad 0 < \epsilon \le 1/10 \\ \mathfrak{n}_i(\varepsilon) := \varepsilon (1 - \varepsilon)^{\mathsf{N}(\epsilon) - i} \quad i = 1, \dots, \mathsf{N}(\epsilon). \\ \mathsf{(} T_i^{\epsilon})_{i=1}^{\mathsf{N}(\epsilon)} \text{ is an } \epsilon \text{-quasi-tiling (as before)} \end{array}$$

$$\begin{split} & \left\|\overline{f} - \frac{f_{U_j}}{|U_j|}\right\| \\ & \leq \textit{const.} \left[\epsilon + \sum_{i=1}^{N(\epsilon)} \eta_i(\varepsilon) \frac{b(T_i^{\epsilon})}{|T_i^{\epsilon}|} + \sum_{i=1}^{N(\epsilon)} \eta_i(\varepsilon) \sum_{P \in \mathcal{P}(T_i^{\epsilon})} \left| \frac{\nu_{U_j}(P)}{|U_j|} - \nu(P) \right| \right] \end{split}$$

Potential or coloring V with uncountable many values in $\mathcal{A} \subset \mathbb{R}$

Recall error estimate of Lenz, Müller & Ves. 2008

$$\left\|\frac{1}{n^d}f_{\Lambda_n} - f\right\|_{\mathcal{B}} \le const\left[\frac{1}{r} + \frac{r}{n} + \sum_{P \in \mathcal{P}_r} |\nu_n(P) - \nu(P)|\right] \qquad (*)$$

Sum does not make sense for uncountable A, but we identify the total variation norm of the difference $\nu_n - \nu$.

 \Rightarrow convergence of pattern densities in total variation norm sufficient to extend the theorem.

Potential or coloring V with uncountable many values in $\mathcal{A} \subset \mathbb{R}$

Recall error estimate of Lenz, Müller & Ves. 2008

$$\left\|\frac{1}{n^d}f_{\Lambda_n} - f\right\|_{\mathcal{B}} \leq const\left[\frac{1}{r} + \frac{r}{n} + \sum_{P \in \mathcal{P}_r} |\nu_n(P) - \nu(P)|\right] \qquad (*)$$

Sum does not make sense for uncountable A, but we identify the total variation norm of the difference $\nu_n - \nu$.

 \Rightarrow convergence of pattern densities in total variation norm sufficient to extend the theorem.

Unfortunately this, is not a natural assumption.

Glivenko-Cantelli Theory tells us

For an continuous probability measure ν on \mathbb{R} the approximating empirical measures ν_n do not converge in total variation.

So, if V(x) is an i.i.d. sequence of continuous random variables (*) does not converge to zero.

Monotonicity allows integration by parts

Assume that $\mathcal{B} = L^{\infty}(\mathbb{R})$ and $\omega_x \mapsto f_{\Lambda}(\omega)$ is monotone for each index $x \in \mathbb{Z}^d$.

Monotonicity allows integration by parts

Assume that $\mathcal{B} = L^{\infty}(\mathbb{R})$ and $\omega_x \mapsto f_{\Lambda}(\omega)$ is monotone for each index $x \in \mathbb{Z}^d$.

Idea

monotonicity

- \rightsquigarrow weak differentiability
- → inegration by parts
- \rightsquigarrow replace TV norm by $\|.\|_\infty$ norm for distribution functions

Theorem Schumacher, Schwarzenberger & Ves. 17

 $V_x \colon \Omega \to \mathbb{R}, x \in \mathbb{Z}^d$, i.i.d.random variables define random colouring, $f \colon \mathcal{P}(\mathbb{Z}^d) \times \Omega \to \mathcal{B}$ equi-variant, almost additive, monotone coordinate-wise and

$$\|f_{\Lambda}\|_{\infty} \leq const |\Lambda|$$

 \Rightarrow exists isotone bounded function $f : \mathbb{R} \rightarrow [0, 1]$

$$\lim_{n \to \infty} \left\| \frac{1}{(2n+1)^d} f_{\Lambda_n} - f \right\|_{\infty} = 0 \qquad \text{for almost all } \omega$$

and explicit error estimates: geometric + probabilistic error. Recall $\Lambda_n = \mathbb{Z}^d \cap [-n, n]^d$.

Theorem Schumacher, Schwarzenberger & Ves. 17

 $V_x \colon \Omega \to \mathbb{R}, x \in \mathbb{Z}^d$, i.i.d.random variables define random colouring, $f \colon \mathcal{P}(\mathbb{Z}^d) \times \Omega \to \mathcal{B}$ equi-variant, almost additive, monotone coordinate-wise and

$$\|f_{\Lambda}\|_{\infty} \leq const |\Lambda|$$

 \Rightarrow exists isotone bounded function $f : \mathbb{R} \rightarrow [0, 1]$

$$\lim_{n \to \infty} \left\| \frac{1}{(2n+1)^d} f_{\Lambda_n} - f \right\|_{\infty} = 0 \qquad \text{for almost all } \omega$$

and explicit error estimates: geometric + probabilistic error.

Recall
$$\Lambda_n = \mathbb{Z}^d \cap [-n, n]^d$$
.

probabilistic error:

Large deviations type result \rightsquigarrow fast stochastic convergence \rightsquigarrow almost sure convergence

Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017 $V_x: \Omega \to G, x \in \mathbb{Z}^d$, i.i.d.random variables define random colouring, $f: \mathcal{P}(\mathbb{Z}^d) \times \Omega \to \mathcal{B}$ equi-variant, almost additive, monotone coordinate-wise and

 $\|f_{\Lambda}\|_{\infty} \leq const |\Lambda|$

 \Rightarrow exists isotone bounded function $f \colon \mathbb{R} \to [0,1]$

$$\lim_{n \to \infty} \left\| \frac{1}{|\Lambda_n|} f_{\Lambda_n} - f \right\|_{\infty} = 0 \qquad \text{for almost all } \omega$$

for any Følner sequence (Λ_n) in G.

Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017

 $V_x \colon \Omega \to G, x \in \mathbb{Z}^d$, i.i.d.random variables define random colouring, $f \colon \mathcal{P}(\mathbb{Z}^d) \times \Omega \to \mathcal{B}$ equi-variant, almost additive, monotone coordinate-wise and

 $\|f_{\Lambda}\|_{\infty} \leq const |\Lambda|$

 \Rightarrow exists isotone bounded function $f \colon \mathbb{R} \to [0,1]$

$$\lim_{n \to \infty} \left\| \frac{1}{|\Lambda_n|} f_{\Lambda_n} - f \right\|_\infty = 0 \qquad \text{for almost all } \omega$$

for any Følner sequence (Λ_n) in G.

Error estimate involves not only (Λ_n) but also auxiliary ϵ -quasi tilings of Følner sets.

Extension to amenable groups G

Theorem Schumacher, Schwarzenberger & Ves. preprint 2017

 $V_x \colon \Omega \to G, x \in \mathbb{Z}^d$, i.i.d.random variables define random colouring, $f \colon \mathcal{P}(\mathbb{Z}^d) \times \Omega \to \mathcal{B}$ equi-variant, almost additive, monotone coordinate-wise and

 $\|f_{\Lambda}\|_{\infty} \leq const |\Lambda|$

 \Rightarrow exists isotone bounded function $f \colon \mathbb{R} \to [0,1]$

$$\lim_{n \to \infty} \left\| \frac{1}{|\Lambda_n|} f_{\Lambda_n} - f \right\|_{\infty} = 0 \qquad \text{for almost all } \omega$$

for any Følner sequence (Λ_n) in G.

Error estimate involves not only (Λ_n) but also auxiliary ϵ -quasi tilings of Følner sets.

New challenge here

Tiles in a quasi-tiling might overlap \rightsquigarrow corresponding sample are not independent \rightsquigarrow empirical measures for pattern frequencies are biased \rightsquigarrow use resampling machinery to correct/estimate bias and apply Glivenko–Cantelli Theory.

Many thanks for your attention!